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This work deals with a methodology applied to seismic early warning systems which are designed to
provide real-time estimation of the magnitude of an event. We will reappraise the work of Simons et al.
(2006), who on the basis of wavelet approach predicted a magnitude error of ±1. We will verify and
improve upon the methodology of Simons et al. (2006) by applying an SVM statistical learning machine
on the time-scale wavelet decomposition methods. We used the data of 108 events in central Japan with
magnitude ranging from 3 to 7.4 recorded at KiK-net network stations, for a source–receiver distance
of up to 150 km during the period 1998–2011. We applied a wavelet transform on the seismogram data
and calculating scale-dependent threshold wavelet coefficients. These coefficients were then classified into
low magnitude and high magnitude events by constructing a maximum margin hyperplane between the
two classes, which forms the essence of SVMs. Further, the classified events from both the classes were
picked up and linear regressions were plotted to determine the relationship between wavelet coefficient
magnitude and earthquake magnitude, which in turn helped us to estimate the earthquake magnitude of
an event given its threshold wavelet coefficient. At wavelet scale number 7, we predicted the earthquake
magnitude of an event within 2.7 seconds. This means that a magnitude determination is available within
2.7 s after the initial onset of the P-wave. These results shed light on the application of SVM as a way
to choose the optimal regression function to estimate the magnitude from a few seconds of an incoming
seismogram. This would improve the approaches from Simons et al. (2006) which use an average of the
two regression functions to estimate the magnitude.

1. Introduction

Rapid earthquake information systems provide op-
portunities for short-term damage and risk mitiga-
tion. For over a decade, seismic networks have been
able to provide location, magnitude, and ground
shaking information within the first few seconds
of the onset of the P-wave (Allen and Kanamori
2003; Olivieri and Clinton 2012). However, today,
many earthquake-prone regions are demanding

rapid earthquake information systems to their lim-
its in an effort to provide information within the
first few seconds of the onset of the P-wave, i.e.,
before the damaging S-wave arrives. These warn-
ing systems provide another opportunity to reduce
the costs and casualties from future earthquakes.

The effectiveness of warning systems can be pre-
dicted by using P-wave rather than S-wave energy
to assess the magnitude associated with an earth-
quake. The S-wave travels at a slower velocity than
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the P-wave, which allows the exploitation of the
S–P differential travel time for issuing an alert prior
to damaging ground motion (Allen and Kanamori
2003). Nakamura (1988) was the first to propose
the Zero Crossing method which uses the predom-
inant period of the first few seconds of the P-wave
to estimate the magnitude of an earthquake. Allen
and Kanamori (2003) demonstrated the earth-
quake early warning methodology in California
using the predominant period of the first few sec-
onds of the P-wave. The methodology was devel-
oped to maximize the warning time in a region
where the population is collocated with the earth-
quake source region. Lockman and Allen (2005)
used single station earthquake characterization for
early warning systems as individual stations are
able to deliver an accurate early warning. They
suggested that utilizing the technology in regions
that lack a dense seismic network but are in need
of seismic hazard mitigation, is possible. They con-
cluded that small earthquake magnitudes radiate
high-frequency energy, while larger earthquakes
emit lower-frequency energy. Simons et al. (2006)
developed an alternative approach to measure the
predominant period using wavelet multiscale anal-
ysis. They applied their method on data from
southern California and obtained a scaling relation-
ship between wavelet coefficients and earthquake
magnitude. In this paper, we propose an algorithm
using wavelet multiscale analysis with a support
vector learning classifier. If there are 10 stations,
it is possible to make magnitude predictions with
error less than ±0.4 magnitude units. We utilized

seismograms obtained from KiK-net, Japan
(http://www.kik.bosai.go.jp/kik/). The National
Research Institute for Earth Science and Disas-
ter Prevention (NIED) and the Japanese Mete-
orological Agency (JMA) provided the locations
and earthquake magnitude. We used the data of
108 events (depth 0–70 km) of magnitude rang-
ing from 3 to 7.4 in central Japan and Hokkaido
recorded at KiK-net network (figure 1). A mini-
mum of three and a maximum of 40 recorded wave-
forms per event were used for the study, and all
these waveforms per event recordings are within an
epicentral distance of 150 km. Waveform recorded
at the station at KiK-net network (figure 2) plots
time (t = 120 sec) vs. amplitude (cm/s2) for two
different waveforms of magnitude 5.6 (plot a) and
magnitude 4 (plot b). Plots (c) and (d) are the
zoomed part of the waveforms (a) and (b).

