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Abstract

The Euler-Lagrange equation of the nonlinear Rayleigh quotient

(∫
�

|∇u|p dx

) / (∫
�

|u|p dx

)

is

− div
(
|∇u|p−2∇u

)
= Λ

p
p |u|p−2u,

where Λ
p
p is the minimum value of the quotient. The limit as p → ∞ of these

equations is found to be

max

{
Λ∞ − |∇u(x)|

u(x)
, 1∞u(x)

}
= 0,

where the constant Λ∞ = limp→∞ Λp is the reciprocal of the maximum of the
distance to the boundary of the domain �.

§0. Introduction

Let � be a bounded domain in R
n. The minimum of the Rayleigh quotient

∫
�

|∇u|2 dx∫
�

|u|2 dx

among all functions with zero boundary values is the first eigenvalue of the Lapla-
cian in the domain �. This minimum value λ is achieved by the unique positive solu-
tion, up to multiplication by constants, of the Euler-Lagrange equation 1u+λu = 0
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with zero boundary values. Given a number p, 1 < p < ∞, consider minimizing
the nonquadratic Rayleigh quotient

∫
�

|∇u|p dx∫
�

|u|p dx
.

This problem leads to a nonlinear Euler-Lagrange equation, except in the case
p = 2. As expected, the cases p = 1 and p = ∞ present additional difficulties.
The objective of this paper is to study the limiting case p = ∞.

Formally, one has to minimize the ratio

‖∇u‖∞,�

‖u‖∞,�

= lim
p→∞

‖∇u‖p,�

‖u‖p,�

.

The minimum is the reciprocal of the radius of the largest possible ball inscribed
in the domain �. Unfortunately, this min-max problem has too many solutions.
In fact, outside the largest possible ball inscribed in the domain, one can modify a
solution rather freely without changing the ratio. A more careful limiting procedure
as p → ∞ is called for to identify the genuine ∞-eigenfunctions.

The correct Euler-Lagrange equation turns out to be

(0.1) max

{
Λ∞ − |∇u(x)|

u(x)
, 1∞u(x)

}
= 0.

That is, at each point x ∈ �, the larger of the two expressions is zero. Here

Λ∞ = 1

max{dist(x, ∂�) : x ∈ �} ,

and

1∞u(x) =
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj

is the so called ∞-Laplacian. A most peculiar feature is that the “principal fre-
quency” Λ∞ has such a simple geometric characterization. The presence of the
operator 1∞ is natural but, at first sight, the dichotomy of the equation is astonish-
ing.

The equation has to be properly interpreted in the viscosity sense. For example,
when � is a ball, the only solution is the distance function

δ(x) = distance(x, ∂�)

up to constant multiples. In this case, the distance function satisfies 1∞δ(x) = 0
and Λ∞ < |∇ log δ(x)| except at the center x0 of the ball. Indeed, at the center
Λ∞ = |∇ log δ(x0)| and 1∞δ(x0) < 0 in the viscosity sense. Notice that the
second derivatives needed to evaluate 1∞δ(x0) do not exist in the ordinary sense.
This illustrates the usefulness of viscosity solutions as weak solutions of nonlinear
partial differential equations.
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It is easy to see (Section 2 below) that the distance function always satisfies the
minimization problem. That is,

Λ∞ = ‖∇δ‖∞,�

‖δ‖∞,�

.

However, the distance is often not a genuine ∞-eigenfunction, since it is not a
solution of the Euler-Lagrange equation (0.1). This happens already when � is a
square or a parallelepiped. Moreover, this example shows that the solution is not
a concave function when � is convex, although its logarithm is, indeed, concave.
This follows from Sakaguchi’s generalization of the Brascamp-Lieb theorem; see
[S].

