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ABSTRACT

We consider the dispersion on the supernova distance-redshift relation due to pe-
culiar velocities and gravitational lensing, and the sensitivity of these effects to the
amplitude of the matter power spectrum. We use the MeMo lensing likelihood devel-
oped by Quartin et al., which accounts for the characteristic non-Gaussian distribution
caused by lensing magnification with measurements of the first four central moments
of the distribution of magnitudes. We build on the MeMo likelihood by including
the effects of peculiar velocities directly into the model for the moments. In order to
measure the moments from sparse numbers of supernovae, we take a new approach
using Kernel Density Estimation to estimate the underlying probability density func-
tion of the magnitude residuals. We also describe a bootstrap re-sampling approach
to estimate the data covariance matrix. We then apply the method to the Joint Light-
curve Analysis (JLA) supernova catalogue. When we impose only that the intrinsic
dispersion in magnitudes is independent of redshift, we find σ8 = 0.44+0.63

−0.44 at the one
standard deviation level, although we note that in tests on simulations, this model
tends to overestimate the magnitude of the intrinsic dispersion, and underestimate
σ8. We note that the degeneracy between intrinsic dispersion and the effects of σ8 is
more pronounced when lensing and velocity effects are considered simultaneously, due
to a cancellation of redshift dependence when both effects are included. Keeping the
model of the intrinsic dispersion fixed as a Gaussian distribution of width 0.14 mag,
we find σ8 = 1.07+0.50

−0.76.

Key words: cosmology: large scale structure of the universe – cosmology: observation
– cosmology: theory – galaxies: kinematics and dynamics – galaxies: statistics

1 INTRODUCTION

Understanding the nature of dark energy is one of the key
goals of modern cosmology. A recurring theme in under-
standing dark energy is measuring both the growth of struc-
tures and geometry of the Universe (e.g. Abate & Lahav
2008; Zhao et al. 2010, 2012; Samushia et al. 2013, 2014;
Ruiz & Huterer 2015). In this work, we consider using super-
novae, typically considered a probe of geometry, to constrain
the growth of structure.

1.1 Growth and Geometry

Here, geometry refers to observational probes that are pre-
dominantly sensitive to the background expansion of the

⋆ email: edward.macaulay@port.ac.uk

Universe: observations that constrain the distance-redshift
relation. Among geometrical probes, observations are either
‘standard rulers’, such as Baryon Acoustic Oscillations (e.g.
Seo & Eisenstein 2003; Blake & Glazebrook 2003; Eisenstein
et al. 2005; Blake et al. 2011b; Anderson et al. 2012; Busca
et al. 2013; Anderson et al. 2014), or ‘standard candles’,
such as supernovae Ia (e.g. Hicken et al. 2009; Kessler et al.
2009; Guy et al. 2010; Folatelli et al. 2010; Conley et al.
2011; Betoule et al. 2014; Narayan et al. 2016). Supernovae
are well known as a key observable probe in establishing
the accelerated expansion of the Universe (Riess et al. 1998;
Perlmutter et al. 1999). These geometrical observables con-
strain the densities of the constituents of the Universe (such
as the matter density, Ωm), and the equations of state of
these densities. A key aim of these observations is to mea-
sure w, the equation of state of dark energy.

With the accelerating expansion of the Universe now
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2 E. Macaulay et al.

well established (e.g. Frieman, Turner & Huterer 2008;
Planck Collaboration et al. 2016b), and ever more precise
measurements of w, new dark energy observations are fo-
cusing on measuring the growth of the Universe (e.g. Linder
2005; Blake et al. 2012). Here, growth refers to the growth
of cosmological density perturbations. The motivation for
measuring the growth of density perturbations is that the-
oretical models of dark energy (which must reproduce the
observed distance-redshift relation) often predict different
expectations for the growth of density perturbations (e.g.
Clifton et al. 2012).

Among growth probes, there is a natural division of
the observations into two kinds: either relativistic or non-
relativistic. Relativistic techniques such as gravitational
lensing (Bartelmann & Schneider 2001; Heymans et al. 2012)
and the integrated Sachs Wolfe effect (Sachs & Wolfe 1967;
Scranton et al. 2003; Pogosian et al. 2005; Giannantonio
et al. 2006; Planck Collaboration et al. 2016c) are sensitive
to the path that photons take, and are therefore sensitive
to both time-like and space-like perturbations to the met-
ric. On the other hand, non-relativistic observations, such
as Redshift Space Distortions, (Kaiser 1987; Peacock et al.
2001; Guzzo et al. 2008; Reid et al. 2012) focus on the po-
sitions and velocities of large scale structure. These obser-
vations are sensitive only to time-like perturbations to the
metric, the ‘Newtonian’ potential.

A key feature of general relativity (GR) is that time-like
and space-like perturbations to the metric should be equal
(e.g. Hu & Sawicki 2007; Baker, Ferreira & Skordis 2013),
and so measuring both Newtonian and Lensing density fluc-
tuations is a powerful technique to constrain modified grav-
ity alternatives to a cosmological constant dark energy (e.g.
Reyes et al. 2010; Simpson et al. 2013; de la Torre et al. 2013;
Leonard, Ferreira & Heymans 2015; Pullen et al. 2016; Blake
et al. 2016). The equality of these two potentials is only true
in the absence of anisotropic stress, as we would expect for
cold dark matter (CDM), so an inequality may also suggest
dark matter interactions. We thus have several observational
tests that any theory of the dark Universe must pass: the
distance-redshift relation, and measurements of Newtonian
and Lensing density fluctuations.

Supernovae are one of the most established probes of the
distance-redshift relation. In this paper, we focus on using
supernovae to also constrain Newtonian and Lensing density
fluctuations. The main motivation for this work is to con-
tribute to the development of a new method to measure the
amplitude of the matter power spectrum with supernovae.
σ8 is the amplitude of the matter power spectrum at scales
of 8 h−1Mpc, and a key parameter to measure in order to
constrain cosmological density fluctuations, although as we
will see, supernova magnitude fluctuations are sensitive to
fluctuations on very different physical scales.

