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Single-index models are natural extensions of linear models and circum-
vent the so-called curse of dimensionality. They are becoming increasingly
popular in many scientific fields including biostatistics, medicine, economics
and financial econometrics. Estimating and testing the model index coeffi-
cients β is one of the most important objectives in the statistical analysis.
However, the commonly used assumption on the index coefficients, ‖β‖ = 1,
represents a nonregular problem: the true index is on the boundary of the unit
ball. In this paper we introduce the EFM approach, a method of estimating
functions, to study the single-index model. The procedure is to first relax the
equality constraint to one with (d − 1) components of β lying in an open
unit ball, and then to construct the associated (d − 1) estimating functions
by projecting the score function to the linear space spanned by the residu-
als with the unknown link being estimated by kernel estimating functions.
The root-n consistency and asymptotic normality for the estimator obtained
from solving the resulting estimating equations are achieved, and a Wilks
type theorem for testing the index is demonstrated. A noticeable result we
obtain is that our estimator for β has smaller or equal limiting variance than
the estimator of Carroll et al. [J. Amer. Statist. Assoc. 92 (1997) 447–489].
A fixed-point iterative scheme for computing this estimator is proposed. This
algorithm only involves one-dimensional nonparametric smoothers, thereby
avoiding the data sparsity problem caused by high model dimensionality. Nu-
merical studies based on simulation and on applications suggest that this new
estimating system is quite powerful and easy to implement.

1. Introduction. Single-index models combine flexibility of modeling with
interpretability of (linear) coefficients. They circumvent the curse of dimensional-
ity and are becoming increasingly popular in many scientific fields. The reduction
of dimension is achieved by assuming the link function to be a univariate func-
tion applied to the projection of explanatory covariate vector on to some direction.
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In this paper we consider an extension of single-index models where, instead of
a distributional assumption, assumptions of only the mean function and variance
function of the response are made. Let (Yi,Xi), i = 1, . . . , n, denote the observed
values with Yi being the response variable and Xi as the vector of d explanatory
variables. The relationship of the mean and variance of Yi is specified as follows:

E(Yi |Xi) = μ{g(β⊤Xi)}, Var(Yi |Xi) = σ 2V {g(β⊤Xi)},(1.1)

where μ is a known monotonic function, V is a known covariance function, g is an
unknown univariate link function and β is an unknown index vector which belongs
to the parameter space � = {β = (β1, . . . , βd)⊤ :‖β‖ = 1, β1 > 0,β ∈ R

d}. Here
we assume the parameter space is � rather than the entire R

d in order to ensure
that β in the representation (1.1) can be uniquely defined. This is a commonly used
assumption on the index parameter [see Carroll et al. (1997), Zhu and Xue (2006),
Lin and Kulasekera (2007)]. Another reparameterization is to let β1 = 1 for the
sign identifiability and to transform β to (1, β2, . . . , βd)/(1 +∑d

r=2 β2
r )1/2 for the

scale identifiability. Clearly (1, β2, . . . , βd)/(1+∑d
r=2 β2

r )1/2 can also span the pa-
rameter space � by simply checking that ‖(1, β2, . . . , βd)/(1 +∑d

r=2 β2
r )1/2‖ = 1

and the first component 1/(1 + ∑d
r=2 β2

r )1/2 > 0. However, the fixed-point al-
gorithm recommended in this paper for normalized vectors may not be suitable
for such a reparameterization. Model (1.1) is flexible enough to cover a vari-
ety of situations. If μ is the identity function and V is equal to constant 1,
(1.1) reduces to a single-index model Härdle, Hall and Ichimura (1993). Model
(1.1) is an extension of the generalized linear model McCullagh and Nelder
(1989) and the single-index model. When the conditional distribution of Y is lo-
gistic, then μ{g(β⊤X)} = exp{g(β⊤X)}/[1 + exp{g(β⊤X)}] and V {g(β⊤X)} =
exp{g(β⊤X)}/[1 + exp{g(β⊤X)}]2.

For single-index models: μ{g(β⊤X)} = g(β⊤X) and V {g(β⊤X)} = 1, var-
ious strategies for estimating β have been proposed in the last decades. Two
most popular methods are the average derivative method (ADE) introduced in
Powell, Stock and Stoker (1989) and Härdle and Stoker (1989), and the simul-
taneous minimization method of Härdle, Hall and Ichimura (1993). Next we
will review these two methods in short. The ADE method is based on that
∂E(Y |X = x)/∂x = g′(β⊤x)β which implies that the gradient of the regres-
sion function is proportional to the index parameter β . Then a natural estima-
tor for β is β̂ = n−1∑n

i=1 ∇̂G(Xi)/‖n−1∑n
i=1 ∇̂G(Xi)‖ with ∇G(x) denoting

∂E(Y |X = x)/∂x and ‖ · ‖ being the Euclidean norm. An advantage of the ADE
approach is that it allows estimating β directly. However, the high-dimensional
kernel smoothing used for computing ∇̂G(x) suffers from the “curse of dimension-
ality” if the model dimension d is large. Hristache, Juditski and Spokoiny (2001)
improved the ADE approach by lowering the dimension of the kernel gradually.
The method of Härdle, Hall and Ichimura (1993) is carried out by minimizing a
least squares criterion based on nonparametric estimation of the link g with respect
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to β and bandwidth h. However, the minimization is difficult to implement since it
depends on an optimization problem in a high-dimensional space. Xia et al. (2002)
proposed to minimize average conditional variance (MAVE). Because the kernel
used for computing β is a function of ‖Xi −Xj‖, MAVE meets the problem of data
sparseness. All the above estimators are consistent under some regular conditions.
Asymptotic efficiency comparisons of the above methods have been discussed in
Xia (2006) resulting in the MAVE estimator of β having the same limiting vari-
ance as the estimators of Härdle, Hall and Ichimura (1993), and claiming alterna-
tive versions of the ADE method having larger variance. In addition, Yu and Rup-
pert (2002) fitted the partially linear single-index models using a penalized spline
method. Huh and Park (2002) used the local polynomial method to fit the unknown
function in single-index models. Other dimension reduction methods that were re-
cently developed in the literature are sliced inverse regression, partial least squares
and canonical correlation method. These methods handle high-dimensional pre-
dictors; see Zhu and Zhu (2009a, 2009b) and Zhou and He (2008).

The main challenges of estimation in the semiparametric model (1.1) are that
the support of the infinite-dimensional nuisance parameter g(·) depends on the
finite-dimensional parameter β , and the parameter β is on the boundary of a unit
ball. For estimating β the former challenge forces us to deal with the infinite-
dimensional nuisance parameter g. The latter one represents a nonregular problem.
The classic assumptions about asymptotic properties of the estimates for β are not
valid. In addition, as a model proposed for dimension reduction, the dimension
d may be very high and one often meets the problem of computation. To attack
the above problems, in this paper we will develop an estimating function method
(EFM) and then introduce a computational algorithm to solve the equations based
on a fixed-point iterative scheme. We first choose an identifiable parameterization
which transforms the boundary of a unit ball in R

d to the interior of a unit ball in
R

d−1. By eliminating β1, the parameter space � can be rearranged to a form {((1−∑d
r=2 β2

r )1/2, β2, . . . , βd)⊤ :
∑d

r=2 β2
r < 1}. Then the derivatives of a function with

respect to (β2, . . . , βd)⊤ are readily obtained by the chain rule and the classical
assumptions on the asymptotic normality hold after transformation. The estimating
functions (equations) for β can be constructed by replacing g(β⊤X) with ĝ(β⊤X).
The estimate ĝ for the nuisance parameter g is obtained using kernel estimating
functions and the smoothing parameter h is selected using K-fold cross-validation.
For the problem of testing the index, we establish a quasi-likelihood ratio based on
the proposed estimating functions and show that the test statistics asymptotically
follow a χ2-distribution whose degree of freedom does not depend on nuisance
parameters, under the null hypothesis. Then a Wilks type theorem for testing the
index is demonstrated.

The proposed EFM technique is essentially a unified method of handling dif-
ferent types of data situations including categorical response variable and discrete
explanatory covariate vector. The main results of this research are as follows:
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(a) Efficiency. A surprising result we obtain is that our EFM estimator for β has
smaller or equal limiting variance than the estimator of Carroll et al. (1997).

(b) Computation. The estimating function system only involves one-dimensional
nonparametric smoothers, thereby avoiding the data sparsity problem caused
by high model dimensionality. Unlike the quasi-likelihood inference [Carroll
et al. (1997)] where the maximization is difficult to implement when d is large,
the reparameterization and the explicit formulation of the estimating functions
facilitate an efficient computation algorithm. Here we use a fixed-point iter-
ative scheme to compute the resultant estimator. The simulation results show
that the algorithm adapts to higher model dimension and richer data situations
than the MAVE method of Xia et al. (2002).

