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Abstract

WWW workload generators are used to evaluate web server per-
formance, and thus have a large impact on what performance op-
timizations are applied to servers. However, current benchmarks
ignore a crucial component: how these servers perform in the en-
vironment in which they are intended to be used, namely the wide-
area Internet.

This paper shows how WAN conditions can affect WWW server
performance. We examine these effects using an experimental test-
bed which emulates WAN characteristics in a live setting, by in-
troducing factors such as delay and packet loss in a controlled and
reproducible fashion. We study how these factors interact with the
host TCP implementation and what influence they have on web
server performance. We demonstrate that when more realistic wide-
area conditions are introduced, servers exhibit very different per-
formance properties and scaling behaviors, which are not exposed
by existing benchmarks running on LANs. We show that observed
throughputs can give misleading information about server perfor-
mance, and thus find that maximum throughput, or capacity, is a
more useful metric. We find that packet losses can reduce server
capacity by as much as 50 percent and increase response time as
seen by the client. We show that using TCP SACK can reduce
client response time, without reducing server capacity.

1 Introduction

The phenomenal growth of the World-Wide Web is dramatically in-
creasing the performance requirements for large-scale information
servers. WWW server performance is thus a central issue in pro-
viding ubiquitous, reliable, and efficient information access. Web
server performance is frequently evaluated using WWW workload
generators, which consequently have a large impact on what perfor-
mance optimizations are applied to servers. While much research
has been done in producing more realistic workload generators and
optimizing WWW server performance, a crucial component has
usually been ignored: how these servers perform in the environ-

ment in which they are intended to be used, namely the wide-area
Internet.

Many web servers are used for wide-area information dissem-
ination on the global Internet, which has greatly varying band-
widths, round-trip times, and packet loss characteristics. To date,
virtually all experimental WWW server performance evaluation has
been done on high-speed LANs, which have very different perfor-
mance characteristics from WANs. These LANs, typically switched
100 Mbps Ethernet, provide excellent network connectivity, with
high bandwidth and almost no packet loss or re-ordering. Given
that many web servers are deployed in the commercial Internet,
these evaluations are not realistic in that they do not capture wide-
area characteristics such as modem-connected clients, high packet
loss, and large packet delay. Even corporate Intranets or VPNs,
while administered by a single organization, are geographically
distributed and thus have very different performance characteris-
tics. Thus, when customers wish to compare different systems or
perform WWW server capacity planning, they need to take WAN
characteristics into account; otherwise they may draw misleading
conclusions.

Evaluating how web server performance changes in the context
of this more realistic WAN environment is the goal of our project,
called WASP (Wide-Area Server Performance). We focus on three
metrics of WWW server performance: observed throughput, re-
sponse time as seen by a client, and maximum throughput or ca-
pacity. We are particularly interested in how WAN characteristics
interact with the host TCP implementation, and their effects on the
server. Issues we consider include:

� How does server performance scale with load?

� How do packet delay and loss affect observed throughput?

� What is the impact of loss and delay on response time as seen
by the client?

� How do TCP variants such as SACK and New Reno influence
performance?

� How do delay and loss affect server capacity?

We evaluate these effects using an experimental testbed, which
emulates WAN characteristics in a live setting by introducing fac-
tors such as delay and packet loss in a controlled and reproducible
fashion. The testbed consists of a cluster of PCs acting as clients,
connected via a switched LAN to a high-performance web server.

We show that when more realistic wide-area conditions are in-
troduced, servers exhibit very different performance properties and



scaling behaviors, which are not exposed by current benchmarks
such as WebStone or SPECWeb. While it is easy to saturate a server
when WAN conditions are ignored, driving a server to full capacity
is much more difficult when delays and drops are introduced. Ob-
served throughputs can give misleading information about server
performance, and thus capacity is a more useful metric. We find
that packet loss both reduces aggregate server capacity and increases
response time as seen by the client. We demonstrate that while
packet delay increases latency, it does not have a substantial effect
on server capacity. We show that while traditional benchmarks ex-
pose little or no difference between different versions of TCP, such
as SACK or New Reno, these newer versions of TCP can improve
client response time in WANs, without any reduction in server ca-
pacity.

Current benchmarks do not expose any of these issues, and thus
we claim WWW server benchmarks should incorporate WAN char-
acteristics. This will not only make server benchmarks more real-
istic, but will provide greater incentive and guidance for developers
to adopt optimizations that make more efficient use of the network.

The rest of this paper is organized as follows: Section 2 pro-
vides more background on WWW servers and reviews previous
work. Section 3 presents the WASP architecture, and Section 4
presents our results in detail. Section 5 summarizes our conclu-
sions and briefly discusses plans for future work.

2 Background and Related Work

The demand to improve Web server efficiency has existed for quite
some time and, as a result, there have been many previous efforts to
measure and characterize the performance of these servers. These
efforts can be roughly divided into benchmarking studies and anal-
yses of live servers.