The best-fitting value for σ8 from the Planck measure-
ments of the cosmic microwave background is 0.830±0.015
(Planck Collaboration et al. 2016a). However, it is important
to remember that this is a derived value (not a measure-
ment) that depends on the measured value of the amplitude
of primordial density fluctuations (As), and a cosmological
model. Current measurements of σ8 from weak lensing shear
and redshift space distortions find a value that is lower than
expectations from the ΛCDM model with Planck parame-
ters (e.g. Samushia et al. 2013; Macaulay, Wehus & Eriksen

2013; Reid et al. 2014; Castro, Quartin & Benitez-Herrera
2016; Planck Collaboration et al. 2016b; Gil-Maŕın et al.
2017). Depending on the choice of model (such as imposing
flatness, or a cosmological constant), the tension is at the
level between two and three standard deviations.

While the tension remains only moderate, and
unaccounted-for systematic effects in the observables can-
not be ruled out, there is the possibility that the tension
may represent some of the first hints of physics beyond the
ΛCDM model. New methods to measure σ8 are important
to determine if the current tension is due to new physics, or
systematic effects.

1.2 Signals in the Noise

A more general motivation for this work is to develop
a method to measure cosmological parameters from sig-
nals that are often considered as noise. Ben-Dayan et al.
(2013a,b) modelled the effect of cosmological density fluc-
tuations on luminosity distance measurements. They found
that peculiar velocities and gravitational lensing are the
dominant sources of the dispersion, and place a fundamental
limit on our ability to measure parameters affecting the dis-
tance redshift relation, such as ΩΛ. In this work, instead of
considering the dispersion from lensing and peculiar veloc-
ities as noise in the distance-redshift relation, cosmological
signals in this distribution are our primary focus.

At low redshift, peculiar velocities can be inferred for
individual galaxies with an independent distance indicator,
such as the Tully-Fisher, Fundamental Plane or supernovae
(e.g. Hudson & Turnbull 2012; Beutler et al. 2012; Scrim-
geour et al. 2016). This can be achieved at higher redshifts if
galaxy sizes or magnitudes are cross-correlated with galaxy
overdensities (Bacon et al. 2014). Also at higher redshift, pe-
culiar velocities can be inferred statistically in a galaxy red-
shift survey, via redshift space distortions (e.g. Blake et al.
2011a; Okumura et al. 2016; Simpson et al. 2016).

Gordon, Land & Slosar (2007) analysed the peculiar
velocities of 271 low redshift supernovae, and found σ8 =
0.79± 0.22. Huterer, Shafer & Schmidt (2015) analysed the
bulk flow of the 100 lowest redshift galaxies in the joint
light-curve analysis (JLA) catalogue. Instead of fitting for σ8

directly, the analysis fitted the amplitude A of the peculiar
velocity covariance matrix, normalized to the expected value
in ΛCDM. The analysis found a value of A consistent with
zero peculiar velocities, but with a large uncertainty that
also included the expected ΛCDM value.

The magnitudes of standard candles are also affected
by gravitational lensing. In rare cases, when the photons
pass close to a massive cluster, a supernova can be strongly
lensed, or even lensed into multiple images (e.g. Kelly et al.
2015). However, all supernovae will be weakly-lensed by
cosmological density perturbations. Scranton et al. (2005)
detected lensing magnification in the cross-correlation of
quasar and foreground galaxy correlations. One of the most
established techniques for detecting weak gravitational lens-
ing is by measuring coherent distortions in the shapes of
galaxies (e.g. Fu et al. 2014; Dark Energy Survey Collabora-
tion et al. 2016). In contrast, supernova lensing is sensitive
to the change in magnitude caused by weak gravitational
lensing. Since lensing depends on the integrated path of the
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Velocities & Lensing on the Hubble diagram 3

photons, the effect is most significant for high redshift su-
pernovae (e.g. Scovacricchi et al. 2016).

Gunnarsson et al. (2006) considered correcting for the
lensing dispersion in the Hubble diagram by estimating the
magnification effect from large scale structure, and Jönsson
et al. (2010) considered using supernovae magnification to
constrain the properties of the lensing dark matter haloes.
Collett et al. (2013) considered modelling the line of sight
lensing signal to improve time delay measurements. Smith
et al. (2014) tested for lensing magnification with 608 super-
novae from the Sloan Digital Sky Survey by cross-correlating
the magnitude residuals with the expected lensing signal
from foreground galaxies. Although the significance of the
cross-correlation was low at the 1.4 standard deviation con-
fidence level, the correlation suggests that lensing provides
some contribution to the distances measured with super-
novae.

Dodelson & Vallinotto (2006) proposed using the dis-
persion in the Hubble diagram due to weak lensing to mea-
sure σ8, but noted that the Gaussian model used in their
work can be biased towards incorrect values of σ8 due to the
non-Gaussian nature of the lensing dispersion. In a series of
papers, Marra, Quartin & Amendola (2013) and Quartin,
Marra & Amendola (2014) developed a method to measure
σ8 from the effect of lensing magnification on the magni-
tude residuals of supernovae (called Method-of-the-Moments
– MeMo). In Castro & Quartin (2014), the MeMo tech-
nique was applied to the JLA and Union2 supernovae cat-
alogues, finding σ8 = 0.84+0.28

−0.65 at the 68% confidence level,
or σ8 < 1.45 at the 95% confidence level.

In Castro, Quartin & Benitez-Herrera (2016), the
MeMo lensing likelihood was combined with a peculiar ve-
locity likelihood. These two different physical effects were
combined by using a peculiar velocity likelihood for super-
novae with redshift z < 0.1, and the lensing-only MeMo like-
lihood for higher redshifts. This approach has the advantage
that correlations between supernovae from large scale bulk
flows can be modeled in the velocity likelihood, but does
not model the combined effect of the two different kinds of
perturbations on the moments. Castro, Quartin & Benitez-
Herrera (2016) allowed both σ8 and the perturbation growth
index γ to vary, finding the best-fitting σ8 = 0.65+0.23

−0.37, with
γ = 1.35+1.7

−0.65. Keeping γ fixed at the expected value in GR
of 0.55, the best-fitting value of σ8 was 0.40+0.21

−0.23.

Our approach to treating lensing and velocities is differ-
ent from that of Castro, Quartin & Benitez-Herrera (2016).
Instead of treating the two effects as independent – with
two different likelihoods – we use a single likelihood that
directly combines predictions for lensing and velocities into
the expectations for the moments. The advantage of this
approach is that the total expectations for the moments in-
clude contributions for both effects, which would otherwise
be underestimated.

