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We develop theory on the efficiency of identifying (learning) timed automata. In particular,

we show that: (i) deterministic timed automata cannot be identified efficiently in the limit

from labeled data and (ii) that one-clock deterministic timed automata can be identified

efficiently in the limit from labeled data. We prove these results based on the distinguisha-

bility of these classes of timed automata. More specifically, we prove that the languages

of deterministic timed automata cannot, and that one-clock deterministic timed automata

can be distinguished from each other using strings in length bounded by a polynomial. In

addition, we provide an algorithm that identifies one-clock deterministic timed automata

efficiently from labeled data.

Our results have interesting consequences for the power of clocks that are interesting

also out of the scope of the identification problem.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Timed automata [1] (TAs) are finite state models that represent timed events using an explicit notion of time, i.e., using

numbers. They can be used tomodel and reason about real-time systems [2]. In practice, however, the knowledge required to

completely specify a TA model is often insufficient. An alternative is to try to identify (induce) the specification of a TA from

observations. This approach is also known as inductive inference (or identification of models). The idea behind identification

is that it is often easier to find examples of the behavior of a real-time system than to specify the system in a direct way.

Inductive inference then provides a way to find a TA model that characterizes the (behavior of the) real-time system that

produced these examples.

Often these examples are obtained using sensors. This results in a time series of system states: every millisecond the

state of (or event occurring in) the system is measured and recorded. Every such time series is then given a label, specifying

for instance whether it displays ‘good’ or ‘bad’ system behavior. Our goal is to then to identify (learn) a TAmodel from these

labeled examples (also called from informants). From this timed data, we could have opted to identify a model that models

time implicitly. Examples of suchmodels are the deterministic finite state automaton (DFA), see e.g. [3], and the hiddenMarkov

model (HMM) [4]. A common way to identify such models is to first transform the input by sampling the timed data, e.g.,

by generating a new symbol every second. When a good sampling frequency is used, a DFA or HMM can be identified that

characterizes the real-time system in the same way that a TA model would.

The main problem of modeling time implicitly is that it results in an exponential blow-up of the model size: numbers

use a binary representation of time while states use a unary representation of time. Hence both the transformed input
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and the resulting DFA or HMM are exponentially larger than their timed counterparts. Because of this, we believe that if

the data contains timed properties, i.e., if it can be modeled efficiently using a TA, then it is less efficient and much more

difficult to identify a non-timedmodel correctly from this data. In previous work [5], we have experimentally compared the

performance of a simple TA identification algorithm with a sampling approach combined with the evidence driven state

merging method (EDSM) [6] for identifying DFAs. While EDSM has been the most successful method for identifying DFAs

from untimed data, on timed data it performed worse than our algorithm.

In contrast to DFAs and HMMs, however, until now the identification problem for TAs has not received a lot of attention

from the research community. We are only aware of studies on the related problem of the identification of event-recording

automata (ERAs) [7]. It has for example been shown that ERAs are identifiable in the query learning framework [8]. However,

the proposed query learning algorithm requires an exponential amount of queries, and hence is data inefficient. We would

like our identification process to be efficient. This is difficult because the identification problem for DFAs is already NP-

complete [9]. This property easily generalizes to the problem of identifying a TA (by setting all time values to 0). Thus, unless

P = NP, a TA cannot be identified efficiently. Evenmore troublesome is the fact that the DFA identification problem cannot

even be approximated within any polynomial [10]. Hence (since this also generalizes), the TA identification problem is also

inapproximable.

These two facts make the prospects of finding an efficient identification process for TAs look very bleak. However, both

of these results rely on there being a fixed input for the identification problem (encoding a hard problem). While in normal

decision problems this is very natural, in an identification problem the amount of input data is somewhat arbitrary: more

data can be sampled if necessary. Therefore, it makes sense to study the behavior of an identification processwhen it is given

more andmore data (no longer encoding the hard problem). The framework that studies this behavior is identification in the

limit [11]. This framework can be summarized as follows. A class of languages (for example the languages, modeled by DFAs)

is called identifiable in the limit if there exists an identification algorithm that at some point (in the limit) converges to any

language from this class when given an increasing amount of examples from this language. If this identification algorithm

requires polynomial time in the size of these examples, and if a polynomial amount of polynomially sized examples in the

size of the smallest model for these languages is sufficient for convergence, this class of languages is said to be identifiable

in the limit from polynomial time and data, or simply efficiently identifiable (see [12]).

The identifiability of many interesting models (or languages) have been studied within the framework of learning in the

limit. In particular, the class of all DFAs have been shown to be efficiently identifiable using a statemergingmethod [13]. Also,

it has been shown that the class of non-deterministic finite automata (NFAs) are not efficiently identifiable in the limit [12].

This again generalizes to the problem of identifying a non-deterministic TA (by setting all time values to 0). Therefore, we

consider the identification problem for deterministic timed automata (DTAs). Our goal is to determine exactly when and how

DTAs are efficiently identifiable in the limit.

Our proofs mainly build upon the property of polynomial distinguishability. This property states that the length of a

shortest string in the symmetric difference of any two languages should be bounded by a polynomial in the sizes of the

shortest representations (automata) for these languages. For a language class without this property, it is impossible to

distinguish all languages from each other using a polynomial amount of data. Hence, an identification algorithm cannot

always converge when given a polynomial amount of data as input. In other words, the language class cannot be identified

efficiently. We prove many important results using this property. Our main results are:

1. Polynomial distinguishability is a necessary condition for efficient identification in the limit (Lemma 9).

2. DTAs with two or more clocks are not polynomially distinguishable (Theorems 1 and 2).

3. DTAs with one clock (1-DTAs) are polynomially distinguishable (Theorem 5).

4. 1-DTAs are efficiently identifiable from labeled examples using our ID−1-DTA algorithm (Algorithm 1 and Theo-

rem 6).

We prove the first two results in Section 4. These results show that DTAs cannot be identified efficiently in general. Although

these results are negative, they do show they importance of polynomial distinguishability. In order to find DTAs that can

be identified efficiently, we thus looked for a class of DTAs that is polynomially distinguishable. In Section 5 we prove that

the class of 1-DTAs is such a class. Our proof is based on an important lemma regarding the modeling power of 1-DTAs

(Lemma 18). This has interesting consequences outside the scope of the DTA identification problem. For instance, it proves

membership in coNP for the equivalence problem for 1-DTAs (Corollary 21). In addition, it has consequences for the power

of clocks in general. We give an overview of these consequences in Section 7.

In Section 6.1, we describe our algorithm for identifying 1-DTAs efficiently from labeled data. In Section 6.2, we use the

results of Section 4 in order to prove our fourth main result: the fact that 1-DTAs can be identified efficiently. This fact is

surprising because the standard methods of transforming a DTA into a DFA (sampling or the region construction [1]) results

in a DFA that is exponentially larger than an original 1-DTA. This blow-up is due to the fact that time is represented in binary

in a 1-DTA, and in unary (using states) in a DFA. In other words, 1-DTAs are exponentially more compact than DFAs, but still

efficiently identifiable.

We end this paperwith a summary and discussion regarding the obtained results (Section 8). In general, our results show

that identifying a 1-DTA from timed data ismore efficient than identifying an equivalent DFA. Furthermore, the results show

that anyone who needs to identify a DTA with two or more clocks should either be satisfied with sometimes requiring an
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exponential amount of data, or he or she has to find some othermethod to deal with this problem, for instance by identifying

a subclass of DTAs (such as 1-DTAs). Before providing our results and proofs, we first briefly review timed automata and

efficient identification in the limit (Sections 2 and 3).

2. Timed automata

We assume the reader to be familiar with the theory of languages and automata, see, e.g., [3]. A timed automaton [1] is an

automaton that accepts (or generates) strings of symbols (events) paired with time values, known as timed strings. In the

setting of TA identification, we always measure time using finite precision, e.g., milliseconds. Therefore, we represent time

values using the natural numbers N (instead of the nonnegative reals R+). 2 We define a finite timed string τ over a finite

set of symbols � as a sequence (a1, t1)(a2, t2) . . . (an, tn) of symbol-time value pairs (ai, ti) ∈ � × N. We use τi to denote

the length i prefix of τ , i.e., τi = (a1, t1) . . . (ai, ti). A time value ti in τ represents the time until the occurrence of symbol ai
as measured from the occurrence of the previous symbol ai−1. We define the length of a timed string τ , denoted |τ |, as the
number symbol occurrences in τ , i.e., |τ | = n. Thus, length of a timed string is defined as the length in bits, not the length

in time. 3

A TA models a language over timed strings. It can model all of the non-timed language conditions that are models using

non-timed automata (such as DFAs). In addition, however, a TA can model timing conditions that constrain the amount of

time that can elapse between two event occurrences. For instance, a TA can specify that it only accepts timed strings that

consist of events that occurwithin tenmilliseconds of each other. In this case, it accepts (a, 5)(a, 5) and rejects (a, 5)(a, 11),
because of the time that elapses between the first and second events. These time constraints can exist between any pair of

events. For example, a TA can accept only those timed strings such that the time that elapses between the fifth and the tenth

a event is greater than 1 second. In this way, TAs can for instance be used to model deadlines in real-time systems. The time

constraints in TAs can be combined (using ∨ and ∧ operators), resulting in complicated timed language conditions. These

timing conditions are modeled using a finite set of clocks X , and for every transition a finite set of clock resets R and a clock

guard g. We now explain these three notions in turn.

A clock x ∈ X is an object associatedwith a value that increases over time, synchronouslywith all other clocks. A valuation

v is a mapping from X to N, returning the value of a clock x ∈ X . We can add or subtract constants or other valuations to or

from a valuation: if v = v′ + t then ∀x ∈ X : v(x) = v′(x) + t, and if v = v′ + v′′ then ∀x ∈ X : v(x) = v′(x) + v′′(x).
Every transition δ in a TA is associatedwith a set of clocks R, called the clock resets. When such a transition δ occurs (fires),

the values of all the clocks in R are set to 0, i.e., ∀x ∈ R : v(x) := 0. The values of all other clocks remain the same. We say

that δ resets x if x ∈ R. In this way, clocks are used to record the time since the occurrence of some specific event. The clock

guards are then used to change the behavior of the TA depending on the value of clocks.

A clock guard g is a boolean constraint defined by the grammar g := x ≤ c | x ≥ c | g ∧ g, where x ∈ X is a clock and

c ∈ N is a constant. 4 A valuation v is said to satisfy a clock guard g, denoted v ∈ g, if for each clock x ∈ X , each occurrence

of x in g is replaced by v(x), and the resulting constraint is satisfied.

A timed automaton is defined as follows:

Definition 1 (TA). A timed automaton (TA) is a 6-tupleA = (Q , X, �, �, q0, F), where Q is a finite set of states, X is a finite

set of clocks, � is a finite set of symbols, � is a finite set of transitions, q0 is the start state, and F ⊆ Q is a set of final states.