2.1 Other Benchmarks

Most Web server benchmarks use a collection of virtual clients con-
nected via a high speed LAN to the server being tested. These
virtual clients are used to accurately recreate the workloads that
typical busy Web servers experience. Previous efforts to accurately
reproduce the typical workload on a server have concentrated on
certain aspects of user request access patterns:

� File size, type and popularity. Authors of benchmarks such
as SURGE [7] and SPECWeb96 [10] developed their file size
and request distribution by analyzing the logs of many pop-
ular Web sites. As usage patterns have changed over time,
some benchmarks such as SPECWeb99 [10] have been up-
dated with more recent request distributions and the addition
of dynamic content. Many benchmarks view request-related
information as the key to understanding Web server perfor-
mance and reproduce little else.

� Request arrival and rate. Most benchmarks attempt to stress
the server by requesting objects as quickly as possible. How-
ever, some benchmarks attempt to recreate more realistic ar-
rival distributions. The SURGE benchmark uses the concept
of “user equivalents” to recreate the active and idle periods of
typical users. Another benchmark, Scalable Client (s-client)
[4], uses an “open-loop” architecture to produce a fixed re-
quest arrival rate regardless of server load. Both these ap-
proaches cause the server to deal with the bursty arrival of
requests, which can significantly affect server performance.

� Protocol version. Some benchmarks, such as SPECWeb99,
have included both HTTP 1.0 and 1.1 support. The differ-
ences between these protocols can result in very different
server performance.

Some benchmarking efforts, as well as our own, have begun
to incorporate network characteristics into server evaluation. For
example, SPECWeb99 restricts the TCP maximum segment size
(MSS) to be no larger than 1460 bytes. This reflects the fact that
most clients on the Internet use a MSS of fewer than 1460 bytes
and that larger MSS values in a testbed can inflate the benchmark
results.

2.2 Analyzing Active Web Servers

Another approach to understanding Web server performance is to
profile and analyze an actively used server. This approach was used
to examine the 1994 California Election Web Site [19] and the 1996
Summer Olympics Web Site [30]. Each study analyzed one of the
busiest web servers of its time to examine how the protocol stack
dealt with typical Web traffic. The 1994 study identified perfor-
mance problems with protocol control block (PCB) lookups and
the handling of TCP connections in the TIME WAIT state. The
suggested fixes for these performance problems were quickly in-
corporated into operating systems. The 1996 study concentrated
on TCP behavior and made suggestions to improve loss recovery.
These analyses identified performance problems that are difficult
to find with current benchmarks. Unfortunately, such studies are
arduous to undertake since they require access to busy sites. The
busiest servers are typically commercial, and thus have privacy and
security concerns, making it difficult to gain access to them. Ana-
lyzing live servers is, unfortunately, rarely an available option for
discovering problems in WWW server performance.

The Wide Area Web Measurement (WAWM) project [6, 8] takes
a related approach in that it places virtual test clients in the wide
area network. The clients send synthetic requests generated by
SURGE to a remote server. This guarantees the incorporation of
realistic network characteristics, but using an actual wide area net-
work makes it difficult to control the experiment carefully.

More fundamentally, measuring live sites in the real Internet
presents serious challenges to reproducibility, as one-time events
are measured. Researchers cannot be certain what the traffic con-
ditions are at the time of the event, since they do not have com-
plete control over the server, the network, and the clients. Nor can
they be certain that subsequent experiments have the same charac-
teristics. In addition, “what if” studies may not be feasible since
changes may affect the workload that was observed. The WASP
project addresses this by recreating network characteristics in a
controlled environment, thus allowing reproducibility and iterative
analysis. Our approach enables experimentation with both existing
and future network conditions, and evaluation of to-be-deployed
server features in a controlled setting.

3 The WASP Environment

In this Section we present the WASP testbed. Before we describe
our setup in Section 3.4, we provide the context of the hardware
used, the operating systems, the WWW server software, and the
web client workload generators. Section 3.5 presents our experi-
mental methodology.



3.1 Hardware and Operating System Software

Our testbed consists of 8 client PCs, a gigabit switch, and a RISC-
based server machine. Each client has a 500 MHz Pentium/III pro-
cessor and 96 MB of RAM, and runs FreeBSD 3.3. Each client
has a 100 Base-T Ethernet interface connected point-to-point full
duplex with the switch. The server machine is an IBM RS/6000
43P model 260, which has a 200 MHz Power3 processor, 4 MB of
L2 Cache RAM, and 256 MB of main memory. The server runs
AIX 4.3.3, IBM’s UNIX OS, and is connected to the switch via an
Alteon gigabit Ethernet adaptor.

On the server OS, we extended the TCP/IP stack with our own
SACK [18] and New Reno [14] implementations. The TCP/IP
stack in AIX is derived from BSD 4.4. AIX has been previously
refined to better handle large-scale workloads, for example to use
hash tables for PCB lookup and to separately manage connections
in the TIME WAIT state [3, 31].

On the client OS, we incorporated Rizzo’s SACK source code
[27] from FreeBSD 2.6 into the 3.3 kernel, in order to interoperate
with our server SACK implementation.

3.2 WWW Server Software

Many available web servers employ different architectures and op-
timizations and thus have different performance characteristics. In
order to minimize any limitations of our study that might occur by
being too tied to a specific implementation, we wished to examine
WAN effects for both a general-purpose and a highly-optimized
server. In addition, we wanted to have access to the source code
for the servers. We decided to use two servers: Apache, as an ex-
ample of a general-purpose server, and Flash, as an example of a
highly-optimized one.