What about the existence of positive solutions to the equation

(0.2) max

{
Λ − |∇u(x)|

u(x)
, 1∞u(x)

}
= 0

for values of Λ other than Λ∞? It follows from an appropriate Harnack inequality
that Λ 5 Λ∞. If, in addition, the solution has zero boundary values, then Λ = Λ∞
indeed. This later result lies deeper, its proof being based on a uniqueness result
for the equation

max
{
Λ − |∇v|, 1∞v + |∇v|4

}
= 0

satisfied by v = log u, where u satisfies (0.2).
In Section 1 we present the relevant definitions and first results, and prove the

basic fact that limits of p-eigenfunctions are indeed viscosity solutions of (0.2).
Note that in order to use the terminology in [CIL] we consider equation (0.2) with a
minus sign in front. See equation (1.22) below. In Section 2 we present a proof of a
comparison principle for the logarithms of genuine ∞-eigenfunctions. This is our
main result; its proof is based on the construction of a new sensitive test function. An
application of this comparison principle is presented in Section 3, where we prove
that Λ∞ is the only “right” Λ. We finish by presenting some explicit computations
in the case of a square, which are discussed in Section 4.

§1. Definitions and First Results

For a bounded domain � in R
n, the distance function δ(x) = distance(x, ∂�)

is Lipschitz continuous, satisfies |∇δ(x)| = 1 for a.e. x ∈ �, and vanishes on the
boundary of �. Let φ be any other Lipschitz continuous function vanishing on ∂�.
Fix x ∈ � and choose y ∈ ∂� such that δ(x) = |x − y|. We have

|φ(x)| = |φ(x) − φ(y)| 5 ‖∇φ‖∞δ(x).

Therefore,

(1.1)
‖∇φ‖∞
|φ(x)| = ‖∇δ‖∞

|δ(x)|
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and we see that the distance function satisfies

(1.2) Λ∞ = ‖∇δ‖∞
‖δ‖∞

5 ‖∇φ‖∞
‖φ‖∞

,

for all φ ∈ W 1,∞(�) vanishing on ∂�. The constant Λ∞ = 1/‖δ‖∞ depends only
on the domain �, and for reasons that will be clear later on we think of Λ∞ as the
smallest ∞-eigenvalue of the domain �.

Consider the problem corresponding to (1.2) for finite p > 1:

(1.3) Λp = inf




(
1

|�|
∫
�

|∇φ(x)|p dx
)1/p

(
1

|�|
∫
�

|φ(x)|p dx
)1/p

: φ ∈ W
1,p

0 (�)


 .

There is a minimizer up ∈ W
1,p

0 (�), unique up to a multiplicative constant, that
satisfies the Euler equation

(1.4) − div
(
|∇up|p−2∇up

)
= Λ

p
p |up|p−2up.

It is well known that up > 0 in � so that we can replace the right-hand side of

(1.4) by u
p−1
p . References to these facts can be found in [L]. We normalize up by

requiring that ‖up‖p = 1, where ‖f ‖p = ( 1
|�|

∫
�

|f |p dx
)1/p. The name given to

Λ∞ is justified by the following lemma.

1.5. Lemma.
lim

p→∞ Λp = Λ∞.

Proof. Using δ(x) as a test function in (1.3) we get

Λp 5 1(
1

|�|
∫
�

|δ(x)|p dx
)1/p

,

which implies that
lim sup
p→∞

Λp 5 Λ∞.

Note that (
1

|�|
∫

�

|∇up(x)|p dx

)1/p

5 Λp

is uniformly bounded in p. Fix an exponent m > n. For p > m by Hölder’s
inequality we have

(
1

|�|
∫

�

|∇up(x)|m dx

)1/m

5 Λp.

We conclude that {up}p=m is uniformly bounded in W
1,m
0 (�). We can select a

subsequenceupi
that converges to a function denoted byu∞ weakly inW 1,m(�) and
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uniformly inCα(�) forα = 1−n/m. The limit functionu∞ is an∞-superharmonic
function as defined in [LM2], where it is also proved that nonnegative ∞-super-
harmonic functions satisfy an inequality of Harnack type that implies that u∞(x) >

0 for all x ∈ �. For q large enough, using the weak lower semicontinuity of the
Lq -norm and the fact that upi

converges to u∞ weakly also in W 1,q(�), we have
the inequality

‖∇u∞‖q

‖u∞‖q

5 lim inf
pi→∞

(
1

|�|
∫
�

|∇upi
(x)|q dx

)1/q

(
1

|�|
∫
�

|upi
(x)|q dx

)1/q
.