A transition δ ∈ � is a tuple
〈
q, q′, a, g, R

〉
, where q, q′ ∈ Q are the source and target states, a ∈ � is a symbol called the

transition label, g is a clock guard, and R ⊆ X is the set of clock resets.

A transition
〈
q, q′, a, g, R

〉
in a TA is interpreted as follows: whenever the TA is in state q, the next symbol is a, and the

clock guard g is satisfied, then the TA can move to state q′, resetting the clock associated with R. We give a small example:

Example 1. The TA of Fig. 1 accepts (a, 1)(a, 2)(a, 3)(b, 4) and rejects (a, 1)(a, 2)(a, 1)(b, 2). The computation of the first

timed string starts in the start state q0. There it waits 1 time step before generating (a, 1), it fires the transition to state q1.

By firing this transition, clock x has been reset to 0. In state q1, it waits 2 time steps before generating (a, 2). It fires the

transition to state q2 and resets clock y. The values of x and y are now 2 and 0, respectively. It then waits 3 time steps before

generating (a, 3), and firing the transition to state q2, resetting x again. The values of x and y are now 0 and 3, respectively.

After waiting 4 time steps, it generates (b, 4). The value of x now equals 4, and the value of y equals 7. These values satisfy

the clock guard x ≤ 4 ∧ y ≥ 5, and hence the transition to state q3 is fired, ending in a final state.

The computation of the second timed string does not end in a final state because the value of x equals 2, and the value of

y equals 3, which does not satisfy the clock guard on the transition to state q3. Notice that the clock guard of the transition

to state q3 cannot be satisfied directly after entering state q2 from state q1: the value of x is greater or equal to the value of

2 All the results in this paper also apply to TAs that use the nonnegative reals with finite precision.
3 This makes sense because our main goal is to obtain an efficient identification algorithm for TAs. Such an algorithm should be efficient in the size of an

efficient encoding of the input, i.e., using binary notation for time values. We do not consider the actual time values (in binary notation) because their influence

on the length of a timed string is negligible compared to the influence of the number of symbols (in unary notation).
4 Since we use the natural numbers to represent time, open (x < c) and closed (x ≤ c) timed automata are equivalent.
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Fig. 1. A timed automaton. The labels, clock guards, and clock resets are specified for every transition. When no guard is specified it means that the guard is

always satisfied.

y and the guard requires it to be less then the value of y. The fact that TAs can model such behavior is the main reason why

identifying TAs can be very difficult.

The computation of a TA is defined formally as follows:

Definition 2 (TA computation). A finite computation of a TA A = (Q , X, �, �, q0, F) over a (finite) timed string τ =
(a1, t1) . . . (an, tn) is a finite sequence

(q0, v0)
t1−−−−−→ (q0, v0 + t1)

a1−−−−−→ (q1, v1)
t2−−−−−→ . . .

an−1−−−−−→ (qn−1, vn−1)
tn−−−−−→ (qn−1, vn−1 + tn)

an−−−−−→ (qn, vn)

such that for all 1 ≤ i ≤ n : qi ∈ Q , a transition δ = 〈qi−1, qi, ai, gi, Ri〉 ∈ � exists such that vi−1 + ti ∈ gi, and for all

x ∈ X : v0(x) = 0, and vi(x) := 0 if x ∈ Ri, vi(x) := vi−1(x) + ti otherwise.

We call a pair (q, v) of a state q and a valuation v a timed state. In a computation the subsequence (qi, vi + t)
ai+1−→

(qi+1, vi+1) represents a state transition analogous to a transition in a conventional non-timed automaton. In addition to

these, a TA performs time transitions represented by (qi, vi)
ti+1−→ (qi, vi + ti+1). A time transition of t time units increases

the value of all clocks of the TA by t. One can view such a transition as moving from one timed state (q, v) to another timed

state (q, v + t) while remaining in the same untimed state q. We say that a timed string τ reaches a timed state (q, v) in a

TAA if there exist two time values t ≤ t′ such that (q, v′) t′−→ (q, v′ + t′) occurs somewhere in the computation ofA over

τ and v = v′ + t. If a timed string reaches a timed state (q, v) in A for some valuation v, it also reaches the untimed state q

in A. A timed string ends in the last (timed) state it reaches, i.e., (qn, vn) (or qn). A timed string τ is accepted by a TA A if τ
ends in a final state qf ∈ F . The set of all strings τ that are accepted by A is called the language L(A) of A.

In this paper we only consider deterministic timed automata. A TA A is called deterministic (DTA) if for each possible

timed string τ there exists at most one computation of A over τ . We only consider DTAs because the class of non-timed

non-deterministic automata are already not efficiently identifiable in the limit [12]. In addition, without loss of generality,

we assume these DTAs to be complete, i.e., for every state q, every symbol a, and every valuation v, there exists a transition

δ = 〈
q, q′, a, g, R

〉
such that g is satisfied by v. Any non-complete DTA can be transformed into a complete DTA by adding a

garbage state.

AlthoughDTAs are very powerfulmodels, any DTAA can be transformed into an equivalent DFA, recognizing a non-timed

language that is equivalent to L(A). This can for example be done by sampling5 the timed strings: every timed symbol (a, t)
is replaced by an a, followed by t special symbols that denote a time increase. For every DTAA, there exists a DFA that accepts

the language created by sampling all of the timed string in L(A). However, because this DFA uses a unary representation of

time, while the original DTA uses a binary representation of time, such a sampling transformation results in an exponential

blow-up of the model size.

3. Efficient identification in the limit

An identification process tries to find (learn) a model that explains a set of observations (data). The ultimate goal of such

a process is to find a model equivalent to the actual language that was used to produce the observations, called the target

language. In our case, we try to find a DTA model A that is equivalent to a timed target language Lt , i.e., L(A) = Lt . If this is

the case, we say that Lt is identified correctly. We try to find this model using labeled data (also called supervised learning):

an input sample S is a pair of finite sets of positive examples S+ ⊆ Lt and negative examples S− ⊆ LCt = {τ | τ �∈ Lt}. With

slight abuse of notation, we modify the non-strict set inclusion operators for input samples such that they operate on the

positive and negative examples separately, for example if S = (S+, S−) and S′ = (S′+, S′−) then S ⊆ S′ means S+ ⊆ S′+ and

S− ⊆ S′−.

5 When time is modeled using R, the region construction method [1] can be used.
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An identification process can be called efficient in the limit (frompolynomial time and data) if the time and data it requires

for convergence are both polynomial in the size of the target concept. Efficient identifiability in the limit can be shown by

proving the existence of polynomial characteristic sets [12]. In the case of automata:

Definition 3 (Characteristic sets). A characteristic set Scs of a target language Lt for an identification algorithm A is an input

sample {S+ ∈ Lt, S− ∈ Lct } such that:

1. given Scs as input, algorithm A identifies Lt correctly, i.e., A returns an automaton A such that L(A) = Lt;

2. given any input sample S′ ⊇ Scs as input, algorithm A still identifies Lt correctly.

Definition 4 (Efficient identification in the limit). A class of automata C is efficiently identifiable in the limit (or simply efficiently

identifiable) from labeled examples if there exist two polynomials p and q and an algorithm A such that:

1. given an input sample S of size n = ∑
τ∈S |τ |, A runs in time bounded by p(n);

2. for every target language Lt = L(A), A ∈ C, there exists a characteristic set Scs of Lt for A of size bounded by q(|A|).
We also say that algorithm A identifies C efficiently in the limit.We now show that, in general, the class of DTAs cannot be

identified efficiently in the limit. The reason for this is that there exists nopolynomial q that bounds the size of a characteristic

set for every DTA language.

In learning theory and in the grammatical inference literature there exist other definitions of efficient identification in

the limit. It has for example been suggested to allow the examples in a characteristic set to be of length unbounded by the

size of A [14]. The algorithm is then allowed to run in polynomial time in the sum of the lengths of these strings and the

amount of examples in S. We use Definitions 3 and 4 because these are themost restrictive form of efficient identification in

the limit, and moreover, because allowing the lengths of strings to be exponential in the size of A results in an exponential

(inefficient) identification procedure.

4. Polynomial distinguishability of DTAs

In this section, we study the length of timed strings in DTA languages. In particular, we focus on the properties of

polynomial reachability (Definition 5) and polynomial distinguishability (Definition 7). These two properties are of key

importance to identification problems because they can be used to determine whether there exist polynomial bounds on

the lengths of the strings that are necessary to converge to a correct model.

4.1. Not all DTAs are efficiently identifiable in the limit

The class of DTAs is not efficiently identifiable in the limit from labeled data. The reason is that in order to reach some

parts of a DTA, onemay need a timed string of exponential length.We give an example of this in Fig. 2. Formally, this example

can be used to show that in general DTAs are not polynomially reachable:

Definition 5 (Polynomial reachability). We call a class of automata C polynomially reachable if there exists a polynomial

function p, such that for any reachable state q from any automaton A ∈ C, there exists a string τ , with |τ | ≤ p(|A|), such
that τ reaches q in A.

Proposition 6. The class of DTAs is not polynomially reachable.

Proof. Let C∗ = {An | n ≥ 1} denote the (infinite) class of DTAs defined by Fig. 2. In any DTA An ∈ C∗, state q3 can be

reached only if both x ≥ 2n and y ≤ 1 are satisfied. Moreover, x ≤ 1 is satisfied when y is reset for the first time, and later y

can be reset only if y ≤ 1 is satisfied. Therefore, in order to satisfy both y ≤ 1 and x ≥ 2n, y has to be reset 2n times. Hence,

the shortest string τ that reaches state q3 is of length 2n. However, since the clock guards are encoded in binary, the size of

Fig. 2. In order to reach state q3, we require a string of exponential length (2n). However, due to the binary encoding of clock guards, the DTA is of size polynomial

in n.
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An is only polynomial in n. Thus, there exists no polynomial function p such that τ ≤ p(|An|). Since everyAn ∈ C∗ is a DTA,

DTAs are not polynomially reachable. �

The non-polynomial reachability of DTAs implies non-polynomial distinguishability of DTAs:

Definition 7 (Polynomial distinguishability). We call a class of automata C polynomially distinguishable if there exists a

polynomial function p, such that for any two automata A,A′ ∈ C such that L(A) �= L(A′), there exists a string τ ∈
L(A) � L(A′), such that |τ | ≤ p(|A| + |A′|).
Proposition 8. The class of DTAs is not polynomially distinguishable.