It is noteworthy that the EFM approach proposed in this paper cannot be ob-
tained from the SLS method proposed in Ichimura (1993) and investigated in
Härdle, Hall and Ichimura (1993). SLS minimizes the weighted least squares crite-
rion

∑n
j=1[Yj −μ{ĝ(β⊤Xj )}]2V −1{ĝ(β⊤Xj )}, which leads to a biased estimating

equation when we use its derivative if V (·) does not contain the parameter of inter-
est. It will not in general provide a consistent estimator [see Heyde (1997), page 4].
Chang, Xue and Zhu (2010) and Wang et al. (2010) discussed the efficient estima-
tion of single-index model for the case of additive noise. However, their methods
are based on the estimating equations induced from the least squares rather than
the quasi-likelihood. Thus, their estimation does not have optimal property. Also
their comparison is with the one from Härdle, Hall and Ichimura (1993) and its
later development. It cannot be applied to the setting under study. In this paper,
we investigate the efficiency and computation of the estimates for the single-index
models, and systematically develop and prove the asymptotic properties of EFM.

The paper is organized as follows. In Section 2, we state the single-index model,
discuss estimation of g using kernel estimating functions and of β using profile
estimating functions, and investigate the problem of testing the index using quasi-
likelihood ratio. In Section 3 we provide a computation algorithm for solving the
estimating functions and illustrate the method with simulation and practical stud-
ies. The proofs are deferred to the Appendix.

2. Estimating function method (EFM) and its large sample properties. In
this section, which is concerned with inference based on the estimating function
method, the model of interest is determined through specification of mean and vari-
ance functions, up to an unknown vector β and an unknown function g. Except for
Gaussian data, model (1.1) need not be a full semiparametric likelihood specifi-
cation. Note that the parameter space � = {β = (β1, . . . , βd)⊤ :‖β‖ = 1, β1 > 0,

β ∈ R
d} means that β is on the boundary of a unit ball and it represents there-

fore a nonregular problem. So we first choose an identifiable parameterization
which transforms the boundary of a unit ball in R

d to the interior of a unit ball
in R

d−1. By eliminating β1, the parameter space � can be rearranged to a form
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{((1 −∑d
r=2 β2

r )1/2, β2, . . . , βd)⊤ :
∑d

r=2 β2
r < 1}. Then the derivatives of a func-

tion with respect to β(1) = (β2, . . . , βd)⊤ are readily obtained by chain rule and
the classic assumptions on the asymptotic normality hold after transformation.
This reparameterization is the key to analyzing the asymptotic properties of the
estimates for β and to facilitating an efficient computation algorithm. We will in-
vestigate the estimation for g and β and propose a quasi-likelihood method to test
the statistical significance of certain variables in the parametric component.

2.1. The kernel estimating functions for the nonparametric part g. If β is
known, then we estimate g(·) and g′(·) using the local linear estimating functions.
Let h denote the bandwidth parameter, and let K(·) denote the symmetric kernel
density function satisfying Kh(·) = h−1K(·/h). The estimation method involves
local linear approximation. Denote by α0 and α1 the values of g and g′ evaluating
at t , respectively. The local linear approximation for g(β⊤x) in a neighborhood of
t is g̃(β⊤x) = α0 + α1(β

⊤x − t). The estimators ĝ(t) and ĝ′(t) are obtained by
solving the kernel estimating functions with respect to α0, α1:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

j=1

Kh(β
⊤Xj − t)μ′{g̃(β⊤Xj )}V −1{g̃(β⊤Xj )}

× [Yj − μ{g̃(β⊤Xj )}] = 0,
n∑

j=1

(β⊤Xj − t)Kh(β
⊤Xj − t)μ′{g̃(β⊤Xj )}V −1{g̃(β⊤Xj )}

× [Yj − μ{g̃(β⊤Xj )}] = 0.

(2.1)

Having estimated α0, α1 at t as α̂0, α̂1, the local linear estimators of g(t) and g′(t)
are ĝ(t) = α̂0 and ĝ′(t) = α̂1, respectively.

The key to obtain the asymptotic normality of the estimates for β lies in the
asymptotic properties of the estimated nonparametric part. The following theorem
will provide some useful results. The following notation will be used. Let X =
{X1, . . . ,Xn}, ρl(z) = {μ′(z)}lV −1(z) and J = ∂β

∂β(1) the Jacobian matrix of size

d × (d − 1) with

J =
(

−β(1)⊤/

√
1 −

∥∥β(1)
∥∥2

Id−1

)
, β(1) = (β2, . . . , βd)⊤.

The moments of K and K2 are denoted, respectively, by, j = 0,1, . . . ,

γj =
∫

tjK(t) dt and νj =
∫

tjK2(t) dt.

PROPOSITION 1. Under regularity conditions (a), (b), (d) and (e) given in the

Appendix, we have:
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(i) With h → 0, n → ∞ such that h → 0 and nh → ∞, ∀β ∈ �, the asymp-

totic conditional bias and variance of ĝ are given by

E
{
{ĝ(β⊤x) − g(β⊤x)}2|X

}

=
{1

2γ2h
2g′′(β⊤x)

}2

(2.2)
+ ν0σ

2/[nhfβ⊤x(β
⊤x)ρ2{g(β⊤x)}]

+ OP (h4 + n−1h−1).

(ii) With h → 0, n → ∞ such that h → 0 and nh3 → ∞, for the estimates of

the derivative g′, it holds that

E
{
{ĝ′(β⊤x) − g′(β⊤x)}2|X

}

=
{1

6γ4γ
−1
2 h2g′′′(β⊤x)

+ 1
2(γ4γ

−1
2 − γ2)h

2g′′(β⊤x)
(2.3)

× [ρ′
2{g(β⊤x)}/ρ2{g(β⊤x)} + f ′

β⊤x
(β⊤x)/fβ⊤x(β

⊤x)]
}2

+ ν2γ
−2
2 σ 2/[nh3fβ⊤x(β

⊤x)ρ2{g(β⊤x)}]

+ OP (h4 + n−1h−3).

(iii) With h → 0, n → ∞ such that h → 0 and nh3 → ∞, we have that

E

{∥∥∥∥
∂ĝ(β⊤x)

∂β(1)
− g′(β⊤x)J⊤{x − E(x|β⊤x)}

∥∥∥∥
2∣∣∣X

}
= OP (h4 + n−1h−3).(2.4)

The proof of this proposition appears in the Appendix. Results (i) and (ii)
in Proposition 1 are routine and similar to Carroll, Ruppert and Welsh (1998).
In the situation where σ 2V = σ 2 and the function μ is identity, results (i) and
(ii) coincide with those given by Fan and Gijbels (1996). From result (iii), it is
seen that ∂ĝ(β⊤x)/∂β(1) converges in probability to g′(β⊤x)J⊤{x − E(x|β⊤x)},
rather than g′(β⊤x)J⊤x as if g were known. That is, limn→∞{∂ĝ(β⊤x)/∂β(1)} 
=
∂{limn→∞ ĝ(β⊤x)}/∂β(1), which means that the convergence in probability and
the derivation of the sequence ĝn(β

⊤x) (as a function of n) cannot commute. This
is primarily caused by the fact that the support of the infinite-dimensional nuisance
parameter g(·) depends on the finite-dimensional projection parameter β . In con-
trast, a semiparametric model where the support of the nuisance parameter is inde-
pendent of the finite-dimensional parameter is a partially linear regression model
having form Y = X⊤θ +η(T )+ ε. It is easy to check that the limit of ∂η̂(T )/∂θ is
equal to E(X|T ), which is the derivative of limn→∞ η̂(T ) = E(Y |T )−E(X⊤|T )θ

with respect to θ . Result (iii) ensures that the proposed estimator does not require
undersmoothing of g(·) to obtain a root-n consistent estimator for β and it is also
of its own interest in inference theory for semiparametric models.
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2.2. The asymptotic distribution for the estimates of the parametric part β .
We will now proceed to the estimation of β ∈ �. We need to estimate the (d − 1)-
dimensional vector β(1), the estimator of which will be defined via

n∑

i=1

[
∂μ{ĝ(β⊤Xi)}/∂β(1)]V −1{ĝ(β⊤Xi)}[Yi − μ{ĝ(β⊤Xi)}] = 0.(2.5)

This is the direct analogue of the “ideal” estimating equation for known g, in that it
is calculated by replacing g(t) with ĝ(t). An asymptotically equivalent and easily
computed version of this equation is

Ĝ(β)
def=

n∑

i=1

J⊤ĝ′(β⊤Xi){Xi − ĥ(β⊤Xi)}ρ1{ĝ(β⊤Xi)}[Yi − μ{ĝ(β⊤Xi)}]

(2.6)
= 0

with J = ∂β

∂β(1) the Jacobian mentioned above, ĝ and ĝ′ are defined by (2.1), and

ĥ(t) the local linear estimate for h(t) = E(X|β⊤X = t) = (h1(t), . . . , hd(t))⊤,

ĥ(t) =
n∑

i=1

bi(t)Xi

/ n∑

i=1

bi(t),

where bi(t) = Kh(β
⊤Xi − t){Sn,2(t)− (β⊤Xi − t)Sn,1(t)}, Sn,k =∑n

i=1 Kh(β
⊤ ×

Xi − t)(β⊤Xi − t)k, k = 1,2. We use (2.6) to estimate β(1) in the single-index

model, and then use the fact that β1 =
√

1 − ‖β(1)‖2 to obtain β̂1. The use of (2.6)
constitutes in our view a new approach to estimating single-index models; since
(2.6) involves smooth pilot estimation of g, g′ and h we call it the Estimation
Function Method (EFM) for β .