Multiplying and dividing this inequality by
(

1
|�|

∫
�

|upi
(x)|pi dx

)1/pi

and using

Hölder’s inequality we obtain

‖∇u∞‖q

‖u∞‖q

5 lim inf
pi→∞

(
Λpi

‖upi
‖∞

‖upi
‖q

)
.

We can take limits as pi → ∞ in the right-hand side to get

‖∇u∞‖q

‖u∞‖q

5
(

lim inf
pi→∞ Λpi

) ‖u∞‖∞
‖u∞‖q

for a fixed q. Letting q → ∞ and using the minimizing property (1.2) we have

Λ∞ 5 lim inf
pi→∞ Λpi

.

This is enough to conclude the lemma, since we can apply this process to any
subsequence of {up}. ut

1.6. Remark. As a matter of fact, the above proof shows that any such u∞ is extremal
for the problem (1.2), that is,

Λ∞ = ‖∇u∞‖∞
‖u∞‖∞

.

As we noted in the introduction, it is quite easy to find examples in which this
minimum is attained by more than one function.

Suppose for a moment that the up are smooth so that we can differentiate (1.4)
to get

(1.7) −[|∇up|p−21up + (p − 2)|∇up|p−41∞up

] = Λ
p
p |up|p−2up.

This equation is fully nonlinear and it makes sense to talk about viscosity subso-
lutions and supersolutions of it. The following lemma tells us that up is always a
viscosity solution of (1.7). This is a somewhat delicate lemma since it is not clear
that the comparison principle holds for equation (1.9) below.
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1.8. Lemma. A continuous weak (sub-)supersolution u ∈ W
1,p

loc (�) of the equation

(1.9) − div
(|∇u|p−2∇u

) = Λ
p
p |u|p−2u

is always a viscosity (sub-)supersolution of (1.7).

Before proving Lemma 1.8, let us recall the definition of viscosity (sub-)super-
solution in our case. Let z ∈ R

n, X ∈ R
n and S be a real symmetric matrix.

Consider the continuous function

Fp(z, X, S) = −[|X|p−2trace(S) + (p − 2)|X|p−4〈S · X, X〉] − Λ
p
p |z|p−2z.

Since we are interested in solutions of the partial differential equation

(1.10) Fp(u, ∇u, D2u) = 0

when p → ∞, we always assume that p is large enough.

1.11. Definition. An upper semicontinuous function u defined in � is a viscosity
subsolution of (1.10) if, whenever x0 ∈ � and φ ∈ C2(�) are such that

(a) u(x0) = φ(x0) and (b) u(x) < φ(x) if x |= x0, then

Fp

(
φ(x0), ∇φ(x0

)
, D2φ(x0)) 5 0.

1.12. Definition. A lower semicontinuous function u defined in � is a viscosity
supersolution of (1.10) if whenever x0 ∈ � and φ ∈ C2(�) are such that

(a) u(x0) = φ(x0) and (b) u(x) > φ(x) if x |= x0, then

Fp

(
φ(x0), ∇φ(x0), D

2φ(x0)
)

= 0.

Condition (b) in both definitions can be relaxed quite a bit. The strict inequality
is not really required and the condition only needs to hold in a neighborhood of
x0. We refer to [CIL] for the theory of viscosity solutions in general and to [Ju] for
viscosity solutions of operators related to the ∞-Laplacian.

Proof of Lemma 1.8. We present the details for the case of supersolutions. Fix
x0 ∈ � and φ ∈ C2(�) such that u(x0) = φ(x0) and u(x) > φ(x) for x |= x0. We
want to show that

−[|∇φ(x0)|p−21φ(x0) + (p − 2)|∇φ(x0)|p−41∞φ(x0)
]

−Λ
p
p |φ(x0)|p−2φ(x0) = 0.

