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SUMMARY

In a microarray experiment, messenger RNA samples are oftentimes pooled across subjects out of
necessity, or in an effort to reduce the effect of biological variation. A basic problem in such experiments
is to estimate the nominal expression levels of a large number of genes. Pooling samples will affect
expression estimation, but the exact effects are not yet known as the approach has not been systematically
studied in this context. We consider how mRNA pooling affects expression estimates by assessing the
finite-sample performance of different estimators for designs with and without pooling. Conditions under
which it is advantageous to pool mRNA are defined; and general properties of estimates from both pooled
and non-pooled designs are derived under these conditions. A formula is given for the total number of
subjects and arrays required in a pooled experiment to obtain gene expression estimates and confidence
intervals comparable to those obtained from the no-pooling case. The formula demonstrates that by
pooling a perhaps increased number of subjects, one can decrease the number of arrays required in an
experiment without a loss of precision. The assumptions that facilitate derivation of this formula are
considered using data from a quantitative real-time PCR experiment. The calculations are not specific
to one particular method of quantifying gene expression as they assume only that a single, normalized,
estimate of expression is obtained for each gene. As such, the results should be generally applicable to a
number of technologies provided sufficient pre-processing and normalization methods are available and
applied.

Keywords: Experimental design; Gene expression; Microarrays; Pooled sample.

1. INTRODUCTION

Microarray technologies are now widely used to gain insight into the genetic basis of many complex
biological processes. Although quite powerful, arrays are relatively expensive and, as a result, replication
is done at a minimum. Reducing replication can adversely affect estimation of gene expression and
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466 C. M. KENDZIORSKI ET AL.

assessment of differential expression. To address these problems, mRNA samples are often pooled across
subjects (Brownet al., 2001; Jinet al., 2001; Sotiriouet al., 2001; Waringet al., 2001; Ernardet al., 2002;
discussion in Churchill and Oliver, 2001). In addition to reducing the effect of biological variation, pooling
is sometimes done out of necessity. In studies of tissues such as the hypothalamus or pancreatic islets, or
in studies of small animals such as Drosophila, it can be difficult if not impossible to obtain a sufficient
amount of mRNA from a single subject. In such cases, pooling can be useful. Whatever the reason for
mRNA pooling, it is clear that doing so will affect data analysis and inference. The exact effects are not
yet known as pooling has not been systematically studied in the context of microarray experiments.

Statistical questions related to pooling samples have received considerable attention in other areas of
application. Such work began as early as the 1940s when WWII inductees were required to undergo blood
tests for syphilitic antigens. Dorfman (1943) showed that the number of total tests could be reduced if
blood samples were first pooled and tested, followed by individual retesting of all composite samples in
positive pools only. The idea has been extended to a number of areas (for a review, see Gastwirth, 2000)
including the detection of mutant alleles in a population (Amoset al., 2000), the estimation of disease
prevalence (Gastwirth and Hammick, 1989), and the estimation of joint allele frequencies and linkage
disequilibrium (Pfeifferet al., 2002). In each of these cases, a general goal is to detect the presence of
a characteristic, followed perhaps by estimation of population prevalence. The objective in a microarray
experiment is different as gene expression quantification, as opposed to simply detection, is of interest.

In this paper, we consider the effects of mRNA pooling on estimates of gene expression. Quality
of the estimates is assessed by the bias and variance along with the length of the resulting confidence
interval. Estimates from both pooled and non-pooled designs are evaluated in Section 2. Conditions
to ensure unbiased estimates from both designs are specified. In addition, it is shown that by pooling
subjects, one can reduce the number of arrays required in an experiment while maintaining estimates
and confidence intervals comparable to those obtained without pooling. A formula specifying the exact
number of subjects and arrays required is given. The formula assumes that the variance components are
known. This assumption is relaxed in Section 3 and implications of variance component estimation on
the total number of subjects and arrays are considered. The assumptions that facilitate the calculations are
discussed in the context of a quantitative real-time PCR (referred to hereinafter as RT-PCR) experiment in
Section 4. The calculations throughout address the case where all subjects are sampled from the same
population and thus share common nominal levels of gene expression. A brief note on relaxing this
assumption is given in the Appendix.