REMARK 1. The estimating equations Ĝ(β) can be represented as the gradient
vector of the following objective function:

Q̂(β) =
n∑

i=1

Q[μ{ĝ(β⊤Xi)}, Yi]

with Q[μ,y] =
∫ y
μ

s−y

V {μ−1(s)} ds and μ−1(·) the inverse function of μ(·). The exis-

tence of such a potential function makes Ĝ(β) to inherit properties of the ideal
likelihood score function. Note that {‖β(1)‖ < 1} is an open, connected sub-
set of R

d−1. By the regularity conditions assumed on μ(·), g(·),V (·) (for de-
tails see the Appendix), we know that the quasi-likelihood function Q̂(β) is
twice continuously differentiable on {‖β(1)‖ < 1} such that the global maxi-
mum of Q̂(β) can be achieved at some point. One may ask whether the so-
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lution is unique and also consistent. Some elementary calculations lead to the

Hessian matrix ∂2Q̂(β)/∂β(1)∂β(1)⊤, because the partial derivative ∂μ{ĝ(β⊤Xi)}
∂β(1) =

μ′{ĝ(β⊤Xi)}ĝ′(β⊤Xi){Xi − ĥ(β⊤Xi)}, then

1

n

∂2Q̂(β)

∂β(1)∂β(1)⊤

= 1

n

∂Ĝ(β)

∂β(1)

= 1

n

n∑

i=1

∂[J⊤ĝ′(β⊤Xi){Xi − ĥ(β⊤Xi)}ρ1{ĝ(β⊤Xi)}]
∂β(1)

[Yi − μ{ĝ(β⊤Xi)}]

− 1

n

n∑

i=1

J⊤ĝ′(β⊤Xi){Xi − ĥ(β⊤Xi)}ρ1{ĝ(β⊤Xi)}
∂μ{ĝ(β⊤Xi)}

∂β(1)

= 1

n

n∑

i=1

[
−

∂{β(1)/

√
1 − ‖β(1)‖2}

∂β(1)
ĝ′(β⊤Xi){X1i − ĥ1(β

⊤Xi)}ρ1{ĝ(β⊤Xi)}

+ J⊤{Xi − ĥ(β⊤Xi)}
∂ĝ′(β⊤Xi)

∂β(1)⊤ ρ1{ĝ(β⊤Xi)}

+ J⊤ĝ′(β⊤Xi){Xi − ĥ(β⊤Xi)}
∂ρ1{ĝ(β⊤Xi)}

∂β(1)⊤

− J⊤ĝ′(β⊤Xi)
∂ĥ(β⊤Xi)

∂β(1)
ρ1{ĝ(β⊤Xi)}

]

× [Yi − μ{ĝ(β⊤Xi)}]

− 1

n

n∑

i=1

J⊤ĝ′2(β⊤Xi){Xi − ĥ(β⊤Xi)}{Xi − ĥ(β⊤Xi)}⊤ρ2{ĝ(β⊤Xi)}J.

By the regularity conditions in the Appendix, the multipliers of the residuals
[Yi − μ{ĝ(β⊤Xi)}] in the first sum of (2.7) are bounded. Mimicking the proof
of Proposition 1, the first sum can be shown to converge to 0 in probability as n

goes to infinity. The second sum converges to a negative semidefinite matrix. If

the Hessian matrix 1
n

∂2Q̂(β)

∂β(1)∂β(1)⊤ is negative definite for all values of β(1), Ĝ(β)

has a unique root. At sample level, however, estimating functions may have more
than one root. For the EFM method, the quasi-likelihood Q̂(β) exists, which can
be used to distinguish local maxima from minima. Thus, we suppose (2.6) has a
unique solution in the following context.
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REMARK 2. It can be seen from the proof in the Appendix that the population
version of Ĝ(β) is

G(β) =
n∑

i=1

J⊤g′(β⊤Xi){Xi − h(β⊤Xi)}ρ1{g(β⊤Xi)}[Yi − μ{g(β⊤Xi)}],(2.7)

which is obtained by replacing ĝ, ĝ′, ĥ with g,g′,h in (2.6). One important prop-
erty of (2.7) is that the second Bartlett identity holds, for any β:

E{G(β)G⊤(β)} = −E

{
∂G(β)

∂β(1)

}
.

This property makes the semiparametric efficiency of the EFM (2.6) possible.

Let β0 = (β0
1 ,β(1)0⊤

)⊤ denote the true parameter and B+ denote the Moore–
Penrose inverse of any given matrix B. We have the following asymptotic result
for the estimator β̂(1).

THEOREM 2.1. Assume the estimating function (2.6) has a unique solution

and denote it by β̂(1). If the regularity conditions (a)–(e) in the Appendix are sat-

isfied, the following results hold:

(i) With h → 0, n → ∞ such that (nh)−1 log(1/h) → 0, β̂(1) converges in

probability to the true parameter β(1)0.
(ii) If nh6 → 0 and nh4 → ∞,

√
n
(
β̂(1) − β(1)0) L−→ Nd−1(0,�β(1)0),(2.8)

where �β(1)0 = {J⊤�J}+|β(1)=β(1)0 , J = ∂β

∂β(1) and

� = E[{XX⊤ − E(X|β⊤X)E(X⊤|β⊤X)}ρ2{g(β⊤X)}{g′(β⊤X)}2/σ 2].

REMARK 3. Note that β⊤�β = 0, so the nonnegative matrix � degener-
ates in the direction of β . If the mean function μ is the identity function and
the variance function is equal to a scale constant, that is, μ{g(β⊤X)} = g(β⊤X),
σ 2V {g(β⊤X)} = σ 2, the matrix � in Theorem 2.1 reduces to be

� = E[{XX⊤ − E(X|β⊤X)E(X⊤|β⊤X)}{g′(β⊤X)}2/σ 2].

Technically speaking, Theorem 2.1 shows that an undersmoothing approach is
unnecessary and that root-n consistency can be achieved. The asymptotic covari-
ance �β(1)0 in general can be estimated by replacing terms in its expression by

estimates of those terms. The asymptotic normality of β̂ = (β̂1, β̂
(1)⊤)⊤ will fol-

low from Theorem 2.1 with a simple application of the multivariate delta-method,
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since β̂1 =
√

1 − ‖β̂(1)‖2. According to the results of Carroll et al. (1997), the
asymptotic variance of their estimator is �+. Define the block partition of matrix
� as follows:

� =
(

�11 �12

�21 �22

)
,(2.9)

where �11 is a positive constant, �12 is a (d − 1)-dimensional row vector, �21 is
a (d − 1)-dimensional column vector and �22 is a (d − 1) × (d − 1) nonnegative
definite matrix.

COROLLARY 1. Under the conditions of Theorem 2.1, we have

√
n(β̂ − β0)

L−→ Np(0,�β0)(2.10)

with �β0 = J{J⊤�J}+J⊤|β=β0 . Further,

�β0 ≤ �+|β=β0

and a strict less-than sign holds when det(�22) = 0. That is, in this case EFM is

more efficient than that of Carroll et al. (1997).

The possible smaller limiting variance derived from the EFM approach partly
benefits from the reparameterization so that the quasi-likelihood can be adopted.
As we know, the quasi-likelihood is often of optimal property. In contrast, most
existing methods treat the estimation of β as if it were done in the framework of
linear dimension reduction. The target of linear dimension reduction is to find the
directions that can linearly transform the original variables vector into a vector of
one less dimension. For example, ADE and SIR are two relevant methods. How-
ever, when the link function μ(·) is identity, the limiting variance derived here may
not be smaller or equal to the ones of Wang et al. (2010) and Chang, Xue and Zhu
(2010) when the quasi-likelihood of (2.5) is applied.

2.3. Profile quasi-likelihood ratio test. In applications, it is important to test
the statistical significance of added predictors in a regression model. Here we es-
tablish a quasi-likelihood ratio statistic to test the significance of certain variables
in the linear index. The null hypothesis that the model is correct is tested against
a full model alternative. Fan and Jiang (2007) gave a recent review about gener-
alized likelihood ratio tests. Bootstrap tests for nonparametric regression, general-
ized partially linear models and single-index models have been systematically in-
vestigated [see Härdle and Mammen (1993), Härdle, Mammen and Müller (1998),
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Härdle, Mammen and Proenca (2001)]. Consider the testing problem:

H0 :g(·) = g

(
r∑

k=1

βkXk

)

(2.11)

←→ H1 :g(·) = g

(
r∑

k=1

βkXk +
d∑

k=r+1

βkXk

)
.