Suppose that this is not the case. Then, by continuity there exists a small r > 0
such that, if |x − x0| < r , we have

−[|∇φ(x)|p−21φ(x) + (p − 2)|∇φ(x)|p−41∞φ(x)
]

< Λ
p
p |φ(x)|p−2φ(x).

Set m = inf{u(x)−φ(x) : |x −x0| = r} > 0 and write Φ = φ + 1
2m. The function

Φ satisfies Φ < u on ∂B(x0, r), Φ(x0) > u(x0) and

(1.13) − div
(|∇Φ(x)|p−2∇Φ(x)

)
< Λ

p
p |φ(x)|p−2φ(x).
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The function (Φ − u)+ extended as the zero function outside of the ball B(x0, r)

is a good test function for equation (1.9). Since we are assuming that u is a weak
supersolution, we get

(1.14)

∫
{Φ>u}

|∇u|p−2〈∇u, ∇(Φ − u)〉 dx = Λ
p
p

∫
{Φ>u}

|u|p−2u(Φ − u) dx.

Multiply both sides of (1.13) by (Φ − u)+ and integrate the product by parts to
obtain

(1.15)

∫
{Φ>u}

|∇Φ|p−2〈∇Φ, ∇(Φ − u)〉 dx < Λ
p
p

∫
{Φ>u}

|φ|p−2φ(Φ − u) dx.

Subtracting (1.14) from (1.15) we arrive at∫
{Φ>u}

〈|∇Φ|p−2∇Φ − |∇u|p−2∇u, ∇(Φ − u)〉 dx

< Λ
p
p

∫
{Φ>u}

(
|φ|p−2φ − |u|p−2u

)
(Φ − u) dx.

Since the left-hand side is bounded below by a positive constant, depending on p

and n, times ∫
{Φ>u}

|∇Φ − ∇u|p dx,

and the right-hand side is negative, we conclude that Φ 5 u in B(x0, r), contra-
dicting the fact that Φ(x0) > u(x0). ut

Next, we compute the limit of the Fp(z, X, S) as p → ∞ in the viscosity sense.
That is, we consider the sequence of viscosity solutions {up} and we would like
to find out what equation is satisfied by any cluster point of this sequence, which
we denote by u∞. Explicitly, we assume that for a subsequence pi → ∞ we have
limpi→∞ upi

= u∞ uniformly in �.
Fix a point x0 ∈ � and a function φ ∈ C2(�) such that u∞(x0) = φ(x0) and the

inequality u∞(x) > φ(x) holds for x |= x0. Also fix R > 0 so that B(x0, 2R) ⊂ �.
For 0 < r < R we certainly have

inf{u∞(x) − φ(x) : x ∈ B(x0, R) \ B(x0, r)} > 0.

Since upi
→ u∞ uniformly in the closure of B(x0, R), we conclude that for i = ir ,

inf{upi
(x) − φ(x) : x ∈ B(x0, R)} \ B(x0, r) > upi

(x0) − φ(x0).

Therefore, for such indices i, upi
− φ attains its minimum at a point xi ∈ B(x0, r),

and we see by letting r → 0 that xi → x0 as as i → ∞. For notational simplicity
we drop the subindices and write pi for pir and xi for xpir

. Since upi
is a viscosity

supersolution of (1.7) we get

(1.16)
− [|∇φ(xi)|pi−21φ(xi) + (pi − 2)|∇φ(xi)|pi−41∞φ(xi)

]
= Λ

pi
pi

|upi
(xi)|pi−2upi

(xi).
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Recall that u∞(x) > 0, and so upi
(xi) > 0 for large i, which itself implies that

|∇φ(xi)| |= 0 as follows from (1.16). Dividing by |∇φ(xi)|pi−4 and by pi − 2 we
arrive at

(1.17) −|∇φ(xi)|21φ(xi)

pi − 2
− 1∞φ(xi) =

(
Λpi

upi
(xi)

|∇φ(xi)|
)pi−4 Λ4

pi
upi

(xi)
3

pi − 2
.

Suppose that Λ∞φ(x0)|∇φ(x0)| > 1. Letting pi → ∞ we get a contradiction. Therefore we
must have

(1.18)
Λ∞φ(x0)

|∇φ(x0)| 5 1.