2. EVA LUATION OF ESTIMATES FROM POOLED AND NON-POOLED DESIGNS

A main goal of any microarray experiment is to estimate the nominal expression levels of a large
number of genes. Form genes, we denote this nominal level by them-vectorθ . An experiment to estimate
θ consists of extraction and labeling of mRNA fromns subjects, hybridization tona arrays, followed by
scanning and image processing. The technology that one uses dictates in large part the details of each of
these steps. Our concern is not with a specific technology or image processing method, but with the actual
measurements of gene expression, however obtained.

We assume here that sufficient data pre-processing has been done to remove artifacts within the
array and across a set of arrays. In this case, the gene expression measurements for geneg denoted by
xg,1, xg,2, . . . , xg,na are considered independent and identically distributed samples from a distribution
parametrized by meanθg. The processed measurements are assumed to be affected primarily by two
sources of variation: subject-to-subject and array-to-array variability (referred to hereinafter as simply
biological variability and technical variability, respectively). In spite of fluctuations, the averagex̄g =
1
na

∑na
k=1 xg,k estimatesθg.
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Design I Subject mRNA Pool Array
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Design II
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. . .

Fig. 1. Schematic diagram of designs I and II for a given number of subjects and arrays (numbers chosen only for
illustration purposes). Design I requires that an mRNA sample from each subject is probed with one array. In design
II, mRNA samples from different subjects are first pooled together; then, replicate samples are drawn from the pool
and hybridized onto a set of arrays. This process is repeated some number of times (equal to the number of mRNA
pools,np). Note that for design II, the number of subjects that make up an mRNA pool, (here,rs = 3), need not equal
the number of arrays that probe that pool, (here,ra = 2).

By studying the effects of these different sources of variation, we can determine values ofns andna
that provide for optimal estimates. Three things considered in assessing the quality ofx̄g are the bias and
the variance of the estimate along with the length of the resulting confidence interval forθg.

The problem of estimating gene expression could be addressed by implementing any one of many
potential experimental designs. We consider two designs below. The gene-specific subscript will be
dropped as each gene is considered individually. Gene-specific dependencies are discussed in Section
5. The first design (design I) requires that an mRNA sample from each subject is probed with one array
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(Figure 1, upper panel). Due to variability among subjects and measurement error inherent to the array,
any observedxi is defined as

xi = θ + εi + ξi (2.1)

i = 1, 2, . . . , n, wheren = ns = na. Here,εi represents biological variation among subjects andξi

represents measurement error (technical variation). We assume thatεi ∼ N
(
0, σ 2

ε

)
andξi ∼ N

(
0, σ 2

ξ

)
;

and furthermore that biological and technical errors are independent.
For the second design, design II, mRNA samples fromrs different subjects are first pooled together;

then,ra replicate samples are drawn from the mRNA pool and hybridized onto a set of arrays. This is
repeated some number of times denoted bynp to represent the number of distinct mRNA pools (Figure 1,
lower panel). In design I,rs = ra = 1 andnp = ns = na; note that unlike design I, here the number of
subjects that contribute mRNA to a pool (rs � 1) need not equal the number of arrays used to probe that
pool (ra � 1) and thus the total number of subjects (ns = rs ·np) need not equal the total number of arrays
(na = ra · np). For this design,

xi, j = θ + εi
′ + ξi, j (2.2)

wherei = 1, 2, . . . , np and j = 1, 2, . . . , ra. Here,εi
′ represents pool-to-pool variability and again

we assume Gaussian errors and independence between biological and technical error. Ifrs is very large,
biological variability might be negligible. However, for a moderate number of subjects, one should account
for variation among the mRNA pools (Churchill and Oliver, 2001). Assuming that the mRNAs average
out across the pool, we would expect the variability ofεi

′ to be reduced toσ 2
ε /rs.

Weevaluate designs I and II by considering the finite-sample properties ofx̄ . In particular, we consider
the bias and variance, as well as the lengths of the associated confidence intervals. For both designs,
E[x̄··] = θ ;

σ 2
x̄,(1) = 1

np1

(
σ 2

ε + σ 2
ξ

)
and σ 2

x̄,(2) = 1

np2

(
σ 2

ε

rs2
+ σ 2

ξ

ra2

)
(2.3)

whereσ 2
x̄,(1) andσ 2

x̄,(2) denote the variance ofx̄ in designs I and II, respectively. In each case, the estimator
is unbiased and the variance decreases as the number of arrays increases. The precision of the estimate in
design I depends only on the variance components and the number of replicate pools (sincers1 = ra1 = 1);
for design II the precision also depends on the number of mRNA samples that are pooled and the number
of arrays used to probe a given pool. As shown below, this fact can be used to obtain an estimate of gene
expression that is as precise as that obtained from design I, but using fewer arrays.

