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Abstract

Software prefetching and locality optimizations are techniques for overcoming the speed gap
between processor and memory. In this paper, we provide a comprehensive summary of current
software prefetching and locality optimization techniques, and evaluate the impact of memory trends
on the effectiveness of these techniques for three types of applications: regular scientific codes,
irregular scientific codes, and pointer-chasing codes. We find that for many applications, software
prefetching outperforms locality optimizations when there is sufficient memory bandwidth, but
locality optimizations outperform software prefetching under bandwidth-limited conditions. The
break-even point (for 1 GHz processors) occurs at roughly 2.26 GBytes/sec on today’s memory
systems, and will increase on future memory systems. We also study the interactions between
software prefetching and locality optimizations when applied in concert. Naively combining the
techniques provides robustness to changes in memory bandwidth and latency, but does not yield
additional performance gains. We propose and evaluate several algorithms to better integrate
software prefetching and locality optimizations, including a modified tiling algorithm, padding for
prefetching, and index prefetching. Finally, we investigate the interactions of stride-based hardware
prefetching with our software techniques. We find that combining hardware and software prefetching
yields similar performance to software prefetching alone, and that locality optimizations enable
stride-based hardware prefetching for benchmarks that do not normally exhibit striding.

1. Introduction

Current microprocessors spend a large percentage of execution time on memory access stalls, even
with large on-chip caches. Since processor speeds are growing at a greater rate than memory
speeds, we expect memory access costs to become even more important in the future. Computer
architects have been battling this memory wall problem [2] by designing ever larger and more
sophisticated caches. Although caches are extremely effective, they are not the complete solution.
Other techniques are required to fully address the memory wall problem.

Two promising approaches for improving memory performance are software prefetching and
locality optimizations. The first executes explicit prefetch instructions to begin loading data from
memory to cache. As long as prefetching begins early enough and the data is not evicted prior to its
use, memory access latency can be completely hidden. However, as processor throughput improves
due to memory latency tolerance, memory bandwidth use is increased since prefetching increases
memory traffic. In comparison, locality optimizations use compiler or run-time transformations
to change the computation order and/or data layout of a program to increase the probability it
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Figure 1: Examples of affine array, indexed array, and pointer-chasing memory access patterns.

accesses data already in cache. If successful, both average memory latency and bandwidth usage
are reduced, since there will be fewer main memory accesses.

Both software prefetching and locality optimizations have been studied in isolation. In this pa-
per, we examine how well each approach works for three types of data-intensive applications. Our
evaluation uses a single unified environment to enable a meaningful comparison. A primary focus
of our work is to compare the importance of latency tolerance provided by prefetching and latency

reduction provided by locality optimizations on future high-performance memory systems. In addi-
tion, our work also investigates the interactions of software prefetching and locality optimizations
when applied in concert. The contributions of this paper are as follows:

• We provide a comprehensive summary of current software prefetching and locality optimiza-
tion techniques for three types of data-intensive applications: regular scientific codes, irregular
scientific codes, and pointer-chasing codes.

• We compare the efficacy of software prefetching and locality optimizations for the three types
of applications.

• We quantify the impact of bandwidth and latency scaling in future memory systems on the
relative effectiveness of software prefetching and locality optimizations.

• We examine the performance of integrated software prefetching and locality optimizations,
then propose and evaluate several enhancements to increase their combined effectiveness.

• We study the interactions of stride-based hardware prefetching with software prefetching and
locality optimizations.

The rest of this paper is organized as follows. First, we describe three memory access patterns
in Section 2. Then, we summarize the different techniques that have been previously developed for
each access pattern. Section 3 discusses software prefetching techniques, and Section 4 discusses
locality optimization techniques. Next, we present our experimental results in Section 5, and
develop improved algorithms in Section 6. We also study the impact of stride-based hardware
prefetchers on our results in Section 7. Finally, Section 8 discusses related work and Section 9
concludes the paper.

2. Memory Access Patterns

The types of software prefetching and locality optimizations which may be applied are dependent
on the type of memory access pattern made by a program. We begin by presenting three important
types of memory access patterns shown in Figure 1, using example codes in Figure 2.

2.1 Affine Array Accesses

The most basic memory access pattern is regular accesses with constant strides, such as references
to elements in multidimensional arrays. The 2D Jacobi code in Figure 2 Part(A), commonly found
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Figure 2: Code examples for three classes of memory access patterns.

in finite-difference or multigrid solvers for systems of partial differential equations (PDEs), is an
example code that performs very regular memory accesses. The code computes the value of a point
in array A as the average of values of neighbors in all dimensions of array B.

Programs exhibiting these regular memory access patterns are also called stencil codes because
they compute values based on applying a uniform stencil pattern repeatedly to each point of array
A to compute the desired result. Array references result in memory accesses with constant strides if
array subscripts are affine (i.e., linear combinations of loop index variables with constant coefficients
and additive constants). These programs are also called regular codes because their memory access
patterns are regular and well defined.

Affine array accesses are quite common in a variety of applications, including dense-matrix
linear algebra and finite-difference PDE solvers as well as image processing and scans/joins in
relational databases. These programs can usually exploit long cache lines to reduce memory access
costs, but may suffer poor performance due to cache conflict and capacity misses arising from the
large amounts of data accessed. An important feature of codes performing affine array accesses
is that memory access patterns can be identified at compile time, assuming array dimension sizes
are known. This allows both software prefetching and locality transformations to be determined
precisely at compile time.

2.2 Indexed Array Accesses

Another memory access pattern is called indexed array accesses, because the main data array is
accessed through a separate index array whose value is unknown at compile time. For example,
consider the molecular dynamics code in Figure 2 Part(B), which calculates forces between pairs of
atoms in a molecule. The index array index is accessed in an regular manner. In contrast, the two
arrays X1 and X2 are indexed by the contents of the index array. The accesses are irregular due
to the nature of the data stored in the index array, as shown in Figure 1. The cache performance
of applications using indexed arrays can be poor since both spatial and temporal locality in such
applications is typically low due to the irregularity of the access pattern.

Indexed array accesses arise in several scientific application domains where computational sci-
entists attempt more complex simulations. In computational fluid dynamics, meshes for modeling
large problems are sparse to reduce memory and computation requirements. In N-body solvers
which arise in astrophysics and molecular dynamics, data structures are irregular because they
model the positions of particles and their interactions. Index arrays are frequently used to store
these more complicated relationships between data, since they are more efficient than pointers. Un-
fortunately, these irregular computations have poor temporal and spatial locality, and do not utilize
processor caches efficiently. Unlike applications with affine accesses, compile-time transformations
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Figure 3: Example affine array prefetching for the 2D Jacobi kernel using Mowry’s algorithm [3].

alone cannot improve locality because the values of the index array are not known at compile time.
A combination of compile-time and run-time transformations are needed instead.

2.3 Pointer-Chasing Accesses

Finally, the third class of memory accesses are pointer-chasing codes that dynamically allocate
memory and use pointer-based data structures such as linked lists, n-ary trees, and other graph
structures. Figure 2 Part(C) shows an example of creating and traversing a singly-linked list.
These programs are known as pointer-chasing codes, because accesses to additional parts of the
data structure cannot take place until the pointer to the current portion of the data structure is
resolved. This property forces associated memory references to be sequentialized, and is known as
the pointer-chasing problem.

Pointer-chasing applications usually exist in programs solving complex problems where the
amount and organization of data is unknown at compile time, requiring the use of pointers to
manage both dynamic storage and linkage. They may also arise from high-level programming lan-
guage constructs such as object-oriented programming. Because memory is allocated and accessed
dynamically, the access pattern tends to be very irregular and lack locality, resulting in poor cache
performance.

Indexed array accesses share characteristics to pointer-chasing codes, since the access to the
index array must be resolved before and the data values can be accessed. However, indexed arrays
have only one level of indirection, allowing many data elements and index array references to
occur in parallel. In comparison, pointer accesses can have arbitrarily deep levels of indirection,
sequentializing the entire pointer-chasing application.

Nodes in these pointer-chasing codes are usually dynamically allocated at run time, with their
total number and connection pattern unknown at the time of compilation. To traverse the list,
the pointers are dereferenced one after another in a serial manner. Because of the dynamic nature
of data structure creation and modification, pointer-chasing codes commonly exhibit poor spatial
and temporal locality and experience poor cache behavior. Pointer-chasing memory access patterns
can be detected at compile time, but cannot be directly transformed by the compiler, since the
pointer values are not known statically. Instead, cache-conscious run-time memory allocation can
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be used to improve locality. In comparison, prefetching is not hindered by the fact that the memory
locations are not known at compile-time, but is limited by the sequentialization of memory accesses.

3. Software Prefetching

Software prefetching relies on the programmer or compiler to insert explicit prefetch instructions
into the application code for memory references that are likely to miss in the cache. At run
time, the inserted prefetch instructions bring the data into the processor’s cache in advance of its
use, thus overlapping the cost of the memory access with useful work in the processor. Software
prefetching has been shown to be effective in reducing memory stalls for both sequential and
parallel applications, particularly for scientific programs making regular memory accesses [4, 5,
6, 3]. Recently, techniques have also been developed to apply prefetching to pointer-based data
structures [7, 8, 9, 10, 11]. In this section of the paper, we present three software prefetching
algorithms proposed previously in the literature for the three types of memory access patterns
discussed in the previous section.

3.1 Affine Array Prefetching

To perform software prefetching for affine array references commonly found in scientific codes, we
follow the well-known compiler algorithm proposed by Mowry [3]. Mowry’s algorithm exploits
the precise access pattern information available through static analysis of affine array references
to insert prefetches for only the data needed by the processor, and no more. Consequently, the
algorithm is quite effective and typically provides good performance gains.