Dodelson & Vallinotto (2006) assumed that the intrinsic
dispersion in supernova magnitudes can be modeled with a
Gaussian distribution with mean zero and a standard devia-
tion that is independent of redshift. Castro & Quartin (2014)
relaxed this assumption somewhat by allowing the intrinsic
dispersion to be further modeled with intrinsic third and
fourth moments (although also constant in redshift). In both
papers, the only variation in the distribution of residuals was
assumed to be due to perturbations in the metric, as a func-

tion of σ8. In reality, the intrinsic dispersion in the magni-
tudes of supernovae may vary with redshift, and may not be
Gaussian. For example, Malmquist bias may affect the distri-
bution of fainter residuals, sub-populations of different types
of Ia supernovae may skew the intrinsic dispersion, or cor-
relations with host-galaxy evolution may introduce redshift
dependence (e.g. Howell et al. 2009; Lampeitl et al. 2010;
Sullivan et al. 2010; Kelly et al. 2010; Campbell, Fraser &
Gilmore 2016). Singh et al. (2016) tested the Hubble residu-
als of recent supernova data with the Kolmogorov Smirnov
test, and found the residuals to be consistent with a Gaus-
sian distribution. Castro & Quartin (2014) tested models of
the intrinsic dispersion that are both constant and vary with
redshift, and found that the Bayesian evidence favoured a
model for the intrinsic dispersion that is constant in redshift.

In this work, we aim to place limits on cosmological
density fluctuations via the effects of peculiar velocities and
lensing magnification on moments of the Hubble diagram.
We verify the MeMo lensing likelihood on simulated cata-
logues from the MICE light cone simulation. We include the
effects of peculiar velocities directly into the moments like-
lihood, as opposed to including velocities with a separate
likelihood. In Section 2 we describe the physical model of
the moments, based on the effects of peculiar velocities and
lensing magnification. In Section 3 we review the JLA cat-
alogue and the simulated realizations of the catalogue that
we generate. In Section 4 we describe our techniques to mea-
sure the moments and estimate the data covariance matrix.
In Section 5 we present the results of fitting for the lensing
and velocity models to the JLA catalogue, and compare our
results to other analyses. In Section 6, we summarize our
main conclusions.

2 MODELLING THE EFFECTS OF

STRUCTURE ON SUPERNOVA

MAGNITUDES

Throughout this paper we assume a flat ΛCDM model.
We consider the perturbed Friedmann-Lemâıtre-Robertson-
Walker metric, given by

ds2 = −a2(1 + 2Ψ)dη2 + a2(1− 2Φ)dx2, (1)

where Ψ represents time-like perturbations to the metric,
and Φ represents space-like perturbations. In the case of
CDM and GR, the two potentials are equal, and so any de-
parture from Ψ = Φ may suggest physics beyond ΛCDM.
Traditionally, supernovae have been used to probe only the
history of the scale factor, a, by measuring the distance mod-
ulus, µ (in Mpc)

µ = 25 + 5 log10 (DL) , (2)

where, for a flat universe, the luminosity distanceDL is given
by

DL = (1 + zobs)

∫

dz
c

H(z)
(3)

where z is the cosmological redshift (i.e., without a peculiar
velocity), and zobs is the redshift including the additional
Doppler shift due to the peculiar velocity. In order to fully
constrain the physics of the dark Universe, we must also
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constrain perturbations to the metric. Both peculiar veloci-
ties and lensing constrain perturbations, and depend on the
amplitude of the matter power spectrum, characterized by
σ8. Peculiar velocities are sensitive to very large scale modes
in the matter power spectrum, while lensing is sensitive to
small scale modes. Our assumption in this work is that the
amplitude of the power spectrum can be calculated for all
k scales once one has set σ8. Any variation in the signals
from lensing and velocity may be due to scale dependent
effects in the matter power spectrum. For the small k scales
to which lensing is sensitive, the matter power spectrum is
also sensitive to complicated baryonic physics (Jing et al.
2006; Duffy et al. 2010; Semboloni et al. 2011).

2.1 Peculiar Velocities

At low redshift, deviations from the Hubble flow are domi-
nated by peculiar velocities. The peculiar velocity covariance
matrix is given by (e.g. Huterer, Shafer & Schmidt 2015)

〈µi, µj〉 =

(

5

ln 10

)2 (

(1 + zi)
2

H(zi)DL(zi)

)(

(1 + zj)
2

H(zj)DL(zj)

)

ξ,

(4)
where the velocity correlation function ξ can be decomposed
into components that are parallel and perpendicular to the
line of sight, following the notation in Gordon, Land & Slosar
(2007),

ξ = sin θi sin θjξ⊥ + cos θi cos θjξ||. (5)

The parallel and perpendicular components are given by

ξ||,⊥ = H2
0f(zi)f(zj)aiaj

∫

dk

2π2
P (k)K||,⊥(kr), (6)

where the window functions K are

K||(x) = j0(x)−
2j1(x)

x
(7)

and

K⊥(x) =
j1(x)

x
. (8)

j0(x) and j1(x) are Bessel functions. For i = j (i.e., the
diagonal of the covariance matrix), the arguments of the
window functions K are x = 0. Since K⊥ tends to 0 as x
tends to 0, and K|| tends to 1

3
(Gorski 1988), the diagonal

of the covariance matrix is given by (in km s−1)

σ2
V,kms−1 = H2

0f
2(z)a2

∫

dk
P (k)

2π2

1

3
, (9)

which we can convert into magnitudes:

σV =
5

ln 10

(

(1 + z)2

H(z)DL(z)

)

σV,kms−1 . (10)

The form of equation (10) can also be used to include con-
tributions from non-linear peculiar velocities (which are not
modeled by the power spectrum)

σ∗ =
5

ln 10

(

(1 + z)2

H(z)DL(z)

)

σV,NL, (11)

where σV,NL is the non-linear velocity dispersion, in km s−1.
We can include the non-linear dispersion in the likelihood as
an additional parameter to marginalize over, although we
find that this has only a minimal effect on the results.

2.2 Lensing

At higher redshifts (z & 0.4), the effects of lensing magni-
fication dominate the effects due to peculiar velocities. The
change in magnitude ∆µ due to weak lensing magnification
is related to the lensing convergence κ along the line of sight
by (e.g. Bartelmann & Schneider 2001)

∆µ = 5 log10(1− κ), (12)

or, to first order in κ

∆µ ≈ −
5

ln 10
κ. (13)

κ is given by a weighted sum of the density fluctuations δ
along the line of sight,

κ =
3ΩmH2

0

2c2

∫ χS

0

dχ

[

(χS − χ)
χ

χS
(1 + zχ)

]

δ(χ). (14)

The term in square brackets weights the contribution of the
density fluctuation by the fractional distance of χ to the
source, χS , at redshift zχ. The dispersion in κ is given by
(e.g. Bacon et al. 2014)

κ̄2 =
9Ω2

mH4
0

4c4

∫ χS

0

dχ

[

(χS − χ)
χ

χS
(1 + zχ)

]2 ∫

dk
kP (k)

2π
.