Consider the squared length of the 100(1 − α)% confidence interval (CI) forθ given by 4z2
α/2

(
σ 2

x̄

)
wherezα is theαth quantile for a standard Normal distribution. A comparison of the confidence intervals
for designs I and II (with squared lengths denoted respectively byl2

1 andl2
2) isobtained by considering the

ratio R = l2
1/ l2

2. Letting ns1 (ns2) andna1 (na2) denote the total number of subjects and arrays in design I
(II), it can be shown thatR = 1 when

ns2 = ns1

[
λ

K (λ + 1) − na1
na2

]
(2.4)

whereλ = σ2
ε

σ2
ξ

and K is the ratio of the critical values associated with designs I and II (here,K =
z2
α/2/z2

α/2 = 1). Equation (2.4) shows that by increasing the number of subjects in design II, the number
of arrays can be decreased, without changing the squared length of the confidence interval.
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As an example, consider an experiment with the mRNA from 15 individuals probed using 15 arrays
(design I withns1 = na1 = np1 = 15) and suppose that the biological variability is four times as large as
the technical variability (σ 2

ε = 4 andσ 2
ξ = 1 which givesλ = 4). In this case, the variance of the estimate

is 0.333 (by equation (2.3)) and the squared length of the confidence interval is 5.122 (α = 0.05). The
number of subjects and arrays required in a pooled experiment to obtain a comparable confidence interval
is given by equation (2.4). Sincens2 as defined by equation (2.4) might not be integer valued, the values
given are considered lower bounds on the total number of subjects. If the total number of arrays in the
pooled experiment is reduced to 12, equation (2.4) indicates that the mRNA from 16 subjects is required
to obtain an interval comparable to that obtained without pooling. If the number of arrays is reduced to
10, the mRNA from at least 18 subjects (ns2 = 17.14) is required.

As these calculations report the total number of subjects and arrays in a given design, they give no
information about the exact way in which to allocate the totals to pools. For the case discussed above (with
18 subjects and 10 arrays), one could construct three pools each containing the mRNA from six subjects
and probe two of the pools using three arrays and one of the pools using four arrays. Alternatively, the
mRNA from nine subjects could be combined to give a total of two pools, each of which is probed using
five arrays. Each of these designs gives an equally precise estimate ofθ . Another allocation which gives
the same precision is combining the mRNA from all subjects into one pool and probing that one pool
with all arrays (np = 1). With this last design, all information regarding biological variability is lost and
thusσ 2

ε is not estimable (recall here that we are assuming known variance components). This is not useful
in practice; thus, when determining the optimal allocation of the total number of subjects and arrays, the
ability to estimate the variance components,σ 2

ε andσ 2
ξ , must be considered.

3. DETERMINATION OF THE TOTAL NUMBER OF SUBJECTS, ARRAYS, AND POOLS

The variance componentsσ 2
ε andσ 2

ξ are not known in practice, and as a result the variance ofx̄·· is
estimated by

W =
(

σ̂ 2
ε

ns
+ σ̂ 2

ξ

na

)

= 1

np(np − 1)

np∑
i=1

(x̄i · − x̄··)2.

In this case, the squared length of the confidence interval forθ is a random quantity given by

l2 = 4
(
tnp−1,α/2

)2
(W )

wheretν,α is theαth quantile for the Studentt distribution withν degrees of freedom.
Note that for a fixed number of subjects and arrays, the squared length of the interval is minimized

when the number of pools is maximized. This happens when the number of arrays used to probe a pool,ra,
is 1 (na=np). This holds by definition for design I and we impose this constraint throughout for design II.
A comparison of the lengths for designs I and II is obtained by the ratio

l2
1

l2
2

= t2
1 σ̂ 2

x̄,(1)

t2
2 σ̂ 2

x̄,(2)

wheret1 andt2 denote the criticalt values for designs I and II respectively.
To compare designs I and II as in Section 2, we could identify the total numbers of subjects, arrays,

and pools in each design such thatR2 = E[l2
1]

E[l2
2] = 1. Expected squared lengths are now considered since
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Fig. 2. The solid lines give the total number of arrays and lower bound (LB) on the total number of subjects required
in design II to obtain a 95% confidence interval with expected squared length equal to that obtained using design I
with 15 subjects and 15 arrays, for varying lambda (λ = σ2