We used data of a 5.5 magnitude earthquake to
demonstrate and validate the regression relations
for real-time application. After performing the
time-scale measurement, we obtained the wavelet
coefficient at scale 7 as C7 = 1567.987. By substi-
tuting this value in the given equation, we obtain
the predicted magnitude.

 

 

Ml= 1.07*log 10(C7)+1.9 

Mh= 2.40*log 10(C7)-2.2 

Ml= 1.25*log 10(C7)+1.8 

 Mh= 1.41*log 10(C7)+1.7 

Ml = 5.79; Mh = 6.20 (using Simons methodology)
Ml = 5.31; Mh = 5.46 (using SVM).

Figure 1. Bathymetry map of study area Tohoku and Hokkaido. Colours indicate seafloor depth and topography in meters.
The continental region is shown in gray. The red circles represent the epicenter and the black triangles indicate the recording
stations.

http://www.kik.bosai.go.jp/kik/
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Figure 2. Waveform recorded at station at KiK-net network (a) and (b) plots time (t = 120 sec) (X-axis) vs. amplitude

(cm/s2) (Y-axis) for two different waveforms of magnitude 5.6 (plot a) and magnitude 4 (plot b). In plots (a) and (b), the
onset of the P-wave is not clearly visible. In order to show the clear onset of P-wave, we zoomed plots (a) and (b). Plots
(c) and (d), are the zoomed part of (a) and (b). In waveform (a), onset P-wave is at 25 sec, and the same shown in the
blue plot (c); in waveform (b), the onset of P-wave is at 16 sec as clearly shown in the red plot (d).

2. Time–frequency analysis

For a non-stationary signal such as a seismogram,
the frequency content varies with time. The ampli-
tude spectrum of the Fourier transform (FT) indi-
cates the presence of different frequencies but
does not show their temporal distribution. In
non-stationary signals, FT gives the frequency
information but we do not know at what time these
frequencies occur. In stationary signals, all frequen-
cies that exist in the signal exit throughout the
duration of the signal. If it is assumed that the sig-
nal through a small window of time is stationary/
non-stationary, then its FT provides us with the
frequency content of the signal in that time period,
that is, FT can give only frequency information,
it cannot give time information. By shifting this
time window appropriately, the frequency content
of the signal is extracted and the 2D representa-
tion of ‘frequencies vs. time’ called the Short-Time
Fourier Transform (STFT) is produced. STFT will
give both ‘time and frequency’ information but
with poor resolution. To obtain better resolution,
we shift from STFT to wavelet transform. An
STFT can also be implemented by choosing fre-
quency domain windows as opposed to the time
domain windows (Okaya et al. 1992). Instead of
sampling the time axis with moving windows, the
frequency axis can be sampled by a set of fixed
bandwidth bandpass filters whose centre frequen-
cies are distributed uniformly along the frequency
axis. During long duration, small changes in the
time domain become obscured because of averag-
ing. The opposite is true for a window function of

short duration that defines short-lived variations
in time but fails to detect slow frequency changes.
This trade-off is called the Uncertainty Principle or
Heisenberg Inequality (Claerbout 1976). Allen and
Kanamori (2003) used the Zero Crossing method
in order to obtain the predominant period of an
incoming P-waveform. However, the STFT also
has its disadvantages, such as the limit in its time–
frequency resolution capability, which is due to
the Uncertainty Principle. The Uncertainty Princi-
ple states that ‘we cannot exactly know what fre-
quency exists at what time instances’; we can only
know what frequency bands exist at what time
intervals. So the resolution does matter.