Mowry’s prefetch algorithm involves three steps. To illustrate, Figure 3 shows the 2D Jacobi
kernel from Figure 2 Part(A) after all the steps have been applied. First, the affine array refer-
ences within inner-most loops are identified as prefetching candidates. For each candidate, locality
analysis is performed to determine which dynamic instances of the static memory reference will
miss in the cache, hence requiring prefetching. To permit prefetching of only the missing dynamic
instances, loop unrolling is performed to create multiple static instances of each memory reference
within the loop body; the degree of loop unrolling is set to the number of back-to-back memory
references Co-located in the same cache block (determined via locality analysis). By unrolling the
loop this number of iterations, the dynamic instances that miss in the cache are isolated–the lead-
ing static memory reference in the unrolled loop always misses, while the remaining unrolled static
memory references always hit. Hence, a single prefetch for the leading memory reference can be
inserted into the unrolled loop, prefetching exactly the missing dynamic instances, thus avoiding
unnecessary prefetches and reducing prefetch overhead.

Figure 3 illustrates the loop unrolling and prefetch insertion transformations for the 2D Jacobi
kernel. In this loop, there are five affine references, four for the B array, and one for the A array.
Assuming each reference accesses 8 bytes and assuming a 32-byte cache block, the loop should be
unrolled by a factor of 4. After loop unrolling, four prefetches are inserted for the five leading
memory references: A(i, j), B(i−1, j), B(i+1, j), B(i, j−1), and B(i, j +1). Notice the B(i−1, j)
and B(i + 1, j) references lie on the same cache block, thus saving 1 prefetch.

The next step in Mowry’s algorithm is to perform prefetch scheduling. Given the high memory
latency of most modern memory systems, a single loop iteration normally contains insufficient
work under which to hide the cost of memory accesses. To ensure that data arrive in time, the
prefetches inserted in the first step of the algorithm must be initiated multiple iterations in advance.
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The minimum number of loop iterations needed to fully overlap a memory access is known as the
prefetch distance. Prefetch scheduling determines the prefetch distance and applies it to the inserted
prefetches. Assuming the memory latency is l cycles and the work per loop iteration is w cycles, the
prefetch distance, PD, is simply ⌈ l

w
⌉. Figure 3 illustrates the indices of prefetched array elements

contain a PD term, providing the early prefetch initiation required.

Finally, the last step is to “fix up” inefficiencies in prefetching created by prefetch scheduling.
By modifying prefetches to initiate PD iterations in advance as illustrated in Figure 3, the first
PD iterations do not get prefetched, and the last PD iterations prefetch past the end of each
array. These inefficiencies can be addressed by performing loop peeling to handle the first and last
PD iterations of the loop separately. The loop peeling transformation creates a prologue loop to
execute PD prefetches for the first PD array elements, and an epilogue loop to execute the last
PD iterations without prefetching. Figure 3 illustrates the prologue and epilogue loops created by
loop peeling.

3.2 Indexed Array Prefetching

Indexed array accesses, of the form A(B(i)), are common in irregular scientific codes. We use the
prefetch algorithm for indexed array accesses proposed in [12] by Mowry, which is an extension
to his algorithm for affine arrays described in Section 3.1. The extensions stem from three major
differences between indexed and affine array accesses. First, indexed array accesses contain two
array references per prefetch candidate–one for the data array and one for the index array. Affine
array accesses perform only a single array reference per prefetch candidate. Second, static analysis
cannot determine locality information for consecutively accessed indexed array elements since their
addresses depend on the index array values known only at runtime. Finally, before a data array
reference can perform, the corresponding index array reference must complete since the index value
is used to index into the data array. Hence, pairs of data and index array references are serialized.

Mowry’s indexed array prefetching algorithm follows the same three steps for prefetching affine
arrays: loop unrolling, prefetch scheduling, and loop peeling. Each step is modified to accommodate
the added complexities of indexed array accesses compared to affine array accesses. To illustrate,
Figure 4 shows a simplified molecular dynamics kernel after all the steps have been performed.
First, loop unrolling is applied to isolate the missing dynamic instances, as described in Section 3.1.
Unfortunately, cache-miss isolation via loop unrolling succeeds only for the index array accesses.
Since the location of consecutively accessed data array elements depends on the index array values
at runtime, static analysis fails to provide spatial locality information for the data array references,
so the compiler must be conservative and assume all data array references lie on separate cache
blocks. Consequently, while a single prefetch is sufficient for all instances of the index array in the
unrolled loop body, a separate prefetch is necessary for every instance of the data array. Figure 4
illustrates the unrolled loop and the inserted prefetch code. The loop unrolling degree is two to
limit the size of the example code.

Next, prefetch scheduling is performed. As in affine array prefetching, the computation of the
prefetch distance uses the formula, PD = ⌈ l

w
⌉. However, the adjustment of array indices for indexed

arrays must take into consideration the serialization of data array and index array references. Since
data array elements cannot be prefetched until the index array values they depend on are available,
prefetches for index array elements should be initiated twice as early as data array elements. This
ensures that an index array value is in cache when its corresponding data array prefetch is issued.
Figure 4 illustrates the indices of prefetched data array elements contain the normal PD term, but
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Figure 4: Example indexed array prefetching

prefetched index array elements contain a 2 ∗ PD term to fetch them in advance of the data array
prefetches.

Lastly, loop peeling is performed. As described in Section 3.1, prologue and epilogue loops
are inserted to properly handle the first and last few iterations of the loop. For indexed array
prefetching, two prologue loops and two epilogue loops are necessary because prefetch scheduling
uses two prefetch distances, PD and 2 ∗ PD. The first prologue loop issues the index array
prefetches for the first PD loop iterations. Then, the second prologue loop issues the index array
prefetches for the next PD loop iterations as well as the data array prefetches for the first PD loop
iterations. Similarly, the first epilogue loop executes the second-to-last PD loop iterations without
index array prefetching. Finally, the last epilogue loop executes the last PD loop iterations without
any prefetching. Figure 4 illustrates the modified loop peeling transformation.

3.3 Pointer-Chasing Prefetching

Prefetching for pointer-based data structures is challenging due to the memory serialization effects
associated with traversing pointer structures. The memory operations performed for array traversal
can issue in parallel because individual array elements can be referenced independently. At worst,
pairs of array references are serialized in the case of indexed array traversal. But even in that
case, separate indexed array references can perform in parallel. In contrast, the memory operations
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Figure 5: Example pointer prefetching using jump pointers and prefetch arrays [7].

performed for pointer traversal must dereference a series of pointers sequentially. The memory
serialization in pointer chasing prevents conventional prefetching techniques from overlapping cache
misses suffered along a pointer chain, thus limiting their effectiveness.

Jump pointer prefetching [8, 11] is a promising approach for addressing the pointer-chasing
problem. In jump pointer prefetching, additional pointers are inserted into a dynamic data structure
to connect non-consecutive link elements. These “jump pointers” allow prefetch instructions to
name link elements further down the pointer chain (i.e. a prefetch distance, PD, away which
is computed as in Sections 3.1 and 3.2) without sequentially traversing the intermediate links.
Consequently, prefetch instructions can overlap the fetch of multiple link elements simultaneously
by issuing prefetches through the memory addresses stored in the jump pointers. Figure 5 Part(A)
illustrates a “while” loop that has been instrumented with jump pointer prefetching.

Jump pointer prefetching, however, cannot prefetch the first PD link nodes in a linked list
because there are no jump pointers that point to these early nodes. To enable prefetching of early
nodes, jump pointer prefetching can be extended with prefetch arrays [7]. In this technique, an
array of prefetch pointers is added to every linked list to point to the first PD link nodes. Hence,
prefetches can be issued through the memory addresses in the prefetch arrays before traversing
each linked list to cover the early nodes, much like the prologue loops in affine array and indexed
array prefetching prefetch the first PD array elements. Figure 5 Part(A) illustrates the addition
of a prologue loop that performs prefetching through a prefetch array.

Before prefetching can commence, the prefetch pointers must be set. Figure 5 Part(B) shows
an example of prefetch pointer initialization code which uses a history pointer array [8] to set the
prefetch pointers. The history pointer array, called “history” in Figure 5, is a circular queue that
records the last PD link nodes traversed by the initialization code. Whenever a new link node is
traversed, it is added to the head of the circular queue and the head is incremented. At the same
time, the tail of the circular queue is tested. If the tail is NULL, then the current node is one of the
first PD link nodes in the list since PD link nodes must be encountered before the circular queue
fills. In this case, we set one of the “prefetch array” pointers to point to the node. Otherwise, the
tail’s jump pointer is set to point to the current link node. Since the circular queue has depth PD,
all jump pointers are initialized to point PD link nodes ahead, thus providing the proper prefetch
distance. Normally, the compiler or programmer ensures the prefetch pointer initialization code
gets executed prior to prefetching, for example on the first traversal of a linked data structure.
Furthermore, if the application modifies the linked data structure after the prefetch pointers have

8



Efficacy of Software Prefetching and Locality Optimizations� � � � � � � � � � 	 
 � � � � �  � � � � 
 � � � � � � � 
 � � � � � � � � � � � � � � � � � � 	 � � � � � � � 
 � � � � �� �� � � � � � � � �� � � � � � � �  � � � 
 � � 	 � � ! � 	 " � 
 � � � �# � � $ � � # � � � � � 	 % � � � 	 � �� � $ $ & ' � � � ( � � ) � � � � � 
 � * � � � � � � � �+ � �' � � � � � � � � 
 � � � � � ,% 	 � � � � � � - . � � � � . � � � � /� � 0 0 & ' � � � ( � � � � � � & ( � � � " � 1 2 � � � �3 3 3 � ,� � � � & ' � � � ( � �  � � �� � 
 	 � 
 � � � � � 4 � � � � & 
 
 " 	 � � � 
 �� � � � � /� � $ & $ $ � $ $ 5 � ) � ( � �3 3 3 � & 3 3 3 � � & � � � � 4 � � � � /� � 0 & 0 0 � 0 0 5 � � � ( � � � & ( � � � � � � 4 % 	 � & 3 3 3 /� � � & � � � � � 5 �  � ( � & 6 �� � ( � � � � � 6 �� �' � � � � -� � � � 0 � $ � & 7 3 ( 8 8 8 9 . � � � 
 � & � . . �� 9 � � � . . �� : � 1 2 � � � �� � � � 4 � � � � � ,�� � � � ( � 0 � $ � 5 � � � � 0 � ( � $ � 5 ; �� � ( � � � � 5 & � � � 
 � � � � & � � � � 4 � � � � /3 3 3 /� � � 5 ( � 0 � $ � 5 � � � � 0 5 ( � $ � 5 ; �� �' � � � � 5 & � � � � 
 � -� � � � 0 � $ � ( � 5 � � � � 0 � $ 5 ( � �< = > ? @A B B C D< E F < G F < H< = > ?
IIII JJJJ KKKK LLLL MMMMNNNN OOOO IIII JJJJ KKKK LLLL MMMMPPPP OOOOIIII JJJJ KKKK LLLL MMMMQQQQ OOOO

Figure 6: Example Locality optimized affine array, indexed array and pointer-chasing access codes.