Apache is the well-known open-source general-purpose server
found at www.apache.org. Netcraft [21] reports that Apache
has the largest market share of all WWW servers, estimating that it
is used by over 50 percent of web sites on the Internet. Apache is
a process-based server, implemented in user space, forking several
processes, which serially accept new connections. We use the latest
stable code release at the time of this writing, version 1.3.17, which
has several performance improvements over previous Apache re-
leases, including use of mmap()and writev().

Flash is a WWW server developed by Pai et al. [24] at Rice
University. Flash is a single-threaded event-driven server that uses
asynchronous I/O with the select()system call. Flash exploits
most optimizations that are available to a user-space web server
without modifying the operating system. It caches files in user
space with mmap(), caches stat()information and URI look-
ups, and exploits writev(). Flash has been shown to be signif-
icantly faster than Apache. We extended Flash in several ways to
obtain the maximum performance in our system [20]. First, we
modified it to poll()rather than select(). Banga and Mogul
[5] have shown that event-driven servers that use select(), such
as Flash, can suffer performance problems when managing large
numbers of active connections. To avoid these problems, we ad-
apted Flash to use poll(), a similar function derived from SVR4,
which is available on some forms of Unix, including AIX. We also
modified Flash to exploit the zero-copy send file()system call
available in AIX. Combined with the checksum offload on the Al-
teon gigabit adaptor, the server performs no unnecessary memory-
touching operations when servicing requests on the fast path. Fi-
nally, we take advantage of the send file()option, which al-
lows consistently piggybacking the FIN bit on the last TCP segment
of each conversation, improving performance for small transfers.

Requests

Clients

Responses

Server

Figure 1: Workload Generation

3.3 WWW Client Workload Generator Software

We use two client HTTP workload generators to evaluate WWW
server performance. We use s-client [4] as a micro-benchmark to
generate large numbers of requests for the same single file on the
server, which lets us see how performance changes as a function
of the requested file size. We also use our own workload gener-
ator Waspclient as a macro-benchmark to measure more realistic
aggregate behavior.

S-client is a lightweight, event-based request generator that uses
a single process and the select()system call to manage a large
number of concurrent active connections to the server. In our test-
bed, each client machine runs a single s-client process, which gen-
erates up to 2048 concurrent connections each. Figure 1 shows a
representation of the workload architecture. For our experiments,
we do not use the “open loop” facility of s-client. Each client makes
a request to the server, waits for a response, and then immediately
makes another request, throughout the duration of the test. The
system is essentially a closed-form queuing network, where we can
adjust the number of clients. By varying the number of concur-
rent connections, we can vary the load generated by the bench-
mark. This allows us to observe how the system scales as load
is increased, and how its behavior changes as we vary parameters
such as round-trip time and loss rate.

Waspclient is adapted from source code both from the s-client
and the SURGE [7] benchmark. SURGE is a workload generator
designed to capture various traffic characteristics of WWW sites,
including heavy-tailed file and request size distributions, Zipf pop-
ularity of requested files, temporal locality of requested files, dis-
tributions of embedded references, and distribution of off times (or
user think times). SURGE has the notion of a “user-equivalent”,
which represents the load produced by a single user. Larger num-
bers of users produce larger loads on the server. SURGE uses mul-
tiple processes and multiple threads, which do not scale as well as
the single-process event-driven model in s-client. Hence, we found
that it could not generate sufficient load to fully saturate our server.
However, SURGE provides a more realistic workload and thus we
wished to employ it. Since the traffic generation models are orthog-
onal to the implementation method, we imported the SURGE code
(version 1.1, dated 4/98) onto the s-client event-driven architecture.
The only feature we did not incorporate from SURGE was the user
think time. Thus, each “user-equivalent” has no think time before
requesting the next web page. While this may sacrifice some re-
alism by reducing the burstiness of the request arrival process, we
found that including user think times slowed the load generation
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too much for our purposes. We used the standard SURGE config-
uration parameters, e.g., using 2000 files for Zipf popularity and
“optimal file/request matching” over the entire request distribution.

3.4 The WASP Environment

The WASP environment is designed to emulate WAN characteris-
tics by dropping or delaying packets. The goal is not to reproduce
a specific web site or network, but rather to generate more realistic
traffic, in order to exercise a server in a way more useful for capac-
ity planning. A central feature of our system is that it is isolated and
reproducible, whereas the actual Internet is continually changing.
An experiment run today on the Internet may not behave the same
way the next week, month, or year in the future. Our system al-
lows repeated experimentation, which lets us expose and diagnose
performance issues.

Reproducing a specific web site perfectly would be effectively
impossible. It would be necessary to replicate all the characteristics
of the clients, including the browser behavior; the network, such as
number of hops, bandwidths, queue sizes, and cross traffic; and the
server itself, for example the content, the server software configu-
ration, and the hardware platform. In addition, due to the size and
heterogeneity of the Internet, any one instance of a site or network
is probably not representative. For example, a large hosting center
close to the MAE West NAP in California will most likely see dif-
ferent round-trip times to its clients than will a small company web
site hosted over DSL in the Bronx.