Time–frequency analysis of waveforms resam-
pled at 50 Hz is shown in figure 3. The logarith-
mic amplitude of spectral density calculated over
a 4 s sliding segment of the data using the Welch
overlapping segment algorithm, overlaps by 50%
and is windowed with Hamm taper (Welch 1967).
The red line indicates the instantaneous frequency
of the waveform. Due to the uncertainty arising
out of poor resolution, we were unable to com-
pute the exact predominant period for the first P
break. (Using figure 3, we can estimate the pre-
dominant (instantaneous) frequency of the seismo-
gram. The predominant period can be calculated
from predominant frequency.) The reason for lower
predictability of some of the previous works was
due to the fact that though the signal does not exist
and is completely noise free, it reaches non-zero
predominant period values even before the onset of
the P-wave (Allen and Kanamori 2003; Olson and
Allen 2005; Wu et al. 2006).
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Figure 3. Time–frequency analysis of waveforms resampled at 50 Hz shown in figure 2(b). The logarithmic amplitude of
spectral density calculated over a 4 s sliding segment of the data using the Welch overlapping segment algorithm (overlap
by 50%) and windowed with Hamm taper is shown. The red line indicates the instantaneous frequency of the waveform.

3. Wavelet analysis

The shortcomings of time–frequency analysis and
the difficulties in estimating the predominant fre-
quency of a seismogram will be entirely eliminated
by switching from the time–frequency domain
to the time-scale (wavelets) domain. They have
advantages over traditional time–frequency meth-
ods in analyzing physical situations where the
signal contains discontinuities and sharp spikes.
Wavelets are mathematical functions that separate
data into different frequency components, and then
study each component with a resolution matched
to its scale. Scale is a mathematical operation that
either dilates or compresses a signal. Larger scales
correspond to dilated (or stretched out) signals and
small scales correspond to compressed signals. Low
scales (high frequencies) do not last for the entire
duration of the signal. High scales (low frequencies)
last for the entire duration of the signal.

In continuous wavelet transform (CWT), we have
only time resolution, whereas in discrete wavelet
transform (DWT), we have both time and fre-
quency resolution. In this study, we used DWT.
In a DWT, similar transformation into a 2D scale-
translation space is implemented in a different man-
ner. The DWT is implemented using quadrature
mirror filter (QMF) banks (Vetterli and Cormac
1992; Vaidyanathan 1993; Simons et al. 2006).
QMF is a set of two filters, a low-pass one and
a high-pass one. During a forward transform, the
original signal is filtered by a half band low-pass

filter and a half band high-pass filter followed by a
down-sampling by a factor of two. The output of
the high-pass filter comprises the DWT coefficients
for that stage (scale or level). The output of the
low-pass filter is once again filtered using the two
filters mentioned above. This is continued until the
desired level of decomposition is achieved. Thus, at
each stage of the transform, the low-pass output is
examined in further detail using the high-pass fil-
ter. The QMFs are efficient, fast (NlogN operations
required for an N-point DWT) and orthogonal. The
wavelets used are also orthogonal, thereby ensur-
ing a perfect reconstruction. The implementation
of the DWT using QMFs and other multi-rate fil-
ter banks are discussed in detail in signal process-
ing literature (Rioul and Vetterli 1991; Mallat and
Zhang 1993; Vaidyanathan 1993; Daubechies and
Sweldens 1998).