CACHE (array layout causes conflict)

CACHE (array layout avoids conflicts)

Figure 7: Example of conflict misses under two array layouts.

been initialized, it may be necessary to update the prefetch pointers either by re-executing the
initialization code or by using other fix-up code.

4. Locality Optimizations

Software prefetching tries to hide memory latency while retaining the original program structure.
Another alternative is to reduce memory accesses by changing the computation order and data
layout of the program at compile and run time using locality optimizations. These optimizations
try to improve data locality, the ability of an application to reuse data in the cache [13]. Reuse may
be in the form of temporal locality, where the same cache line is accessed multiple times, or spatial

locality, where nearby data is accessed together on the same cache line. Previous researchers have
developed many locality optimizations. In this section, we consider optimizations for the three
types of access patterns discussed in Section 2.

4.1 Tiling for Affine Accesses

In many way, programs with affine array accesses are the easiest for compilers to apply locality
optimizations, since memory access patterns can be fully analyzed at compile time. One useful
program transformation is tiling (blocking), which combines strip-mining with loop permutation to
form small tiles of loop iterations which are executed together to exploit data locality [13]. Figure 6
Part(A) demonstrates how the 3D Jacobi code can be tiled. By rearranging the loop structure so
that the innermost loops can fit in cache (due to fewer iterations), tiling allows reuse to be exploited
on all the tiled dimensions so that data in cache can be accessed multiple times before it is flushed.

Tiling is very effective with linear algebra codes [14, 15, 16, 17, 18], and has been been extended
to handle stencil codes used in iterative PDE solvers as well [19, 20, 13]. A major problem with
tiling is that limited cache associativity may cause data in a tile to be mapped onto the same cache
lines, even though there is sufficient space in the cache. Conflict misses will result, causing tile data
to be evicted from cache before they may be reused [16]. This effect is shown in Figure 7.
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Figure 8: gpart algorithm for reordering data and computation in indexed array computations.

Previous research found tile size selection and array padding can be applied to avoid conflict
misses in tiles [14, 17, 18]. Tile-size-selection algorithms carefully select tile dimensions tailored
to individual array dimensions so that no conflicts occur. For 2D arrays, the Euclidean remainder
algorithm may be used to quickly compute a sequence of non-conflicting tile dimensions through a
simple recurrence [14, 18]. An alternative algorithm finds non-conflicting 2D tile using an greedy
algorithm which expands tile dimensions while checking that no conflicts occur [16]. We can adapt
this algorithm for finding non-conflicting 3D tiles by iteratively attempting to increase each tile
dimension until none may be increased without introducing conflicts [19].

Tile size selection by itself may yield poor results since only small tiles may be able to avoid
conflicts, particularly for array sizes near powers of two. One possible solution is to use padding
to enable better tile sizes [21]. Padding increases the size of leading array dimensions, increasing
the range of non-conflicting tile shapes. It has proven to be very useful for improving tiling for 2D
linear algebra codes [18]. To combine padding with tile size selection for 2D arrays, we can test
a small set of pads and choose the best choice. For 3D tiles, we would need to evaluate a much
larger space of possible pads, so we extend the algorithm to stop searching for pad sizes when the
predicted miss rate is within a small percentage of the predicted optimal [19].

4.2 Reordering for Indexed Accesses

Programs with index array accesses access data in an irregular manner, depending on the values in
the index array. If data is accessed in an irregular manner, spatial locality is unlikely to be obtained
if the data is larger than the cache. Fortunately, recent research has demonstrated run-time data
and computation transformations can improve the locality of irregular computations [22, 23, 24, 25].

Because many irregular computations typically perform reduction (commutative and associa-
tive) operations such as sum and max, loop iterations can be safely reordered to bring accesses to
the same data closer together in time. Data layout can also be transformed so that data accesses
are more likely to be to the same cache line. These compiler and run-time transformations can be
automated using an inspector-executor approached developed for message-passing machines [26],
where the compiler identifies index accesses and inserts calls to run-time libraries to analyze and
reorder data and loop iterations. Figure 6 Part(B) illustrate how a code with indexed accesses may
be optimized using a combination of compile and run-time transformations. The invocation of the
inspector library routine rearranges both the index array and data arrays to bring memory accesses
closer in time and space, resulting in better cache performance.

Figure 8 illustrates the process by which an inspector can reorder data and computation of
an index array computation at run time to improve locality. In the figure, loop iterations are
represented as circles and data elements as squares. Many indexed array codes compute values
based on pairs of indexed values (e.g., endpoints of a mesh segment, forces between a pair of
particles). Such computations may be viewed as an undirected graph, where each loop iteration
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Figure 9: ccmalloc algorithm for improving memory allocation for pointer-chasing codes.

forms an edge connecting the pair of data elements accessed by the iteration. Each circle thus
connects two squares.

In this representation, improving locality may be viewed as selecting an ordering of circles (loop
iterations) and squares (data elements) so that nearby circles access identical or nearby squares.
Several data and computation locality transformations exist to solve the problem of improving the
locality of such graphs [22, 23, 25, 24]. Our evaluation uses a technique called gpart that relies on
hierarchical clustering to improve locality [27, 28]. gpart works in three steps. First, the graph
formed by the index array computation hierarchically partitioned into roughly cache-sized chunks.
Second, the partitioning is then used to reorder the data to improve spatial locality. Finally, loop
iterations are lexicographically sorted based on their data accesses to improve temporal locality.
Experiments have shown gpart closely matches the performance of more sophisticated partitioning
algorithms, with much less run-time overhead.

4.3 Memory Allocation For Pointers

Pointer-based programs frequently suffer from poor locality and are notoriously difficult to analyze
and transform because of their reliance on pointers and dynamically allocated recursive data struc-
tures. Pointer-based applications are harder to optimize than indexed array codes, since pointer
chasing forces link nodes to be traversed sequentially. Fortunately, researchers have developed
cache-conscious heap allocation and transformation techniques to improve locality for pointer-based
programs [29, 30, 31]. These techniques improve locality by assigning or changing the locations of
dynamically allocated memory in ways designed to improve spatial locality. Examples of cache-
conscious algorithms include run-time tree optimization routines that place parent nodes with child
nodes for improved locality, and coloring when placing tree nodes to avoid conflict with the root.

Of particular interest is ccmalloc, a customized memory allocator which allocates memory in
a location near to a user-specified address. ccmalloc is a heuristic that reserves space for future
allocation requests when allocating new blocks of data [30]. Using this memory allocator, multiple
members of a linked list are thus more likely to be in adjacent memory locations. Not only does
this take advantage of hardware prefetching of long cache lines, but cache line utilization increases
and fragmentation is reduced, decreasing the probability that useful cache lines will be evicted from
cache.

Figure 6 Part(C) shows a simple list allocation code that uses ccmalloc to allocate list nodes
on nearby cache blocks dynamically. The code modification is quite simple: replacing malloc with
ccmalloc. Compiler analysis of pointer accesses can be used to determine when cache-conscious
memory allocators should be used. For our experimental evaluation, we inserted calls to ccmalloc

by hand in our pointer-chasing benchmark codes. ccmalloc for our evaluation works by taking
a optional pointer argument during memory allocation, and allocating current and future nodes
close to it whenever possible. To increase the probability of nearby placement, ccmalloc reserves
space for future data blocks when allocating the first node [30]. Figure 9 displays an example of
cache-conscious memory allocation to improve locality for pointer-chasing codes.
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Note one problem with ccmalloc is that dynamic data structures which change after allocation
may not benefit from this optimization. Frequent insert and delete operations after allocation will
make logically contiguous nodes physically non-contiguous after a few deletions and/or insertions.
Our pointer-chasing benchmarks did not perform many deletions to linked data structures.

5. Experimental Evaluation

This section evaluates the performance of software prefetching and locality optimizations, first
independently, and then in concert. We describe our experimental methodology. Then, we compare
software prefetching and locality optimizations under different memory bandwidths and latencies.
Finally, we study their combination.

5.1 Methodology

Our experimental evaluation uses the SimpleScalar tool set [32] to model a 1GHz 4-way issue
dynamically-scheduled processor. The simulator models all aspects of the processor including the
instruction fetch unit, the branch predictor, register renaming, the functional unit pipelines, and
the reorder buffer. To enable software prefetching, we added a prefetch instruction to the ISA of the
processor model. In addition, our simulator also models the memory system in detail. We assume
a split 8-Kbyte direct-mapped L1 cache with 32-byte cache blocks, and a unified 256-Kbyte 4-way
set-associative L2 cache with 64-byte cache blocks. Although the caches are small, they match the
more modest input data sets required for simulation.