(15)
Combining equation (13) and (15), we can relate the power
spectrum to the expected lensing dispersion in magnitudes:

σ2
L ≈

(

5

ln 10

)2

κ̄2 (16)

We do not use equations (16) and (15) directly in our like-
lihood. Instead, we use a fitting function given by equation
6 in Marra, Quartin & Amendola (2013), which we have
verified reproduces the theoretical expectation.

However, the dispersion due to lensing magnification
has a characteristic, negatively skewed non-Gaussian dis-
tribution with a long magnification tail. The large tail of
magnified lines of sight is due to the rare, densest lines of
sight, which cause the photons along these paths to be more
focused, leading to a magnification. Conversely, most lines
of sight in the Universe are under dense. Photons travelling
along these paths are consequently de-magnified (compared
to a path at average density).

2.3 Moments of the Residuals

In order to measure this characteristic non-Gaussianity, the
approach we take here is to build on the MeMo lensing likeli-
hood presented in Quartin, Marra & Amendola (2014). The
MeMo approach fitted for the effects of lensing magnifica-
tion on the first four moments of the Hubble residuals. These
moments are related to the variance, skewness and kurtosis
of the residuals. The model in Quartin, Marra & Amendola
(2014) did not include the effects of peculiar velocities, and
the combined lensing and velocity analysis in Castro, Quar-
tin & Benitez-Herrera (2016) used two independent likeli-
hoods for the lensing and velocities. However, the two effects
cannot be split into two independent likelihoods, since the
additional dispersion caused by the peculiar velocities con-
tributes to the moments measured in the lensing likelihood.
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Instead, our approach is to include the additional dis-
persion from peculiar velocities directly into the moments
analysis. The advantage of this approach is that the ad-
ditional dispersion (that is greater than the lensing effect
for z < 0.4) can be directly accounted for in the moments
analysis. The disadvantage is that correlations in magni-
tudes cannot be included – we are effectively modelling only
the diagonal component of the distance modulus covariance
matrix. However, we find that the full velocity covariance
matrix given by equation (4) is dominated by the diagonal
component. For z > 0.1, the correlations between the super-
novae are almost entirely negligible. Moreover, this approach
allows us to correctly calculate the total effect on the mo-
ments due to lensing and velocities.

The ith moment µi of a variable µ is defined as

µi ≡
〈

(µ− 〈µ〉)i
〉

, (17)

or, equivalently,

µi =

∫

dµ(µ− 〈µ〉)iP (µ), (18)

where 〈µ〉 is the mean of the distribution and P (µ) is the
probability distribution of µ. The MeMo likelihood is given
by

L = exp

(

−
1

2

∑

j

χ2
j

)

, (19)

where j is a sum over redshift bins. Within each redshift
bin, the χ2 is given by

χ2 = (µ− µfid)
t
C
−1(µ− µfid), (20)

where C is the data covariance matrix in the jth redshift
bin.

We use the same redshift binning as Castro & Quartin
(2014), with equally spaced bins of ∆z = 0.1, to a maximum
of z = 0.9, and find that the results are not significantly af-
fected by the redshift binning. We use the ensemble sampler
emcee (Foreman-Mackey et al. 2013) to probe the posterior
distribution of the parameters. Since the covariance matrix
is estimated from the data, and does not depend on the pa-
rameters that are fitted, equation (19) does not depend on
the determinant of the covariance matrix. We describe our
method to estimate the covariance matrix in Section 4.2.

Here, µ is a vector of the observed first four moments
of the distance moduli within the redshift bin

µ = {µ1, µ2, µ3, µ4}, (21)

and µfid is the corresponding vector of theoretical expec-
tations for the moments. The second moment is given by

µ2 = σ2
I + σ2

L + σ2
V, (22)

where σL is the lensing dispersion, σV is the velocity dis-
persion, and σI is the intrinsic dispersion in supernova mag-
nitudes. The non-linear velocity dispersion σ∗ can also be
added in quadrature to this expression, although we find
that including this parameter has only a small effect on the
results. We assume that σI is constant, and independent of
redshift. The third moment is given by

µ3 = µ3,L + µ3,I, (23)

where µ3,L is the contribution due to lensing, and we also
allow an intrinsic µ3,I to vary. Due to isotropy, we would ex-
pect large scale structure to cause peculiar velocities moving
equally towards or away from the line of sight. As such we
would not expect peculiar velocities to preferentially mag-
nify or de-magnify, so we do not include a contribution to
the third moment from velocities. We verify that velocities
do not contribute to the skewness of the residuals in Fig. 1.
The fourth moment is given by

µ4 = µ4,L + µ4,I + 3µ2
2 − 3σ4

L, (24)

where, as before, µ4,L are the intrinsic and lensing contri-
butions to the moment µ4,I. We subtract the 3σ4

L term so
that the equation reduces to equation 11 in Quartin, Marra
& Amendola (2014) in the absence of additional contribu-
tions from velocities. The effect of the velocities affects the
moment via the 3µ2

2 term. We calculate σV and σ∗ from
equations (11) and (10). For the lensing moments, we use
fitting functions given by equations 6, 7 and 8 in Marra,
Quartin & Amendola (2013), which have been calibrated to
N -body simulations for a range of cosmological parameters.

For µ1, we use equation (2) to calculate the expected
distance modulus from the observed supernovae. In Fig. 1
we compare the moments of the distribution of magnitude
residuals. We note that the model for the second moment
agrees with the theoretical modelling from Ben-Dayan et al.
(2013a).