There are plenty of wavelet and scaling bases
(Daubechies 1990; Mallat 1998) and computational
algorithms (Strang and Nguyen 1997; Jensen 2001)
available in literature. We used a biorthogonal con-
struction with two and four vanishing moments for
the primal and dual wavelets termed as Cohen–
Daubechies–Feauveau (CDF(2, 4), (2, 4)) vanish-
ing moments (Cohen et al. 1992). The different
sets of wavelets make different trade-offs between
how compactly they are localized in space and how
smooth they are. The technique we used for this
work is the lifting approach (Sweldens 1996). Our
method of DWT is a fast, linear operation that
works on the data vector. Given that the total
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Figure 4. Time–scale analysis of waveform (resampled at 50 Hz) shown in figure 2(b), using CDF (2, 4) wavelet. The colour
bar represents the wavelet coefficient magnitude. The 2.7 s time band can be observed at scale 7. The 2.7 sec represents
the length of the dyadic grid (grid size) corresponding to scale 7. This means that a magnitude determination is available
within 2.7 s after the initial onset of the P-wave. X-axis: time; Y-axis: scale 1 to 7.

number of data used is D=2N and the signal
length is L, D/2 data were first computed at
scale L/2(N−1), followed by (D/2)/2 data at scale
L/2(N−2), and so on. This was continued till D=2
was obtained at scale L/2. The result of this algo-
rithm is an array of the same length as the input,
where the data are usually sorted from the largest
scales to the smallest ones. The wavelet transform
is invertible and in fact, orthogonal. The inverse
transform, when viewed as a big matrix, is simply
the transpose of the transform.

In order to predict the magnitude of an incoming
earthquake, our foremost objective was to detect
the first incoming P-wave immediately, though this
was sometimes impossible owing to the noise in the
signal. Even though seismograms contain a noise
component, the P-wave arrival has to be detected
rapidly. All the insignificant coefficients were
assigned zero values by assigning a scale-dependent
threshold value (Johnstone and Silverman 1997).
In practice, the threshold Tj at scale j is defined in
terms of a spread estimate σj and the number of
coefficients at that scale Nj, as Tj=σj(2ln(Nj))

1/2σ
represents the median absolute deviation from nor-
mally distributed coefficients. The first significant
coefficient at each scale just above the threshold
provides information about the P-wave, and the
average of all the coefficients of the stations is used
to derive the best-fit regression lines. The time-
scale analysis of waveforms resampled at 50 Hz
is explained by the spectrogram in figure 4. The
dyadic nature of the time-scale tilting is clearly
visible as blocks of constant value whose length
increases with increasing scale or coarseness. In
this approach, it is not necessary to assign extra
memory to wavelet coefficients. This method allows
integer to integer transformation. The algorithm

does not require a very high level computation to
perform the transform and can do it on very low
level circuiting (Simons et al. 2006).

We analyzed threshold wavelet coefficients from
scale 1 to 7 as shown in figure 4. The magnitudes of
the wavelet coefficients are shown. The dyadic nature
of the time-scale tilting is clearly visible as blocks
of constant value whose length increases with
increasing scale or coarseness. The thickness of the
block length at scale 7 shown in red colour is 2.7 s.
Using this 2.7 s time window, we can predict the
magnitude immediately after the initial onset of
the P-wave. This means that there is no need to
wait to record the whole waveform for magnitude
determination and that it is possible to apply wave-
let analysis to all earthquakes record at a time.

4. Support vector machines

Traditional Neural Network approaches have suf-
fered difficulties with generalization, producing
models which overfit the data as a consequence of
the optimization algorithms used for data selec-
tion and the statistical measures used to select
the best model. The difference between the train-
ing and the classified (test) set is that, in the
training set, the data classes are known earlier.
The classified set contains the data that needs to
have their classes predicted. A classification task
usually involves training and test (classified) sets
which consist of data instances. Each instance in
the training set contains one target value (class
label) and several attributes (features). The goal
of a classifier is to produce a model that is able to
predict target values of data instances in the test-
ing set, for which only the attributes are known.
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SVM is used not only for classification, but for
regression too.