Proof. DTAs are not polynomially reachable, hence there exists no polynomial function p such that for every state q of any

DTAA, the length of a shortest timed string τ that reaches q inA is bounded by p(|A|). Thus, there is a DTAAwith a state q

for which the length of τ cannot be polynomially bounded by p(|A|). Given this DTAA = 〈Q , X, �, �, q0, F〉, construct two

DTAs A1 = 〈Q , X, �, �, q0, {q}〉 and A2 = 〈Q , X, �, �, q0, ∅〉. By construction, τ is the shortest string in L(A1), and A2

accepts the empty language. Therefore, τ is the shortest string such that τ ∈ L(A1) � L(A2). Since |A1| + |A2| ≤ 2 × |A|,
there exists no polynomial function p such that the length of τ is bounded by p(|A1| + |A2|). Hence the class of DTAs is not

polynomially distinguishable. �

It is fairly straightforward to show that polynomial distinguishability is a necessary requirement for efficient identifia-

bility:

Lemma 9. If a class of automata C is efficiently identifiable, then C is polynomially distinguishable.

Proof. Suppose a class of automata C is efficiently identifiable, but not polynomially distinguishable. Thus, there exists no

polynomial function p such that for any two automataA,A′ ∈ C (with L(A) �= L(A′)) the length of the shortest timed string

τ ∈ L(A) � L(A′) is bounded by p(|A| + |A′|). LetA andA′ be two automata for which such a function p does not exist and

let Scs and S′
cs be their polynomial characteristic sets. Let S = Scs ∪ S′

cs be the input sample for the identification algorithm

A for C from Definition 4. Since C is not polynomially distinguishable, neither Scs nor S
′
cs contains a timed string τ such that

τ ∈ L(A) and τ �∈ L(A′), or vice versa (because no distinguishing string is of polynomial length). Hence, S = (S+, S−) is

such that S+ ⊆ L(A), S+ ⊆ L(A′), S− ⊆ L(A)c, and S− ⊆ L(A′)c. The second requirement of Definition 3 now requires that

A returns both A and A′, a contradiction. �

Thus, in order to efficiently identify a DTA, we need to be able to distinguish it from every other DTA or vice versa, using

a timed string of polynomial length. Combining this with the fact that DTAs are not polynomially distinguishable leads to

the main result of this section:

Theorem 1. The class of DTAs cannot be identified efficiently.

Proof. By Proposition 8 and Lemma 9. �

Or more specifically:

Theorem 2. The class of DTAs with two or more clocks cannot be identified efficiently.

Proof. The theorem follows from the fact that the argument of Proposition 6 requires a DTA with at least two clocks. �

An interesting alternative way of proving a slightly weaker non-efficient identifiability result for DTAs is by linking the

efficient identifiability property to the equivalence problem for automata:

Definition 10 (Equivalence problem). The equivalence problem for a class of automata C is to find the answer to the following

question: Given two automata A,A′ ∈ C, is it the case that L(A) = L(A′)?

Lemma 11. If a class of automata C is identifiable from polynomial data, and if membership of a C-language is decidable in

polynomial time, then the equivalence problem for C is in coNP.

Proof. Theproof follows fromthedefinitionof polynomial distinguishability. Suppose thatC is polynomiallydistinguishable.

Thus, there exists a polynomial function p such that for any two automata A,A′ ∈ C (with L(A) �= L(A′)) the length of

a shortest timed string τ ∈ L(A) � L(A′) is bounded by p(|A| + |A′|). This example τ can be used as a certificate for a

polynomial time falsification algorithm for the equivalence problem: On input ((A,A′)):

1. Guess a certificate τ such that |τ | ≤ p(|A| + |A′|).
2. Test whether τ is a positive example of A.
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3. Test whether τ is a positive example of A′.
4. If the tests return different values, return reject.

The algorithm rejects if there exists a polynomial length certificate τ ∈ L(A)�L(A′). Since C is polynomially distinguishable,

this implies that the equivalence problem for C is in coNP. �

The equivalence problem has been well-studied for many systems, including DTAs. For DTAs it has been proven to be

PSPACE-complete [1], hence:

Theorem 3. If coNP �= PSPACE, then DTAs cannot be identified efficiently.

Proof. By Lemma 11 and the fact that equivalence is PSPACE-complete for DTAs [1]. �

Using a similar argument we can also show a link with the reachability problem:

Definition 12 (Reachability problem). The reachability problem for a class of automata C is to find the answer to the following

question: Given an automaton A ∈ C and a state q of A, does there exist a string that reaches q in A?

Lemma 13. If a class of models C is identifiable from polynomial data then the reachability problem for C is in NP.

Proof. Similar to the proof of Lemma 11. But now we know that for each state there has to be an example of polynomial

length in the size of the target automaton. This example can be used as a certificate by a polynomial-time algorithm for the

reachability problem. �

Theorem 4. If NP �= PSPACE, then DTAs cannot be identified efficiently.

Proof. By Lemma 13 and the fact that reachability is PSPACE-complete for DTAs [1]. �

These results seem to shatter all hope of ever finding an efficient algorithm for identifying DTAs. Instead of identifying

general DTAs, we therefore focus on subclasses of DTAs that could be efficiently identifiable. In particular, we are interested

in DTAs with equivalence and reachability problems in coNP and NP respectively. For instance, for DTAs that have at most

one clock, the reachability problem is known to be in NLOGSPACE [15]. The main result of this paper is that these DTAs

are also efficiently identifiable.

5. DTAs with a single clock are polynomially distinguishable

In the previous section we showed that DTAs are not efficiently identifiable in general. The proof for this is based on

the fact that DTAs are not polynomially distinguishable. Since polynomial distinguishability is a necessary requirement for

efficient identifiability, we are interested in classes of DTAs that are polynomially distinguishable. In this section, we show

that DTAs with a single clock are polynomially distinguishable.

A one-clock DTA (1-DTA) is a DTA that contains exactly one clock, i.e., |X| = 1. Our proof that 1-DTAs are polynomially

distinguishable is based on the following observation:

• If a timed string τ reaches some timed state (q, v) in a 1-DTA A, then for all v′ such that v′(x) ≥ v(x), the timed state

(q, v′) can be reached in A.

This holds becausewhena timed string reaches (q, v) it couldhavemade a larger time transition to reach all larger valuations.

This property is specific to 1-DTAs: a DTA with multiple clocks can wait in q, but only bigger valuations can be reached

where the difference between the clocks remains the same. It is this property of 1-DTAs that allows us to polynomially

bound the length of a timed string that distinguishes between two 1-DTAs. We first use this property to show that 1-DTAs

are polynomially reachable. We then use a similar argument to show the polynomial distinguishability of 1-DTAs.

Proposition 14. 1-DTAs are polynomially reachable.

Proof. Given a 1-DTA A = 〈Q , {x}, �, �, q0, F〉, let τ = (a1, t1) . . . (an, tn) be a shortest timed string such that τ reaches

some state qn ∈ Q . Suppose that some prefix τi = (a1, t1) . . . (ai, ti) of τ ends in some timed state (q, v). Then for any

j > i, τj cannot end in (q, v′) if v(x) ≤ v′(x). If this were the case, τi instead of τj could be used to reach (q, v′), and hence

a shorter timed string could be used to reach qn, resulting in a contradiction. Thus, for some index j > i, if τj also ends in q,

then there exists some index i < k ≤ j and a state q′ �= q such that τk ends in (q′, v0), where v0(x) = 0. In other words, x

has to be reset between index i and j in τ . In particular, if x is reset at index i (τi ends in (q, v0)), there cannot exist any index

j > i such that τj ends in q. Hence:
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• For every state q ∈ Q , the number of prefixes of τ that end in q is bounded by the amount of times x is reset by τ .
• For every state q′ ∈ Q , there exists at most one index i such that τi ends in (q′, v0). In other words, x is reset by τ at most

|Q | times.

Consequently, each state is visited at most |Q | times by the computation of A on τ . Thus, the length of τ is bounded by

|Q | ∗ |Q |, which is polynomial in the size of A. �

Given that 1-DTAs are polynomially reachable, one would guess that it should be easy to prove the polynomial distin-

guishability of 1-DTAs. But this turns out to be a lot more complicated. The main problem is that when considering the

difference between two 1-DTAs, we effectively have access to two clocks instead of one. Note that, although we have access

to two clocks, there are no clock guards that bound both clock values. Because of this, we cannot construct DTAs such as

the one in Fig. 2. Our proof for the polynomial distinguishability of 1-DTAs follows the same line of reasoning as our proof

of Proposition 14, although it is much more complicated to bound the amount of times that x is reset. We have split the

proof of this bound into several proofs of smaller propositions and lemmas, the main theorem follows from combining

these.

For the remainder of this section, let A1 = 〈
Q1, {x1}, �1, �1, q1,0, F1

〉
and A2 = 〈

Q2, {x2}, �2, �2, q2,0, F2
〉
be two

1-DTAs. Let τ = (a1, t1) . . . (an, tn) be a shortest string that distinguishes between these 1-DTAs, formally:

Definition 15 (Shortest distinguishing string). A shortest distinguishing string τ of two DTAs A1 and A2 is a minimal length

timed string such that τ ∈ L(A1) and τ �∈ L(A2), or vice versa.

We combine the computations of A1 and A2 on this string τ into a single computation sequence:

Definition 16 (Combined computation). The combined computation of A1 and A2 over τ is the sequence:

〈
q1,0, q2,0, v0

〉 t1−−−−→ 〈
q1,0, q2,0, v0 + t1

〉
. . .

〈
q1,n−1, q2,n−1, vn−1 + tn−1

〉 an−−−−→ 〈
q1,n, q2,n, vn

〉

where for all 0 ≤ i ≤ n, vi is a valuation function for both x1 and x2, and

(q1,0, v0)
t1−−−−→ (q1,0, v0 + t1) . . . (q1,n−1, vn−1 + tn)

an−−−−→ (q1,n, vn)

is the computation of A1 over τ , and

(q2,0, v0)
t1−−−−→ (q2,0, v0 + t1) . . . (q2,n−1, vn−1 + tn)

an−−−−→ (q2,n, vn)

is the computation of A2 over τ .

All the definitions of properties of computations are easily adapted to properties of combined computations. For instance,

(q1, q2) is called a combined state and 〈q1, q2, v〉 is called a combined timed state. By using the properties of τ its combined

computation, we now show the following:

Proposition 17. The length of τ is bounded by a polynomial in the size ofA1, the size ofA2, and the sum of the amount of times

x1 and x2 are reset by τ .