Instead, we wish to examine a range of parameters that we be-
lieve are more realistic across most servers. We do a sensitivity
analysis of servers to conditions rather than reproduce a specific
point in the spectrum. Thus, we vary a parameter such as packet
delay from 0 to 400 ms. rather than choosing a particular value,
and then try to show what the impact of the delay is on a metric
such as server throughput. In addition, our system has the advan-
tage that it is configurable. Web hosting operators can parameterize
the system based on measurements from their own sites and change
them over time as necessary. The advantage of our system is that
it allows iterative analysis using the same conditions. The disad-
vantage is that our emulated conditions may not be as realistic as
desired. However, we believe the results are much more realistic
than without any WAN conditions, and again, can be refined over
time as better understanding of the real Internet is gained.

Previous approaches [4] to introducing packet drops and delays
have relied on adding a single separate machine to the infrastruc-
ture to act as a WAN emulator, as shown in Figure 2. This ma-
chine is sometimes referred to as a delay router. Since all the WAN
functionality is centralized in this single machine, we call this a
centralized approach. This approach has the advantage that it re-
quires no modifications to the client or server systems, which may
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Figure 3: WASP Approach
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be necessary if source code is unavailable. While this approach is
useful for protocol correctness testing, we have found that it not
scalable enough for WWW server performance evaluation, given
the high loads generated by the client machines. We describe this
issue in more detail in Section 3.6, after we describe our experi-
mental methodology in Section 3.5.

Instead, we use the configuration shown in Figure 3. Here,
packet delay and loss is introduced on the clients directly, using
the Dummynet [28] shim layer architecture in FreeBSD, shown in
Figure 4. Dummynet resides below the protocol stack, and thus
is transparent to the application. Dummynet applies filter rules to
packets traversing the stack, and invokes dropping or delay func-
tions if a packet matches a filter. Filters can match on a granularity
as coarse-grained as a subnet or as fine-grained as a port number.

In order to delay packets, Dummynet uses the FreeBSD time-
out() facility to schedule transmission of delayed packets. While
the default period of this timer is 10 ms, we recompiled the kernel
with HZ = 1000 to get a finer-grained millisecond timer resolu-
tion. We were concerned that the 10 ms timer might affect our
results, but found that this change made no difference. During our
experiments, our client machines are never more that 50 percent uti-
lized. However, we kept the clock at this resolution anyway, since
our clients have many cycles to spare. While it is true that that
packets may be delayed up to 1 ms longer than requested, we be-
lieve that this does not significantly disturb our experiments, since
we examine delays from 50 to 400 ms. When Dummynet is not
configured to add delay, the timeout() facility is bypassed; i.e.,
packets are sent directly.

To drop packets, Dummynet uses a uniform random loss model
that can be configured to a specified probability. The loss model
used in Dummynet is an independent one, i.e., the online decision
to drop a packet is made regardless of past decisions. While this is
useful for testing protocol correctness, it is most likely not a realis-
tic portrayal of actual loss behavior in the Internet.

Packet loss is a complex phenomenon still being explored by



Figure 5: 2-State loss model

Loss Prob. leaving Prob. leaving
Prob. “good” state “bad” state

.00 .00 N/A

.03 .02 .65

.06 .04 .65

.09 .07 .65

Table 1: Transition probabilities

the research community. Several studies have shown that loss often
occurs in bursts on the Internet [26, 29, 32]. The intuition is that
routers drop packets when resources are scarce, and that resources
tend to remain scarce for some finite period of time. Both Paxson
[26] and Rubenstein et al. [29] observed that the conditional loss
probability of the packet following a lost packet is much higher
than the overall loss rate.

Motivated by these findings, we extended Dummynet to incor-
porate a two-state dependent loss model, shown pictorially in Fig-
ure 5. Each connection that passes through Dummynet is placed in
either a “good” state or “bad” state. For connections in the “good”
state, Dummynet forwards all packets, and for those in the “bad”
state, all packets are dropped. The transition rate from the good
state to the bad is set based on the rate that loss events occur, which
is different from the overall packet loss rate. The likelihood of re-
maining in the “bad” state is the conditional loss probability, i.e.,
the probability that a subsequent packet is lost given that the pre-
vious packet is lost. The transition from the bad state to the good
is thus the inverse of the conditional loss probability. This con-
trols the duration of each loss event as well as the number of pack-
ets lost. Since the Dummynet extension maintains per-connection
state, losses observed by a connection are correlated, but losses
across connections are independent.

We chose the conditional loss probability in our tests to be 35
percent based on Paxson’s observed measurements of the Inter-
net. We calculated the other transition probabilities to produce
specific overall loss rates. The values used are listed in Figure
1. For example, in the 6 percent loss configuration, a connection
starts in the “good” state and has a 4 percent chance of having each
packet dropped. If a packet is dropped, the connection transitions
to the “bad” state, where its likelihood of having subsequent pack-
ets dropped is much higher, in this case 35 percent. When in the
“bad” state and a packet is not dropped, the connection returns to
the “good” state again.