SVMs were developed to solve the classification
problem. However, recently, SVMs have been suc-
cessfully extended to regression and density esti-
mation problems (Refaat and Aly 2004). SVMs are
gaining popularity due to their many attractive
features and promising empirical performance.
Once the threshold wavelet coefficients are found,
the next task is to classify them into low magnitude
and high magnitude events, which would enable
the deduction of a suitable relationship between
wavelet coefficient amplitude and earthquake mag-
nitude. SVMs provide an ideal platform for the
classification of these events as they are concep-
tually simple, have the capability for fast learning
and often produce very accurate results. SVM is
a learning machine developed from statistical the-
ory and based on the risk minimization principle.
A training data set D is given as:

D =
{

(xi, yi)|xi ∈ RP , yi ∈ {−1, 1}
}n

i=1

where y i is either 1 or −1 indicating the class
to which the input for the SVM is the threshold
wavelet coefficients x i belongs, in this case high and
low magnitudes. Each x i is a p-dimensional vector.
A separating plane (hyperplane of dimension P)
needs to be drawn for this dataset which divides the
training patterns into classes, i.e., the data points
with y i = 1 have to be distinguished from the ones
with y i = −1. The hyperplane H is designed such
that its distance from the nearest data points (sup-
port vectors) is the farthest. This is the so-called
maximum margin principle. As shown in figure 5,
the equation of the hyperplane H can be written as
wT x + b = 0 where w is ‘weight’.

In a two-class problem, the features are weighed
strongly for each of two classes, that is negative
weights loading on class 1 and positive weights
loading on class 2. It means that the weights are
important in characterizing the class when a deci-
sion is made between class 1 and 2. If ||w|| is chosen
such that the distance between the positive and the
negative hyperplanes H+ and H− is at least 1/||w||,
to avoid data points from falling in between H+

and H− the following condition should be met:

wT xi + b ≥ +1 for yi = +1,

wT xi + b ≤ −1 for yi = −1

and

yi

(

wT xi + b
)

≥ +1

for all i.
To obtain the optimum hyperplane, 1/||w|| must

be maximised or ||w||, which can be shown to
be equal to the margin, must be minimized. As
our study deals with only linearly separable data,
this optimization problem is expressed in terms of
Lagrange multipliers αi as:

min
w, b

max
α

{

1

2
‖w‖

2
−

n
∑

i=1

αi

[

yi

(

wT xi + b
)

− 1
]

}

.

This problem is solved by standard quadratic pro-
gramming techniques such as MATLAB subrou-
tines. The solution can be expressed in terms of a
linear combination of the training vectors as:

w =
n

∑

i=1

αixiyi.

Figure 5. Classification with SVM shown by an example with two datasets, support vectors and hyperplanes.
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Only a few αi will be greater than zero. The cor-
responding x i are the support vectors which lie on
the margin. Subsequently, one can also determine
the offset b.

In order to train the algorithm, we performed
1500 iterations. At each iteration, a wavelet coeffi-
cient migrates from one set to another. Each migra-
tion passes through Support Set, so that at every
iteration, the trained dataset changes. To minimize
the misclassification error, we mapped the training
data into the transformed feature space. Because
this is a common and very expensive operation,
another method to efficiently update the input
dataset is explained in the following sections. In
order to stabilize the wavelet coefficient, we trained
all the data. After training and checking that the
entire wavelet coefficients are in the right set, we
treated them as classified coefficients. If this does
not happen, each wrong sample is forgotten and
trained again for an another iteration.

5. Results and discussion

The wavelet-based approach overcomes the limita-
tions of the predominant frequency approach (high
scatter and less predictive capability) used by Allen
and Kanamori (2003). Instead of calculating the
predominant period, we correlated scale-dependent
threshold wavelet coefficients. As the wavelet-based
magnitude estimation has already been done (Simons
et al. 2006) in our methodology, we demonstrate
the advantage of combining the SVM approach
with the wavelet-based approach for the prediction
of an earthquake. These regression lines provide us
with the predicted earthquake magnitude. Follow-
ing this, we performed error analysis by comparing
the JMA magnitude with the predicted earthquake
magnitude.