Proof. Suppose that for some index 1 ≤ i ≤ n, τi ends in 〈q1, q2, v〉. Using the same argument used in the proof of

Proposition 14, one can show that for every j > i and for some v′, if τj ends in
〈
q1, q2, v

′〉, then there exists an index i < k ≤ j

such that τk ends in (q′
1, v0) in A1 for some q′

1 ∈ Q1, or in (q′
2, v0) in A2 for some q′

2 ∈ Q2. Thus, for every combined state

(q1, q2) ∈ Q1 × Q2, the number of prefixes of τ that end in (q1, q2) is bounded by the sum of the amount of times r that x1
and x2 have been reset by τ . Hence the length of τ is bounded by |Q1| ∗ |Q2| ∗ r, which is polynomial in r and in the sizes of

A1 and A2. �

Wewant to bound the number of clock resets in the combined computation of a shortest distinguishing string τ . In order

to do so, we first prove a restriction on the possible clock valuations in a combined state (q1, q2) that is reached directly after

one clock x1 has been reset. In Proposition 14, there was exactly one possible valuation, namely v(x) = 0. But since we now

have an additional clock x2, this restriction no longer holds. We can show, however, that after the second time (q1, q2) is

reached by τ directly after resetting x1, the valuation of x2 has to be smaller than all but one of the previous times τ reached

(q1, q2):

Lemma 18. If there exist three indexes 1 ≤ i < j < k ≤ n such that τi, τj , and τk all end in (q1, q2) such that vi(x1) =
vj(x1) = vk(x1), then the valuation of x2 at index k has to be smaller than one of the previous valuations of x2 at indexes i and j,

i.e., vi(x2) > vk(x2) or vj(x2) > vk(x2).
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Proof. Without loss of generality we assume that τ ∈ L(A1), and consequently τ �∈ L(A2). Let τ−k = (ak+2, tk+2) . . .
(an, tn) denote the suffix of τ starting at index k + 2. Let a = ak+1 and t = tk+1. Thus, τ = τk(a, t)τ−k .

Weprove the lemmaby contradiction. Assume that the valuations vi, vj , and vk are such that vi(x2) < vj(x2) < vk(x2). The
argument below can be repeated for the case when vj(x2) < vi(x2) < vk(x2). Let d1 and d2 denote the differences in clock

values of x2 between the first and second, and second and third time that (q1, q2) is reached by τ , i.e., d1 = vj(x2) − vi(x2)
and d2 = vk(x2) − vj(x2).

We are now going to make some observations about the acceptance property of the computations of A1 and A2 over τ .
However, instead of following the path specified by τ , we are going to perform a time transition in (q1, q2) and then only

compute the final part τ−k of τ . Becausewe assume that (q1, q2) is reached (at least) three times, and each time the valuation

of x2 is larger, in this way we can reach the timed state (q2, vk) in A2. Because we reach the same timed state (q2, vk) as τ ,
and because the subsequent timed string is identical to τ−k , the acceptance property has to remain the same. We know that

τ = τk(a, t)τ−k �∈ L(A2). Hence, it has tohold thatτj(a, t+d2)τ−k �∈ L(A2)and thatτi(a, t+d1+d2)τ−k �∈ L(A2). Similarly,

since τ ∈ L(A1), and since τi, τj , and τk all end in the same timed state (q1, vk) in A1, it holds that τi(a, t)τ−k ∈ L(A1) and
that τj(a, t)τ−k ∈ L(A1). Below we summarize this information in two tables (+ denotes true, and − denotes false):

Value of d 0 d1 d2 (d1 + d2)

τi(a, t + d)τ−k ∈ L(A1) +
τj(a, t + d)τ−k ∈ L(A1) +
τi(a, t + d)τ−k ∈ L(A2) −
τj(a, t + d)τ−k ∈ L(A2) −

Since τ is a shortest distinguishing string, it cannot be the case that both τi(a, t+d)τ−k ∈ L(A1) and τi(a, t+d)τ−k �∈ L(A2)
(or vice versa) hold for any d ∈ N. Otherwise, τi(a, t + d)τ−k would be a shorter distinguishing string for A1 and A2. This

also holds if we replace i by j. Hence, we obtain the following table:

Value of d 0 d1 d2 (d1 + d2)

τi(a, t + d)τ−k ∈ L(A1) + −
τj(a, t + d)τ−k ∈ L(A1) + −
τi(a, t + d)τ−k ∈ L(A2) + −
τj(a, t + d)τ−k ∈ L(A2) + −

Furthermore, since τi ends in the same timed state as τj in A1 (directly after a reset of x1), it holds that for all d ∈ N:

τi(a, t + d)τ−k ∈ L(A1) if and only if τj(a, t + d)τ−k ∈ L(A1). The table thus becomes:

Value of d 0 d1 d2 (d1 + d2)

τi(a, t + d)τ−k ∈ L(A1) + − −
τj(a, t + d)τ−k ∈ L(A1) + − −
τi(a, t + d)τ−k ∈ L(A2) + −
τj(a, t + d)τ−k ∈ L(A2) + −

By performing the previous step again, we obtain:

Value of d 0 d1 d2 (d1 + d2)

τi(a, t + d)τ−k ∈ L(A1) + − −
τj(a, t + d)τ−k ∈ L(A1) + − −
τi(a, t + d)τ−k ∈ L(A2) + − −
τj(a, t + d)τ−k ∈ L(A2) + − −

Now, since τi(a, t + d1) ends in the same timed state as τj(a, t) in A2, it holds that τi(a, t + d1)τ−k ∈ L(A2) if and

only if τj(a, t)τ−k ∈ L(A2) (since they reach the same timed state and then their subsequent computations are identical).

Combining this with the previous steps results in:
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Value of d 0 d1 d2 (d1 + d2)

τi(a, t + d)τ−k ∈ L(A1) + + − −
τj(a, t + d)τ−k ∈ L(A1) + + − −
τi(a, t + d)τ−k ∈ L(A2) + + − −
τj(a, t + d)τ−k ∈ L(A2) + + − −

More generally, it holds that for any time value d ∈ N, τi(a, t + d1 + d)τ−k ∈ L(A2) if and only if τj(a, t + d)τ−k ∈ L(A2).
Hence, we can extend the table in the following way:

Value of d . . . (d1 + d2) 2d1 (2d1 + d2)

τi(a, t + d)τ−k ∈ L(A1) . . . − + −
τj(a, t + d)τ−k ∈ L(A1) . . . − + −
τi(a, t + d)τ−k ∈ L(A2) . . . − + −
τj(a, t + d)τ−k ∈ L(A2) . . . − + −

Proceeding inductively, it is easy to see that for any value m ∈ N it holds that τi(a, t + m ∗ d1)τ−k ∈ L(A2) and τi(a, t +
m ∗ d1 + d2)τ−k �∈ L(A2). This can only be the case if a different transition is fired for each of these |N| different values for
m. Consequently, A2 contains an infinite amount of transitions, and hence A2 is not a 1-DTA, a contradiction. �

We have just shown that if a shortest distinguishing string τ reaches some combined timed state (q1, q2) with identical

valuations for x1 at least three times, then the valuation for x2 at these times forms an almost decreasing sequence. In other

words, in atmost one of these previous times a valuation can be reached that is smaller than the last time. Since a clock reset

gives a clock the constant value of 0, this lemma implies that after the second time (q1, q2) is reached by τ directly after

resetting x1, the valuation of x2 will be almost decreasing. In the remainder of this section we use Lemma 18 to show that

the number of clock resets of x1 in a shortest distinguishing string τ can be polynomially bounded by the number of clock

resets of x2. Alsowe show that it follows that the number of times a combined state is reached by τ directly after resetting x1
is polynomially bounded by the size of the automata. From this we then conclude that the number of resets is polynomial,

and with Proposition 17 that τ is of polynomial length. We start by showing that if τ reaches (q1, q2) at least twice directly

after a reset of x1, then x2 is reset before again reaching (q1, q2) and resetting x1.

Proposition 19. If for some indexes i and j, τi and τj end in (q1, q2) directly after a reset of x1, and if there exists another index

k > j such that τk ends in (q1, q2) directly after a reset of x1, then there exists an index i < r ≤ k such that τr ends in (q2,k, v2,0)
in A2.

Proof. By Lemma 18, it has to hold that v2,i(x2) > v2,k(x2). The value of x2 can only decrease if it has been reset. Hence

there has to exist an index i < r ≤ k at which x2 is reset. �

Thus, the number of different clock resets of x1 in (q1, q2) by a shortest distinguishing string τ is bounded by the number

of differentways that τ can reset x2 before reaching (q1, q2). Let us consider these different resets of x2. Clearly, after resetting
x2, some combined state (q′

1, q
′
2) will be reached by τ . The possible paths that τ can take from (q′

1, q
′
2) to (q1, q2) can be

bounded by assuming τ to be quick.We call a distinguishing string quick if it nevermakes unnecessary long time transitions.

In other words, all the time transitions in a computation of τ either makes the clock valuation equal to the lower bound of a

transition inA1 orA2, or is of length 0. Clearly, we can transform any distinguishing string into a quick distinguishing string

by modifying its time values such that no time transition is unnecessary. Because this transformation does not modify the

transitions fired during its computation byA1 andA2, and hence does not influence its membership in L(A1) and L(A2), we

can assume τ to be quick without loss of generality.

A quick shortest distinguishing string has a very useful property, namely that it either has to fire at least one transition

δ using the lower bound valuation of the clock guard of δ on its path from (q′
1, q

′
2) to (q1, q2), or al the time tranition on

this path are of length 0. This follows directly from the definition of quick. We use this property to polynomially bound the

number of different ways in which x2 can be reset by τ before reaching (q1, q2):

Lemma 20. The number of times x2 is reset by τ before reaching a combined state (q1, q2) directly after a reset of x1 is bounded

by a polynomial in the sizes of A1 and A2.

Proof. Suppose x1 is reset at index k just before reaching (q1, q2), i.e., τk ends in 〈q1, q2, vk〉, with vk(x1) = 0. The proof

starts after x1 is reset at least twice just before reaching (q1, q2). This clearly does not influence a possible polynomial

bound. Let i < j < k be two indexes where x1 is also reset just before reaching (q1, q2). Thus, by Lemma 18, vk(x2) is almost

decreasing with respect to the previous indexes i and j. By Proposition 19, we know that x2 is reset before index k. Let r < k
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Fig. 3. Bounding the number of resets of x2 before a reset of x1. The figures represent possible computation paths from the combined state (q′
1, q

′
2) to the

combined state (q1, q2). Clock x1 is reset at index k, directly before entering (q1, q2). Clock x2 is reset at index r < k, directly before entering (q′
1, q

′
2). We use

this to polynomially bound the amount of times a transition δ1 or δ2 on the computation path from (q′
1, q

′
2) to (q1, q2) can be fired.

be the largest index before k where x2 is reset. Let (q′
1, q

′
2) be the combined state that is reached directly after this reset.

By Lemma 18, vr(x1) is also almost decreasing with respect to previous indexes. In addition, since τ is quick, either there

exists at least one transition δ1 or δ2 that is fired using the lower bound valuation of its clock guard in either A1 or A2, or

the computation from (q′
1, q

′
2) to (q1, q2) contains only length 0 time transitions. This situation is depicted in Fig. 3. We

consider the possible cases in turn.