Several of our experiments study sensitivity to memory latency and memory bandwidth. To
facilitate these experiments, we modified the SimpleScalar simulator to accurately model bus con-
tention across the L2-memory bus. Then, we varied the L2-memory latency from 80 to 640 cycles,
and varied the L2-memory bus bandwidth between 1-64 Gbytes/sec (note that a bandwidth of 1
Gbyte/sec is equivalent to the processor loading one byte per cycle). The lower end of both the
latency and bandwidth ranges captures the trends of existing memory systems which have laten-
cies of around 100 cycles and bandwidths of around 2-3 GBytes/sec. The mid and high end of the
latency and bandwidth ranges capture the characteristics of future architectures.

For all experiments, transfers across the L1-L2 bus incur a 7-cycle latency, and we assumed
the L1-L2 bus has infinite bandwidth. We also assumed an unlimited number of MSHRs to maxi-
mize concurrency in the memory system, thus exposing memory bandwidth limitations. We don’t
expect the infinite L1-L2 bandwidth assumption to affect our results. Our benchmarks are mem-
ory intensive with very large working sets, so they tend to be bandwidth limited at the memory
sub-system level. However, the unlimited MSHRs assumption is significant. Without sufficient
MSHRs, prefetching performance would degrade since the number of outstanding prefetches would
be limited. We optimistically assume enough MSHRs are provided in the caches to maximize the
effectiveness of prefetching.

To drive our simulations, our experimental evaluation employs nine benchmarks, representing
the three classes of data-intensive applications described in Section 2. Table 1 lists the benchmarks
along with their problem sizes and memory access patterns.

The first three applications in Table 1 perform affine array accesses. MM multiplies two ma-
trices, RB performs a 3D red-black successive-over-relaxation, and Jacobi performs a 3D Jacobi
relaxation. Both Jacobi and RB are frequently found in multigrid PDE solvers, such as Mgrid

from the SPEC/NAS benchmark suite. The next three applications perform indexed array ac-
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Application Problem Size Access Pattern

RB 200x200x8 grid Affine array
Jacobi 200x200x8 grid Affine array
MM 200x200 matrices Affine array

Irreg 14K node mesh Indexed array
Moldyn 13K molecules Indexed array
NBF 144K mols Indexed array

Health 5 levels, 500 iters Pointer-chasing
MST 1024 nodes Pointer-chasing
EM3D 10K nodes Pointer-chasing

Table 1: Benchmark summary.

Latency RB Jacobi MM Irreg Moldyn NBF Health MST EM3D

80 12 8 , 36 24 8 , 20 , 20 , 40 1, 1, 2 2 31 3 2
160 24 16, 68 44 12, 40 , 40 , 80 2, 2, 3 4 62 3 3
320 48 28, 136 88 24, 80 , 80 , 160 4, 4, 5 8 124 3 6
640 96 56, 268 176 44, 160, 160, 319 7, 7, 9 16 247 3 11

Table 2: Prefetch distances for loops in all benchmarks versus latency in cycles.

cesses. Irreg is an iterative PDE solver for an irregular mesh, Moldyn is abstracted from the
non-bonded force calculation in CHARMM, a key molecular dynamics application used at NIH to
model macromolecular systems, and NBF (Non Bonded Force kernel), is a molecular dynamics
simulation. NBF is taken from the GROMOS benchmark [33].

The last three applications perform pointer-chasing accesses. Health simulates the Columbi-
an health care system, MST computes a minimum spanning tree, and EM3D simulates electro-
magnetic wave propagation through 3D objects. Health, MST, and EM3D are all from the
olden benchmark suite [34].

For each application, we applied software prefetching and locality optimizations by hand, first in
isolation, then in combination. We followed the algorithms described in Sections 3 and 4, applying
the appropriate algorithm to each application given its memory access pattern. We then measured
the performance of the optimized codes on our detailed architectural simulator.

As described in Section 3, software prefetching requires computing a prefetch distance, PD, to
properly schedule prefetches. Recall that PD = ⌈ l

w
⌉, where w is the work per loop iteration, and l

is the memory latency (see Section 3.1). Hence, PD must be recomputed not only for every loop,
but also for every memory latency setting. Table 2 reports the computed prefetch distances for the
affine array, indexed array, and pointer-chasing benchmarks. For each benchmark, we list prefetch
distances for four different memory latencies used in our experiments. In applications with multiple
instrumented loops, the prefetch distance for each loop is listed separately.

Latency RB Jacobi MM Irreg Moldyn NBF EM3D Average

80 2.08 1.57 1.84 2.80 3.51 N/A 1.75 2.26
160 2.65 1.89 2.84 2.93 2.86 3.37 1.83 2.62
320 2.94 2.05 3.82 3.04 2.99 3.62 1.87 2.90
640 3.17 2.10 4.68 3.20 3.31 3.81 1.89 3.20

Table 3: Equi-performance bandwidth in Gbytes/sec versus memory latency in cycles. The last
column reports the average per latency.
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Finally, as described in Section 4, locality optimizations for indexed array benchmarks reorder
computations using graph partitioning techniques to improve memory performance. For our indexed
array benchmarks, we apply the RCB computation reordering algorithm.

5.2 Varying Memory Bandwidth

In this section, we evaluate the performance of software prefetching and locality optimizations under
memory bandwidth scaling. Figure 10 plots execution time along the y-axis, and varies memory
bandwidth from 1-64 Gbytes/sec along the x-axis, keeping memory latency fixed at 80 cycles.
Each execution-time bar is broken down into memory stall, software overhead, and computation
components. Groups of bars represent the original version of each program, and versions optimized
with either software prefetching, locality optimization, or both. In this section, we focus only
on applying the techniques in isolation. Later in Section 5.4, we will examine the techniques in
combination.

For the affine array and indexed array benchmarks, both software prefetching and locality
optimizations provide significant performance gains, improving performance by 45% on average
over unoptimized codes. Comparing the techniques, we see two major differences. First, software
prefetching incurs more overhead than locality optimizations. This overhead is due primarily to
prefetch and related address computation instructions. In particular, loop unrolling is unable to
isolate cache misses for index array accesses, as described in Section 3.2, contributing to increased
runtime overhead for the indexed array benchmarks. Overall, locality optimizations exhibit very
low overheads. Tiling incurs some overhead for the extra levels of loops, but this is minimal. For
the indexed arrays benchmarks, the rcb algorithm has no measurable overhead since the runtime
inspector is amortized over lots of computations [28].

Second, the relative effectiveness of software prefetching and locality optimizations to eliminate
memory stalls depends on available memory bandwidth. At high memory bandwidths, software
prefetching eliminates practically all memory stalls since the memory system can sustain the si-
multaneous memory requests necessary to hide all the memory latency. As memory bandwidth is
reduced, memory requests must serialize, thus software prefetching loses its effectiveness. In con-
trast, locality optimizations reduce memory latency, and hence, memory traffic. This makes them
highly effective at low bandwidths where reduced traffic pays off. However, locality optimizations
cannot eliminate all memory stalls, so they achieve a lower maximum performance compared to
software prefetching. Consequently, for all the array-based benchmarks except for NBF at 80 cy-
cles of latency, software prefetching outperforms locality optimizations at high memory bandwidths,
while locality optimizations outperform software prefetching at low memory bandwidths.

Table 3 reports the memory bandwidths at which software prefetching and locality optimiza-
tions achieve equal performance. Memory systems providing memory bandwidths higher than this
equi-performance bandwidth favor software prefetching, while those providing lower memory band-
widths favor locality optimizations. For an 80-cycle memory latency corresponding to the data
in Figure 10, Table 3 shows the average equi-performance bandwidth is 2.41 Gbytes/sec. (Note,
NBF does not have an equi-performance bandwidth at 80 cycles of latency since locality optimiza-
tion outperforms software prefetching at all memory bandwidths). Such a large equi-performance
bandwidth underscores the importance of latency reduction techniques, and implies future memory
systems must provide significant memory bandwidth before prefetching can outperform locality
optimizations on these data-intensive applications.
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Figure 10: Execution time breakdown under memory bandwidth scaling at 80 cycles of memory
latency with no optimizations (Orig), with software prefetching (Pref), with locality
optimization (Opt), and with combined optimizations (Pref+Opt).
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In the pointer-chasing benchmarks, locality optimization outperforms software prefetching at all
memory bandwidths for Health and MST. This is due to three factors. First, pointer prefetching
incurs high software overhead to create and manage jump pointers. Software overhead in Health

and MST is 131% and 70%, respectively, of the busy component. In contrast, ccmalloc mem-
ory allocation incurs no measurable overhead. Second, the traversal loops in our pointer-chasing
codes are short, particularly for MST, and do not provide sufficient work under which to hide
memory latency. Hence, software prefetching cannot eliminate all memory stalls. Finally, pointer
prefetching requires jump pointer storage that increases the cache miss rate and memory band-
width consumption, making the optimized code even more data-intensive than the original code.
As Figure 10 shows, software prefetching in Health and MST (as well as EM3D) performs worse
than the original code at low memory bandwidths.

In EM3D, software prefetching achieves higher performance as compared to Health and MST;
hence, its behavior resembles the array benchmarks rather than the other pointer-chasing bench-
marks. This improved software prefetching performance is due to EM3D’s primary data structure.
Whereas Health and MST employ linked lists that are difficult to prefetch for the reasons ex-
plained above, EM3D uses an “array of lists” data structure that is more amenable to software
prefetching. Specifically, EM3D simulates alternating electric and magnetic fields characteristic of
electro-magnetic wave propagation via two arrays, one for “e-nodes” and another for “h-nodes” [35].
“Edge pointers” connect e-nodes to h-nodes and vice versa to form a bipartite graph, representing
a mesh over which the electro-magnetic fields are simulated [36]. Like MST, the traversal code
for each edge pointer is short, potentially limiting prefetching. However, because the edge pointers
are rooted inside e-node and h-node array elements (and because these arrays are both very large),
jump pointers can be created to name e-nodes and h-nodes well in advance of their traversal, result-
ing in effective memory latency tolerance. Like the array benchmarks, software prefetching achieves
better performance than ccmalloc at high bandwidths, and worse performance than ccmalloc

at low bandwidths. Consequently, an equi-performance bandwidth exists for EM3D as shown in
Table 3, and is 1.7 Gbytes/sec at 80 cycles of latency.