NIST Net [9] is a tool similar to Dummynet, in that it is a trans-
parent shim layer below the IP layer in the kernel, which can drop,
delay, or bandwidth-limit packets. While Dummynet is distributed
with FreeBSD, NIST Net is a separate package available for Linux.
NIST Net has the disadvantage that it does not apply drops or de-
lays to outgoing packets, but instead only to incoming packets. This
means that in order to apply delays or losses symmetrically, a Linux
box must be used as an intermediate router. Dummynet, on the
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other hand, applies rules to both incoming and outgoing packets,
and thus can be used on the client. While we did experiment with
NIST Net, we found Dummynet to be more appropriate for our ex-
periments.

3.5 Experimental Methodology

An important consideration for our environment is attempting to be
as scientifically reproducible as necessary, while balancing against
the desire to examine as many configurations as possible. We thus
took the following approach. In experiments using s-client, we
measure requests for 3 representative file sizes: 1 KB to repre-
sent small files, 8 KB for an average file, and 64 KB for a large
file. Each data point is the average of three runs, where each run
is the average over a 60 second sampling interval after a 30 sec-
ond warm-up. 64 KB experiments are sampled for 5 minutes, since
64 KB typically takes longer to transfer. In tests using Waspclient,
we let each experiment run 10 minutes after a 30 second warm-up
period, again taking the average of 3 experiments.

All graphs include 90 percent confidence intervals [16], calcu-
lated using the T distribution, which assumes that the underlying
data distribution is normal. If the data is not normally distributed,
then the variability reflected by the confidence intervals would not
be appropriate. Given the breadth of the experiments that we do,
we are not able to test this normality assumption for all data points.
Instead, we check one “typical” data point by running one Wasp-
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client experiment and one s-client experiment 36 times each. In
these experiments, the delay was set to 100 ms, the loss rate was
3 percent, and the server was 50 percent utilized. We then gener-
ated synthetic normal distributions using the same � and � derived
from the samples. Figure 6 shows the CDF from the real and syn-
thetic samples from the Waspclient experiment. As can be seen,
the normal distribution is a very tight fit. We also generated a 10th
percentile probability plot [12], shown in Figure 7. If the two dis-
tributions match, the points will lie close to a 45-degree line, and
we see that this is the case. Similar results were seen for the s-client
samples, not shown due to space limitations. We thus assume that
our other data points are also normally distributed. Since 3 sam-
ples are a valid parameter to the T distribution, we believe that the
confidence intervals are appropriate.

3.6 WASP Scalability

The WASP environment scales with the number of load-generating
machines, unlike the centralized approach, since the overhead of
dropping or delaying packets is distributed across the clients. Fig-
ure 8 demonstrates the advantage of our approach. This graph
shows server HTTP throughput as a function of the number of con-
current client requests generated using s-client. Four curves are
shown: requests for 1 KB documents using the WASP approach, 1
KB documents using the centralized approach, 64 KB documents
using the WASP approach, and 64 KB documents using the central-
ized approach. In this experiment, the delay router is a 450 MHz
Pentium II running FreeBSD 3.3, with Dummynet enabled. How-
ever, Dummynet is configured to only match and forward packets,
i.e., no delays or losses were introduced, and only a single rule for
matching is used. While the centralized approach can handle the
load for the 1 KB file requests, it cannot withstand the load for the
64 KB requests when large numbers of concurrent connections are
used. The WASP environment, on the other hand, scales as long
as the aggregate packet switching load is not greater than the giga-
bit switch’s capacity. In the centralized approach above, the load
cannot be greater than the router’s software forwarding capacity,
which is typically slower than switching. As will be seen in Sec-
tion 4, very large numbers of concurrent requests are necessary to
exercise the server when delays and losses are introduced. In ad-
dition, this test used only a single filter rule on the delay router.
Large numbers of filters, such as might be needed to maintain per-
connection state, will impose even more processing and memory
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Figure 9: Flash Throughput vs. Dependent Loss Rate

requirements in the centralized case, and thus will inherently scale
better when distributed across the client nodes.

At first glance this result could seem counter-intuitive. One
might think that a router does less work than a WWW server, since
all it does is forward packets, rather than handle HTTP requests,
and thus would not saturate before the server does. However, since
this is a software router on a PC with a PCI bus, it actually does
more work on a per-packet basis. Each byte of a packet is copied
across the memory bus twice: once from the inbound interface to
the system memory, and again from system memory to the out-
bound interface. Thus the memory usage is typically twice that of
the WWW server, which only copies a packet across the memory
bus once, in the common case.

While a hardware-based router might be fast enough for our
purposes, the advantage of our approach is that we use commod-
ity hardware running public-domain software. The source code is
freely available, can be customized and extended, and the system
as a whole is generally less expensive. Similarly, another approach
might be to add a dedicated software-based delay router in front
of each client machine. This is part of the approach taken in Bar-
ford’s thesis [6]. While this would also scale, it would require more
hardware, thus being more expensive and more difficult to manage
and administer. Our experience is that this is not necessary, since
the client machines have sufficient idle cycles to handle the extra
packet processing, as described in Section 3.4.

4 Results

In this section we present our results in detail. We show how packet
loss and network delay affect server throughput, response time as
seen by the client, and server capacity. In general, due to space
limitations, we mostly present results using Waspclient to load the
Flash server combined with the dependent loss model. However,
we found similar trends and behavior using s-client, the indepen-
dent loss model, and the Apache server.