We mainly focus on testing βk = 0, k = r + 1, . . . , d , though the following test
procedure can be easily extended to a general linear testing Bβ̃ = 0 where B is
a known matrix with full row rank and β̃ = (βr+1, . . . , βd)⊤. The profile quasi-
likelihood ratio test is defined by

Tn = 2
{

sup
β∈�

Q̂(β) − sup
β∈�,β̃=0

Q̂(β)
}
,(2.12)

where Q̂(β) = ∑n
i=1 Q[μ{ĝ(β⊤Xi)}, Yi],Q[μ,y] =

∫ y
μ

s−y

V {μ−1(s)} ds and μ−1(·)
is the inverse function of μ(·). The following Wilks type theorem shows that the
distribution of Tn is asymptotically chi-squared and independent of nuisance pa-
rameters.

THEOREM 2.2. Under the assumptions of Theorem 2.1, if βk = 0, k = r +
1, . . . , d , then

Tn
L−→ χ2(d − r).(2.13)

3. Numerical studies.

3.1. Computation of the estimates. Solving the joint estimating equations
(2.1) and (2.6) poses some interesting challenges, since the functions ĝ(β⊤X) and
ĝ′(β⊤X) depend on β implicitly. Treating β⊤X as a new predictor (with given β),
(2.1) gives us ĝ, ĝ′ as in Fan, Heckman and Wand (1995). We therefore focus on
(2.6), as estimating equations. It cannot be solved explicitly, and hence one needs
to find solutions using numerical methods. The Newton–Raphson algorithm is one
of the popular and successful methods for finding roots. However, the computa-
tional speed of this algorithm crucially depends on the initial value. We propose
therefore a fixed-point iterative algorithm that is not very sensitive to starting val-
ues and is adaptive to larger dimension. It is worth noting that this algorithm can be
implemented in the case that d is slightly larger than n, because the resultant pro-
cedure only involves one-dimensional nonparametric smoothers, thereby avoiding
the data sparsity problem caused by high dimensionality.

Rewrite the estimating functions as Ĝ(β) = J⊤F̂(β) with

F̂(β) = (F̂1(β), . . . , F̂d(β))⊤
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and

F̂s(β) =
n∑

i=1

{Xsi − ĥs(β
⊤Xi)}μ′{ĝ(β⊤Xi)}ĝ′(β⊤Xi)V

−1{ĝ(β⊤Xi)}

× [Yi − μ{ĝ(β⊤Xi)}].

Setting Ĝ(β) = 0, we have that
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−β2F̂1(β)/

√
1 −

∥∥β(1)
∥∥2 + F̂2(β) = 0,

−β3F̂1(β)/

√
1 −

∥∥β(1)
∥∥2 + F̂3(β) = 0,

· · ·
−βd F̂1(β)/

√
1 −

∥∥β(1)
∥∥2 + F̂d(β) = 0.

(3.1)

Note that ‖β(1)‖2 =∑d
r=2 β2

r , β1 =
√

1 − ‖β(1)‖2 and after some simple calcula-
tions, we can get that

{
β1 = |F̂1(β)|/‖F̂(β)‖, s = 1,

β2
s = F̂ 2

s (β)/‖F̂(β)‖2, s ≥ 2,

and sign{βsF̂1(β)} = sign{F̂s(β)}, s ≥ 2. The above equation can also be rewritten
as

β
F̂1(β)

‖F̂(β)‖
= |F̂1(β)|

‖F̂(β)‖
× F̂(β)

‖F̂(β)‖
.(3.2)

Then solving the equation (2.6) is equivalent to finding a fixed point for (3.2).
Though ‖β(1)‖ < 1 holds almost surely in (3.2) and always ‖β‖ = 1, there will
be some trouble if (3.2) is directly used as iterative equations. Note that the value
of ‖F̂(β)‖ is used as denominator that may sometimes be small, which poten-
tially makes the algorithm unstable. On the other hand, the convergence rate
of the fixed-point iterative algorithm derived from (3.2) depends on L, where

‖ ∂{F̂(β)|/‖F̂(β)‖}
∂β

‖ ≤ L. For a fast convergence rate, it technically needs a shrink-
age value L. An ad hoc fix introduces a constant M , adding Mβ on both sides of
(3.2) and dividing by F̂1(β)/‖F̂(β)‖ + M :

β = M

F̂1(β)/‖F̂(β)‖ + M
β + |F̂1(β)|/‖F̂(β)‖2

F̂1(β)/‖F̂(β)‖ + M
F̂(β),

where M is chosen such that F̂1(β)/‖F̂(β)‖ + M 
= 0. In addition, to accelerate
the rate of convergence, we reduce the derivative of the term on the right-hand side
of the above equality, which can be achieved by choosing some appropriate M .
This is the iteration formulation in Step 2. Here the norm of βnew is not equal
to 1 and we have to normalize it again. Since the iteration in Step 2 makes βnew
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to violate the identifiability constraint with norm 1, we design (3.2) to include the
whole β vector. The possibility of renormalization for βnew avoids the difficulty of
controlling ‖β(1)

new‖ < 1 in each iteration in Step 2.
Based on these observations, the fixed-point iterative algorithm is summarized

as:

Step 0. Choose initial values for β , denoted by βold.
Step 1. Solve the estimating equation (2.1) with respect to α, which yields

ĝ(β⊤
oldxi) and ĝ′(β⊤

oldxi), 1 ≤ i ≤ n.
Step 2. Update βold with βold = βnew/‖βnew‖ by solving the equation (2.6) in

the fixed-point iteration

βnew = M

F̂1(βold)/‖F̂ (βold)‖ + M
βold + |F̂1(βold)|/‖F̂ (βold)‖2

F̂1(βold)/‖F̂ (βold)‖ + M
F̂(βold),

where M is a constant satisfying F̂1(β)/‖F̂ (β)‖ + M 
= 0 for any β .
Step 3. Repeat Steps 1 and 2 until max1≤s≤d |βnew,s − βold,s | ≤ tol is met with

tol being a prescribed tolerance.

The final vector βnew/‖βnew‖ is the estimator of β0. Similarly to other direct es-
timation methods [Horowitz and Härdle (1996)], the preceding calculation is easy
to implement. Empirically the initial value for β , (1,1, . . . ,1)⊤/

√
d can be used in

the calculations. The Epanechnikov kernel function K(t) = 3/4(1 − t2)I (|t | ≤ 1)

is used. The bandwidth involved in Step 1 can be chosen to be optimal for esti-
mation of ĝ(t) and ĝ′(t) based on the observations {β⊤

oldXi, Yi}. So the standard
bandwidth selection methods, such as K-fold cross-validation, generalized cross-
validation (GCV) and the rule of thumb, can be adopted. In this step, we recom-
mend K-fold cross-validation to determine the optimal bandwidth using the quasi-
likelihood as a criterion function. The K-fold cross-validation is not too compu-
tationally intensive while making K not take too large values (e.g., K = 5). Here
we recommend trying a number of smoothing parameters that smooth the data
and picking the one that seems most reasonable. As an adjustment factor, M will
increase the stability of iteration. Ideally, in each iteration an optimum value for
M should be chosen guaranteeing that the derivative on the right-hand side of the
iteration formulation in Step 2 is close to zero. Following this idea, M will be de-
pending the changes of β and F̂(β)/‖F̂(β)‖. This will be an expensive task due to
the computation for the derivative on the right-hand side of the iteration formula-
tion in Step 2. We therefore consider M as constant nonvarying in each iteration,
and select M by the K-fold cross-validation method, according to minimizing the
model prediction error. When the dimension d gets larger, M will get smaller. In
our simulation runs, we empirically search M in the interval [2/

√
d, d/2]. This

choice gives pretty good practical performance.
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3.2. Simulation results.

EXAMPLE 1 (Continuous response). We report a simulation study to investi-
gate the finite-sample performance of the proposed estimator and compare it with
the rMAVE [refined MAVE; for details see Xia et al. (2002)] estimator and the
EDR estimator [see Hristache et al. (2001), Polzehl and Sperlich (2009)]. We con-
sider the following model similar to that used in Xia (2006):

E(Y |β⊤X) = g(β⊤X), g(β⊤X) = (β⊤X)2 exp(β⊤X);
(3.3)

Var(Y |β⊤X) = σ 2, σ = 0.1.

Let the true parameter β = (2,1,0, . . . ,0)⊤/
√

5. Two sets of designs for X are
considered: Design (A) and Design (B). In Design (A), (Xs + 1)/2 ∼ Beta(τ,1),
1 ≤ s ≤ d and, in Design (B), (X1 + 1)/2 ∼ Beta(τ,1) and P(Xs = ±0.5) = 0.5,
s = 2,3,4, . . . , d . The data generated in Design (A) are not elliptically symmetric.
All the components of Design (B) are discrete except for the first component X1.
Y is generated from a normal distribution. This simulation data set consists of 400
observations with 250 replications. The results are shown in Table 1. All rMAVE,
EDR and EFM estimates are close to the true parameter vector for d = 10. How-
ever, the average estimation errors from rMAVE and EDR estimates for d = 50 are
about 2 and 1.5 times as large as those of the EFM estimates, respectively. This
indicates that the fixed-point algorithm is more adaptive to high dimension.