Suppose there exists such a transition in A2. Let δ2 be the last such transition. Hence, vk(x2) is the lower bound of the

guard of δ2. Since vk(x2) is almost decreasing, it can at most occur once that τ reaches a higher value for x2 than vk(x2) in
(q1, q2) just after a reset of x1. Thus, δ2 can be the last such transition at most twice. In total, there are therefore at most

2 ∗ |�2| ways such a transition can exist in A2.

Suppose there exists no such a transition inA2, but at least one such transition δ1 inA1. Suppose for the sake of contradic-

tion that δ1 is thefirst such transition four times at indexes l4 > l3 > l2 > l > r. Let r4 > r3 > r2 > r be the corresponding

indexes where τ reaches (q′
1, q

′
2) just after a reset of x2. The sequence vr(x1), vr2(x1), vr3(x1), vr4(x1) is almost decreasing.

Moreover, vl(x1) = vl2(x1) = vl3(x1) = vl4(x1) because they are equal to the lower bound of the clock guard of δ2. Conse-
quently, vl(x1) − vr(x1), vl2(x1) − vr2(x1), vl3(x1) − vr3(x1), vl4(x1) − vr4(x1) is almost increasing. Since there is no reset

of x1 between these paired indexes, the values in this sequence represents the total time elapsed between resetting x2 and

reaching δ1. Thus, vl(x2) − vr(x2), vl2(x2) − vr2(x2), vl3(x2) − vr3(x2), vl4(x2) − vr4(x2) is also almost increasing because

x2 is also not reset between these paired indexes. Therefore, since vr(x2) = vr2(x2) = vr3(x2) = vr4(x2) = 0 due to the

reset of x2, this implies that the sequence vl(x2), vl2(x2), vl3(x2), vl4(x2) is almost increasing.

However, since it also holds that vr(x2) = vr2(x2) = vr3(x2) = vr4(x2), by Lemma 18, vr(x2) = vr2(x2) = vr3(x2) =
vr4(x2) has to form an almost decreasing sequence. Since it is impossible to have an almost increasing sequence of size 4

that is also an almost decreasing sequence, this leads to a contradiction. Thus, δ1 can be the last such transition at most four

times. In total, there are therefore at most 4 ∗ |�1| ways such a transition can exist in A2.

Finally, suppose there exists no such a transition in both A1 and A2. In this case, since τ is quick, the time transitions in

the computation path from (q′
1, q

′
2) to (q1, q2) all have length 0. Therefore vk(x2) will still be 0 when τ reaches (q1, q2), i.e.,

vk(x2) = vk(x1) = 0. This can occur only once since τ is a shortest distinguishing string.

In conclusion, the number of times that x2 can be reset by τ before reaching (q1, q2) directly after a reset of x1 is bounded

by |Q1| ∗ |Q2| ∗ (1 + 4 ∗ |�1| + 2 ∗ |�2|), which is polynomial in the sizes of A1 and A2. �

We are now ready to show the main result of this section:

Theorem 5. 1-DTAs are polynomially distinguishable.

Proof. By Proposition 19, after the second time a combined state (q1, q2) is reached by τ directly after resetting x1, it can

only be reached again if x2 is reset. By Lemma 20, the total number of different ways in which x2 can be reset before reaching

(q1, q2) and resetting x1 is bounded by a polynomial p in |A1| + |A2|. Hence the total number of times a combined state

(q1, q2) can be reached by τ directly after resetting x1 is bounded by |Q1| ∗ |Q2| ∗ p(|A1| + |A2|). This is polynomial in

|A1| and |A2|. By symmetry, this also holds for combined states that are reached directly after resetting x2. Hence, the total

number of resets of x1 and x2 by τ is bounded by a polynomial in |A1| + |A2|. Since, by Proposition 17, the length of τ is

bounded by this number, 1-DTAs are polynomially distinguishable. �

As a bonus we get the following corollary:

Corollary 21. The equivalence problem for 1-DTAs is in coNP.

Proof. By Theorem 5 and the same argument as Lemma 11. �
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6. DTAs with a single clock are efficiently identifiable

In the previous section, we proved that DTAs in general can not be identified efficiently because they are not polyno-

mially distinguishable. In addition, we showed that 1-DTAs are polynomially distinguishable, and hence that they might

be efficiently identifiable. In this section we show this indeed to be the case: 1-DTAs are efficiently identifiable. We prove

this by providing an algorithm that identifies 1-DTAs efficiently in the limit. In other words, we describe a polynomial time

algorithm ID−1-DTA (Algorithm 1) for the identification of 1-DTAs andwe show that there exists polynomial characteristic

sets for this algorithm. An algorithm for identifying 1-DTAs is given an input set S = (S+, S−) for some target 1-DTA language

Lt , i.e., S is such that S+ ∈ Lt and S− ∈ Lct . Given such an input sample, our algorithm works by identifying transitions δ of a

1-DTA A one by one. We prove the following in order to show that our algorithm identifies 1-DTAs efficiently:

• We show that for any possible δ there exists a polynomial amount of timed strings that can force our algorithm to identify

any transition δ correctly (Lemma 23). The union of all of these timed strings form a characteristic set Scs.• We prove that a polynomial amount of these transitions is always sufficient for identifying any 1-DTA language (Propo-

sition 24).
• In order to bound the length of these timed strings (and the size of Scs) we make use of the facts that 1-DTAs are both

polynomially reachable (Proposition 14) and polynomially distinguishable (Theorem 5).

The combination of these results satisfies all the constraints required for efficient identification in the limit (Definition 4),

and hence shows that 1-DTAs are efficiently identifiable (Theorem 6).

6.1. An algorithm for identifying 1-DTAs efficiently

In this section, we describe our ID−1-DTA algorithm for identifying 1-DTAs efficiently from an input sample S. Note

that, in a 1-DTA identification problem, the size of the 1-DTA is not predetermined. Hence, our algorithm has to identify the

complete structure of a 1-DTA, including states, transitions, clock guards, and resets. Our algorithm identifies this structure

one transition at a time: it starts with an empty 1-DTA A, and whenever an identified transition requires more states or

additional transitions, these will be added to A. In this way, ID−1-DTA builds the structure of A piece by piece. Since we

claim that ID−1-DTA identifies 1-DTAs efficiently, i.e., frompolynomial time and data, we require that, for any input sample

S for any target language Lt , the following four properties hold for this identification process:

Property 1. Identifying a single transition δ requires time polynomial in the size of S (polynomial time per δ).
Property 2. The number of such transition identifications is polynomial in the size of S (convergence in polynomial time).

Property 3. For every transition δ, there exists an input sample Scs of size polynomial in the size of the smallest 1-DTA for

Lt such that when included in S, Scs guarantees that δ is identified correctly (polynomial data per δ).
Property 4. The number of such correct transition identifications that are required to return a 1-DTA A with L(A) = Lt is

polynomial in the size of the smallest 1-DTA for Lt (convergence from polynomial data).

With these four properties in mind, we develop our ID−1-DTA algorithm for the efficient identification of 1-DTAs. This

algorithm is shown in Algorithm 1. In this section, we use an illustrative example to show how this algorithm identifies a

single transition, and to give some intuition why the algorithm satisfies these four properties. In the next section, we prove

that our algorithm indeed satisfies these four properties and thus prove that it identifies 1-DTAs efficiently in the limit.

Example 2. Suppose that after having identified a few transitions, our algorithm has constructed the (incomplete) 1-DTAA
from Fig. 4. Furthermore, suppose that S contains the following timed strings: {(a, 4)(a, 6), (a, 5) (b, 6), (b, 3)(a, 2), (a, 4)
(a, 1)(a, 3), (a, 4)(a, 2)(a, 2)(b, 3)} ⊆ S+ and {(a, 3)(a, 10), (a, 4)(a, 2)(a, 2), (a, 4)(a, 3)(a, 2)(b, 3), (a, 5)(a, 3)} ⊆
S−. Our algorithm has to identify a new transition δ of A using information from S. There are a few possible identifiable

transitions: state q1 does not yet contain any transitions for b, or for a and valuations smaller than 9, and state q2 does not

yet contain any transitions at all. Our algorithmfirst chooseswhich transition to identify, i.e., it selects the source state, label,

and valuations for a new transition. Then our algorithm actually identifies the transition, i.e., it uses S in order to determine

the target state, clock guard, and reset of the transition.

As can be seen from the example, the first problem our algorithm has to deal with is to determine which transition to

identify. Our algorithmmakes this decision using a fixed predetermined order (independent of the input sample). The order

used by our algorithm is very straightforward: first a state q is selected in the order of identification (first identified first),

second a transition label l is selected according to an alphabetic order, and third the highest possible upper bound c′ for a
clock guard in this state-label combination is chosen. This fixed order makes it easier to prove the existence of characteristic

sets (satisfying Property 3). In our example, our algorithmwill try to identify a transition δ = 〈
q, q′, l, c ≤ x ≤ c′, r

〉
, where

q = q1, l = a, and c′ = 9 (since there exists a transition with a clock guard that is satisfied by a valuation v = 10) are all

fixed. Thus, our algorithm only needs to identify: (i) the target state q′, (ii) the lower bound of the clock guard c, and (iii) the

clock reset r.
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Algorithm 1 Efficiently learning 1-DTAs from polynomial data: ID−1-DTA
Require: An input sample S = (S+, S−) for a language Lt , with alphabet �

Ensure: A is a 1-DTA consistent with S, i.e., S+ ⊆ L(A) and S− ⊆ L(A)c, in addition, if it holds that Scs ⊆ S, then L(A) = Lt
A := 〈Q = {q0}, x, �, � = ∅, q0, F = ∅〉
if S+ contains the empty timed string λ then set F := {q0}
while there exist a reachable timed state (q, v) and a symbol a for which there exists no transition

〈
q, q′, a, g, r

〉 ∈ � such that v satisfies

g do

for all states q ∈ Q and symbols a ∈ � do

vmin := min{v | (q, v) is reachable }
c′ := max{v | ¬∃ 〈

q, q′, a, g, r
〉 ∈ � such that v satisfies g}

while vmin ≤ c′ do

create a new transition δ := 〈
q, q′ := 0, a, g := vmin ≤ x ≤ c′, r

〉

add δ to �

V := {v | ∃τ ∈ S : τ fires δ with valuation v}
r := true and c1 := lower−bound(δ, V ∪ {vmin},A, S) (see Algorithm 3)

r := false and c2 := lower−bound(δ, V ∪ {vmin},A, S) (see Algorithm 3)

if c1 ≤ c2 then

set r := true and g := c1 ≤ x ≤ c′
else

set r := false and g := c2 ≤ x ≤ c′
end if

for every state q′′ ∈ Q (first identified first) do

q′ := q′′
if consistent(A, S) is true (see Algorithm 2) then

break

else

q′ := 0

end if

end for

if q′ = 0 then

create a new state q′′, set q′ := q′′, and add q′ to Q

if ∃τ ∈ S+ such that τ ends in q′ then set F := F ∪ {q′}
end if

c′ := min{v | v satisfies g} − 1

end while

end for

end while

Fig. 4. A partially identified 1-DTA. The transitions from state q0 have been completely identified. State q1 only has one outgoing transition. State q2 has none.