The algorithm used for our methodology (results
of earthquake magnitude prediction based on SVM
with wavelet approach) and Simons approach
(results of earthquake magnitude prediction based
on DWT alone) is the forward Cohen–Daubechies–
Feauveau (2, 4) biorthogonal wavelet transforms
based on the fast lifting scheme. The data used
for both these methods are ‘wavelet coefficients’.
These wavelet coefficients are obtained from 1689
seismograms.

The wavelet coefficient amplitudes obtained
from the 1689 seismograms are extensively scat-
tered. The wavelet coefficient amplitude is the key
factor in predicting the magnitude of an incom-
ing earthquake, and it is difficult to get the best
regression line from the uniform regression. There-
fore, to predict the accurate magnitudes, we split
the entire dataset into two equal parts, namely, low
(Ml) and high (Mh) magnitudes. Both Ml and Mh

produce the best estimate of magnitude. Initially,
2 s after a station triggers, Ml (M < 5.2) is calcu-
lated from wavelet coefficient (C7). The estimate is
updated when 2.7 s of data are available. Station-
magnitude estimates are averaged to provide an
event-magnitude estimate. If the event-magnitude
estimate becomes greater than 5.2, then Mh is also
calculated and the event-magnitude estimate is the
average of both Ml and Mh from each triggered
station.

M1 = 1.25 logC7 + 1.8 

Mh = 1.41 logC7 + 1.7 

Before SVM (wavelets only)  

SVM, in particular, is a recently-developed, pow-
erful, state-of-the-art technique for regression and
classification. SVM seeks the best compromise
between the complexities of the model and learning
ability according to the limited data information
available. Using an appropriate quadratic solving
equation, a maximum margin hyperplane (x − 5 =
0) is constructed which separates the data (wavelet
coefficients) with the two magnitude ranges in the
best possible manner as shown in figure 6. This plot
also shows data points as ‘trained’ and ‘classified’.

The data is further grouped into ‘classified’
and ‘trained’ using the inherent property of the
SVM. We considered only classified data. As shown
in figure 7, significant correlations exist between
the station-averaged ‘classified’ wavelet coefficients
and the event magnitude (low and high range) at
scale 7. This scale holds the most promise in mak-
ing quick event magnitude determinations directly
from the seismogram. We correlate the ‘classified’
coefficient amplitudes obtained at scale 4 to scale
7, with the best fit regression equation used for pre-
dicting the magnitude of new incoming P-wave in
the studied region as shown in figure 8. These lin-
ear fits give the relationship between the wavelet
coefficient amplitude and earthquake magnitude
separately for both high as well as low magnitude
events. Best fit regression lines are obtained from
least-squares fitting techniques to give the relation
between the average of the ‘classified’ threshold
coefficients at a scale 4–7, C4–C7, and the local
JMA earthquake magnitude.

M1 = 1.07 logC7 + 1.9 
After SVM  

Mh = 2.40 logC7 – 2.2 

Earthquake early warning magnitude estimates
made at various geological regions using different
methods are presented in table 1. Next, we obtain
the prediction error, the difference between the
predicted magnitude and JMA magnitudes of an
earthquake. Table 2 compares the errors obtained
from our approach with the Simons et al.’s (2006)
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Figure 7. The correlation of threshold wavelet-scale dependent amplitudes with earthquake magnitude. Absolute magnitude
of the first significant classified wavelet coefficients at scale 4 to 7 obtained from SVM analysis, on a logarithmic scale,
automatically determined from 2.7 s of data symmetrically windowed around the P arrival time. Results for individual
seismograms are shown as gray circles, the 25th and 75th percentile by thin blue dashes, and the averages at every distinct
event magnitude by green dots. The superimposed thick red lines are least-squares best-fit lines to the average values over a
low (Ml) and high (Mh) magnitude range, parameterized by the equations listed in the upper left. The correlation coefficients
Rl and Rh are quoted only where they exceed the significance level. Scale number is listed at the lower right. Scales 1–6
have huge scattering; however, in scale 7 the scattering is very low. We therefore consider the scale 7 for the study.