EXAMPLE 2 (Binary response). This simulation design assumes an underly-
ing single-index model for binary responses with

P(Y = 1|X) = μ{g(β⊤X)} = exp{g(β⊤X)}/[1 + exp{g(β⊤X)}],
(3.4)

g(β⊤X) = exp(5β⊤X − 2)/{1 + exp(5β⊤X − 3)} − 1.5.

The underlying coefficients are assumed to be β = (2,1,0, . . . ,0)⊤/
√

5. We con-
sider two sets of designs: Design (C) and Design (D). In Design (C), X1 and X2

TABLE 1
Average estimation errors

∑d
s=1 |β̂s − βs | for model (3.3)

Design (A) Design (B)

d τ rMAVE EDR EFM rMAVE EDR EFM

10 0.75 0.0559∗ 0.0520 0.0792 0.0522∗ 0.0662 0.0690
10 1.5 0.0323∗ 0.0316 0.0298 0.0417∗ 0.0593 0.0457
50 0.75 0.9900 0.7271 0.5425 0.9780 0.7712 0.4515
50 1.5 0.3776 0.3062 0.1796 0.4693 0.4103 0.2211

∗The values are adopted from Xia (2006).
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TABLE 2
Average estimation errors

∑d
s=1 |β̂s − βs | for model (3.4)

Design (C) Design (D)

d rMAVE EDR EFM rMAVE EDR EFM

10 0.5017 0.5281 0.4564 0.9614 0.9574 0.7415
50 2.0991 1.2695 1.1744 2.5040 2.4846 1.9908

follow the uniform distribution U(−2,2). In Design (D), X1 is also assumed to
be uniformly distributed in interval (−2,2) and (X2 + 1)/2 ∼ Beta(1,1). Similar
designs for generalized partially linear single-index models are assumed in Kane,
Holt and Allen (2004). Here a sample size of 700 is used for the case d = 10 and
3,000 is used for d = 50. Different sample sizes from Example 1 are used due to
varying complexity of the two examples. For this example, 250 replications are
simulated and the results are displayed in Table 2. In this set of simulations, the
average estimation errors from rMAVE estimates and EDR estimates are about 1.5
and 1.2 times as large as EFM estimates, under both Design (C) and Design (D)
for d = 10 or d = 50. The values in the row marked by d = 50 look a little bigger.
However, it is reasonable because the number of summands in the average estimate
error for d = 50 is five times as large as that for d = 10. Again it appears that the
EFM procedure achieves more precise estimators.

EXAMPLE 3 (A simple model). To illustrate the adaptivity of our algorithm to
high dimension, we consider the following simple single-index model:

Y = (β⊤X)2 + ε.(3.5)

The true parameter is β = (2,1,0, . . . ,0)⊤/
√

5; X is generated from Nd(2, I).
Both homogeneous errors and heterogeneous ones are considered. In the for-
mer case, ε ∼ N(0,0.22) and in the latter case, ε = exp(

√
5β⊤X/14)̃ε with

ε̃ ∼ N(0,1). The latter case is designed to show whether our method can han-
dle heteroscedasticity. A similar modeling setup was also used in Wang and Xia
(2008), Example 5. The simulated results given in Table 3 are based on 250 repli-
cates with a sample of n = 100 observations. An important observation from this
simulation is that the proposed EFM approach still works even when the dimen-
sion of the parameter is equal to or slightly larger than the number of observations.
It can be seen from Table 3 that our approach also performs well under the het-
eroscedasticity setup.

EXAMPLE 4 (An oscillating function model). A single-index model is de-
signed as

Y = sin(aβ⊤X) + ε,(3.6)
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TABLE 3
Average estimation errors

∑d
s=1 |β̂s − βs | for model (3.5)

ε d = 10 d = 50 d = 100 d = 120

rMAVE 0.0318 0.3484 — —
ε ∼ N(0,0.22) EDR 0.0363 0.5020 — —

EFM 0.0272 0.2302 2.9409 5.0010

rMAVE 0.3427 4.6190 — —

ε ∼ N(0, exp(
2X1+X2

7 )) EDR 0.2542 2.1112 — —
EFM 0.2201 1.7937 4.1435 6.4973

— means that the values cannot be calculated by rMAVE and EDR because of high dimension.

where β = (2,1,0, . . . ,0)⊤/
√

5, X is generated from Nd(2, I) and ε ∼ N(0,0.22).
The number of replications is 250 and the sample size n = 400. The simulation re-
sults are shown in Table 4. In these chosen values for a, we see that EFM performs
better than rMAVE and EDR. But as is understood, more oscillating functions are
more difficult to handle than those less oscillating functions.

EXAMPLE 5 (Comparison of variance). To make our simulation results com-
parable with those of Carroll et al. (1997), we mimic their simulation setup. Data
of size 200 are generated according to the following model:

Yi = sin{π(β⊤Xi − A)/(B − A)} + αZi + εi,(3.7)

where Xi are trivariate with independent U(0,1) components, Zi are independent
of Xi and Zi = 0 are for i odd and Zi = 1 for i even, and εi follow a normal
distribution N(0,0.01) independent of both Xi and Zi . The parameters are taken
to be β = (1,1,1)⊤/

√
3, α = 0.3, A =

√
3/2 − 1.645/

√
12 and B =

√
3/2 +

1.645/
√

12. Note that the EFM approach can still be applicable for this model as
the conditionally centered response Y given Z has the model as, because of the
independence between X and Z,

Yi − E(Yi |Zi) = a + sin{π(β⊤Xi − A)/(B − A)} + εi .

TABLE 4
Average estimation errors

∑d
s=1 |β̂s − βs | for model (3.6)

a = π/2 a = 3π/4

d rMAVE EDR EFM rMAVE EDR EFM

10 0.0981 0.0918 0.0737 0.0970 0.0745 0.0725
50 0.5247 0.6934 0.4355 0.6350 1.8484 0.5407
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TABLE 5
Estimation for β of model (3.7) based on two randomly chosen samples

One group of sample Another group of sample

X1 X2 X3 X1 X2 X3

GPLSIM est. 0.595∗ 0.568∗ 0.569∗ 0.563∗ 0.574∗ 0.595∗
GPLSIM s.e. 0.013∗ 0.013∗ 0.013∗ 0.010∗ 0.010∗ 0.010∗
EFM est. 0.579 0.575 0.577 0.573 0.577 0.580
EFM s.e. 0.011 0.011 0.011 0.010 0.010 0.010

∗The values are adopted from Carroll et al. (1997). We abbreviate “estimator” to “est.” and “standard
error” to “s.e.,” which are computed from the sample version of �

β̂
defined in (2.10).

As Zi are dummy variables, estimating E(Yi |Zi) is simple. Thus, when we regard
Yi −E(Yi |Zi) as response, the model is still a single-index model. Here the number
of replications is 100. The method derived from Carroll et al. (1997) is referred to
be the GLPSIM approach. The numerical results are reported in Table 5. It shows
that compared with the GPLSIM estimates, the EFM estimates have smaller bias
and smaller (or equal) variance. Also in this example both EFM and GPLSIM can
provide reasonably accurate estimates.

Performance of profile quasi-likelihood ratio test. To illustrate how the profile
quasi-likelihood ratio performs for linear hypothesis problems, we simulate the
same data as above, except that we allow some components of the index to follow
the null hypothesis:

H0 :β4 = β5 = · · · = βd = 0.

We examine the power of the test under a sequence of the alternative hypotheses
indexed by parameter δ as follows:

H1 :β4 = δ, βs = 0 for s ≥ 5.

When δ = 0, the alternative hypothesis becomes the null hypothesis.
We examine the profile quasi-likelihood ratio test under a sequence of alter-

native models, progressively deviating from the null hypothesis, namely, as δ in-
creases. The power functions are calculated at the significance level: 0.05, us-
ing the asymptotic distribution. We calculate test statistics from 250 simulations
by employing the fixed-point algorithm and find the percentage of test statistics
greater than or equal to the associated quantile of the asymptotic distribution. The
pictures in Figures 1, 2 and 3 illustrate the power function curves for two mod-
els under the given significance levels. The power curves increase rapidly with δ,
which shows the profile quasi-likelihood ratio test is powerful. When δ is close
to 0, the test sizes are all approximately the significance levels.
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FIG. 1. Simulation results for Design (A) in Example 1. The left graphs depict the case τ = 1.5
with τ the first parameter in Beta(τ,1). The right graphs are for τ = 0.75.

FIG. 2. Simulation results for Design (B) in Example 1. The left graphs depict the case τ = 1.5
with τ the first parameter in Beta(τ,1). The right graphs are for τ = 0.75.

FIG. 3. Simulation results for Example 2. The left graphs depict the case of Design (C) with pa-

rameter dimension being 10 and 50. The right graphs are for Design (D).
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3.3. A real data example. Income, to some extent, is considered as an index
of a successful life. It is generally believed that demographic information, such as
education level, relationship in the household, marital status, the fertility rate and
gender, among others, has effects on amounts of income. For example, Murray
(1997) illustrated that adults with higher intelligence have higher income. Kohavi
(1996) predicted income using a Bayesian classifier offered by a machine learn-
ing algorithm. Madalozzo (2008) examined income differentials between married
women and those who remain single or cohabit by using multivariate linear regres-
sion. Here we will use the single-index model to explore the relationship between
income and some of its possible determinants.