Note that fixing q, a, and c′ in this way does not influence which transitions will be identified by our algorithm. Since we

need to identify a transition with these values anyway, it only influences the order in which these transitions are identified.

We now show how our algorithm identifies c, r, and q′.
The lower bound c. Our algorithm first identifies the lower bound c of the clock guard g of δ. The smallest possible lower

bound for g is the smallest reachable valuation vmin in q (q1 in the example). This valuation vmin is equal to the smallest

lower bound of a transition with q as target. In the example, vmin is 4. Thus, the lower bound c has to be a value with the

set {c | vmin ≤ c ≤ c′}. One approach for finding c would be to try all possible values from this set and pick the best one.

However, since time values are encoded in binary in the input sample S, iterating over such a set is exponential in the size

of these time values, i.e., it is exponential in the size of S (contradicting Property 1). This is why our algorithm only tries

those time values that are actually used by timed strings from S. We determine these in the following way. We first set the

lower bound of g to be vmin. There are now examples in S that fire δ. The set of valuations V that these examples use to

fire δ are all possible lower bounds for g, i.e., V := {v | ∃τ ∈ S : τ fires δ with valuation v}. In our example, we have that

{(a, 4)(a, 1)(a, 3)} ⊆ S+ and {(a, 5)(a, 3), (a, 4)(a, 2)(a, 2)} ⊆ S−. In this case, V = {4 + 1 = 5, 5 + 3 = 8, 4 + 2 = 6}.
Since for every time value in V there exists at least one timed string in S for every such time value, iterating over this set is

polynomial in the size of S (satisfying Property 1).
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Algorithm 2 Checking for consistency: consistent
Require: An 1-DTA A and an input sample S

Ensure: Returns true if A is consistent with S

for every positive example τ = (a1, t1) · · · (an, tn) from S+ and

every negative example τ ′ = (a′
1, t

′
1) · · · (a′

m, t′m) from S− and

every pair of indices 1 ≤ i ≤ n and 1 ≤ j ≤ m do

if τi ends in (q, v) and τ ′
j ends in (q, v′) and

τi+1 = τi(a, t), τ
′
j+1 = τ ′

j (a, t + v − v′) and
(ai+2, ti+2) · · · (an, tn) equals (a′

j+2, t
′
j+2) · · · (a′

m, t′m) then

return false

end if

end for

return true

Algorithm 3 Obtaining the lower bound: lower−bound
Require: A new transition δ = 〈

q, q′, a, g, R
〉

Require: A set of possible lower bounds V ∪ {vmin} for the clock guard of a transition δ = 〈
q, q′, a, g = vmin ≤ x ≤ c′, r

〉
,

and a 1-DTA A that is consistent with an input sample S

Ensure: Returns the smallest consistent lower bound v ≥ vmin for δ
v := c′
for all valuations v′ ∈ V ∪ {vmin} do

g := v′ ≤ x ≤ c′
if consistent(A, S) is true and v′ < v then set v := v′

end for

Set g to its original value.

return v

From the set V ∪ {vmin} our algorithm selects the smallest possible consistent lower bound. A lower bound is consistent

if the 1-DTA resulting from identifying this bound is consistent with the input sample S. A 1-DTA A is called consistent if S

contains no positive example that inevitably ends in the same state as a negative example, i.e., if the final result A can be

such that S+ ∈ L(A) and S− ∈ L(A)c. Whether A is consistent with S is checked by testing whether there exist no two

timed strings τ ∈ S+ and τ ′ ∈ S− that reach the same timed state (possibly after making a partial time transition) and

afterwards their suffixes are identical. The algorithm for checking this is shown in Algorithm 2. This check can clearly be

done in polynomial time (satisfying Property 1). Our algorithm finds the smallest consistent lower bound by trying every

possible lower bound c ∈ V ∪ {vmin}, and testing whether the result is consistent. This lower−bound routine is shown in

Algorithm3. This routine ensures that at least one timed string from Swill fire δ, and hence that our algorithmonly identifies

a polynomial amount of transitions (satisfying Property 2). In our example, setting c to 5 makes A inconsistent since now

both (a, 4)(a, 1)(a, 3) and (a, 4)(a, 2)(a, 2) reach (q′, 6), where q′ is any possible target for δ, and afterwards they have

the same suffix (a, 2). Note that (a, 4)(a, 1)(a, 3) reaches (q′, 6) after a part (one time value) of the time transition taken

by (a, 3). This time transition changes the suffix of (a, 4)(a, 1)(a, 3) from (a, 3) to (a, 2). However, setting c to 6 does not

makeA inconsistent. Since 6 is the smallest value in V ∪ {vmin} greater than 5, c = 6 is the smallest consistent lower bound

for g.

Our main reason for selecting the smallest consistent lower bound for g is that this selection can be used to force our

algorithm to make the correct identification (required by Property 3). Suppose that if our algorithm identifies c∗, and if all

other identifications are correct, then the result A will be such that L(A) = Lt . Hence, our algorithm should identify c∗. In
this case, there always exist examples that result in an inconsistency when our algorithm selects any valuation smaller than

c∗. The reason is that an example that fires δ with valuation c∗ − 1 should actually fire a different transition, to a different

state, or with a different reset value. Hence, the languages after firing these transitions are different. Therefore, there would

exist two timed strings τ ∈ Lt and τ ′ ∈ Lct (that can be included in S) that have identical suffixes after firing δ with valuations

c∗ and c∗ − 1 respectively. Moreover, any pair of string that fire δ with valuations greater or equal to c∗ cannot lead to an

inconsistency since their languages after firing δ are the same.

The reset r. After having identified the lower bound c of the clock guard g of δ, our algorithm needs to identify the reset r

of δ. Onemay notice that the identification of g depends onwhether δ contains a clock reset or not: the value of r determines

the valuations that are reached by timed strings after firing δ (the clock can be reset to 0), hence this value determines

whether A is consistent after trying a particular lower bound for g. In our example, (a, 4)(a, 1)(a, 3) and (a, 4)(a, 1)(a, 2)
reach (q′, 1) and (q′, 0) respectively before their suffixes are identical if r = true. Because of this, our algorithm identifies

the clock reset r of δ at the same time it identifies the clock guard g. The method it uses to identify r is very simple: first set

r = true and then find the smallest consistent lower bound c1 for g, then set r = false and find another such lower bound



620 S. Verwer et al. / Information and Computation 209 (2011) 606–625

c2 for g. The value of r is set to true if and only if the lower bound found with this setting is smaller than the other one, i.e.,

iff c1 ≤ c2. There always exist timed strings that ensure that the smallest consistent lower bound for g such that when the

clock reset is set incorrectly, it is larger than when it is set correctly (satisfying Property 3). In our example the timed strings

that ensure this are (a, 4)(a, 2)(a, 2)(b, 3) ∈ S+ and (a, 4)(a, 3)(a, 2)(b, 3) ∈ S−. Because these examples reach the same

valuations in state q′ only if the clock is reset, they create an inconsistency when r is set to true.

In general, these strings always exists since the difference of 1 time value is sufficient for such an inconsistency: a

difference of 1 time value can always be the difference between later satisfying and not satisfying some clock guard. This

holds unless the clock guard can only be satisfied by a unique valuation, i.e., unless g = c ≤ x ≤ c. However, in this case

any setting for r is correct since all computations that fire δ will afterwards have the same clock valuation, independent

of whether the clock is reset or not. Hence, the two settings for r do not influence whether computations reach the same

timed state or not. Our algorithm can identify a 1-DTA for any possible assignment of accepting and rejecting labels to timed

strings that reach different timed states. Thus, both settings can lead to 1-DTAs A such that L(A) = Lt .

The target state q′. Having identified both the clock guard and the reset of δ, our algorithm still needs to identify the target

state q′ of δ. Since we need to make sure that our algorithm is capable of identifying any possible transition (required by

Property 3), we need to try all possible settings for q′, and in order to make it easier to prove the existence of a characteristic

set (required by Property 3), we do so in a fixed order. The order our algorithm uses is the order in which our algorithm

identified the states, i.e., first q0, then the first additional identified state, then the second, and so on. The target state for δ is

set to be the first consistent target state in this order. In our example, we just try state q0, then state q1, and finally state q3.

When none of the currently identified states result in a consistent 1-DTAA, the target is set to be a new state. This new state

is set to be a final state only if there exists a timed string in S+ that ends in it. It should be clear that since the languages after

reaching different states are different, there always exist timed strings that ensure that our algorithm identifies the correct

target (satisfying Property 3). In our example, there exist no timed strings that make A inconsistent when our algorithm

tries the first state (state q0), and hence our algorithm identifies a transition 〈q1, q0, a, 6 ≤ x ≤ 9, false〉. This completes

the identification of δ and (possibly) q′. This identification of a single transition δ essentially describes the main part of our

algorithm (seeAlgorithm1).However,we still have to explainhowour algorithm iterates over the transitions it identifies. The

algorithm consists of a main loop that iterates in a fixed order over the possible source states and labels for new transitions.

For every combination of a source state q and a label a, our algorithmfirst sets two values: vmin and c′. The first is the smallest

reachable valuation in q. The second is the fixed upper bound of the delay guard of a new transition. Because our model is

deterministic, this is set to be the largest reachable valuation for which there exists no transition with q as source state and

a as label. After identifying a transition δ with these values, our algorithm updates c′ to be one less than the lower bound

of the clock guard of δ. If c is still greater than vmin, there are still transitions to identify for state q and label a. Thus, our

algorithm iterates and continues this iteration until c′ is strictly less than vmin. Our main reason for adding this additional

iteration is that it makes it easier to prove the convergence of our algorithm (Property 4). The main loop of our algorithm

continuously identifies new transitions and possibly new target states until there are no more new transitions to identify,

i.e., until there exists a transition for every reachable timed state in A. This is necessary because identifying a transition δ
can create new identifiable transitions. This happens when the smallest reachable valuation vmin in some state is decreased,

or when a new state is identified, by the identification of δ.