Since the right-hand side of (1.17) is nonnegative, letting pi → ∞ we see that

(1.19) −1∞φ(x0) = 0.

These two equations (1.18) and (1.19) can be combined into one by writing

(1.20) min
{|∇φ(x0)| − Λ∞φ(x0), −1∞φ(x0)

}
= 0.

We have established that u∞ is a viscosity supersolution of the equation

min
{|∇u| − Λ∞u, −1∞u

} = 0.

It is therefore natural to define

F∞(z, X, S) = min
{|X| − Λ∞z, −〈S · X, X〉}.

We can now state the main theorem of this section:

1.21. Theorem. A function u∞ obtained as a limit of a subsequence of {up} is a
viscosity solution of the equation

(1.22) F∞(u, ∇u, D2u) = min
{|∇u| − Λ∞u, −1∞u

} = 0.

Before finishing the proof of the theorem, note that

i) u∞ is ∞-superharmonic, since

−1∞u∞ = 0

in the viscosity sense, and

ii) |∇u∞| = Λ∞u∞ in the viscosity sense. Moreover, at least heuristically, if one
of these inequalities is strict, the other must be an equality.
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Proof. It remains to be proved that u∞ is a viscosity subsolution. The proof is
similar to the supersolution case but not symmetric. Fix a point x0 ∈ � and a
function φ ∈ C2(�) such that u∞(x0) = φ(x0) and the inequality u∞(x) < φ(x)

holds for x |= x0. We want to check that

min{|∇φ(x0)| − Λ∞φ(x0), −1∞φ(x0)} 5 0.

Observe that if ∇φ(x0) = 0, there is nothing to prove. As a matter of fact, we
may assume that |∇φ(x0)| − Λ∞φ(x0) > 0. We now repeat the procedure that we
followed in the supersolution case. The analogue of (1.16) is

− [|∇φ(xi)|pi−21φ(xi) + (pi − 2)|∇φ(xi)|pi−41∞φ(xi)
]

5 Λ
p
p |upi

(xi)|p−2upi
(xi),

and the analogue of (1.17) is

−|∇φ(xi)|21φ(xi)

pi − 2
− 1∞φ(xi) 5

(
Λpi

upi
(xi)

|∇φ(xi)|
)pi−4 Λ4

pi
upi

(xi)
3

pi − 2
.

Letting pi → ∞ we get −1∞φ(x0) 5 0. ut

§2. Comparison Principles

Consider again the equation (1.22):

F∞(u, ∇u, D2u) = min
{|∇u| − Λ∞u, −1∞u

} = 0.

Note that F∞(z, X, S) is decreasing in S and decreasing in z. In the language of
[CIL], the function F∞ is degenerate elliptic but it is not proper. Therefore, the
usual tools to prove uniqueness to solutions to a Dirichlet problem associated with
equation (1.22) do not apply. However, we know that every u∞ is strictly positive.
This suggests considering the equation that v∞ = log(u∞) satisfies.

2.1. Lemma. Let u be a nonnegative viscosity solution of (1.22) in �. Then v =
log(u) is a viscosity solution of the equation

(2.2) min
{|∇v| − Λ∞, −1∞v − |∇v|4} = 0

in �.

Proof. The lemma follows from a simple calculation. We provide the details in the
supersolution case. Let φ ∈ C2(�) such that v(x0) = φ(x0) and v(x) > φ(x) for
x |= x0. Write Φ(x) = eφ(x). Then Φ is a good test function for u at the point x0.
Therefore, we have

min
{|∇Φ(x0)| − Λ∞Φ(x0), −1∞Φ(x0)

}
= 0.