ε /σ2
ξ ). For λ = 4, design I givesE[l2] = 6.133 and

var(x̄) = 0.333 (see Table 1). For design II, the numbers required are given by the leftmost solid line shown. Thus,
if 10 arrays are run, the mRNA from at least 21 subjects (ns2 = 20.04) is required. Forλ = 2, if 10 arrays are
run, mRNA from at least 26 subjects (ns2 = 25.07) is required. The dashed lines give the totals required to obtain
equivalent variances on the squared lengths.

the variance components must be estimated.W is an unbiased estimator and soR2 = 1 when equation
(2.4) is satisfied forK = t2

1/t2
2. Thus, the totals determined by equation (2.4) give designs resulting in

confidence intervals with equivalent expected squared lengths. As discussed below, variance component
estimation has a small effect on the total numbers of subjects and arrays.

Consider the example in Section 2 (ns1 = na1 = np1 = 15; λ = 4) and suppose that the variance
components are not known. If the total number of arrays in design II is reduced to 12, equation (2.4) with
K = t2

1/t2
2 indicates that the mRNA from at least 18 subjects (ns2 = 17.15) is required. For 10 arrays,

at least 21 subjects (ns2 = 20.04) are required. Recall that when the variance components are assumed
known, a design with 12 (10) arrays requires 16 (18) subjects (see Section 2). There is a slight increase in
the number of subjects required here as the variance components are no longer assumed to be known.

Figure 2 gives all possible combinations of the total numbers of subjects and arrays required in design
II so that R2 = 1 whenns1 = na1 = 15. Results are shown for varyingλ and indicate that pooling is
most advantageous whenλ is large. This makes sense since it is the effect of biological variability that is
reduced by pooling. Table 1 gives a number of designs for whichR2 = 1 for other values ofns1 andna1.
As shown, the expected squared lengths of the confidence intervals are the same for each design pair; the
precision of the estimator̄x is slightly higher in the pooled design (sinceR2 = 1 ⇒ σ 2

x̄,(1) > σ 2
x̄,(2) when

na2 < na1).
Equation (2.4) does not consider the variance of the squared lengths, which might be important to
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Table 1.Pairs of designs for which R2 = 1 for the case where the biological variability is four times as
large as the technical variability (λ = 4). The fourth column gives the expected squared length of the
95% confidence interval using the given total number of subjects and arrays. The last column gives the
variance of the estimates (calculated from equation (2.3)). Since ns2 as defined by equation (2.4)might not
be integer valued, the values given are considered lower bounds (LB) on the total number of subjects. In
practice, the total number of subjects would be increased from this lower bound, resulting in an estimate

with slightly lower variance and shorter confidence interval.

Design LB on total number Total numbers E[l2] var(x̄)
of subjects (ns) of arrays (na)

I 5.0 5 30.835 1.000
II 7.826 4 30.835 0.761
I 10.0 10 10.235 0.500
II 18.137 6 10.235 0.387
I 15.000 15 6.133 0.333
II 20.036 10 6.133 0.300
I 20.000 20 4.381 0.250
II 23.336 15 4.381 0.238
I 25.000 25 3.408 0.200
II 27.687 20 3.408 0.194

ensure reproducibility of the experiment. Consideration ofRV = var[l2
1]

var[l2
2] shows thatRV = 1 when

ns2 = ns1


 λ

K (λ + 1)
√

na2−1√
na1−1

− na1
na2


 . (3.1)

The totals for some selected designs are shown in Figure 2 (dashed lines). Note thatRV = 1 implies
R2 � 1 (whenna2 � na1) and so totals determined by equation (3.1) ensure for the pooled design that
both the expectation and variance of the squared lengths of the confidence intervals are no bigger than
those from design I; and the gene expression estimates are more precise. Recall that we have imposed the
constraintra = 1 since in this case, the expected squared length of the confidence interval is minimized.
Wenote here that under this constraint, var[l2] is also minimized.

3.1 Cost analysis

A comparison of designs is more meaningful when cost is taken into consideration. The cost of one
experiment is approximatelyps · ns + pa · na, whereps andpa represent the prices of one subject and one
array, respectively. This formula is approximate as it does not account directly for economies of scale. For
atypical array experiment, we estimate thatps = $50.00 andpa = $700.00 whereps includes one animal
and labor;pa includes one array, reagents, and labor. These prices are consistent with our experience
using Affymetrix chips in mouse experiments. We did adjust the unit prices in an attempt to account
approximately for economies of scale.