6.2. Polynomial characteristic sets for 1-DTAs

We described an algorithm for the identification of 1-DTAs. The algorithm is consistent, i.e., given an input sample

S = (S+, S−), it always returns a 1-DTA A such that S+ ⊂ L(A) and S− ⊂ L(A)c. But it this result also desired? There

are infinitely many consistent 1-DTAs. Given an input sample obtained from a 1-DTA language Lt (the target language), the

desired result is a 1-DTAA such that L(A) = Lt . In this section, we show that our algorithm returns the desired result in the

limit. Moreover, it does so efficiently, i.e., it only requires a polynomial amount of examples in the size of the smallest 1-DTA

model for the target language Lt . These are the two properties required for efficient identification in the limit of 1-DTAs and

we prove this by showing the existence of polynomial characteristic sets (Definition 3). We show this by proving that the

four properties mentioned in the previous section hold for our algorithm:

• First, we prove that the ID−1-DTA algorithm is a polynomial-time algorithm. This satisfies Properties 1 and 2.
• Second, we prove that in every iteration of the ID−1-DTA algorithm, there exists a polynomial amount of timed strings

that can force our algorithm to identify the correct δ (Lemma 23). The union of all of these timed strings form a charac-

teristic set Scs for the ID−1-DTA algorithm.
• Third, we prove that the ID−1-DTA algorithm converges efficiently, i.e., that only a polynomial amount of (correctly

identified) transitions are required to construct a 1-DTA A such that L(A) = Lt (Proposition 24).

In order to bound the length of the timed strings in Scs (and hence the size of Scs) we make use of the facts that 1-DTAs

are both polynomially reachable (Proposition 14) and polynomially distinguishable (Theorem 5). The combination of these

results satisfies all the constraints required for efficient identification in the limit (Definition 4), andhence shows that 1-DTAs

are efficiently identifiable (Theorem 6).
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Proposition 22. ID−1-DTA is a polynomial-time algorithm (Properties 1 and 2).

Proof. In Algorithm1, themain loop stopswhen the innerwhile loop cannot iterate anymore. Therefore, the running time of

Algorithm 1 is bounded by the running time of the iterations on the inner while loop (plus a constant factor for determining

vmin and c′). We have to show that the running time of the inner while loop can be bounded by a polynomial in the size of

the input sample S.

In every iteration of the inner while loop of Algorithm 1, the algorithm identifies (constructs) one new transition. In the

lower−bound subroutine, this transition is identified using a set V of valuations that is constructed using timed strings from

S. It can be the case that V is empty but this case can be neglected since it occurs rarely and does not cause any additional

iterations of the inner while loop. Since V is non-empty, the new transition is fired by at least one timed string τ from the

input sample S. Every timed string fires a number of transitions equal to or less than its length. Hence, every example τ ∈ S

can create at most |τ | iterations of the inner while loop in the worst case. Thus, in total there are at most
∑

τ∈S |τ | iterations
of the inner while loop. This is polynomial in the input size.

The lower−bound subroutine iterates |V | times, which is bounded by |S|, and hence is bounded by a polynomial of the

input size. Constructing V boils down to checking for every prefix τi of every timed string τ ∈ S, whether τi fires δ. Thus, we

need to make |S| checks. These checks can be performed by running A over τi while increasing the value of i. This way, we

can perform each check in O(1) time. Constructing V thus requires O(|S|) running time.

The loop for identifying the target state iterates |Q | times. Since the algorithm can in the worst case identify a new state

in every iteration of the inner while loop, this number is also bounded by a polynomially of the input size. The consistency

check (consistent) can be implemented by trying all combinations of indexes of positive and negative examples. Therefore

its worst-case complexity is
∑

τ∈S+,τ ′∈S− |τ | ∗ |τ ′|, which is polynomially bounded in the input size |S|.
Sincepolynomials are closedunder composition, the running timeof the innerwhile loop canbeboundedbyapolynomial

in the size of the input sample. Hence, Algorithm 1 is a polynomial-time algorithm. �

The above proposition shows that our algorithm is time-efficient.More specifically, given any input sample S, ID−1-DTA
returns in polynomial time a 1-DTA A that is consistent with S, i.e., such that S+ ⊆ L(A) and S− ⊆ L(A)c. We now show

that the ID−1-DTA algorithm is also data-efficient. We first show that it requires a polynomial amount of data for a single

transitions. Then we show that it converges after a polynomial amount of transitions.

Lemma 23. There exist polynomial characteristic sets of the transitions of 1-DTAs for ID−1-DTA (Property 3).

Proof. First, our algorithm identifies whether q0 is a final state. The example that ensures correct identification is the empty

timed string λ: λ ∈ S+ if q0 ∈ F and λ ∈ S− otherwise. Including this example in S makes our algorithm identify q0 as a

final state only when it should in fact be a final state. In a similar way, we now show that there exists a polynomial amount

of polynomial-sized timed strings that ensure the correct identification of the transitions of A. We prove this by showing

that there exists a polynomial characteristic set for every transition δ such that our algorithm will identify the lower bound

c, the reset r, and the target state q′ of δ correctly.

The lower bound c. We need to ensure that our algorithm identifies the correct lower bound c. Without loss of generality,

we assume the correct bound c to be minimal (as small as possible) and consistent with the target language Lt . More

specifically, every smaller bound can only lead to a 1-DTA A′ such that L(A′) �= Lt . The lower−bound subroutine selects a

valuation v that is the smallest valuation from V that leads to a consistent 1-DTA A. Thus, we need to find examples that

guarantee that the correct valuation is an element of V , thatA is consistent when this valuation is selected as a lower bound,

and that A is inconsistent when any smaller valuation is selected.

We can guarantee the correct valuation to be an element of V using a single example τ(a, c − vmin), where τ is a timed

string that ends in (q, vmin). Since (q, vmin) is reachable, this example is guaranteed to exist. Moreover, when the algorithm

constructs V , this example will end in (q, c). This ensures that c is an element of V . Naturally, it should be the case that

τ(a, c − vmin) ∈ S+ if and only if τ(a, c − vmin) ∈ Lt .

In order to ensure thatA is consistent when c is selected we do not require any examples. This consistency is guaranteed

by definition since our algorithm should identify c, and since the initial target of δ is a new state. Since this new state can be

reached by no transition other than δ, the fact that S is an input sample for Lt guarantees that there can be no pair of timed

strings in S that lead to an inconsistency when the correct lower bound c is selected.

Both a positive and a negative example are required to ensure that A is inconsistent when any smaller valuation is

selected. These examples τ ∈ Lt and τ ′ �∈ Lt should be such that if a smaller valuation is selected, then after some prefixes

τi and τ ′
j of τ and τ ′, they both reach the same timed state, and their subsequent computations are identical. The valuations

of the timed states in which τi and τ ′
j end (after firing δ) depend on whether δ contains a reset or not. We later show the

existence of examples which ensure that δ contains a reset only if δt contains a reset. Now, we therefore only need to show

the examples that are required, depending on whether r = true or r = false.

In the case that r = true, the two examples we require are τ(a, c − vmin)τ
′, and τ(a, c − vmin − 1)τ ′, where τ is a timed

string that ends in (q, vmin), and τ ′ is a timed string such that τ(a, c − vmin)τ
′ ∈ Lt and τ(a, c − vmin − 1)τ ′ �∈ Lt , or

vice versa. Because (q, vmin) is reachable, and because c is minimal and consistent with Lt , these examples are guaranteed
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to exist. Essentially, τ ′ is a string that distinguishes between the two languages L1 = {τ1 | τ(a, c − vmin)τ1 ∈ Lt} and

L2 = {τ2 | τ(a, c − vmin − 1)τ2 ∈ Lt}. Since our algorithm should select c, it holds that L1 �= L2. Otherwise, our algorithm

might as well select c − 1, if all other identifications are performed correctly the result will still be such that L(A) = Lt . This

would contradict the fact that our algorithm should select c.

In the case that r = false, the two examples are τ(a, c−vmin)(b, t)τ
′ and τ(a, c−vmin−1)(b, t+1)τ ′, where τ is a timed

string, b is a symbol, t is a time value, and τ ′ is a timed string, such that τ ends in (q, vmin) and τ(a, c − vmin)(b, t)τ
′ ∈ Lt

and τ(a, c− vmin − 1)(b, t + 1)τ ′ �∈ Lt , or vice versa. These examples are similar to the ones we require when r = true. The

only difference being that in order to reach the same valuation in q′ (and hence being capable of creating an inconsistency),

the second example has to wait one additional time value. The examples are guaranteed to exists because c is minimal for Lt .

The reset r. The correct identification of the clock reset r of δ is ensured by similar examples. In the case that r = false,

the two examples we require are: τ(a, c − vmin)τ
′ and τ(a, c − vmin + 1)τ ′. In the case that r = true, we require:

τ(a, c− vmin)(b, t)τ
′ and τ(a, c− vmin + 1)(b, t − 1)τ ′. Because these examples reach the same valuations in q′ only if x is

reset while it should not be (or the other way around), these examples can be used to create a inconsistency. The difference

of 1 time value is sufficient for such an inconsistency since 1 time value can always be the difference between satisfying and

not satisfying a clock guard. Hence, these inconsistencies are guaranteed to exist unless the clock guard can only be satisfied

by a single clock valuation. However, in this case it does not matter for the identified language whether the clock is reset or

not, see Section 6.1.

In the case that r is set incorrectly, the timed strings that guarantee the correct identification of r ensure that there is an

inconsistencywhen our algorithm selects the correct lower bound c. Hence, these examples ensure that setting r incorrectly

results in a higher lower bound than setting r correctly. Thus, with these examples our algorithm is guaranteed to identify

the correct reset.

The target state q′. We still need to ensure the identification of the correct target state q′ of δ. This is achieved by ensuring

inconsistencies for every incorrect target state q′′ �= q′: τ(a, c − vmin)(b, t)τ
′ and τ ′′(b, t′)τ ′, where τ ′′ ends in q′′, and t

and t′ are such that τ(a, c − vmin)(b, t) and τ ′′(b, t′) both end in the same valuation (but not the same state). Naturally,

these examples are guaranteed to exist, otherwise q′ is identical to q′′.
The statesQ ofA are identified correctly sinceour algorithmonly addsnewstateswhennoneof theoldones is a consistent

target. We ensure the correct identification of the final states F by requiring for every state an example that ends in it when

the state is identified. This completes the specification of all the examples we require for the correct identification of δ by

our algorithm.

The amount of examples required for one transition is clearly polynomial. Moreover, since all of the examples consist

of a prefix that reaches some specific timed state and a suffix that is a distinguishing string, the fact that 1-DTAs are

polynomially distinguishable guarantees that all of the examples are of polynomial length. Moreover, because the order in

which our algorithm identifies transitions is independent of S, it is impossible to add additional examples to S such that our

algorithm no longer returns A. This proves the lemma. �

We have just shown that our algorithm is capable of returning a correct transition efficiently. We still have to show that

it in fact will return a correct 1-DTA efficiently, i.e., that it converges after identifying a polynomial amount of transitions.