Writing this inequality in terms of φ we get

min
{
eφ(x0)

(|∇φ(x0)| − Λ∞
)
, −e3φ(x0)

(
1∞φ(x0) + |∇φ(x0)|4

)}
= 0,

from which the lemma follows easily. ut
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Since equation (2.2) is now proper, we can try to prove the comparison prin-
ciple for solutions of (2.2). Because the equation is degenerate elliptic, the usual
techniques of [CIL] need to be augmented. In the case of the ∞-harmonic equa-
tion 1∞u = 0 the comparison principle is given in Jensen [J]. A nice proof of
this comparison principle for the ∞-harmonic functions based on the “comparison
principle for semicontinuous functions” is due to Juutinen [Ju]. Equation (2.2) is
different on two counts. First, in the viscosity sense we have |∇v| = Λ∞, which
will make possible the uniqueness proof presented below and second, it contains
the term |∇v|4. The main result of this section is:

2.3. Theorem. Let � be a bounded domain, let u be a viscosity subsolution of (2.2)

in � and let v be viscosity supersolution of (2.2) in �. Suppose that both functions
are continuous in �. Then, the following comparison principle holds:

(2.4) sup
x∈�

(u(x) − v(x)) = sup
x∈∂�

(u(x) − v(x)) .

Proof. Without loss of generality we may assume that u and v are positive by adding
a large constant to both of them. We proceed by contradiction. Suppose that (2.4)
does not hold. Then, we must have

(2.5) sup
x∈�

(u(x) − v(x)) > sup
x∈∂�

(u(x) − v(x)) .

This inequality still holds if we replace v by a function w for which ‖v − w‖L∞(�)

is small enough. We construct a function w that is a strict supersolution of (2.2),
and then we apply the comparison for semicontinuous functions from [CIL].

2.6. Lemma. Let A > 1 and α > 1 be given. The function

f (t) = 1

α
log

(
1 + A(eαt − 1)

)

has the following properties:

(i) f (0) = 0, f ′(t) > 1 and f ′′(t) < 0 for all t = 0,

(ii) f is invertible,

(iii) f satisfies the differential inequality

1 − 1

f ′(t)
+ f ′′(t)

(f ′(t))2
< 0,

(iv) f is an approximation of the identity as A → 1+ in the sense that

0 < f (t) − t <
A − 1

α

for all t = 0.
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The proof of this lemma is elementary. Notice that f satisfies the differential
equation

1 − 1

f ′(t)
+ 1

α

f ′′(t)
(f ′(t))2

= 0

so that (iii) follows from the fact that 1 − 1/α > 0. Observe that if we write
fA(t) = 1

α
log

(
1 + A(eαt − 1)

)
, then for any positive A and B we have

fA ◦ fB = fAB.

In particular, f −1
A = fA−1 since AA−1 = 1 and f1 is the identity.

By taking A close enough to 1, we can guarantee that w = f (v) satisfies (2.5).
The equation for which w is a supersolution is obtained as follows. Let x0 ∈ � and
φ ∈ C2(�) be such that w(x0) = φ(x0) and w(x) = φ(x) for x |= x0. Set

Φ = f −1(φ), so that f (Φ) = φ.

Since f −1 is monotone, Φ is a good test function for v at the point x0. Since v is a
supersolution of (2.2), we have

(2.7) min
{|∇Φ(x0)| − Λ∞, −1∞Φ(x0) − |∇Φ(x0)|4

}
= 0.

Differentiating we obtain

∇Φ = 1

f ′(Φ)
∇φ,

D2Φ = 1

f ′(Φ)
D2φ − f ′′(Φ)

(f ′(Φ))3 (∇φ ⊗ ∇φ) .

From (2.7) we deduce that

(2.8) |∇Φ(x0)| − Λ∞ = 0

(2.9) −1∞Φ(x0) − |∇Φ(x0)|4 = 0.

From (2.8) it follows that

(2.10) |∇φ(x0)| = f ′(Φ(x0))Λ∞,

(2.11) |∇φ(x0)| − Λ∞ =
[
f ′(Φ(x0)) − 1

]
Λ∞.

We compute starting from (2.9). Omitting the point x0 for notational simplicity, we
obtain

−
〈(

1

f ′(Φ)
D2φ − f ′′(Φ)

(f ′(Φ))3 (∇φ ⊗ ∇φ)

)
1

f ′(Φ)
∇φ,

1

f ′(Φ)
∇φ

〉

− 1

f ′(Φ)4
|∇φ|4 = 0.