We use the “Adult” database, which was extracted from the Census Bureau
database and is available on website: http://archive.ics.uci.edu/ml/datasets/Adult.
It was originally used to model income exceeds over USD 50,000/year based on
census data. The purpose of using this example is to understand the personal in-
come patterns and demonstrate the performance of the EFM method in real data
analysis. After excluding a few missing data, the data set in our study includes
30,162 subjects. The selected explanatory variables are:

• sex (categorical): 1 = Male, 0 = Female.
• native-country (categorical): 1 = United-States, 0 = others.
• work-class (categorical): 1 = Federal-gov, 2 = Local-gov, 3 = Private, 4 = Self-

emp-inc (self-employed, incorporated), 5 = Self-emp-not-inc (self-employed,
not incorporated), 6 = State-gov.

• marital-status (categorical): 1 = Divorced, 2 = Married-AF-spouse (married,
armed forces spouse present), 3 = Married-civ-spouse (married, civilian spouse
present), 4 = Married-spouse-absent [married, spouse absent (exc. separated)],
5 = Never-married, 6 = Separated, 7 = Widowed.

• occupation (categorical): 1 = Adm-clerical (administrative support and cler-
ical), 2 = Armed-Forces, 3 = Craft-repair, 4 = Exec-managerial (executive-
managerial), 5 = Farming-fishing, 6 = Handlers-cleaners, 7 = Machine-op-
inspct (machine operator inspection), 8 = Other-service, 9 = Priv-house-serv
(private household services), 10 = Prof-specialty (professional specialty), 11 =
Protective-serv, 12 = Sales, 13 = Tech-support, 14 = Transport-moving.

• relationship (categorical): 1 = Husband, 2 = Not-in-family, 3 = Other-relative,
4 = Own-child, 5 = Unmarried, 6 = Wife.

• race (categorical): 1 = Amer-Indian-Eskimo, 2 = Asian-Pac-Islander, 3 =
Black, 4 = Other, 5 = White.

• age (integer): number of years of age and greater than or equal to 17.
• fnlwgt (continuous): The final sampling weights on the CPS files are controlled

to independent estimates of the civilian noninstitutional population of the United
States.

• education (ordinal): 1 = Preschool (less than 1st Grade), 2 = 1st–4th, 3 = 5th–
6th, 4 = 7th–8th, 5 = 9th, 6 = 10th, 7 = 11th, 8 = 12th (12th Grade no

http://archive.ics.uci.edu/ml/datasets/Adult
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Diploma), 9 = HS-grad (high school Grad-Diploma or Equiv), 10 = Some-
college (some college but no degree), 11 = Assoc-voc (associate degree-
occupational/vocational), 12 = Assoc-acdm (associate degree-academic pro-
gram), 13 = Bachelors, 14 = Masters, 15 = Prof-school (professional school),
16 = Doctorate.

• education-num (continuous): Number of years of education.
• capital-gain (continuous): A profit that results from investments into a capital

asset.
• capital-loss (continuous): A loss that results from investments into a capital as-

set.
• hours-per-week (continuous): Usual number of hours worked per week.

Note that all the explanatory variables up to “age” are categorical with more
than two categories. As such, we use dummy variables to link up the correspond-
ing categories. Specifically, for every original explanatory variable up to “age,” we
use dummy variables to indicate it in which the number of dummy variables is
equal to the number of categories minus one. By doing so, we then have 41 ex-
planatory variables, where the first 35 ones are dummy and the remaining ones are
continuous. After a preliminary data check, we find that the explanatory variables
X37 = “fnlwgt,” X39 = “capital-gain” and X40 = “capital-loss” are very skewed
to the left and the latter two often take zero value. Before fitting (3.8) we first
make a logarithm transformation for these three variables to have log(“fnlwgt”),
log(1 + “capital-gain”) and log(1 + “capital-loss”). To make the explanatory vari-
ables comparable in scale, we standardize each of them individually to obtain mean
0 and variance 1. Since “education” and “education-num” are correlated, “edu-
cation” is dropped from the model and it results in a significantly smaller mean
residual deviance.

The single-index model will be used to model the relationship between income
and the relevant 43 predictors X = (X1, . . . ,X43)

⊤:

P(“income” > 50,000|X) = exp{g(β⊤X)}/[1 + exp{g(β⊤X)}],(3.8)

where Y = I (“income” > 50,000) and β = (β1, . . . , β43)
⊤ and βs represents the

effect of the sth predictor. Formally, we are testing the effect of gender, that is,

H0 :β1 = 0 ←→ H1 :β1 
= 0.(3.9)

The fixed-point iterative algorithm is employed to compute the estimate for β .
To illustrate further the practical implications of this approach, we compare our
results to those obtained by using an ordinary logistic regression (LR). The coef-
ficients of the two models are given in Table 6. To make the analyses presented in
the table comparable, we consider two standardizations. First, we standardize ev-
ery explanatory variable with mean 0 and variance 1 so that the coefficients can be
used to compare the relative influence from different explanatory variables. How-
ever, such a standardization does not allow us to compare between the single-index
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TABLE 6
Fitted coefficients for model (3.8) (estimated standard errors in parentheses)

Variables β̂ of SIM β̂ of LR

Sex 0.1102 (0.0028) 0.1975 (0.0181)

Native-country 0.0412 (0.0027) 0.0354 (0.0116)

Work-class
Federal-gov 0.1237 (0.0059) 0.0739 (0.0108)

Local-gov 0.2044 (0.0065) 0.0155 (0.0135)

Private −0.2603 (0.0075) 0.0775 (0.0200)

Self-em-inc 0.1252 (0.0068) 0.0520 (0.0112)

Self-emp-not-inc 0.1449 (0.0066) −0.0157 (0.0147)

Marital-Status
Divorced −0.0353 (0.0061) −0.0304 (0.0264)

Married-AF-spouse 0.0195 (0.0036) 0.0333 (0.0079)

Married-civ-spouse 0.3257 (0.0150) 0.4545 (0.0754)

Married-spouse-absent −0.0115 (0.0029) −0.0095 (0.0146)

Never-married −0.1876 (0.0085) −0.1452 (0.0370)

Separated −0.0412 (0.0050) −0.0221 (0.0179)

Occupation
Adm-clerical −0.0302 (0.0050) 0.0131 (0.0164)

Armed-Forces −0.0086 (0.0031) −0.0091 (0.0131)

Craft-repair −0.0913 (0.0050) 0.0263 (0.0146)

Exec-managerial 0.1813 (0.0061) 0.1554 (0.0148)

Farming-fishing −0.0370 (0.0036) −0.0772 (0.0125)

Handlers-cleaners −0.0947 (0.0033) −0.0662 (0.0153)

Machine-op-inspct −0.1067 (0.0038) −0.0290 (0.0133)

Other-service −0.1227 (0.0045) −0.1192 (0.0195)

Priv-house-serv −0.0501 (0.0020) −0.0833 (0.0379)

Prof-specialty 0.2502 (0.0065) 0.1153 (0.0160)

Protective-serv 0.1954 (0.0061) 0.0508 (0.0095)

Sales 0.0316 (0.0050) 0.0615 (0.0147)

Tech-support 0.0181 (0.0037) 0.0619 (0.0102)

Relationship
Husband −0.1249 (0.0093) −0.3264 (0.0254)

Not-in-family −0.0932 (0.0093) −0.2074 (0.0612)

Other-relative −0.0958 (0.0038) −0.1498 (0.0219)

Own-child −0.2218 (0.0076) −0.3769 (0.0498)

Unmarried −0.1124 (0.0067) −0.1739 (0.0446)

Race
Amer-Indian-Eskimo −0.0252 (0.0024) −0.0226 (0.0109)

Asian-Pac-Islander 0.0114 (0.0030) 0.0062 (0.0101)

Black −0.0300 (0.0024) −0.0182 (0.0111)

Other −0.0335 (0.0021) −0.0286 (0.0129)
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TABLE 6
(Continued)

Variables β̂ of SIM β̂ of LR

Age 0.2272 (0.0042) 0.1798 (0.0111)

Fnlwgt 0.0099 (0.0028) 0.0414 (0.0092)

Education-num 0.4485 (0.0045) 0.3732 (0.0122)

Capital-gain 0.2859 (0.0055) 0.2582 (0.0084)

Capital-loss 0.1401 (0.0042) 0.1210 (0.0078)

Hours-per-week 0.2097 (0.0035) 0.1823 (0.0101)

model and the ordinary logistic regression model. We then further normalize the
coefficients to be with Euclidean norm 1, and then the estimates of their standard
errors are also adjusted accordingly. The single-index model provides more reason-
able results: X38 = “education-num” has its strongest positive effect on income;
those who got a bachelor’s degree or higher seem to have much higher income
than those with lower education level. In contrast, results derived from a logistic
regression show that “married-civ-spouse” is the largest positive contributor.