Consider some selected designs. Design I, using 15 subjects and 15 arrays, costs $11 250. As arrays
are still quite expensive relative to subjects, implementation of design II can result in substantial decrease
in total cost. Design II with 26 subjects and 10 arrays costs $8300; 21 subjects and 10 arrays costs $8050.
Of course, design II should only be used if properties of the gene expression estimate and associated
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Table 2.Gene expression measurements were quantified by RT-PCR for six genes in five mice using designs
I and II. Variability across the measurements from design I consists of biological and technical variability
(σ̂ 2

ε,RT + σ̂ 2
ξ,RT); the variability among RT-PCR measurements from the pooled mRNA samples (design II)

consists only of technical variability (σ̂ 2
ξ,RT). The subscript RT is used to emphasize that the estimates

are obtained using RT-PCR, and not microarray, data.

Gene σ̂ 2
ε,RT + σ̂ 2

ξ,RT σ̂ 2
ξ,RT λ̂RT

1 0.0361 0.0036 9.03
2 0.1521 0.0144 9.56
3 0.0841 0.0100 7.41
4 0.2401 0.0324 6.41
5 0.4489 0.0961 3.67
6 0.2209 0.0324 5.82

confidence interval are maintained. The particular pooling designs that result in comparable properties
are determined by the biological and technical variability as quantified byλ. Thus, for these calculations
to be used in practice, an estimate ofλ is required. Preliminary experiments to estimateλ in an RT-PCR
experiment are discussed below.

4. DATA

A quantitative RT-PCR experiment was done to quantify the mRNA abundance of six genes in the
livers of five mice, using designs I and II. RT-PCR is a relatively inexpensive method that quantifies mRNA
abundance. It requires significantly less total RNA and has a wider range of detection than a microarray
experiment. The disadvantage is that expression is quantified one gene at a time. In this approach,
total RNA was isolated from five mice using RNAzol reagent (Tel-Test, Inc.). For design I, RT-PCR
measurements were obtained for each of the six genes using total RNA samples from the five individual
mice. For design II, the five individual total RNA samples were pooled and RT-PCR measurements were
obtained for each of the six genes using pooled RNA samples. Five replicate measurements were made
using the pooled RNA for each of the six genes.

For each gene and each RNA sample (1µg, from an individual or the pool), first strand cDNA was
synthesized using SuperScript II Reverse Transcriptase (Gibco BRL) primed with a mixture of oligo-
dT and random hexamers. Real-time PCR was performed using a GeneAMP 5700 Sequence Detection
System (Applied Biosystems). The reaction was carried out in a 25µl volume in 1 x SYBR Green PCR
Core Reagents (Applied Biosystems) containing cDNA template from 10 ng of total RNA and 6 pmol
each primer. For each gene, the cDNA samples were grided onto an optical 96-well reaction plate in an
alternating and duplicating manner. The average measurements from at least two repeats were taken. The
expression level of 18S RNA was used as a normalization control. For each reaction, we determined the
cycle at which the abundance of accumulated PCR product crosses a specific threshold: the threshold
cycle (CT). The difference in averageCT values between the 18S RNA and a specific gene was calculated
for each individual (� CT). This difference is comparable to the log-transformed, normalized mRNA
abundance.

The variability across the RT-PCR measurements from design I is made up of biological and technical
variability; the variability between the measurements from design II consists only of experimental
variability. The estimates are shown in Table 2. For each of these genes,λ̂RT is over 3. The subscript
is used to emphasize that the estimates are obtained using RT-PCR, and not microarray, data. RT-PCR
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RT-PCR Results
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Fig. 3. RT-PCR results from six genes using designs I and II. The mRNA from five mice was obtained. For design I,
gene expression was quantified via RT-PCR using the individual mRNA samples. The 95% confidence interval (CI)
across the five samples is shown in light grey. For design II, the five mRNA samples were pooled and five replicate
measurements were obtained from the pool. The 95% CI is shown in dark grey. Each CI is centered by the average of
RT-PCR measurements from the five individual samples for each gene.

most likely has a lower technical variance (σ 2
ξ,RT) than technologies that quantify gene expression on a

large scale (e.g. oligonucleotide or spotted arrays). As such, we expect estimates ofλRT = σ 2
ε,RT/σ 2

ξ,RT to
be higher in general than estimates ofλ obtained using microarray technologies.