5.3 Varying Memory Latency

Figures 11, 12, and 13 evaluate software prefetching and locality optimizations under memory
latency scaling. Similar to Figure 10, we plot execution time versus memory bandwidth. In
addition, we present results for 80, 160, 320, and 640-cycle memory latencies on separate lines
in each graph. Each version of a program (original, prefetch, optimized, both) is displayed in a
separate graph. Once again, we focus on applying the techniques in isolation, leaving a discussion
of the combined techniques to Section 5.4.

Not surprisingly, execution time for all program versions increases as we scale memory latency.
For the affine array and indexed array benchmarks, software prefetching effectively hides the in-
creasing memory latencies given sufficient memory bandwidth. In contrast, locality optimizations
suffer performance degradation as memory latencies grow; however, they still enjoy the benefit
of reduced traffic at low memory bandwidths. As a result, software prefetching outperforms lo-
cality optimizations at high memory bandwidths, while locality optimizations outperform software
prefetching at low memory bandwidths for all the memory latencies we simulated. Note, NBF at 80
cycles of latency is the one exception, as observed in the previous section, since locality optimization
is slightly better than prefetching at all bandwidths. Table 3 shows equi-performance bandwidths
generally increase with memory latency. Consequently, on future systems with high memory la-
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Figure 11: Execution time under both memory bandwidth and latency scaling for affine array
benchmarks with no optimizations (Orig), with software prefetching (Pref), with locality
optimization (Opt), and with combined optimizations (Pref+Opt).

tencies, greater memory bandwidth will be required before software prefetching demonstrates a
performance advantage over locality optimizations.

In the pointer-chasing benchmarks, locality optimization outperforms software prefetching at all
memory latencies and bandwidths for Health and MST. The same reasons given in Section 5.2 for
the reduced effectiveness of software prefetching on pointer-based data structures explain locality
optimization’s performance advantage at higher memory latencies in these applications. Once
again, EM3D is an exception. EM3D performance with memory latency scaling is similar to the
affine array and indexed array benchmarks. The same reasons given in Section 5.2 apply. It is
worth noting that since the performance of the three pointer-chasing benchmarks differs, there is
still room for further research to study more pointer-chasing applications to better characterize
their behavior when software prefetching and locality optimizations are applied.

5.4 Combined Techniques

This section evaluates software prefetching and locality optimizations in combination. We created
combined versions of our benchmarks in the following manner. For the affine array benchmarks,
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Figure 12: Execution time under both memory bandwidth and latency scaling for indexed array
benchmarks with no optimizations (Orig), with software prefetching (Pref), with locality
optimization (Opt), and with combined optimizations (Pref+Opt).

Latency RB Jacobi MM Irreg Moldyn NBF Health MST EM3D

80 9 8 , 40 16 8 , 20 , 20 , 40 1, 1, 2 2 8 3 2
160 9 11, 80 28 12, 40 , 40 , 80 2, 2, 3 4 16 3 3
320 9 11, 156 52 24, 80 , 80 , 160 4, 4, 5 8 32 3 6
640 9 11, 308 104 44, 160, 160, 319 7, 7, 9 16 16 3 11

Table 4: Prefetch distances for the combined versions for all benchmarks versus latency in cycles.

we applied software prefetching to the innermost tiled loops. For the indexed array and pointer-
chasing benchmarks, software prefetching and locality optimizations modify distinct parts of the
code. Hence, for these programs, we simply merge the modified portions of the software prefetching
and locality optimization program versions.

Table 4 reports the computed prefetch distances for the affine array, indexed array, and pointer-
chasing benchmarks at different memory latencies. Note that for RB, the prefetch distance is fixed
at 9 since the tile size is 9x10 whereas the computed prefetch distance is larger than 9. For our
combined optimizations to function properly, we must limit the prefetch distance to the minimum
of the prefetch distance and the length of the tile in order to prevent prefetching beyond the current
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Figure 13: Execution time under both memory bandwidth and latency scaling for pointer-chasing
benchmarks with no optimizations (Orig), with software prefetching (Pref), with locality
optimization (Opt), and with combined optimizations (Pref+Opt).

computation tile. This effect also occurs in one of the loops from Jacobi for latencies higher than
80 cycles.

Results for the combined optimizations are reported in Figures 10, 11, 12, and 13 under
“Pref+Opt.” In Figure 14, we also summarize the average performance of each version of the
program relative to memory bandwidth and latency. Performance is first normalized relative to
the original program (with bandwidth of 1 Gbyte/sec and latency of 80 cycles), then averaged over
all programs for each memory bandwidth or latency. Simulations show results vary depending on
memory bandwidth and latency.

Software prefetching is very sensitive to available memory bandwidth. When bandwidth is
very low, software prefetching increases overhead without reducing memory costs. The combined
algorithm thus performs slightly worse than locality optimizations alone. In comparison, when
memory latencies are very high, combining software prefetching and locality optimizations usually
yields better performance than applying either one alone. As Figure 14 shows, combining is much
better than prefetching, and only slightly better than locality optimizations.

Under certain conditions, combining techniques encounters high overhead compared to either
technique alone. For the affine array benchmarks, tiling significantly reduces the number of iter-
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Figure 14: Comparing average performance for different versions of programs relative to memory
bandwidth and latency. Performance is normalized relative to the original program with
1 Gbyte/sec bandwidth and 80 cycle latency.

ations in the innermost loop. When prefetching is applied to these short tiled loops, the software
pipeline startup overhead incurred by prefetching becomes significant, reducing the amount of
memory latency hidden. This effect is apparent in the high CPU overhead in the ”Pref+Opt” ver-
sions of MM and Jacobi in Figure 10. Combining also inherits the overheads from both software
prefetching and tiling, further reducing its performance relative to either techniques alone. For
both indexed array and pointer-chasing benchmarks, software prefetching and locality optimiza-
tions modify different parts of the benchmark code. Software prefetching modifies the computation
loops themselves while locality optimizations instrument the creation code semantics, or reorders
data before entering the computation loop.

For pointer-chasing benchmarks, except for EM3D, combining always under-performs ccmal-

loc memory allocation alone at low memory bandwidths. The extra jump pointers and prefetch
arrays required for pointer prefetching increase the demand for memory bandwidth, thus partially
negating the reduced traffic benefits achieved by ccmalloc memory allocation in the combined
version. The combined version also underperforms ccmalloc memory allocation at high memory
bandwidths in MST. As described previously, software prefetching for the short list traversal loops
in MST is ineffective; hence, combining software prefetching with ccmalloc memory allocation
only adds overhead without reducing memory stalls. For EM3D, locality optimizations performs
better than any other technique at low bandwidth. At higher bandwidth, combined is the best
among all the techniques. As explained in Section 5.2, software prefetching is highly effective for
EM3D. When combined with ccmalloc, the reduced memory traffic provided through better
locality permits software prefetching to achieve even higher performance.

Finally, because combining exploits both latency tolerance and latency reduction, it is less
sensitive to variations in memory bandwidth and latency than either technique in isolation. As
shown in Figure 14, the combined version achieves the best performance on average for practically
all memory bandwidths and latencies. Such robust performance is valuable when bandwidth and
latency parameters on the target system are not available to the compiler, or when the compiler
must produce a single optimized code for heterogeneous systems.
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Figure 15: Comparing square tiles against tall tiles with and without prefetching.

6. Algorithm Enhancements

In addition to evaluating the effects of memory bandwidth and latency scaling on performance,
our simulations also point out a number of ways to enhance both software prefetching and locality
optimizations. This section presents several enhancements to better combine the two techniques
and to enhance software prefetching for array codes in the presence of conflict misses. First, tiling is
enhanced to combine more effectively with software prefetching. Then, padding which is normally
used to reduce conflicts in tiling is applied to software prefetching to avoid prefetch thrashing.
Finally, ccmalloc is used to reduce overhead in software prefetching for pointer-chasing codes.

6.1 Enhancing Tiling for Software Prefetching

One problem with combining tiling and software prefetching naively is the high startup overhead
from prefetching short tiled loops, as described in Section 5.4. We can improve performance by
modifying the original tiling algorithm. Our enhanced algorithm is identical to the one described
in Section 4.1 except we select a larger innermost tile dimension size (e.g. TI in Figure 6). Our
tiling heuristic uses the Euclidean GCD algorithm [14, 18] to generate a series of non-conflicting
tile sizes. Although tiles with a square aspect ratio typically achieve the best cache utilization,
we can bias the selection towards taller tiles with greater height to width aspect ratio. Such tall
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Application Square Tall

RB 9 × 10 31 × 3
Jacobi 11 × 13 59 × 3
MM 33 × 23 83 × 9

Table 5: Tile sizes for square and tall-tile versions of the affine array benchmarks.

Latency RB Jacobi MM

80 12 8 , 40 16
160 20 12, 80 28
320 31 24, 156 52
640 31 48, 308 104

Table 6: Prefetch distances for RB, Jacobi and MM with tall tiles versus latency in cycles.

tiles have more iterations in their innermost loop compared to square tiles, thus reducing startup
overheads when used in combination with software prefetching. Note, however, we must take care
not to choose tiles that are too tall. In the extreme case, having a tile size of Y ×1 would result in
mapping the problem back to the original computation order. Thus, extremely tall tiles negate the
benefits that tiling provides.