3 SUPERNOVA DATA & SIMULATIONS

Throughout this paper, we consider distances measured with
the JLA supernova catalogue (Betoule et al. 2014). We cal-
culate the observed distance modulus using

µ = m⋆
B − (MB − αX1 + βC), (25)

where X1 is the stretch parameter of the light curve and C
is the colour parameter. m⋆

B is the observed B-band peak
magnitude. We also apply a stellar mass correction,

MB = M1
B +∆M , (26)

for Mstellar > 1010M⊙. We calculate the distance modulus
for the best-fitting values from Betoule et al. (2014) of α,
β, MB and ∆M , given by α = 0.141, β = 3.101, MB =
−19.05, and ∆M = −0.07. The residuals of these distance
moduli (after a best-fitting cosmology has been subtracted)
are shown in Fig. 2. The error bars are the square-root of the
diagonal of the covariance matrix. We use these uncertainties
to weight our estimates of the central moments.

The publicly available redshifts from Betoule et al.
(2014) are the observed heliocentric redshift, zhel, and the
heliocentric corrected, CMB rest frame redshift, zcmb. How-
ever, the zcmb have also been adjusted to subtract the effect
of peculiar velocities, which have been estimated from lo-
cal density fields. For our analysis, these peculiar velocities
are a signal, not a nuisance. To recover the heliocentric cor-
rected redshifts without the additional peculiar velocity cor-
rections, we take the zhel and subtract only the heliocentric
correction.

c© 2016 RAS, MNRAS 000, 000–000
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Figure 1. Comparing theoretical predictions for the moments of the distribution of magnitude residuals due to velocities and lensing.
The lines show the analytical predictions, and the points show values from a simulated lightcone. The dispersion due to peculiar velocities
increases towards z = 0, as the peculiar velocities grow, and contribute a larger fraction to the observed redshift, as illustrated by the
dashed line. For the velocity model, we also illustrate with the shaded region the effect of non-linear velocity dispersion. The lower edge

of the band corresponds to zero velocity dispersion, increasing to 500 km s−1 at the top of the band. The velocity model plotted includes
a non-linear dispersion of 350 km s−1. The dispersion due to lensing magnification increases linearly with redshift, as the photons travel
greater distances over which they can be dispersed. Due to the shape of the distribution, lensing also adds a characteristic skewness and
kurtosis to the distribution, which both also increase with redshift.

3.1 Simulated Catalogues

To test our analysis, we generate simulated realizations of
the JLA catalogue by sampling galaxies from the MICE cos-
mological light cone simulation (Fosalba et al. 2015), with
cosmological parameters Ωm = 0.25, ΩΛ = 0.75, H0 = 70.0
kms−1 and σ8 = 0.8. The MICE simulation includes peculiar
velocities, and an estimate of the lensing convergence, but
does not include effects of baryonic physics on the evolution
of the density perturbations.

To generate a simulated realization of the JLA, we start
with a subsample of the MICE simulation with 8.9 million
galaxies in the redshift range 0 to 1.4. We then find the
galaxy in the MICE catalogue that has the closest redshift
to each supernovae in the JLA. For each of these galaxies,
we save the cosmological redshift zcos, the redshift with the
additional contribution from peculiar velocities, zpec and the

lensing convergence κ values. We first calculate the unlensed
distance modulus with zcos, zpec and equations (2) and (3).
We then use the κ value and equation (13) to calculate the
magnification effect on the distance modulus. Next, we add
in an intrinsic dispersion sampled from a normal distribu-
tion. We choose a value of 0.14 mag for the intrinsic disper-
sion, to match the value expected in the JLA. We then add
together the distance modulus, lensing effect, and intrinsic
dispersion to generate the ‘observed’ distance modulus. We
assign the quoted uncertainty from the genuine supernova
to the simulated counterpart. We use the value of zpec from
the MICE simulation as the ‘observed’ redshift.

To generate multiple independent simulated realiza-
tions, we repeat the procedure as before for each realization,
but instead match the simulated redshift to the genuine red-
shift shifted by a value sampled from a normal distribution
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Figure 2. Hubble diagram residuals. The top panel shows the
genuine JLA survey, the lower panel shows one of the simulated
realizations.

with mean zero and standard deviation of 0.03. The value
of 0.03 was chosen to ensure that each realization would be
independent, without affecting the overall redshift distribu-
tion. We use this procedure to generate 10 realizations of
the JLA catalogue. 10 realizations are sufficient to assess
the variation in the simulated catalogues while generating
further catalogues is limited by computational resources re-
quired to evaluate the full likelihood.

4 MEASURING THE MOMENTS

In this section, we consider methods for measuring moments,
and specifically focus on the accuracy and precision of the
measurements from sparse data. For N points of discrete
data,

µi =

∑

(∆µ)
i

N
, (27)

which is often used to estimate the moment, where ∆µ =
(µ−〈µ〉). We can also weight this estimate by the uncertainty
in µ, σµ:

µi =

∑

σ−2
µ (∆µ)

i

∑

σ−2
µ

. (28)

However, this estimate only converges to an unbiased esti-
mate of the moment in the limit of large N , particularly so
for distributions with large tails. This is because the residual
∆µ is raised to the power i, so an unbiased estimate of the
moment depends on being able to sample the long tails of
the distribution. For sparse data, missing these long tails,
the missing ∆i

µ has a large effect on the estimated moment.
One approach to account for the bias introduced in

sparse moments estimates is to use h-statistics (Halmos
1946), which correct the moments estimates based on the
number n of points in the sample. For example, the cor-
rected estimate µ̂ for the second moment is given by

µ̂2 =
n

n− 1
µ2, (29)

where µ2 is given by equation (27). Similarly, the estimate
of the third moment is given by

µ̂3 =
n2

(n− 1)(n− 2)
µ3. (30)

Note that in the limit of large n, these estimates converge
to the unweighted estimates. However, we find in tests on
simulated realizations that the h-statistic estimator is sen-
sitive to the sparsely sampled long tails of the probability
distribution.

4.1 Kernel Density Estimation

To improve our estimates of the moments, we use Kernel
density estimation (KDE) to provide a better estimate of
the genuine underlying probability density function (PDF)
of the magnitude residuals (e.g. Silverman 1986; Richards
et al. 2004). The KDE method we use here convolves each
point in the sample of residuals with a normal distribution.
The bandwidth h of the normal distribution is determined
by ‘Scott’s Rule’ (Scott 2010), which, for one-dimensional
data is given by

h = n−1/5σ, (31)

where n is the number of data points and σ is the standard
deviation of the data. We then use equation (18) to calculate
the moments, with the probability distribution estimated
with KDE. The reconstruction is illustrated in Fig. 3, where
we use KDE to estimate a distribution of residuals from
a random sparse sub-sample of a full population. The full
sample contains 5500 measurements, from which we have
randomly sampled 100 measurements in the sparse sample.