Some other interesting conclusions could be obtained by looking at the output.
Both “sex” and “native-country” have a positive effect. Persons who worked with-
out pay in a family business, unpaid childcare and others earn a lower income
than persons who worked for wages or for themselves. The “fnlwgt” attribute
has a positive relation to income. Males are likely to make much more money
than females. The expected sign for marital status except the married (married-
AF-spouse, married-civ-spouse) is negative, given that the household production
theory affirms that division of work is efficient when each member of a family
dedicates his or her time to the more productive job. Men usually receive relatively
better compensation for their time in the labor market than in home production.
Thus, the expectation is that married women dedicate more time to home tasks
and less to the labor market, and this would imply a different probability of work-
ing given the marital status choice.

Also “race” influences the income and Asian or Pacific Islanders seem to make
more money than other races. And also, one’s income significantly increases as
working hours increase. Both “capital-gain” and “capital-loss” have positive ef-
fects, so we think that people make more money who can use more money to in-
vest. The presence of young children has a negative influence on the income. “age”
accounts for the experience effect and has a positive effect. Hence the conclusion
based on the single-index model is consistent with what we expect.

To help with interpretation of the model, plots of β⊤X versus predicted re-
sponse probability and ĝ(β⊤X) are generated, respectively, and can be found on
the right column in Figure 4. When the estimated single-index is greater than 0,
ĝ(β̂X) shows some degree of curvature. An alternative choice is to fit the data
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FIG. 4. Adult data: The left graph is a plot of predicted response probability based on the single-in-

dex model. The right graph is the fitted curve for the unknown link function g(·).

using generalized partially linear additive models (GPLAM) with nonparametric
components of continuous explanatory variables. The relationships among “age,”
“fnlwgt,” “capital-gain,” “capital-loss” and “hours-per-week” all show nonlinear-
ity. The mean residual deviances of SIM, LR and GPLAM are 0.7811, 0.6747 and
0.6240, respectively. SIM under study provides a slightly worse fit than the others.
However, we note that LR is, up to a link function, linear about X, and, according
to the results of GPLAM, which is a more general model than LR, the actual rela-
tionship cannot have such a structure. SIM can reveal nonlinear structure. On the
other hand, although the minimum mean residual deviance can be not surprisingly
attained by GPLAM, this model has, respectively, ≈ 34 and 41 more degrees of
freedom than SIM and LR have.

We now employ the quasi-likelihood ratio test to the test problem (3.9). The
QLR test statistic is 166.52 with one degree of freedom, resulting in a P -value of
< 10−5. Hence this result provides strong evidence that gender has a significant
influence on high income.

The Adult data set used in this paper is a rich data set. Existing work mainly
focused on the prediction accuracy based on machine learning methods. We make
an attempt to explore the semiparametric regression pattern suitable for the data.
Model specification and variable selection merit further study.

APPENDIX: OUTLINE OF PROOFS

We first introduce some regularity conditions.
Regularity Conditions:

(a) μ(·),V (·), g(·),h(·) = E(X|β⊤X = ·) have two bounded and continuous
derivatives. V (·) is uniformly bounded and bounded away from 0.

(b) Let q(z, y) = μ′(z)V −1(z){y −μ(z)}. Assume that ∂q(z, y)/∂z < 0 for z ∈ R

and y in the range of the response variable.
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(c) The largest eigenvalue of �22 is bounded away from infinity.
(d) The density function fβ⊤x(β

⊤x) of random variable β⊤X is bounded away
from 0 on Tβ and satisfies the Lipschitz condition of order 1 on Tβ , where
Tβ = {β⊤x : x ∈ T } and T is a compact support set of X.

(e) Let Q∗[β] =
∫

Q[μ{g(β⊤x)}, y]f (y|β0⊤x)f (β0⊤x) dy d(β0⊤x) with β0 de-
noting the true parameter value and Q[μ,y] =

∫ y
μ

s−y

V {μ−1(s)} ds. Assume that

Q∗[β] has a unique maximum at β = β0, and

E
[
sup
β(1)

sup
β⊤X

|μ′{g(β⊤X)}V −1{g(β⊤X)}[Y − μ{g(β⊤X)}]|2
]
< ∞

and E‖X‖2 < ∞.
(f) The kernel K is a bounded and symmetric density function with a bounded

derivative, and satisfies
∫ ∞

−∞
t2K(t) dt 
= 0 and

∫ ∞

−∞
|t |jK(t) dt < ∞, j = 1,2, . . . .

Condition (a) is some mild smoothness conditions on the involved functions
of the model. We impose condition (b) to guarantee that the solutions of (2.1),
ĝ(t) and ĝ′(t), lie in a compact set. Condition (c) implies that the second mo-
ment of estimating equation (2.7), tr(J⊤�J), is bounded. Then the CLT can be
applied to G(β). Condition (d) means that X may have discrete components and
the density function of β⊤X is positive, which ensures that the denominators in-
volved in the nonparametric estimators, with high probability, are bounded away
from 0. The uniqueness condition in condition (e) can be checked in the following
case for example. Assume that Y is a Poisson variable with mean μ{g(β⊤x)} =
exp{g(β⊤x)}. The maximizer β0 of Q∗[β] is equal to the solution of the equation
E[E{[exp{g(β0⊤X)} − exp{g(β⊤X)}]g′(β⊤X)}J⊤X|β0⊤X}] = 0. β0 is unique
when g′(·) is not a zero-valued constant function and the matrix J⊤E(XX⊤)J is
not singular. Under the second part of condition (e), it is permissible to interchange
differentiation and integration when differentiating E[Q[μ{g(β⊤X)}, Y ]]. Condi-
tion (f) is a commonly used smoothness condition, including the Gaussian kernel
and the quadratic kernel. All of the conditions can be relaxed at the expense of
longer proofs.

Throughout the Appendix, Zn = OP (an) denotes that a−1
n Zn is bounded in

probability and the derivation for the order of Zn is based on the fact that

Zn = OP {
√

E(Z2
n)}. Therefore, it allows to apply the Cauchy–Schwarz inequal-

ity to the quantity having stochastic order an.

A.1. Proof of Proposition 1. We outline the proof here, while the details are
given in the supplementary materials [Cui, Härdle and Zhu (2010)].
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(i) Conditions (a), (b), (d) and (f) are essentially equivalent conditions given
by Carroll, Ruppert and Welsh (1998), and as a consequence the derivation of bias
and variance for ĝ(β⊤x) and ĝ′(β⊤x) is similar to that of Carroll, Ruppert and
Welsh (1998).

(ii) The first equation of (2.1) is

0 =
n∑

j=1

Kh(β
⊤Xj − β⊤x)μ′{α̂0 + α̂1(β

⊤Xj − β⊤x)}

× V −1{α̂0 + α̂1(β
⊤Xj − β⊤x)}[Yj − μ{α̂0 + α̂1(β

⊤Xj − β⊤x)}].

Taking derivatives with respect to β(1) on both sides, direct observations lead to

∂α̂0

∂β(1)
= {B(β⊤x)}−1{A1(β

⊤x) + A2(β
⊤x) + A3(β

⊤x)},

where

B(β⊤x) = −
n∑

j=1

Kh(β
⊤Xj − β⊤x)q ′

z{α̂0 + α̂1(β
⊤Xj − β⊤x), Yj },

A1(β
⊤x) =

n∑

j=1

Kh(β
⊤Xj − β⊤x)J⊤(Xj − x)q ′

z{α̂0 + α̂1(β
⊤Xj − β⊤x), Yj }α̂1,

A2(β
⊤x) =

n∑

j=1

Kh(β
⊤Xj − β⊤x)q ′

z{α̂0 + α̂1(β
⊤Xj − β⊤x), Yj }

× (β⊤Xj − β⊤x)
∂α̂1

∂β(1)
,

A3(β
⊤x) =

n∑

j=1

h−1K ′
h(β

⊤Xj − β⊤x)J⊤(Xj − x)q{α̂0 + α̂1(β
⊤Xj − β⊤x), Yj }

with K ′
h(·) = h−1K ′(·/h). Note that ∂α̂0/∂β(1) = ∂ĝ(β⊤x)/∂β(1); then we have

∂ĝ(β⊤x)

∂β(1)
= {B(β⊤x)}−1A1(β

⊤x)

(A.1)
+ {B(β⊤x)}−1A2(β

⊤x) + {B(β⊤x)}−1A3(β
⊤x).

We will prove that

E‖{B(β⊤x)}−1A1(β
⊤x) − g′(β⊤x)J⊤{x − h(β⊤x)}‖2

(A.2)
= OP (h4 + n−1h−3),

the second term in (A.1) is of order OP (h4 + n−1h), and the third term is of order
OP (h4 + n−1h−3). The combination of (A.1) and these three results can directly
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lead to result (ii) of Proposition 1. The detailed proof is summarized in three steps
and is given in the supplementary materials [Cui, Härdle and Zhu (2010)].