In addition to estimatingλRT, these data can be used to check the assumption that pooling mRNAs
from individuals does not introduce a bias (see Section 2). This seems to be the case. For each of the genes,
Figure 3 shows the 95% confidence intervals for the measurements from individual (light grey) and pooled
(dark grey) samples. The intervals are centered by the average of the values from the individual mRNA
samples. As shown, the measurements obtained from the pooled mRNA samples are close to the average
of the individual measurements, with reduced variability.

5. DISCUSSION

Experimental design issues particular to microarray experiments have received recent attention (Kerr
and Churchill, 2001a, 2001b; Black and Doerge, 2002; Yang and Speed, 2002), but the question of pooling
mRNA across subjects has not yet been addressed statistically. We have considered the effects of pooling
mRNA on the estimation of gene expression and have shown that under certain conditions, pooling can be
advantageous in terms of cost and efficiency. The biggest advantage occurs when the biological variability
is large relative to the technical variability. A formula is given which defines the total number of subjects
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and arrays required in a pooled experiment to achieve a confidence interval with expected squared length
equal to that obtained in the no-pooling case. Totals prescribed by this formula ensure that gene expression
estimates are more precise in the pooled experiment. Several assumptions are made to facilitate derivation
of such a formula.

The calculations assume that mRNA abundance in individual samples averages out when pooled.
This makes sense intuitively, and seems to be the case for the RT-PCR data presented here. A second
assumption is that there is a linear decrease in biological variability following pooling. This assumption
could not be checked using the data presented here and remains an open problem. We note that if
εi

′ ∼ N
(
0, σ 2

ε /rs
η

)
, whereη �= 1, equation (2.4) will depend onη which will need to be estimated.

A more critical assumption is that sufficient normalization and data processing has taken place to correct
for background and remove systematic sources of variation, leaving two primary sources of variability:
biological and technical. A number of background correction and normalization methods are available
(for a review, see Schuchhardtet al., 2000 or Yanget al., 2002). The particular methods used will be in
large part technology dependent; the details of this are not considered here.

A final assumption is that following normalization and perhaps transformation, the nominal level of
gene expression is estimated by the average of the expression measurements. This might not be the case
and distributions of measurements should be checked on a case by case basis. In cases of severe outliers,
alternative estimators (e.g. median) could be considered within this framework.

In addition to the expected size of the confidence interval, one might be concerned with the variance
since this impacts experimental reproducibility. For example, the list of genes identified as differentially
expressed will change the least across experiments when the variance in the confidence interval lengths is
minimized. We have determined the total number of subjects and arrays required in the pooled design to
ensure that the variability among confidence interval lengths is no more than that from design I. The totals
are conservative in that they guarantee smaller expected squared lengths and more precise expression
estimates. In practice, we recommend designing experiments with a total number of subjects in the pooled
design somewhere in between the totals prescribed by equations (2.4) and (3.1) (see Figure 2).

As shown in Figure 2, the totals depend on the biological and technical variability

(
λ = σ2

ε

σ2
ξ

)
and

indicate that the advantages of pooling increase with increasingλ. Most likely, this ratio is gene dependent;
and the best, representative, value ofλ to use in a set of experiments measuring multiple genes is not yet
known. A conservative approach would be to use a lower bound forλ thus ensuring efficient estimates
across the array. Alternatively, one could specify the distribution governingλ and calculate the total
numbers of subjects and arrays that maximize average efficiency across the array. Doing so gives a smaller
number of subjects and arrays than simply calculating estimates based on maximum variability, at the
possible price of loss in efficiency for some genes. This remains an open question.

Microarray data is required to estimateλ for a large number of genes and address such questions.
Preliminary results using RT-PCR data are consistent with the conjectures that the ratio is gene dependent
and biological variability is larger than technical variability. However, the technical variability in the RT-
PCR assay is probably smaller than that in most microarray technologies and, as a result, estimates ofλRT
reported here are likely higher than would be observed in a microarray experiment. A study by Pritchard
et al. (2001), using spotted microarray data, suggests that this is the case. In that work, estimates ofλ were
obtained for three tissues in mouse;λ was greater than one for approximately 70% of the genes.