The effect of the KDE moments is shown in Fig. 4,
where we compare the KDE estimate of the moments to the
estimate with equation (28) with the h-statistic correction,
using the simulated catalogues described in section 3.1. We
note that the KDE method appears to be more precise and
accurate than the standard moments estimators.

4.2 Estimating the Covariance Matrix

In Quartin, Marra & Amendola (2014), the covariance ma-
trix was calculated from the analytic expectation for the co-
variance between the moments, given by equation 24 from
Quartin, Marra & Amendola (2014). We find that this co-
variance matrix leads to a high χ2 per degree of freedom in
our parameter fits. This may be because this expression for
the covariance matrix depends on all the moments up to the
8th, and as such is particularly sensitive to any outliers, the
effects of which would be amplified when measuring such
high moments of the distribution.

Instead, our approach is to use a bootstrap re-sampling
technique to estimate the covariance matrix. We randomly
sub-sample a fraction of the survey, which we treat as a re-
alization. We repeat this sampling to generate multiple real-
izations, from which we can then directly measure the covari-
ance matrix. An example of the technique is shown in Fig.
5 for one redshift bin (in the range 0.4 < z < 0.5). The grey
points show the measured moments for each of the samples.
The green, solid line, ellipses show the one and two stan-
dard deviation levels of the best-fitting covariance matrix to
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Figure 4. Comparing methods for measuring the moments. The red circles illustrate moments estimated with equation (28), a weighted
summation of the residuals) and corrected using h-statistics, such as equations 29 and 30. The green squares illustrate the moments
estimated with the KDE method. The smaller points illustrate the measured moment for each of the 10 simulated realizations. The larger
points illustrate the ensemble average of these realizations. The error bars indicate the standard deviation of the measured moments. We
note that the KDE method is more accurate and precise than the h-statistic method – the measurements are closer to the theoretical
values and the scatter is smaller.

these samples. The dashed red ellipses show the equivalent
covariance matrix estimated with equation 24 from Quartin,
Marra & Amendola (2014). We note that both methods de-
pend only on the observed moments, and not the theoretical
modelling of lensing or velocities.

We choose a sampling fraction of 70% to give a χ2 per
degree of freedom close to one. Increasing this fraction in-
creases the χ2, since there is less variation between the sam-
ples. We note that this method of estimating the covariance
matrix gives the same uncertainty in µ1 as the analytical
expectation for the term in the covariance matrix, given by
µ2/Nj , where Nj is the number of supernovae in the redshift
bin.

5 RESULTS & DISCUSSION

In this section, we present results of fitting our velocity and
lensing likelihood to simulated and genuine data.

5.1 Tests with Simulated Data

Before applying our likelihood to the genuine JLA catalogue,
we first test the likelihood on the simulated realizations of
the JLA. In Fig. 6 we illustrate the results of fits to the
simulated realizations. We fit for Ωm, σ8, intrinsic disper-
sion, σI, and intrinsic third and fourth moments, µ3, int and
µ4, int. We find when fitting for this full parameter set, σ8

is systematically underestimated, and σI is overestimated.
The average value of σ8 recovered with this parametrization
is 75% of the true simulation input value. We believe that
the main cause of this bias is a degeneracy between the in-
trinsic dispersion and the combined effects of lensing and
velocities.

As can be seen in Fig. 1, the combined effect of velocities
and lensing on the second moment is almost independent of
redshift across the range 0.1 < z < 0.5 (the redshift range
over which most of the JLA is distributed). This is due to the
dispersion from velocities decreasing with redshift, while the
dispersion from lensing increases. This cancellation of red-
shift dependence contributes to the degeneracy of the effects
of σ8 with the intrinsic dispersion. The ∼ 0.01 contribution
to the second moment from σ8 across this redshift range is
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Figure 5. Illustrating the bootstrap re-sampling method to estimate the covariance matrix. The red dashed ellipses illustrate the
covariance matrix estimated with equation 24 from Quartin, Marra & Amendola (2014). The grey points illustrate bootstrap resamples
of the JLA survey. The green, solid ellipses illustrate the covariance matrix fitted to these bootstrap resamples. The ellipses are plotted
at the one and two standard deviation levels. We note that both techniques depend only on the observed moments of the survey (and
do not depend on the physical model for the dispersion). The bootstrap method depends only on measuring moments up to the fourth,
whereas the analytical method relies on measuring up to the eighth moment.

consistent with the overestimate of the intrinsic dispersion
in the simulated catalogues.

In Fig. 7, we keep the intrinsic dispersion fixed at the
input value of 0.14 mag, and the intrinsic third and fourth
moments fixed at zero, varying only Ωm and σ8. The aver-
age value of σ8 recovered with this parametrization is 0.8,
matching the input value of the simulation.

5.2 Results from JLA Data

We now apply the analysis method to the genuine JLA cat-
alogue. In Fig. 8 we illustrate the moments measured with

the KDE method. We use equation (19) to fit the models for
the moments to these measurements. We allow the intrinsic
dispersion and moments to vary. The results of the fits are
summarized in Table 1 and illustrated in Fig. 9. We also re-
peat the parameter estimation with the intrinsic dispersion
fixed as a Gaussian distribution of width 0.14 mag; these
results are summarized in Table 2, and illustrated in Fig.
10. For both sets of parametrizations, we fit for the effects
of velocities and lensing individually, and combined. We find
a value of Ωm = 0.274±0.013, which is lower than the value
of Ωm = 0.289±0.018 from Betoule et al. (2014) (with a flat
ΛCDM model and quoting the statistical uncertainty). We
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Figure 6. Testing the moments likelihood with lensing and velocities on simulated realizations of the JLA survey from the MICE simu-
lation. The horizontal crosses indicate the input values in the simulated catalogues, and the diagonal crosses indicate the recovered values

from the likelihood. We note that when allowing the intrinsic supernova dispersion to vary (parametrized by the intrinsic dispersion σI

and the intrinsic third and fourth moments), we find that the intrinsic dispersion is systematically over-estimated and σ8 is systematically

underestimated.