Table 5 reports both square and tall tile sizes for the three affine array benchmarks. After
choosing a new tall tile size and instrumenting tiling, we then instrument software prefetching to
the innermost tiled loops. Table 6 shows the prefetch distances for the new tall tile loops. If the
prefetch distance computed after the instrumentation with tall tiles exceeds the length of the tile,
the prefetch distance is selected to be the minimum of the tile length and the computed prefetch
distance, as discussed in Section 5.4.

Figure 15 presents the tall tile results with and without prefetching for MM, Jacobi, and RB,
and compares them to the corresponding square tile results from Figure 11. Notice tall tiles and
square tiles alone achieve similar performance. However, when combined with software prefetching,
tall tiles significantly reduce the short-loop overheads suffered at high bandwidths when using square
tiles, matching the performance of software prefetching alone from Figure 11. These simulation
results demonstrate that tall tiles allow us to fully exploit the benefits of software prefetching and
tiling simultaneously.

In addition, the combined tall tile and software prefetching techniques retain the robustness
benefit described in Section 5.4. Figure 15 shows that at low bandwidth, the performance tracks
tiling performance alone, while at high bandwidth, the performance tracks software prefetching
performance alone. Hence, the enhanced combined technique shows more robustness to variations in
the memory system parameters since the two techniques are more synergistic when the enhancement
is applied.

6.2 Padding for Software Prefetching

While software prefetching can hide memory latency given sufficient memory bandwidth, conflict
misses on prefetched data can degrade or even completely eliminate benefits. In our experiments,
we found that prefetching for affine array codes may require array padding, particularly if the set
associativity of the L2 cache is low. The problem is that for some applications and problematic
data sizes, severe conflict misses may result, with all prefetched data being mapped to a small set
of cache lines, as shown in the top of Figure 7. This problem is especially acute for affine accesses
to arrays whose dimensions are near a multiple of the cache size since adjacent array elements will
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Figure 16: Illustrating the algorithm used for the choice of array padding.
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Figure 17: Execution results for padding with and without prefetching in Jacobi and RB.

conflict in cache. To alleviate the conflicts, array padding can be used to create a better mapping
into the cache, as shown in the bottom half of Figure 7, allowing prefetched cache blocks to remain
in cache until the processor references the data.

The appropriate amount of padding to apply to the array is computed as follows. First, the
prefetch distance computed by the prefetching algorithm, as explained in Section 3 and as computed
for our applications at the end of Section 5.1, is treated as the leading dimension of a tile. Second,
the compiler uses the Euclidean GCD algorithm to determine whether cache conflicts will occur
within a tile whose leading dimension is the prefetch distance, “PD.” Padding is introduced
incrementally to the leading array dimension until the Euclidean GCD algorithm gives a conflict-
free tile size whose leading dimension is at least equal to or larger than ”PD” [18, 19]. Figure 16
illustrates this algorithm, showing how the leading dimension of a tile ”H” is related to the prefetch
distance ”PD,” how padding is introduced along the leading array dimension, and how a group of
PD prefetched array cache blocks do not conflict in the cache after padding.

For this padded problem size, prefetched cache blocks will stay in cache until they are referenced
by the processor for the following reason. After issuing a prefetch, the processor will reference the
prefetched cache block only after prefetch distance minus 1 (PD − 1) additional prefetches have
been issued since each prefetch instruction prefetches data PD iterations in advance. So, there are
at most PD prefetched cache blocks that have not been referenced by the processor at any one
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moment in time. For the amount of padding computed, the Euclidean GCD algorithm ensures no
conflicts will occur within a tile whose leading dimension is at least equal to the prefetch distance.
Hence, we are guaranteed that there are no conflicts between the PD cache blocks that have been
prefetched but not yet referenced by the processor.

Figure 17 presents experiments demonstrating the utility of combining array padding with
prefetching. Versions of RB and Jacobi were created with and without both padding and prefetch-
ing. We used a 2-way set-associative L2 cache in these simulations for the purpose of illustration,
since 4-way caches can eliminate conflicts in both benchmarks but this would not be the case for
more complicated programs. We chose a problem size of 256×256×8. Such power-of-two problem
sizes occur frequently in multigrid codes due to the need to use a series of meshes of increasing
granularity. Based on the prefetch distance, our Euclidean algorithm chose to pad the array to
313×256×8 to eliminate conflicts.

The first two graphs in Figure 17 for RB and Jacobi show that padding alone applied to
the original unoptimized code is capable of removing many of the conflict misses, and increases
performance even with no prefetching applied. Figure 17 also shows that prefetching alone, in the
graphs labeled “Pref,” provides zero benefit due to the conflicts since conflicts evict prefetched
cache lines before their use. In fact, performance degrades at low bandwidth due to fetching more
data because of the conflicts. Once padding is applied, as shown in the graphs labeled “Pref+Pad,”
prefetching can improve performance beyond that achieved by padding alone. (Note, due to the
change in the problem sizes for this particular enhancement, the results for Orig and Pref for
both RB and Jacobi in Figure 17 are different from those in Figure 11).

6.3 ccmalloc and Prefetching

Software prefetching for pointer-chasing codes suffers high overhead to create and manage jump
pointers, as described in Section 5.2. However, jump pointers may not be necessary when prefetch-
ing is combined with ccmalloc memory allocation. Since intelligent allocation places link nodes
contiguously in memory, prefetch instructions can access future link nodes by simple indexing, just
as for affine array accesses. Figure 9 shows the effect of ccmalloc on nodes linked together by
pointers. From the right-hand part of the figure, it is intuitive that a compiler can insert prefetches
for list nodes further down the list using the size of a node and the location of the first node.
This approach, which we call index prefetching [1, 37], was originally proposed in [8]. With in-
dex prefetching, the jump pointers can be removed, thus eliminating all the overhead associated
with jump pointer prefetching. To quantify this benefit, we created index prefetching versions for
Health and MST, and show the results for these benchmarks in Figure 18. (We did not create an
index prefetching version for EM3D, our third pointer-chasing benchmark, since it already achieves
high performance with normal software prefetching as shown in Figures 10 and 13).

The upper portion of Figure 18 compares index prefetching to the original versions with prefetch
arrays and ccmalloc allocation alone as well as in combination, assuming a memory latency of 80
cycles. The data shows index prefetching indeed eliminates most of the software overheads incurred
by prefetch arrays, as we expected. As a result, index prefetching outperforms all other optimized
versions at high memory bandwidths for both Health and MST. Index prefetching performs
slightly worse than ccmalloc allocation alone at low bandwidth only, especially in MST, due to
prefetching conditionally accessed link nodes, increasing memory bandwidth consumption.

While index prefetching reduces software overheads, it is not as effective in eliminating memory
stalls as prefetch arrays for Health. In Health, many link nodes are deleted and re-inserted into
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Figure 18: Comparing index prefetching (Index Pref) to prefetch arrays (Pref), ccmalloc memory
allocation (ccmalloc), and combined optimizations (ccmalloc+Pref). Memory latency is
fixed at 80 cycles in the top two graphs.

linked lists frequently. Contiguous allocation, and hence index prefetching, for such dynamic lists
is useless since the layout of link nodes becomes random after a few delete and insert operations.
As the upper portion of Figure 18 shows for Health, index prefetching hides less memory latency
than prefetch arrays due to frequent delete and insert operations. At larger memory latencies, the
increased memory stalls outweigh the reduced software overheads, so combining ccmalloc and
prefetch arrays naively outperforms index prefetching.

7. Hardware Prefetching

While our research focuses on software techniques, there also exist several hardware techniques for
addressing the memory bottleneck problem. Hardware prefetching, in particular, is a promising
hardware technique that has received significant attention. In fact, research in this area is mature
enough that many recent commercial microprocessors use simple prefetchers. Specifically, the Intel
Pentium 4 [38] and IBM Power 5 [39] both employ stride-based hardware prefetchers [40, 41]. Given
that hardware prefetching is becoming commonplace in high-end CPUs, an important question is
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how do our software techniques compare against hardware prefetching? Furthermore, if applied in
concert, how will our software techniques interact with hardware prefetching?

To address these questions, we augmented our simulator to model a stride-based hardware
prefetcher, similar to the one used in [42]. Our stride prefetcher consists of a 256-entry stride table
and 8 stream buffers. The stride table observes the post-L1 miss stream to detect strides on a
per-load instruction basis. When a striding load is detected, the stride table allocates a stream
buffer and commences prefetching using the observed stride. The processor checks both the L1
cache and stream buffers for each memory operation, and on a stream buffer hit, the prefetched
block is moved into the L1 cache. To prevent thrashing, confidence estimation is used to guide
stream buffer allocation. Each stride table entry contains a saturating counter that is incremented
(decremented) whenever an L1 cache miss would have been correctly (incorrectly) predicted by
the stride table. Each stream buffer also contains a saturating counter that is updated similarly.
Stream buffer allocation occurs only when an inactive stream buffer is found, or when the allocating
stride table entry has a higher confidence counter value than one of the active stream buffers.

Figure 19 shows the results of our hardware prefetching study in a format similar to Figure 10.
As in Figure 10, we keep the memory latency fixed at 80 cycles, and vary the memory band-
width between 1 and 64 GBytes/sec. Groups of bars represent versions optimized using different
techniques. The bars labeled “Pref” employ software prefetching alone, and are identical to the
corresponding bars in Figure 10. The bars labeled “Stride” and “Pref+Stride” employ stride-based
hardware prefetching alone and in combination with software prefetching, respectively. Finally,
the bars labeled “Pref+Opt” and “Stride+Opt” employ locality optimization in combination with
software prefetching and stride-based hardware prefetching, respectively. Note, the “Pref+Opt”
and “Stride+Opt” versions of the affine array benchmarks (e.g. RB, Jacobi, and MM) use the
tall tile approach described in Section 6.1 since basic tiling does not perform well in combination
with prefetching.