approach that used the significant wavelet coef-
ficients obtained from the first few seconds of
the P-wave. The order of predicted earthquake
magnitude errors obtained in SVM analysis are

comparatively less than the errors obtained from
the wavelet-based earthquake early warning alone
(Simons et al. 2006), (figure 9). We did further
analysis in the Tohoku region and thus expanded
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Figure 8. The correlation of threshold wavelet-scale dependent amplitudes with earthquake magnitude in Hokkaido region.
Absolute magnitude of the first significant classified wavelet coefficient at scale 4 to 7 obtained from SVM analysis, on a
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shows our assessment of algorithms in other geologic scenarios, especially in Tohoku.

Table 1. Estimation of earthquake early magnitude at various regions using different methods (τ , Pd, T. . . Predominant
period, A: max. amplitude of waveform, R: Epicentral distance).

Magnitude
Investigator Method Region Relation obtained prediction error

Allen and Kanamori Zero-crossing Southern Ml = 6.3 log
(

τ
max
p

)

+ 7.1 ±0.7

(2003) (Z–C) California Mh = 7.0 log
(

τ
max
p

)

+ 5.9

Wu and Kanamori (Z–C) Taiwan log τ = 0.221M − 1.113 ±0.7

(2005a, b) M = 4.525 log τ − 5.036

Simons et al. (2006) Wavelet multiscale Southern Ml = 1.04 log(C5) + 0.5 ±1

(FFT) California Mh = 1.46 log(C5) − 1.2

Wurman et al. (2007) Short time fourier Northern M = 6.66 log10

(

τ
max
p

)

+ 5.22 ±0.75

transform (STFT) California

Tsang et al. (2007) Z–C and peak ground Southern M = 6 : 36 + 6 : 83 log10

(

τ
max
p

)

±0.65

displacement California M = 1 : 24 log10 (Pd)

+ 1 : 65 log10 (R) + 5 : 07

Lockman and Allen Z–C Japan Ml = 6.1 log
(

T
p
max

)

+ 6.7 ±0.7

(2007) Mh = 4.7 log
(

T
p
max

)

+ 4.8

Olivieri et al. (2008) Z–C Italy M = 3 : 05 log
(

τ
max
p

)

+ 4.3 ±0.4

Lin and Wu (2010) Peak ground Taiwan M = 1.95 log A + 0.006P − 1.619 ±0.55

acceleration

Table 2. Magnitude prediction error, before and after
SVM.

Range of Percentage
|error magnitude| of seismograms

Before SVM (wavelets only)

0–0.4 33.33%

0.4–0.8 36.36%

0.8–1.2 30.3%

After SVM

0–0.4 57.58%

0.4–0.8 42.42%

0.8–1.2 0%

the dataset to test the usefulness of the algorithm.
We thus obtained the predicted magnitude of an
incoming earthquake using regression equation for
the Hokkaido region as another geological scenario
(figure 8). We thus used 1500 seismograms recorded
at different stations in the same area and found
that the method provides consistent average pre-
diction error magnitude less than ±0.4 (figure 10).
The lack of availability of a dataset with the
same resolutions in other geologic scenarios limits
the testing of the algorithm in these regions. The
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Figure 9. Errors of the prediction from thresholded wavelet coefficients at scale 7, both after and before SVM classification,
i.e., the horizontal distance of their average over all reporting stations to the regression lines in figure 8.
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Figure 10. Comparison of predicted errors obtained from different geological scenarios. Top plot is Tohoku and the bottom
plot is the Hokkaido region. In both the regions, the wavelet coefficients after the SVM are used.

predicted error magnitudes obtained from different
geological scenarios are shown in table 3.

We trained and classified (test) Hokkaido and
Tohoku individually using threshold wavelet coef-
ficients. In Tohoku, we produced two results, one
with wavelets alone and the second with wavelets
+SVM, whereas in Hokkaido, which we consider as
another geological scenario, we performed wavelet
+SVM. A minimum of three and a maximum of 10
recorded waveforms per event is sufficient to pre-
dict the magnitude of an incoming earthquake. We
estimated the basic statistics, mean and standard
deviation of the predicted errors obtained from
wavelets (Tohoku), SVM + wavelets (Tohoku) and
SVM + wavelets (Hokkaido) individually (table 4).