Ωm σ8 σI µ3, int (×10−3) µ4, int (×10−4) χ2/ DoF

Velocities 0.279±0.013 0.32+0.63
−0.32 0.17±0.02 0.5±2.0 2±2 1.14

Lensing 0.276±0.016 1.56+0.51
−1.01 0.17±0.02 0.4±2.0 2±2 1.20

Combined 0.274±0.013 0.44+0.63
−0.44 0.16±0.02 -0.2±2.0 2±2 1.14

Table 1. Results of the fits for the lensing and velocity models, including fits to intrinsic dispersion parameters, all 68% confidence
intervals.
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Figure 8. Illustrating the moments measured from the magnitude residuals in the JLA catalogue. The plotted uncertainties on the

moments are the square-root of the diagonal of the moments covariance matrix. The best-fitting lensing model is illustrated with the
blue solid line, and the best-fitting velocity model is illustrated with the magenta dashed line.

believe the main cause of this difference is due to the pecu-
liar velocity corrections used by Betoule et al. (2014), which
we do not use in our fits since we are modelling the effects
of the velocities as a signal. Repeating our fits without the
peculiar velocity correction, we find Ωm = 0.305±0.027. We
also truncate our analysis for z > 0.9, so our data set is not
identical to Betoule et al. (2014).

Keeping the intrinsic dispersion fixed at 0.14 mag, we

find values of σ8 shown in Table 2: 1.07+0.50
−0.76 for the combined

model. When we allow the intrinsic dispersion to vary (and
also fit for intrinsic third and fourth moments) we find lower
values for σ8, shown in Table 1.

We find values for the intrinsic third and fourth mo-
ments that are consistent with a purely Gaussian intrinsic
supernova distribution. Our value for the magnitude of the
dispersion, σI = 0.162±0.016 is higher than the value of 0.14
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Figure 9. Parameter constraints for the genuine JLA survey. The best-fitting values for the lensing-only model are shown in blue with
an ‘L’ – the best-fitting velocity model is shown in magenta with ‘V’ and the combined results in black with ‘C’. The combined result

is closest to the velocity only model due to the greater number of low-redshift supernovae in JLA, where the effects of velocities are
more significant than lensing. We note that in tests on simulations, this method tends to overestimate the intrinsic dispersion, and

underestimates the value of σ8.

found by Castro & Quartin (2014). We note that in tests on
simulations, our method overestimates the value of σI by
∼ 0.01 mag, and as such this result is unlikely to suggest a
tension in the value of the intrinsic dispersion.

With this parametrization (where we allow the model
for the intrinsic dispersion to vary), we find a value of σ8

of 0.44+0.63
−0.44 (although we note that in the simulations, this

parametrization underestimates the value of σ8 by ∼ 25%).
For comparison, Castro, Quartin & Benitez-Herrera (2016)
found σ8 = 0.40+0.21

−0.23 with a different approach to combin-
ing the effects of lensing and velocities, using two separate
likelihoods for each effect (with the growth index γ fixed at
the expected value in GR of 0.55). The larger uncertainty
in our value of σ8 is consistent with the larger uncertainty
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Figure 3. Illustrating the KDE reconstruction of the magnitude
residuals. The top panel illustrates histograms of the lensing mag-
nitude residuals between 0.6 < z < 0.8. The blue dash-dotted
line (‘Full’) shows a histogram of the distribution of residuals of

5500 sources. The red solid line (‘Sparse’) shows the same his-
togram, but down sampled to 100 sources (typical of the number
of supernovae per bin with the JLA catalogue). The green dashed
line (‘KDE’) illustrates the PDF of the residuals estimated only
from the sparse sample. The high magnification tail of the KDE-
reconstructed PDF is closer to the full sample than the sparse. To
illustrate the effects on the moments, in the lower panel, the same

PDFs are plotted, multiplied by ∆4
m. Although the KDE method

does not reconstruct the very highly magnified (∆m < −0.1) tail,

it is closer to the full distribution than the sparse sample.
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Figure 7. Fitting simulated realizations of the JLA catalogue,
with lensing and velocity effects. Here, we are only fitting for Ωm

and σ8, and have kept the model for the intrinsic supernova dis-
persion fixed as a Gaussian distribution with dispersion σI = 0.14.
For each realization, we illustrate the best-fitting value with a di-
agonal cross, and the one and two standard deviation contours.
The dark blue square illustrates the average of these fits, and the
magenta cross illustrates the simulation input value.

Ωm σ8 χ2/ DoF

Velocities 0.275±0.012 0.44+0.76
−0.44 1.26

Lensing 0.278±0.011 1.70+0.51
−0.76 1.29

Combined 0.278±0.011 1.07+0.50
−0.76 1.27

Table 2. Results of the fits for the lensing and velocity mod-
els, with intrinsic dispersion parameters fixed, all 68% confidence
intervals.
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Figure 10. Fitting the genuine JLA survey for Ωm and σ8. We
have kept the model for the intrinsic supernova dispersion fixed

as a Gaussian distribution with dispersion σI = 0.14. The results
for the lensing only fit are shown in blue, the velocity only fit in
magenta, and the combined fit in black. The cross indicates the
value of Ωm from Betoule et al. (2014) and the value of σ8 from
Castro, Quartin & Benitez-Herrera (2016).

estimates of the data covariance matrix from the bootstrap
re-sampling approach we use, as illustrated in the compari-
son of covariance matrices in Fig. 5.

We believe that the approach of Castro, Quartin &
Benitez-Herrera (2016) (splitting the supernovae into high
and low redshift subsets) yields a similar value of σ8 to
our approach because both results are driven primarily by
the low-redshift peculiar velocity results, due to the greater
number of supernovae at low redshift. We can see in Fig. 11
that our marginalized constraint on σ8 with the combined
moments and velocity model (shown with a thick, solid black
line) is closer to the velocity-only model (shown with a thin,
solid magenta line) than to the lensing-only model (shown
with a thin, dashed blue line). We note that the product
of these two individual likelihoods (illustrated with a thick
dashed red line) is similar to the result from the combined
moments – the addition of the lensing model has only a small
effect on the final values. We also illustrate the marginalized
likelihood from Castro, Quartin & Benitez-Herrera (2016) 1.
We note that these values of σ8 are consistent with the low

1 We have downloaded the MCMC chains from

http://sites.if.ufrj.br/castro/en/pesquisa/artigos/
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Figure 11. Comparing marginalized values of σ8. The thin, solid
magenta line, labeled ‘Velocity Only’ illustrates the marginalized
likelihood on σ8 fitting only for velocities. The thin, dashed blue
line shows the same constraint when fitting only for lensing. The

thick, solid black line, labeled ‘Combined Moments’ shows the re-
sult from fitting simultaneously to these effects in our model for
the moments. These three marginalized likelihoods are shown in
full in Fig. 9. We compare our ‘Combined Moments’ fit to the
‘Combined Likelihoods’ result, plotted with a dashed red line,
which is the product of the velocity and lensing likelihoods (nor-
malized to unit area). We also compare our results to Castro,
Quartin & Benitez-Herrera (2016).

amplitude of the peculiar velocity covariance matrix in the
JLA analysis of Huterer, Shafer & Schmidt (2015). However,
we note that the velocity and lensing effects are of a compa-
rable magnitude over the redshift range 0.2 < z < 0.5, and,
as such, it will be important to model these effects simulta-
neously for future, deeper supernova surveys.