Lemma 24. ID−1-DTA converges after identifying a polynomial amount of transitions (Property 4).

Proof. By theprevious lemma,our algorithmis capableofmakingonly correct identifications, i.e., thereexists a characteristic

set such that our algorithm only identifies those transitions that lead to L(A) = Lt . Notice that, since a 1-DTA is a finite

model, only a finite number of such identifications are necessary to make until our algorithm converge a correct 1-DTA, i.e.,

one such that L(A) = Lt . We will show that the number of these identifications is polynomial in the size of the smallest

correct 1-DTA.

LetAt = 〈Q , x, �, �, q0, F〉 be a the smallest 1-DTA such that Lt = L(At). Clearly, only the reachable parts ofAt matter

for the acceptance of timed strings. Since 1-DTAs are polynomially reachable, there exists some polynomial p such that these

parts can be reached by timed strings of length p(|At|). Without loss of generality, we assume one such timed string τq to

be included the input sample for every state q ∈ Q , where τq reaches the smallest reachable valuation in q.

In a single complete run (over all states and symbols) of the main loop, our algorithm identifies new transitions for every

newly reachable valuation in any timed state. Hence, every τq fires at least one new transition, advancing the computation

of τq by at least one step. At most p(|At|) of these steps are required before τq reaches the smallest reachable valuation in q.

Thus, the main loop is run at most p(|At|) times before the smallest reachable valuation in any state of At can be identified

by our algorithm.

In one iteration of themain loop, new transitions are identified for everynewly reachable regionof valuations in any timed

state. If all transitions (and states) are identified correctly so far, then these regions correspond to parts of the transitions �

of At . Thus, if our algorithm identifies the transitions for these parts correctly, then at most |�| new correct transitions can

be identified.
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In conclusion, at most p(|At|) ∗ |�| transitions are identified in total before the transition for the smallest reachable

valuation can be identified in any state ofAt . This is clearly polynomial in |At|. Once the transitions for the smallest reachable

valuation can be identified in every state, every transition can be identified. Hence, by the previous proposition, every

transition can be identified correctly. Thus, our algorithm can return a 1-DTAA such that L(A) = Lt by identifying a number

of transitions polynomial in |At|. �

The two lemmas above show that our algorithm converges from polynomial data. In other words, if S contains a char-

acteristic subsample Scs for some target language Lt , then ID−1-DTA returns a correct 1-DTA A, i.e., such that L(A) = Lt .

Combined with the time efficiency, this is sufficient to prove the efficient identifiability of 1-DTAs:

Theorem 6. 1-DTAs are efficiently identifiable in the limit from labeled examples.

Proof. By Proposition 22 and Lemma 24, if all the examples from Lemma 23 are included in S, our algorithm returns a

1-DTAA such that L(A) = Lt in polynomial time and from polynomial data. We conclude that Algorithm 1 identifies 1-DTAs

efficiently in the limit. �

7. The power of one-clock and multi-clock DTAs

In general, our lemmas and theorems in the previous sections are statements about the expressive power of one-clock

DTAs (1-DTAs) andmulti-clock DTAs (n-DTAs). These statements are important by themselves, i.e., not necessarily restricted

to just the identification problem. We believe that there can be other problems (such as reachability analysis) that may

benefit from our results. In this section we give an overview of the consequences of our results in general.

First of all, Theorem 5 tells us that:

The length of the shortest string in the symmetric difference L(A1) � L(A2) between the languages of any two 1-DTAs A1

and A2 is of length bounded by a polynomial p in the sizes of A1 and A2.

In the timed automata (formal methods) field, it is well-known that there exists a language-preserving transformation

from any DTA with n clocks to n 1-DTAs [16]. In fact, this transformation is quite straightforward: given an n-DTA, create a

1-DTA copy for every clock and set all occurrences of different clocks in clock guard to true. The intersection of the languages

of these n 1-DTAs is (with some additional transformations) equal to the language of the original DTA. An example of two

such 1-DTAs is shown in Fig. 5. Fig. 2 is the intersected n-DTA version of Fig. 5.

The combination of this fact with Proposition 8 tells us that:

The shortest string in the intersection L(A1) ∩ L(A2) between the languages of two 1-DTAsA1 andA2 cannot be bounded

by a polynomial p in the sizes of A1 and A2.

The two statements above tell us something important regarding the expressive power of 1-DTAs and n-DTAs. We also

know that the complement L(A)C of the language of a 1-DTAA can be easily computed (polynomially) by changing the final

and non-final states of A. Since 1-DTA are polynomially reachable (Proposition 14), this implies that:

The shortest string in the (non-symmetric) difference L(A1) \ L(A2) = L(A1) ∩ L(A2)
C between the languages of any two

1-DTAs A1 and A2 cannot be bounded by a polynomial p in the sizes of A1 and A2.

Fig. 5. Two 1-DTAs. Taking the intersection of the languages of these 1-DTAs results in a language equivalent to the language of the 2-DTA of Fig. 2.
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Fig. 6. The power of two 1-DTAs depicted in a Venn diagram. A and A′ are two 1-DTAs. In the Venn diagram there are 4 spaces. The language L(A) of A is equal

to A ∪ B. The language L(A′) of A′ is equal to C ∪ B. B is the intersection of L(A) and L(A′). Thus, B is a 2-DTA language, and hence we cannot polynomially

bound the size of the smallest timed string in B (Proposition 8). Using complementation and again intersection, the same holds for A, C , and D. However, we can

polynomially bound the size of the smallest timed string in X ∪ Y where X, Y ∈ {A, B, C,D} (Proposition 14 and Theorem 5).

In fact, using the basic set operations, the above statements, and some algebra, we can show many of such statements.

These statements are summarized in Fig. 6. In general, they tell us that the intersection of the languages of two 1-DTAs is

strictlymore expressive than either of these 1-DTAs: it canbe representedby a1-DTA (by applying the region construction [1]

to all but one clock), but at the cost of exponential blowup. Since this tells us something about the power of clocks in DTAs in

general, we believe that it should be possible to apply our theorems to for example reachability analysis in timed automata.

Perhaps they can be used to reduce the complexity of reachability analysis depending on which type of combination (using

set operations) of the languages of 1-DTAs has to be analyzed.

8. Summary and future work

In this paper we have shown the following main results:

1. Polynomial distinguishability (Definition 7) is a necessary condition for efficient identification in the limit (Lemma 9).

2. DTAs with two or more clocks are not polynomially distinguishable (Theorems 1 and 2).

3. DTAs with one clock (1-DTAs) are polynomially distinguishable (Theorem 5).

4. 1-DTAs are efficiently identifiable using our ID−1-DTA algorithm (Algorithm 1 and Theorem 6).

These results areof importance for anyone interested in identifying timedsystems (andDTAs inparticular).Most importantly,

the efficiency results tell us that identifying a 1-DTA from timed data is more efficient than identifying an equivalent DFA.

Furthermore, the results show that anyone who needs to identify a DTA with two or more clocks should either be satisfied

with sometimes requiring an exponential amount of data, or he or she has to find some other method to deal with this

problem, for instance by identifying a subclass of DTAs (such as 1-DTAs).

The reason for our inefficiency results is due to the explicit representation of time (using numbers) that is used in DTAs.

We know that for any DTA, there exists a DFA that models the exact same language (is language equivalent) but with an

implicit representation of time (using states). The standardmethod of creating such aDFA is the region construction (see [1]).

This construction results in a DFA of size exponential in both the binary encoding of time values used in the DTA and the

amount of clocks of the DTA. Therefore, it is not unexpected that DTAs cannot be identified efficiently.

It comes as a surprise that 1-DTAs can be identified efficiently. This is surprising since the region construction still results

in an exponentially larger DFA when applied to a 1-DTA: time is still represented in binary (instead of unary). The main

reason that 1-DTAs can be identified efficiently is an important lemma regarding their modeling power (Lemma 18). This

lemma states a restriction on the shortest timed strings in the symmetric difference of two 1-DTA languages. This restriction

is then used to prove that 1-DTAs can be distinguished using a timed string of polynomial length. We believe however, that

this restriction and the results that come from this restriction have consequences that are of importance outside the scope

of the DTA identification problem (see Section 7).

Future work. Our results give a first general view on the complexity of identifying DTAs. However, there are of course still

many interesting questions left that can be answered by future work.

A fundamental question is whether an n-DTA identification algorithm can be used to identify 1-DTAs efficiently, while

representing them using n-DTAs. A similar result holds for deterministic and non-deterministic finite state automata (DFAs

and NFAs): while NFAs cannot be identified efficiently, an NFA identification algorithm can be used to identify DFAs effi-

ciently [17]. 6 This is possible because NFAs and DFAs are language equivalent. The other way around, we could also identify

6 TheproposedNFA identification algorithm is aquery learning algorithm.However, any efficient query learning algorithmcanbe transformed into an algorithm

that is efficient in the limit from labeled data [18].
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NFAs using an DFA identification algorithm, and then returning the smallest NFA that is language equivalent to the identified

DFA. Such an approach is not efficient however, because the finding this minimal NFA is a very difficult problem, i.e., to

be precise it is PSPACE-complete [19]. Moreover, in order to converge to an NFA-language, a DFA identification algorithm

requires an exponential amount of data. In contrast, the NFA identification algorithm identifies some of these NFA-languages

more efficiently. Whether this is also possible for 1-DTAs and n-DTAs is an open problem.

Another interesting question is whether 1-DTAs are really the largest class of efficiently identifiable DTAs. To the best of

our knowledge, the identification of DERAs in [8] is the only other work that deals with the identification of (subclasses of)

DTAs. It would be interesting to search for other subclasses of DTAs besides 1-DTAs that can be identified efficiently. A good

first step in this search is to look for classes of DTAs for which the proof of Proposition 6 does not hold. An example of such

DTAs are DTAswith the restriction that clock guards can only compare the valuations of a single clock to constants. These are

more expressive than 1-DTAs (1-DTAs are language equivalent but with exponential blowup), but they are not expressive

enough to construct the DTA used in the proof of Proposition 6. We would like to determine whether this class of DTAs is

efficiently identifiable in future work.

An interesting observation based on the power of one-clock and multi-clock DTAs is that it is possible to identify an

n-DTA by representing it using n 1-DTAs and taking their intersection. This can be viewed as a type of ensemble method

(see, e.g., [20]). Perhaps these 1-DTAs can all be learned efficiently, and perhaps some form of teamwork can then be used

to give some performance guarantees for the n-DTA identification problem. A similar idea, based on the non-closure under

union of sets identifiable from text, was one of themainmotivations for team-learning (see, e.g., [21]). It would be interesting

to investigate such an approach for the identification of n-DTAs.
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