(iii) By mimicking the proof of (ii), we can show that (iii) holds. See supple-
mentary materials for details.

A.2. Proofs of (2.6) and (2.7). It is proved in the supplementary materials
[Cui, Härdle and Zhu (2010)].

A.3. Proof of Theorem 2.1. (i) Note that the estimating equation defined in
(2.6) is just the gradient of the following quasi-likelihood:

Q̂(β) =
n∑

i=1

Q[μ{ĝ(β⊤Xi)}, Yi]

with Q[μ,y] =
∫ μ y−s

V {μ−1(s)} ds and μ−1(·) is the inverse function of μ(·). Then

for β(1) satisfying (

√
1 − ‖β(1)‖2,β(1)⊤)⊤ ∈ �, we have

β̂(1) = arg max
β(1)

Q̂(β).

The proof is based on Theorem 5.1 in Ichimura (1993). In that theorem the consis-
tency of β(1) is proved by means of proving that

sup
β(1)

∣∣∣∣∣
1

n

n∑

i=1

Q[μ{ĝ(β⊤Xi)}, Yi] − 1

n

n∑

i=1

Q[μ{g(β⊤Xi)}, Yi]
∣∣∣∣∣= OP (1),(A.3)

sup
β(1)

∣∣∣∣∣
1

n

n∑

i=1

Q[μ{g(β⊤Xi)}, Yi] − 1

n

n∑

i=1

E[Q[μ{g(β⊤Xi)}, Yi]]
∣∣∣∣∣= OP (1)(A.4)

and ∣∣∣∣∣
1

n

n∑

i=1

Q[μ{ĝ(β⊤
0 Xi)}, Yi] − 1

n

n∑

i=1

E[Q[μ{g(β⊤
0 Xi)}, Yi]]

∣∣∣∣∣= OP (1).(A.5)

Regarding the validity of (A.5), this directly follows from (A.3) and (A.4). The
type of uniform convergence result such as (A.4) has been well established in the
literature; see, for example, Andrews (1987). We now verify the validity of (A.3),
which reduces to showing the uniform convergence of the estimator ĝ(t) under
condition (e) [see Ichimura (1993)]. This can be obtained in a similar way as in
Kong, Linton and Xia (2010), taking into account that the regularity conditions
imposed in Theorem 2.1 are stronger than the corresponding ones in that paper.

(ii) Recall the notation J,� and G(β) introduced in Section 2. By (2.7), we
have shown that

√
n
(
β̂(1) − β(1)0)= 1√

n
{J⊤�J}+G(β) + OP (1).(A.6)

Theorem 2.1 follows directly from the above asymptotic expansion and the fact
that E{G(β)G⊤(β)} = nJ⊤�J. �
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A.4. Proof of Corollary 1. The asymptotic covariance of β̂ can be obtained
by adjusting the asymptotic covariance of β̂(1) via the multivariate delta method,
and is of form J(J⊤�J)+J⊤. Next we will compare this asymptotic covariance
with that (denoted by �+) given in Carroll et al. (1997). Write � as

� =
(

�11 �12

�21 �22

)
,

where �22 is a (d −1)×(d −1) matrix. We will next investigate two cases, respec-

tively: det(�22) 
= 0 and det(�22) = 0. Let α = −β(1)/

√
1 − ‖β(1)‖2 = −β(1)/β1.

Consider the case that det(�22) 
= 0. Because rank(�) = d − 1, det(�11�22 −
�21�12) = 0. Note that �22 is nondegenerate; it can be easily shown that �11 =
�12�

−1
22 �21. Combining this with the following fact:

J⊤�J = (α Id−1 )

(
�11 �12

�21 �22

)(
ατ

Id−1

)

= �22 +
(
�21/

√
�11 +

√
�11α

)(
�12/

√
�11 +

√
�11α

⊤)− �21�12/�11,

we can get that J⊤�J is nondegenerate. In this situation, its inverse (J⊤�J)+ is
just the ordinary inverse (J⊤�J)−1. Then J(J⊤�J)+J⊤ = {J(J⊤�J)−1/2}{(J⊤ ×
�J)−1/2J⊤}, a full-rank decomposition. Then

{J(J⊤�J)+J⊤}+ = {J(J⊤�J)−1/2}
× {(J⊤�J)−1/2J⊤J(J⊤�J)−1J⊤J(J⊤�J)−1/2}−1

× {(J⊤�J)−1/2J⊤}
= J(J⊤J)−1J⊤�J(J⊤J)−1J⊤

= �.

This means that J(J⊤�J)+J⊤ = �+.
When det(�22) = 0, we can obtain that

�+ =
(

1/�11 + �12�
+
22.1�21/�

2
11 −�12�

+
22.1/�11

−�+
22.1�21/�11 �+

22.1

)

with �22.1 = �22 − �21�12/�11. Write J(J⊤�J)+J⊤ as
(

α⊤(J⊤�J)+α α⊤(J⊤�J)+

(J⊤�J)+α (J⊤�J)+

)
.

Note that J⊤�J = �22.1 + (�21/
√

�11 +
√

�11α)(�12/
√

�11 +
√

�11α
⊤), so

J⊤�J ≥ �22.1. Combining this with rank(�22) = d − 2, we have that (J⊤�J)+ ≤
�+

22.1. It is easy to check that α⊤�22.1 = 0, so α ⊥ span(�22.1) and α⊤�+
22.1α = 0,

and then α⊤(J⊤�J)+ = 0. In this situation, J(J⊤�J)+J⊤ ≤ �+ and the stick less-
than sign holds since J⊤�J 
= �22.1 and 1/�11 > 0. �
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A.5. Proof of Theorem 2.2. Under H0, we can rewrite the index vector as

β = [e B]⊤(

√
1 − ‖ω(1)‖2,ω(1)τ )⊤ where e = (1,0, . . . ,0)⊤ is an r-dimensional

vector,

B =
(

0⊤ 0
Ir−1 0

)

is an r × (d − 1) matrix and ω(1) = (β2, . . . , βr)
⊤ is an (r − 1)× 1 vector. Let ω =

(

√
1 − ‖ω(1)‖2,ω(1)⊤)⊤. So under H0 the estimator is also the local maximizer ω̂

of the problem

Q̂([ e B ]⊤ω̂) = sup
‖ω(1)‖<1

Q̂([ e B ]⊤ω).

Expanding Q̂(B⊤ω̂) at β̂(1) by a Taylor’s expansion and noting that ∂Q̂(β)/

∂β(1)|
β(1)=β̂(1) = 0, then Q̂(β̂) − Q̂(B⊤ω̂) = T1 + T2 + OP (1), where

T1 = −1

2

(
β̂(1) − B⊤ω̂

)⊤ ∂2Q̂(β)

∂β(1)∂β(1)τ

∣∣∣∣
β(1)=β̂(1)

(
β̂(1) − B⊤ω̂

)
,

T2 = 1

6

(
β̂(1) − B⊤ω̂

)⊤

×
∂{(β̂(1) − B⊤ω̂)⊤∂2Q̂(β)/(∂β(1) ∂β(1)τ )|

β(1)=β̂(1)(β̂
(1) − B⊤ω̂)}

∂β(1)
.

Assuming the conditions in Theorem 2.1 and under the null hypothesis H0, it is
easy to show that

√
n(B⊤ω̂ − B⊤ω) = 1√

n
B⊤B(J⊤�J)+G(β) + OP (1).

Combining this with (A.6), under the null hypothesis H0,
√

n
(
β̂(1) − B⊤ω̂(1))

= 1√
n
(J⊤�J)1/2+{Id−1 − (J⊤�J)1/2B⊤B(J⊤�J)1/2+}(A.7)

× (J⊤�J)1/2+G(β) + oP (1).

Since 1√
n

G(β) = OP (1), ∂2Q̂(β)

∂β(1) ∂β(1)τ |β(1) = −nJ⊤�J + OP (n) and matrix J⊤�J

has eigenvalues uniformly bounded away from 0 and infinity, we have ‖β̂(1) −
B⊤ω̂(1)‖ = OP (n−1/2) and then |T2| = OP (1). Combining this and (A.7), we have

Q̂(β̂) − Q̂(B⊤ω̂) = n

2

(
β̂(1) − B⊤ω̂(1))⊤J⊤�J

(
β̂(1) − B⊤ω̂

(1))

= n

2
G⊤(β)(J⊤�J)1/2+P(J⊤�J)1/2+G(β)
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with P = Id−1 − (J⊤�J)1/2B⊤B(J⊤�J)1/2+. Here P is idempotent having rank
d − r , so it can be written as P = S⊤S where S ia a (d − r) × (d − 1) matrix
satisfying SS⊤ = Id−r . Consequently,

2{Q̂(β̂) − Q̂(B⊤ω̂)} =
(√

nS(J⊤�J)1/2+G(β)
)⊤(√

nS(J⊤�J)1/2+G(β)
)

L−→ χ2(d − r).
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SUPPLEMENTARY MATERIAL

Supplementary materials (DOI: 10.1214/10-AOS871SUPP; .pdf). Complete
proofs of Proposition 1, (2.6) and (2.7).
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