Our lensing-only result is higher than that found by
Castro & Quartin (2014), who found σ8 = 0.84+0.28

−0.65 at the
68% confidence level, or σ8 < 1.45 at the 95% confidence
level. We note that using the moments estimator in equation
(27), and the covariance matrix from equation 24 from Quar-
tin, Marra & Amendola (2014), we can reproduce the value
of σ8 from Castro & Quartin (2014), finding σ8 = 0.89+0.35

−0.59

(68% confidence level), or σ8 < 1.60 at the 95% confidence
level. We also find an intrinsic dispersion of σI = 0.14±0.01,
and intrinsic third and fourth moments that are consistent
with zero. However, we note that this method is more biased
towards underestimates than the KDE method. We also note
that Castro & Quartin (2014) use corrections to this esti-
mator to account for bias due to the sparsity of the samples,
although the details of the corrections are not published.

We now consider some effects that may lead to a higher
value for σ8 from lensing. Our analysis has assumed that
both the large-scale (k < 0.1h Mpc−1) density fluctuations
relevant to peculiar velocities and the small-scale (k > 1.0h
Mpc−1) fluctuations relevant to lensing can be set by σ8.
Taking the results at face value, we might interpret the lens-
ing and velocity results as suggestive of a tilt in the matter
power spectrum, suppressing large scale power and boost-
ing small scale power. The small scale power spectrum in

particular is sensitive to baryonic feedback, which remains
challenging for theory and simulation (e.g. Dalla Vecchia &
Schaye 2012; Durier & Dalla Vecchia 2012; Stringer et al.
2012; Creasey, Theuns & Bower 2013).

Betoule et al. (2014) note that due to Malmquist bias,
the intrinsic dispersion of the highest redshift supernova
magnitudes may decrease by 0.01 mag (for comparison, at
z = 1, the dispersion due to lensing for σ8 = 0.8 is 0.04
mag). In our model of a constant intrinsic dispersion, this
would lead to an overestimate of the lensing dispersion to
compensate. For example, at z = 1, σ8 = 0.8, and an in-
trinsic dispersion of 0.150 mag, the combined dispersion is
0.155 mag. To get the same total dispersion with an intrinsic
dispersion 0.01 mag lower, we require a value of σ8 = 1.3.

6 CONCLUSIONS

We have considered the effects of peculiar velocities and lens-
ing magnification on moments of the distance redshift rela-
tion. We have described theoretical models for these effects,
and statistical methods for undertaking these measurements
on sparse data.

We note that at redshift z ∼ 0.2–0.5, the effects of pecu-
liar velocities and lensing magnification contribute similarly
to the dispersion in the Hubble diagram. The cancellation
of redshift dependence of these two effects across this red-
shift range makes the effects of σ8 on the second moment in
this redshift range degenerate with the intrinsic supernova
dispersion. We thus emphasize the importance of modelling
both effects simultaneously, and also the importance of mea-
suring higher moments of the Hubble diagram, in order to
break this degeneracy.

We confirm that the simulated lensing convergence in
the MICE light cone simulation is in excellent agreement
with the moments modelled by Marra, Quartin & Amen-
dola (2013). We present an extension of the MeMo likeli-
hood of Quartin, Marra & Amendola (2014), which directly
includes the effects of peculiar velocities in a single likeli-
hood. We note that standard estimators for the moments
of the magnitude residuals underestimate the genuine mo-
ments for typical numbers of supernovae. We show that KDE
can be used to reduce the bias in estimates of the moments
from sparse samples. We then apply the velocity and lensing
likelihood and the KDE estimators to the JLA supernovae
catalogue.

Comparing to other work, we note that using the mo-
ments estimator of equation (27), we can reproduce the val-
ues of σ8 and σI from Castro & Quartin (2014). However, our
result with this estimator is likely to be an underestimate of
the genuine moments of the JLA survey.

There are some limitations to the current analysis: as
with other work focusing on the Hubble diagram residu-
als (Smith et al. 2014; Castro & Quartin 2014), we do not
account for correlations in the distance moduli in our anal-
ysis (either from the light-curve fitting, or density perturba-
tions). This approach frees us from the imposition of Gaus-
sianity (which is implicit in a typical covariance-matrix anal-
ysis) in the distribution of residuals, which is the dominant
signal for lensing, and the primary focus of this paper. In the
case of lensing, since the signal depends on the integrated
line of sight density, we expect the magnification effect to
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be uncorrelated for angular separations greater than a few
arcminutes. However, we note that Scovacricchi et al. (2017)
found that the magnitude residuals in the JLA catalogue are
consistent with zero correlations from lensing magnification.

In the case of peculiar velocities, we do expect large-
scale correlations, although we have verified by calculating
the full covariance matrix that the correlations are negligible
for all but the lowest redshift supernovae. In the case of the
light curve parameters, Castro, Quartin & Benitez-Herrera
(2016) showed that marginalizing over the values slightly
increased the uncertainties, but did not significantly bias
the results or conclusions.

Currently, the main limitation in the analysis is mea-
suring unbiased moments of sparse samples of the residuals.
However, as the size of supernova catalogues increases, this
issue will become less problematic. With larger catalogues,
however, it will become more important to model the in-
trinsic dispersion in the supernovae, such as the dependence
with redshift and correlations with host galaxy type. We em-
phasize that it is possible to place limits on the amplitude of
the matter power spectrum with the supernovae Hubble di-
agram – both the background expansion and perturbations
with the same observable. By fitting for the effects of lensing
and velocities, we can also test for consistency in the Newto-
nian and lensing potentials. Furthermore, by measuring the
moments of the residuals, we test for consistency or evidence
for outliers in the supernova population.
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