4.1 Effects on Throughput

We begin by examining how increasing the loss rate affects the
observed throughput of the web server. Figure 9 shows the mea-
sured throughput of the Flash server in HTTP operations/second as
a function of load generated by the Waspclient workload generator



1

10

100

1 10 100 1000

S
er

ve
r 

U
til

iz
at

io
n 

in
 p

er
ce

nt

Load in User Equivalents

Loss 00
Loss 03
Loss 06
Loss 09

Figure 10: Flash Utilization vs. Dependent Loss Rate
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Figure 11: Flash Throughput vs. RTT

in user equivalents (UE’s). Four curves are plotted: with no loss,
with 3 percent loss, with 6 percent, and with 9 percent. In this
experiment, no delay is introduced; the point is to evaluate the im-
pact of packet loss in isolation from other factors. Figure 10 shows
the corresponding server machine CPU utilization during the test
as measured by iostat. Note that on the throughput graph, the X
axis is linear, whereas the Y axis is logarithmic. On the utilization
graph, both axes are in log scale. As can be seen, the introduction
of loss has a significant effect on the observed throughput in the
system. Higher loss rates result in lower throughputs, regardless of
load. In addition, we observe that increasing the load is necessary
to bring the server to full saturation, as shown in Figure 10.

Next we examine how throughput is affected by the introduc-
tion of packet delay. Figure 11 shows the throughput of the Flash
server, again as a function of load. Here five curves are plotted:
with no delay, with 50 ms delay, with 100 ms, 200 ms, and 400 ms.
In this test, no packet loss is introduced. Figure 12 shows the cor-
responding server CPU utilization measured during the test. Note
again that on the X axis on the throughput graph is linear, while all
other axes in the two Figures are logarithmic.

As with packet loss, introducing packet delay also has a sig-
nificant effect on the observed throughput in the system, regard-
less of load. Higher round-trip times rates result in lower through-
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Figure 12: Flash Utilization vs. RTT
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Figure 13: Flash Response Time vs. Dependent Loss Rate

puts. Again we see that increasing the load is necessary to bring
the server to full saturation, as depicted in Figure 12.

The cause of this behavior is the underlying TCP protocol’s
congestion avoidance mechanism. When loss or delay is intro-
duced, it has the effect of ‘slowing down’ the request rate as ob-
served by the server. Since this is a closed system, the arrival rate
and the departure rate of jobs at the server are identical. Each “user
equivalent” can only use a fixed number of connections, thus re-
stricting the rate at which requests can be submitted to the server.
In turn, each connection proceeds more slowly due to the loss or
delay. This is because TCP’s throughput is inversely proportional
to the RTT and the square root of the loss. The simplified model
for TCP throughput [13] states:

������� �
� 	�
���
��
� 
�� �

where
�

is throughput,
�

is the maximum segment size (MSS),
�

is the round-trip time, and
�

is the loss rate. More elaborate mod-
els are available [22], but they all share this relationship between
throughput, loss, and delay. Since latency is inversely proportional
to throughput, for a fixed file size, the time to transfer a single file
goes up. As the RTT or packet drop rate increases, a single con-
nection thus puts less load on a server than a connection with a
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Figure 14: Flash Response Time vs. Delay

lower RTT. Similar trends were observed with other experiments,
not shown due to space limitations, including tests using s-client,
configurations with Apache, and experiments that used the inde-
pendent loss model.

4.2 Effects on Response Time

Latency or response time, as seen by the client, is also an important
metric in evaluating web server performance. Thus, we also wish to
examine how response time is affected by both loss rate and round-
trip times. Here the measured latency is the time between when the
client application invokes the connect()call to the server and
when the last byte of the response is delivered to the user applica-
tion. It does not include DNS lookup times or page parsing delays.
It does include, however, wire travel time and client network pro-
tocol processing time, in addition to the server processing time.

Figure 13 shows the Flash server’s response time versus load
when loss is introduced. Four curves are plotted, again one each
for 0 percent, 3 percent, 6 percent, and 9 percent loss. Figure 14
shows Flash response time as packet delays are added. In both Fig-
ures, as the loss rate or packet delay increases, the average response
time does as well. This is again due to TCP’s throughput being in-
versely proportional to the square root of the loss rate [17, 22].
Since response time is typically inversely proportional to through-
put, higher loss rates lead to higher response times.

Note that the no-delay and no-loss curves for each figure follow
a diagonal line. This is because in these cases, the response time is
limited by the server processing time. As load increases, jobs queue
up and requests must wait longer for service. We see that in the
curves when loss and delay are introduced, the load on the server is
low and thus the client response times are network-limited. As the
load in user-equivalents increases, each curve eventually intersects
the diagonal line, where the server is fully saturated and thus queu-
ing delay at the server starts contributing to response time. Again,
we see the same trends, not shown due to space limitations, in sim-
ilar experiments using s-client, for requests for different file sizes,
with both Flash and Apache.