Comparing the “Stride” and “Pref” bars, we see hardware prefetching outperforms software
prefetching slightly at high bandwidths for RB, Jacobi, MM, and MST. These benchmarks ex-
hibit striding, so stride prefetching effectively removes the memory stalls. Also, hardware prefetch-
ing incurs zero runtime overhead since it does not consume processor resources to issue prefetches;
hence, hardware prefetching enjoys a small performance advantage roughly equal to the runtime
overhead incurred by software prefetching in these benchmarks. Hardware prefetching also outper-
forms software prefetching at low bandwidths for Health and EM3D. These benchmarks perform
pointer chasing, so jump pointers and prefetch arrays must be instrumented to perform software
prefetching. When memory bandwidth is scarce, fetching these extra pointers offsets the benefits
of prefetching. Since hardware prefetching does not require extra pointers, it does not incur the
additional memory traffic, allowing it to outperform software prefetching at low bandwidths.

While hardware prefetching holds a modest performance advantage in some cases, software
prefetching outperforms hardware prefetching significantly in many other cases. In particular, Ir-

reg, Moldyn, NBF, Health, and EM3D exhibit irregular access patterns that are non-striding.
Stride prefetching fails to cover a significant portion of the cache misses in these benchmarks;
hence, software prefetching achieves a significant gain over hardware prefetching, particularly at
high bandwidths. In MM, Irreg, Moldyn, and MST, hardware prefetching frequently prefetches
useless data, thus incurring higher memory traffic relative to software prefetching. This leads to
a performance advantage for software prefetching at low bandwidths. Overall, our results indi-
cate stride prefetching alone, as performed by hardware prefetchers in contemporary CPUs, cannot
achieve the performance afforded by software prefetching on our benchmarks.

26



Efficacy of Software Prefetching and Locality Optimizations

||0.0

|4.0

|8.0

|12.0

|16.0

|20.0

|24.0

|28.0
 E

xe
cu

tio
n 

T
im

e 
(M

 c
yc

le
s) Memory

Overhead
Busy

64
32

16
8

4
2

1
Pref

64
32

16
8

4
2

1
Stride

64
32

16
8

4
2

1
Pref+Stride

64
32

16
8

4
2

1
Pref+Opt

64
32

16
8

4
2

1
Stride+Opt

RB

||0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

 E
xe

cu
tio

n 
T

im
e 

(M
 c

yc
le

s) Memory
Overhead
Busy

64
32

16
8

4
2

1
Pref

64
32

16
8

4
2

1
Stride

64
32

16
8

4
2

1
Pref+Stride

64
32

16
8

4
2

1
Pref+Opt

64
32

16
8

4
2

1
Stride+Opt

Jacobi

||0.0

|10.0

|20.0

|30.0

|40.0

|50.0

|60.0

|70.0

|80.0

 E
xe

cu
tio

n 
T

im
e 

(M
 c

yc
le

s) Memory
Overhead
Busy

64
32

16
8

4
2

1
Pref

64
32

16
8

4
2

1
Stride

64
32

16
8

4
2

1
Pref+Stride

64
32

16
8

4
2

1
Pref+Opt

64
32

16
8

4
2

1
Stride+Opt

MM

||0.0

|20.0
|40.0

|60.0

|80.0

|100.0

 E
xe

cu
tio

n 
T

im
e 

(M
 c

yc
le

s) Memory
Overhead
Busy

64
32

16
8

4
2

1
Pref

64
32

16
8

4
2

1
Stride

64
32

16
8

4
2

1
Pref+Stride

64
32

16
8

4
2

1
Pref+Opt

64
32

16
8

4
2

1
Stride+Opt

Irreg

||0.0

|50.0

|100.0

|150.0

|200.0

|250.0

|300.0

|350.0

 E
xe

cu
tio

n 
T

im
e 

(M
 c

yc
le

s) Memory
Overhead
Busy

64
32

16
8

4
2

1
Pref

64
32

16
8

4
2

1
Stride

64
32

16
8

4
2

1
Pref+Stride

64
32

16
8

4
2

1
Pref+Opt

64
32

16
8

4
2

1
Stride+Opt

Moldyn

||0.0

|20.0

|40.0

|60.0

|80.0

|100.0

 E
xe

cu
tio

n 
T

im
e 

(M
 c

yc
le

s) Memory
Overhead
Busy

64
32

16
8

4
2

1
Pref

64
32

16
8

4
2

1
Stride

64
32

16
8

4
2

1
Pref+Stride

64
32

16
8

4
2

1
Pref+Opt

64
32

16
8

4
2

1
Stride+Opt

NBF

||0.0
|1.0

|2.0

|3.0

|4.0

|5.0

|6.0

|7.0

|8.0

 E
xe

cu
tio

n 
T

im
e 

(M
 c

yc
le

s) Memory
Overhead
Busy

64
32

16
8

4
2

1
Pref

64
32

16
8

4
2

1
Stride

64
32

16
8

4
2

1
Pref+Stride

64
32

16
8

4
2

1
Pref+Opt

64
32

16
8

4
2

1
Stride+Opt

Health

||0.0

|90.0

|180.0

|270.0

|360.0

|450.0

|540.0

|630.0

|720.0

 E
xe

cu
tio

n 
T

im
e 

(M
 c

yc
le

s) Memory
Overhead
Busy

64
32

16
8

4
2

1
Pref

64
32

16
8

4
2

1
Stride

64
32

16
8

4
2

1
Pref+Stride

64
32

16
8

4
2

1
Pref+Opt

64
32

16
8

4
2

1
Stride+Opt

MST

||0.0

|0.6

|1.2

|1.8

|2.4

|3.0

|3.6

|4.2

|4.8

 E
xe

cu
tio

n 
T

im
e 

(M
 c

yc
le

s) Memory
Overhead
Busy

64
32

16
8

4
2

1
Pref

64
32

16
8

4
2

1
Stride

64
32

16
8

4
2

1
Pref+Stride

64
32

16
8

4
2

1
Pref+Opt

64
32

16
8

4
2

1
Stride+Opt

EM3D

Figure 19: Execution time breakdown under memory bandwidth scaling with software prefetch-
ing (Pref), hardware prefetching (Stride), combined software prefetching and hard-
ware prefetching (Pref+Stride), combined software prefetching and locality optimiza-
tions (Pref+Opt), and combined hardware prefetching and locality optimizations
(Stride+Opt), all at 80 cycles of memory latency.
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Comparing the “Pref+Stride” and “Pref” bars, we see the combination of hardware and soft-
ware prefetching achieves similar performance to software prefetching alone. One exception is
MST where hardware prefetching frequently fetches useless data, resulting in reduced performance
at low bandwidths. However, aside from this case, the two techniques combine quite well. This
result suggests compilers and programmers can apply software prefetching on systems with hard-
ware prefetchers, and achieve good performance without worrying about their interaction. (Note,
higher performance could probably be achieved if software prefetching is selectively disabled for
striding memory references to reduce runtime overhead since these references can be prefetched by
hardware prefetching. But evaluation of such an approach is beyond the scope of this study.)

Finally, comparing the “Pref+Opt” and “Stride+Opt” bars, we see the combination of hard-
ware prefetching and locality optimization outperforms the combination of software prefetching
and locality optimization in almost all cases. What’s surprising is “Stride+Opt” is superior even
for most of the indexed array and pointer-chasing benchmarks. As discussed above, these bench-
marks exhibit irregular access patterns that are non-striding. However, locality optimizations (e.g.
runtime access reordering for indexed arrays and ccmalloc for pointer chasing) not only increase
temporal reuse, but they increase spatial reuse as well. As a result, many of the irregular memory
references exhibit enough striding after locality optimization that hardware prefetching becomes
effective. Also, as discussed above, hardware prefetching does not consume processor resources to
issue prefetches, resulting in a performance advantage over software prefetching due to the lower
runtime overhead.

There are a few exceptional cases. For EM3D at high bandwidths, software prefetching still
holds a significant performance advantage over hardware prefetching when combined with local-
ity optimization. ccmalloc is unable to improve the locality for one critical memory reference
in EM3D, so stride prefetching fails to cover its cache misses while software prefetching covers
them. And for MM and MST, the performance degradation in hardware prefetching due to fetch-
ing useless data exceeds the benefit of reduced prefetch overhead. So, “Pref+Opt” still holds a
performance advantage over “Stride+Opt” at low bandwidths for these benchmarks. However,
our primary conclusion remains that “Stride+Opt” outperforms “Pref+Opt” overall. This result
indicates locality optimization, when applied in concert with prefetching, not only reduces memory
traffic, but also enables stride-based hardware prefetching for benchmarks that do not normally
exhibit striding.

8. Related Work

Our work is most similar to Saavedra et al [43], which evaluated unimodular transformations, tiling,
and software prefetching for matrix multiply. Mowry et al [44] also evaluated software prefetching
and tiling for two scientific applications. In comparison, this paper focuses on memory trends
and quantifies their impact on software prefetching and locality optimizations. Prior work has
considered a single technology point only. Furthermore, we examine three classes of applications
requiring different types of optimizations to study the memory trend effects in a broader context.
We also propose enhancements to address problems that arise when combining techniques. Finally,
compared to [43] which used a cache simulator to evaluate performance, we use detailed execution-
driven simulation of a modern processor.

Although relatively little work has compared prefetching and locality optimizations, a large body
of work has studied memory latency tolerance and data locality techniques in isolation. Software
prefetching for affine array accesses has been studied in [4, 5, 6]. Hardware prefetching techniques
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studied in [40, 45, 41, 46, 47] are similarly limited to affine array accesses, but use hardware to
identify the access pattern automatically. Prefetch engines for affine array accesses [48, 49, 50, 51]
provide hardware support for prefetching, but rely on the programmer or compiler to identify the
access pattern.