Provided a representative value ofλ can be determined, the total number of subjects and arrays can be
specified and mRNA pools constructed. A single array should be used to probe each pool, and allocation
of the total number of subjects to pools should be made. The calculations assume a balanced design and
thus imply that an equal number of subjects be allocated to each pool. For the case considered in Section
3 with λ = 4, if na2 = 10, thenns2 = 20.04 and so ‘at least’ 21 subjects are required. For the design to be
balanced, this implies 30 subjects are required. Calculations (see Appendix) indicate that an unbalanced
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design can be used provided the allocation is made as close to balanced as possible. For example, with
10 arrays and 21 subjects, one could potentially construct nine mRNA pools with the mRNA from one
subject and combine mRNA samples from the remaining 12 subjects into the last pool. This is not optimal.
Instead, one should construct nine pools consisting of the mRNA from two subjects and one pool with the
mRNA from three subjects (see Appendix for further detail).

Another major consideration in evaluation of pooled designs is that of contamination. If there is some
proportion of subjects with a systematically altered level of expression that is not detected during data
pre-processing, estimates of expression will be biased with increased variance (see Appendix). Much
more work is required to address the problem of contamination. A simple, though not optimal, solution
would be to remove pools that appear to be outliers relative to others. In cases where obtaining sufficient
mRNA is not at issue, a better solution is to consider a design which allows for the mRNA from one
individual to contribute to more than one pool. Such a design should allow not only for identification,
but also quantification, of the bias introduced by contaminated samples. Then, estimates from pooled
samples could be adjusted accordingly resulting in more accurate estimates of the nominal level of gene
expression.

In summary, investigators are faced with a number of difficult questions when designing a microarray
experiment. One of them is whether or not to pool mRNA across subjects. Intuitively, pooling is
advantageous if the level of biological variation is high compared to technical variation on the array.
Weprovide conditions supporting this intuition. We also quantify how to take advantage of pooling when
considering experimental cost. As discussed, a number of questions remain open, but consideration of
such issues should lead to more efficiently designed microarray experiments.

APPENDIX

In the unbalanced case, the number of subjects contributing mRNA to a pool and the number of arrays
used to probe a pool could vary from pool to pool. Then,

xi, j = θ + εi
′ + ξi, j

whereεi
′ has mean zero and varianceσ2

ε

rsi
; ξi, j has mean zero and varianceσ 2

ξ . Then

σ 2
x̄ =




(∑np
i=1

ra2
i

rsi

) ∑np
i=1 rsi(∑np

i=1 rai

)2


 σ 2

ε

ns
+ σ 2

ξ

na
(A.1)

is minimized whenrai
rsi

= ra j
rs j

for i �= j . Consider the example discussed in Section 3 whereλ = 4,

na2 = 10, andns2 = 20.04. Table 1 shows (and equation (A.1) can be used to verify) thatE[l2] = 6.133
andσ 2

x̄ = 0.300. For the unbalanced case withna2 = 10 andns2 = 21, there are a number of options
for allocation of the subjects to pools. Equation (A.1) indicates that the designs should be as balanced
as possible. If one constructs nine mRNA pools with the mRNA from one subject and combines mRNA
samples from the remaining 12 subjects into the last pool, this givesE[l2] = 9.484 andσ 2

x̄ = 0.463. Each
is inflated from the design without pooling. Instead, a design with nine pools consisting of the mRNA from
two subjects and one pool with the mRNA from three subjects results inE[l2] = 6.004 andσ 2

x̄ = 0.293,
an improvement over the no-pooling case.

The results considered assume that following appropriate background correction, normalization, and
perhaps transformation, mRNA levels from subjects are samples from a distribution with common mean,
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θ . This of course might not be the case. There could be some proportion of subjects, denoted byp, with a
level of expression systematically altered by an amountη that is not detected during data pre-processing.
In this case, equation (2.2) becomes

xi, j = θ + εi
′ + δi

′ + ξi, j

where

δi =
{

η with prob. p
0 with prob. 1− p.

Here,δi represents contamination of individuali andδi
′ represents the average amount of contamination

across the pool.
For both designs, the estimators are biased and the variance is increased from the non-contamination

case:E[x̄··] = θ + ηp and

σ 2
x̄,(1) = 1

np1

(
σ 2

ε + η2 p(1 − p) + σ 2
ξ

)
and σ 2

x̄,(2) = 1

np2

(
σ 2

ε + η2 p(1 − p)

rs2
+ σ 2

ξ

ra2

)
.
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