4.3 Effects of TCP Variants

A great deal of research has been accomplished studying different
versions of TCP, such as Reno, SACK and New Reno. These TCP’s
have varying approaches to loss recovery and congestion manage-

0

200

400

600

800

1000

1200

1400

1 10 100 1000

S
er

ve
r 

R
es

po
ns

e 
tim

e 
in

 m
se

c

Load in User Equivalents

Reno
NewReno

SACK

Figure 15: Response Times of TCP Variants (Flash, 6 % loss)
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Figure 16: Throughputs of TCP Variants (Flash, 6 % loss)

ment, and perform very differently when faced with losses, espe-
cially with respect to the round-trip time. Thus we thought it would
be important to analyze these TCP variants using the WASP test-
bed.

Figure 15 shows the response time for the three TCP variants
using an experiment with 6 percent loss and the Flash server. As
can be seen, the latency measured by Waspclient using SACK is
roughly 20 percent less than the time observed using Reno. New
Reno is also better than Reno, in this case providing about a 10
percent improvement in response time.

This is because SACK, and to a lesser extent, New Reno, can
recover lost packets more quickly than Reno. Reno can only re-
transmit a lost segment (‘fill a hole’) once every three round-trip
times, whereas New Reno can fill one hole every RTT, and SACK
can fill multiple holes per RTT. SACK is also more resilient to ACK
loss on the return path. SACK can thus recover more quickly from
loss, especially given large round-trip times. However, SACK can
only provide an advantage over Reno when multiple losses hap-
pen within the current congestion window, which in turn only oc-
curs when the window is large. Since TCP increases the congestion
window via “slow-start”, multiple rounds of packet exchanges must
occur before the congestion window is large enough to allow SACK
any loss recovery opportunities that are not available to Reno. This
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Figure 17: Flash Capacity vs. Dependent Loss Rate

means SACK makes no difference for short transfers. In exper-
iments using s-client, not shown due to space limitations, SACK
showed no improvements in tests requesting 1 KB files when loss
was introduced. In experiments where requests were for 64 KB
files, SACK’s advantage over Reno was substantial. Since Wasp-
client produces a set of requests for a wide range of file sizes, the
workload generator exposes SACK’s benefits.

Figure 16 shows the observed throughput for the three versions
of TCP. Here we see, for smaller loads, SACK has the highest ob-
served throughput, New Reno the next highest, and Reno the worst.
As the loads are increased, each curve reaches a maximum through-
put as the server is fully utilized, and then starts degrading with
excess load. Note that these curves simply reflect the implications
of the latencies from Figure 15. Since SACK has lower latency, it
achieves greater throughput for a given load.

These results are important since these distinctions do not show
up in conventional benchmarks where the WAN characteristics are
ignored. Distinguishing these characteristics is necessary to pro-
vide the proper incentives for server manufacturers. For example,
SpecWeb99 will not reward a vendor who supports SACK or New
Reno in their TCP stack, yet in the real world their utility is clear, in
terms of lower latencies seen by clients. New Reno is a sender-side
only modification and thus can be put to use immediately. While
SACK has the deployment difficulty in that it requires modification
on both ends of the connection, this limitation is fading. Since Win-
dows 98 supports SACK, a growing number of clients are able to
negotiate SACK options, and in fact Allman [1] presents evidence
that supports this. It is plainly beneficial to add SACK support to
servers. Finally, while one might be concerned that SACK could
incur extra processing overhead since it maintains additional per-
connection state, we find that this is not an issue. We show in the
next Section that adding SACK and New Reno support does not
reduce a server’s overall capacity.

4.4 Effects on Server Capacity

We saw in Section 4.1 that measuring throughput can be com-
plex. Based on our experiences, we believe that simply measuring
throughput without regard to server CPU utilization can cause mis-
leading conclusions. For this reason, we examine our third metric,
capacity.

Recall Figure 9 in Section 4.1, which shows how throughput
varies with load for different loss rates. How then would capac-
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Figure 18: Apache Capacity vs. Dependent Loss Rate

ity be defined? One answer might be to fix the load in number of
users and report the throughput, but this method does not capture
the whole picture. Consider the case where the system is under a
load of 256 user-equivalents. Here the no-loss curve is maximized,
with 1035 HTTP operations per second, whereas the 3 percent loss
has 471 ops/sec and the 6 percent loss curve has about 198 HTTP
ops/sec. As we saw from Figure 10, the server is not fully uti-
lized in the 3 percent and 6 percent loss cases. Clearly, this is not
a fair comparison, since the server has idle capacity in the experi-
ments where loss is introduced. Now consider the case where the
load is 1024 user-equivalents in Figure 9. Here, both the 6 per-
cent and 3 percent loss curves are measuring fully utilized servers,
whereas the 9 percent loss curve is not. But again, this comparison
is not fair, since the no-delay experiment reflects the cost of jobs
queued up at the server, which results in larger numbers of con-
current connections, whereas the 6 percent loss experiment does
not. The proper comparison then is between the maximums of each
curve, where each server is fully utilized, but is not penalized by
the cost of queued jobs. We thus define capacity as the maximum
over the curve, despite the fact that different numbers of concurrent
users may be used to arrive at the maximum. In our experiments,
the numbers of clients are varied from 8 to 4096 in powers of two,
and then the maximum of all these points is chosen.