Prefetching for pointer-chasing traversals uses one of several possible approaches. The first
approach inserts additional pointers, called jump pointers, into dynamic data structures to connect
non-consecutive link elements [52, 7, 8, 11], as described in Section 3.3. Another approach uses only
natural pointers for prefetching [53, 8, 9, 10]. These techniques prefetch pointer chains sequentially,
but schedule each prefetch as early as possible to maximize memory latency overlap. A third
approach uses a correlation-based predictor in hardware, also known as a Markov predictor, to
predict link node addresses for prefetching [54, 55, 42]. A fourth approach uses a special allocation
technique to allocate nodes contiguously in memory which enables indexed access to the link nodes.
This approach was first proposed in [8] and is called data linearization prefetching. The index
prefetching technique evaluated in Section 6.3 is identical to data linearization prefetching.

In addition to these pointer prefetching techniques, there have been other techniques more
recently that target pointer-chasing and other irregular applications. One such technique is pre-

execution [56, 57, 58, 59, 60, 61]. Pre-execution uses spare hardware contexts in a multithreaded
processor to run one or more helper threads in front of the main computation. The helper threads
trigger cache misses on behalf of the main thread, prefetching them into cache. Another recent
technique is Content-Directed Prefetching (CDP) [62]. CDP observes data as it is moved from
memory into the L2 cache, and issues prefetches for any values that resemble memory addresses
in anticipation of their access by the processor. A less hardware-centric approach compared to
CDP is Guided Region Prefetching (GRP) [63]. GRP relies on the compiler to convey hints to the
memory system that identify pointer accesses, indexed array accesses, and accesses that exhibit
spatial reuse. Special prefetch hardware triggers prefetches on L2 misses based on the compiler
hints. Lastly, another recent technique is to migrate a prefetching mechanism into the memory
system itself [64, 65]. Such memory-side prefetchers reduce the round-trip latency to main memory,
increasing the throughput of serialized pointer chasing references [65], and can implement large
correlation tables for pointer prefetching since they can place such tables in DRAM [64].

Aside from prefetching, another related memory latency tolerance technique is multi-threading.
Multi-threaded architectures tolerate latency by means of context switching between different pro-
cesses or threads of control. Context switches can be triggered by a particular event like a cache
miss [66] (the MIT Alewife [67] is a machine that makes use of such an idea), or they can be made
on every cycle [68]. More recently, researchers have investigated Simultaneous Multi-Threading [69]
in which instructions from multiple threads can be chosen for execution within a single cycle on
a multi-issue processor. One drawback of multi-threading techniques, however, is they cannot
improve single-thread performance; they only increase overall processor throughput.

Burger et al [70] forecasted the increasing importance of memory latency tolerance techniques,
such as prefetching and multi-threading, given the widening gap between processor and memory
performance. In [70], they study the impact of increased latency tolerance via out-of-order exe-
cution on processor pin bandwidth, and concluded that pin bandwidth limitations will become as
significant a bottleneck to processor performance in the future as memory latency. Compared to
our work, Burger’s study evaluated out-of-order execution only, and did not evaluate other memory
latency tolerance techniques.

In addition to memory latency tolerance techniques, researchers have also attacked the memory
bottleneck problem by improving data locality. Computation-reordering transformations such as
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loop permutation and tiling are the primary optimization techniques [13]; loop fission (distribution)
and loop fusion have also been found to be helpful [71].

Data layout optimizations such as padding and transpose have been shown to be useful in elim-
inating conflict misses and improving spatial locality [21]. Several cache miss estimation techniques
have been proposed to help guide data locality optimizations [72, 13]. Tiling has been proven
useful for linear algebra codes [14, 16, 13] and multiple loop nests across time-step loops [20].
In comparison we apply tiling to 3D stencil codes which cannot be tiled with existing methods.
Rivera in [18, 19] studied existing tiling techniques [73] and devised techniques to tile 3D scientific
computations.

Researchers have examined irregular computations mostly in the context of parallel computing,
using run-time [26, 27, 28] and compiler [74] support to support accesses on message-passing multi-
processors. A few have also looked at techniques for improving locality [22, 23, 24, 25]. Metrics such
as reference affinity have been used to guide algorithms for splitting data structures and regrouping
arrays to improve spatial locality [75]. Strout et al. have examined models for determining which
combination of run-time data and iteration reordering heuristics will result in the best locality for
a given dataset [76, 77].

Few researchers have investigated data layout transformations for pointer-based data struc-
tures [78, 79]. Chilimbi et al. investigated allocation-time and run-time techniques to improve
locality for linked lists and trees [30]. In this paper, we propose further extensions. Calder et al.

use profiling to guide layout of global and stack variables to avoid conflicts [29]. Carlisle et al.

investigate parallel performance of pointer-based codes in Olden [80].

9. Conclusion

Software prefetching and locality optimizations are two promising techniques for addressing the
processor-memory performance gap. Our work evaluates the effectiveness of these software tech-
niques for three classes of applications, and studies their interactions when applied in concert. We
also study the impact of stride-based hardware prefetching on our software techniques.

Several conclusions can be drawn from our work. First, the relative effectiveness of software
prefetching and locality optimizations depends on available memory bandwidth. For our array-
based benchmarks, software prefetching outperforms locality optimizations at high memory band-
widths, while locality optimizations outperform software prefetching at low memory bandwidths.
The equi-performance bandwidth is 2.41 GBytes/sec on today’s memory systems, but will increase
as memory latencies increase in the future. However, locality optimizations outperform software
prefetching at all memory bandwidths and latencies for 2 out of 3 pointer-chasing benchmarks due
to the reduced effectiveness of prefetching for pointer-based data structures. The one exception is
EM3D for which software prefetching achieves high performance; hence, EM3D behaves similarly
to our array-based benchmarks.

Second, combining software prefetching and locality optimizations inherits the merits of both
techniques. Combining yields better performance than either software prefetching or locality opti-
mizations alone when memory latency is very high since it exploits both. Combining is also more
robust to changes in memory system parameters than either latency tolerance or latency reduction
techniques in isolation. However, naively combining techniques does not outperform the best choice
amongst software prefetching and locality optimizations alone at all bandwidths and latencies.

30



Efficacy of Software Prefetching and Locality Optimizations

Third, the combined effectiveness of software prefetching and locality optimizations can be en-
hanced through new algorithms. For affine array benchmarks, tall-tile selection reduces prefetch
startup overheads, allowing combining to outperform software prefetching and locality optimiza-
tions alone for practically all memory bandwidths and latencies. Also, padding can remove conflicts
between prefetched data for affine array benchmarks, and is crucial when prefetching for problem
sizes that suffer from cache conflicts. For pointer-chasing benchmarks, combining index prefetching
and ccmalloc memory allocation can reduce prefetch overheads, but this is not effective when a
large number of link nodes cannot be contiguously allocated, as in Health, or when ccmalloc

allocation already gets most of the gain, as in MST.

Finally, stride-based hardware prefetching can outperform software prefetching for striding ap-
plications due to lower runtime overhead, but software prefetching significantly outperforms hard-
ware prefetching for benchmarks exhibiting irregular access patterns. When combining hardware
and software prefetching, performance similar to software prefetching alone is achieved, suggesting
that software prefetching can be successfully applied on CPUs with stride prefetchers. Also, locality
optimizations enable stride prefetching for benchmarks that do not normally exhibit striding, al-
lowing combined hardware prefetching and locality optimization to outperform combined software
prefetching and locality optimization, again due to lower runtime overhead.

On current memory systems, maintaining memory bandwidths of 1-4 Gbytes/sec is achievable.
Thus, the simulation results most relevant to today’s systems are those with bandwidth towards
the low end in our bandwidth variation experiments. As processors become faster, the memory
wall will increase, reducing available memory bandwidth relative to processor speed. Thus, locality
optimizations should become more important in the future. At the same time, as processor speeds
increase, memory latencies will increase into the 100s of cycles. Thus, the simulation results most
relevant for future systems are those with latencies towards the high end in our latency variation
experiments.

One possibility for dramatically increasing memory bandwidth is to switch to processor-in-
memory (PIM) architectures [81]. For on-chip data, available memory bandwidth will be more like
that towards the high end of our bandwidth variation experiments. Our results show such PIM
systems should benefit significantly from software prefetching. However, even PIM systems will
require locality optimizations to reduce accesses to off-chip data.

10. Future Work

We believe software and architecture support is needed to reduce the memory bottleneck for ad-
vanced microprocessors. In this paper, we demonstrated how prefetching and locality optimizations
can be used to improve locality and performance for several types of applications. While our results
are encouraging, much work remains to be done.

First, our results have mostly been achieved for individual kernels. These kernels are important
because they are taken from larger programs, and make up the vast majority of processing time in
these other workloads. However, we must still actually evaluate the effectiveness of our techniques
for larger, more realistic programs.

Second, our locality optimizations are currently applied semi-automatically, only partially im-
plemented in the compiler and run-time system. For these optimizations to be widely used, we must
automate them as much as possible. Also, we hand-instrumented prefetching for all applications,
a task that the compiler needs to automate. Hence, an important direction for future work is to
implement our algorithms in a compiler and to re-perform our study.
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Third, a somewhat surprising result from Section 7 is locality optimizations enable stride-based
hardware prefetching for benchmarks that do not normally exhibit striding. Further investigation
into combining stride prefetching and locality optimization using more benchmarks is an interesting
direction for future work, particularly given the increasing number of commercial CPUs that employ
stride prefetchers.

Finally, while our current study focuses on performance, another important consideration is
power. We believe an extremely important and interesting future direction is to investigate the
impact of the optimizations studied in this work on system power and energy dissipation. Given
the importance of this direction, we have already begun work in this area [82]; however, much more
work is required.
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