Table 3. Magnitude prediction error for different geological
scenario.

Range of Percentage of seismograms

|error magnitude| Hokkaido Tohoku

0–0.4 61% 57.58%

0.4–0.8 39% 42.42%

0.8–1.2 0% 0%

As shown in figure 9, after SVM, the methodology
constantly overestimates earthquakes with M >
5.6, probably because in the wavelet analysis, we
used all training and test data, whereas in SVM
we used only classified datasets which are much
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Table 4. Mean and standard deviation of the predicted errors for different geological scenario.

Wavelet approach Our approach Hokkaido (SVM + wavelets)

Statistics (Tohoku) (SVM + wavelets) (Tohoku) (other geological scenario)

Magnitude Low High ALL Low High ALL Low High ALL

Mean 0.45 0.80 0.62 0.26 0.44 0.35 0.29 0.38 0.33

Standard deviation 0.26 0.29 0.32 0.23 0.22 0.24 0.192 0.20 0.2

fewer compared to those in the wavelet analysis.
In wavelet approach, we used least-squares esti-
mation alone which may lead to poor generaliza-
tion due to over-fitting of the given data, whereas
in SVM, there is a ‘Regularization Factor’, which
controls the complexity of the regression equa-
tion and avoids over-fitting. The flexibility for fur-
ther classification into two classes of low and high
magnitudes yields the refined regression equations
based on the classified wavelet coefficients with
substantial improvement in magnitude prediction
error percentage and suggests the possibility for the
future development of an SVM-based early warning
scheme.

Our measurements based on SVMs represent min-
imum error magnitude estimates for all the events
within a region in comparison to wavelet-based-
approach alone. The deliberate bias introduced by
SVM constraints the predicted magnitude within
absolute error magnitude of 0.4. We caution that
SVM-based classification led to reasonably faithful
prediction of earthquake magnitude with respect
to wavelet-based scheme alone and thus contain
additional bias. The present procedure demon-
strates the efficacy of SVM that is statistical at best
for the total events in a region. Further research
will have to find physical mechanisms to explain
the behaviour if at all it exists.

6. Conclusions

We have presented a fully automated algorithm
that has the potential to improve the reliability
of magnitude determination from the first few
seconds (2.7 s) of the waveform. Scale-dependent
threshold amplitudes derived from the wavelet
transform of the first 2–3 s of an incoming seismic P
arrival are predictive of earthquake magnitude
using SVM analysis, with an average error of ±0.4.
However, this is not true for a single station. Usu-
ally, a single station estimate will not be accu-
rate, although the approach has the advantage of
being fast. If the number of stations is three, i.e.,
three waveforms per event is good enough to pre-
dict the magnitude with an error less than ±0.4.
The greater the number of stations, the higher
will be the accuracy in predicting magnitude. A

multiple station approach would provide an accu-
rate and precise method of autonomously detecting
the incoming P-wave and predicting the magnitude
of the source from the scale-dependent character of
its amplitude well before the arrival of damaging
ground motion.

Our results thus demonstrate a procedure that
is more robust than the analysis with the forward
Cohen–Daubechies–Feauveau (2, 4) biorthogonal
wavelet transforms based on the lifting scheme.
The flexibility for further division into two classes
of low and high magnitudes, suggests the pos-
sibility for future development of SVM-based
early warning schemes. Although in the present
case with 1689 seismograms in the Japanese net-
work, we demonstrate the robustness of the algo-
rithm based on the lifting scheme using SVMs
with respect to the forward Cohen–Daubechies–
Feauveau (2, 4) biorthogonal wavelet transforms
alone, our impression is that maximum benefit is
derived in the case of a more closed cluster network
of seismogram stations.
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