Figure 17 shows the server capacity versus the loss rate, using
the three versions of TCP described earlier. As can be seen, the total
capacity is reduced by up to 50 percent for high loss rates. Note
also that the 3 TCP variants all have roughly the same capacity for
a particular loss rate. The exception is in the 9 percent loss case,
where SACK appears to outperform New Reno, which outperforms
Reno. However, the picture here is more complicated because the
server is not completely saturated. These high loss rates made it
extremely difficult to fully utilize the server. In this case SACK’s
advantage is not in raw capacity but in its ability to let the server
to process retransmissions more quickly and thus allow the server
to effectively schedule tasks in a more work-conserving manner.
Based on our other data, we believe that the actual capacity would
be the same if the server could be driven to full utilization.

Figure 18 shows the capacity for the Apache server, again ver-
sus the loss rate. Note that the scale of the Y axis is not the same
as in Figure 17, and that Apache is significantly slower than Flash,
here by roughly a factor of 2. While the trend is not as severe as
with Flash, there is still a noticeable reduction in capacity as the
loss rate increases. Since Apache is less efficient than Flash, the
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Figure 19: Flash Capacity vs. Delay

proportion of time spent in the network protocol stack is relatively
smaller than is spent using Flash. Since loss increases the amount
of work done by the protocol stack, the relative impact of loss on
capacity is thus smaller for Apache. Note that we also see the same
issue in the 9 percent loss case that we saw in Figure 17.

One might think that a server employing SACK would have
greater capacity, since SACK is better at avoiding unneeded re-
transmissions, i.e., have better “goodput.” In practice, we find that
this is not a significant issue. Our intuition is that ultimately the
server has some fixed capacity for sending packets, and that the
choice of SACK or Reno simply influences how packets are dis-
tributed or scheduled across connections. In addition, given the
conservative nature of TCP’s loss recovery policies, unnecessary
retransmissions are probably rare even in Reno. The advantage of
SACK is thus to infer loss more quickly.

We now turn our attention to the effects of delay on server ca-
pacity. Figure 19 shows the Flash server capacity versus delay,
where RTT is increased from zero up to 400 ms. Here we see a
very slight falloff in capacity, and only with very large delays. Fig-
ure 20 shows the capacity versus delay using the Apache server,
with the same trends. Again note the difference in the scale of the
Y-axis between Figures 19 and 20. We see a very minor reduction
in capacity with the Apache server as well.

Our RTT results are somewhat at odds with those from Banga
and Druschel [4], who showed a more severe reduction in capacity
with increasing round-trip times. Using delays up to 200 ms, they
found that capacity shrunk up to 50 percent with Apache and up
to 22 percent with Zeus. In our experiments, capacity was reduced
only 5 percent, and only with 400 ms round-trip times. Without
access to their exact setup, it is difficult to completely explain the
difference, but we believe it is due to two factors. First, Banga and
Druschel used an earlier version (1.2.4) of Apache, whereas here
we use a more recent version of Apache (1.3.17), and use Flash,
which is much more efficient with per-connection resources. Sec-
ond, our AIX system employs the TIME WAIT optimization de-
scribed by Aron and Druschel [3], which was not present in the
FreeBSD source used by Banga and Druschel at the time of their
work. We believe consequently that state-of-the-art implementa-
tion techniques have greatly reduced, if not eliminated, this prob-
lem of larger RTT’s reducing capacity.
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5 Conclusions and Future Work

This paper has examined how WAN conditions can have a signif-
icant impact on WWW server performance, in ways that are not
exposed by benchmarks run in a LAN setting. We summarize our
conclusions as follows:

� RTTs and losses matter. We find that introducing packet de-
lays and losses can have substantial effects on server through-
put. Driving a system to saturation is more difficult when
losses and delays are introduced, and the server exhibits dif-
ferent scaling behavior as load is increased. Different servers
may react differently to these conditions, and thus it is impor-
tant to introduce these characteristics into any test suite.

� Packet losses reduce throughput and increase latency. We
show how increasing loss rates can lower server capacity by
as much as 50 percent and increase the response times as
seen by clients.

� Packet delays increase latency but do not reduce through-
put. While large round-trip times slow responses as seen by
clients, overall server capacity is unaffected.

� Reno, SACK, and New Reno perform differently. Different
versions of TCP react very differently to packet losses. We
show how using SACK or New Reno does not change server
throughput, but can reduce client response time. We con-
clude that servers should deploy these TCP variants.

Again, the WASP environment allows researchers to study these
effects and quantify their impact on performance. Based on these
findings, our SACK and New Reno code has been incorporated into
the AIX operating system. In addition, given that WWW proxies
perform many of the same functions that web servers do, we antic-
ipate that our results will apply to proxies as well.

This work has only begun to study the issue of WAN effects on
servers. Many other aspects remain to be examined, e.g., dynamic
content such as CGI or servlets, secure content over SSL/TLS, im-
plementation issues involving code paths not exercised by current
benchmarks, etc. In addition, the loss and delay models built into
the system need to be refined based on a better understanding of
how these phenomena occur in the wide-area Internet. The WASP



environment allows us to easily adapt our models and to study dif-
ferent networked server applications. We intend on pursuing many
of these issues further.
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