100 P. Juutinen, P. Lindqvist & J. J. Manfredi

After elementary manipulations this inequality becomes

−1∞φ −
[

1

f ′ − f ′′

(f ′)2

]
|∇φ|4 = 0.

Thus, we have obtained the inequality

−1∞φ − |∇φ|4 = −
[

1 − 1

f ′ − f ′′

(f ′)2

]
|∇φ|4.

Now using (iii) of Lemma 2.6, (2.10) and the fact that Φ(x0) = v(x0) we get

(2.12)

−1∞φ(x0) − |∇φ(x0)|4 = −
[

1 − 1

f ′(v(x0))
− f ′′(v(x0))

(f ′(v(x0))2

]
(f ′(v(x0)))

4Λ4∞.

From (2.11) and (2.12) we deduce that

(2.13) min{|∇φ(x0)| − Λ∞, −1∞φ(x0) − |∇φ(x0)|4} = µ(x0) > 0,

where

µ(x) = min

{ [
f ′(v(x)) − 1

]
Λ∞,

−
[

1 − 1

f ′(v(x))
− f ′′(v(x))

(f ′(v(x))2

] (
f ′(v(x))

)4
Λ4∞

}
.

Since µ(x) > 0, inequality (2.13) expresses that w is a strict supersolution of (2.2).
We are now ready to complete the proof. Let (xτ , yτ ) be a maximum point of

u(x) − w(y) − τ

2
|x − y|2

in � × �. From the results of [CIL] it follows that through a subsequence

xτi
→ x0 ∈ �,

where x0 is a maximum point of u − w in �. By (2.5) x0 is in fact an interior point
of �. We note also that yτi

→ x0. From now on we just write τ for τi for notational
simplicity. Applying the maximum principle for semicontinuous functions we get
symmetric matrices Xτ , Yτ such that

(2.14) (τ (xτ − yτ ), Xτ ) ∈ D2,+u(xτ ),

(2.15) (τ (xτ − yτ ), Yτ ) ∈ D2,−w(yτ ),

(2.16) 〈Xτ ξ, ξ〉 − 〈Yτ η, η〉 5 3τ |ξ − η|2.
The maximum principle for semicontinuous functions as well as the definition of
the semijets D2,+ and D2,− can be found in [CIL].
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Since u is a subsolution of (2.2), we have

(2.17)

min
{|τ(xτ − yτ )| − Λ∞, −τ 2〈Xτ (xτ − yτ ), (xτ − yτ )〉 − τ 4|xτ − yτ |4

}
5 0.

Since w is a strict supersolution of (2.2), we get from (2.13) that

(2.18)

min
{|τ(xτ−yτ )|−Λ∞, −τ 2〈Yτ (xτ−yτ ), (xτ−yτ )〉−τ 4|xτ−yτ |4

}
= µ(yτ ) > 0.

We now subtract (2.17) from (2.18) to get

(2.19)

µ(yτ ) 5 min
{|τ(xτ −yτ )|−Λ∞,−τ 2〈Yτ (xτ −yτ ), (xτ −yτ )〉−τ 4|xτ −yτ |4

}
− min

{|τ(xτ −yτ )|−Λ∞,−τ 2〈Xτ (xτ −yτ ), (xτ −yτ )〉−τ 4|xτ −yτ |4
}

5 τ 2 max
{
0, 〈(Xτ −Yτ )(xτ −yτ ), (xτ −yτ )〉

}
= 0.

Since µ(yτ ) > 0, we have arrived at a contradiction, and the theorem is thereby
proved. ut
2.20. Remark. It can be read off from the proof that the comparison principle also
holds when one of the functions takes the value −∞ on the whole boundary, as
log u∞ does for instance.

§3. The Principal Frequency of 1∞ in a Domain

As an application of the comparison principle (2.3) we are able to prove that
Λ∞ has a property typical of more conventional eigenvalue problems.

3.1. Theorem. Let � be bounded domain in R
n satisfying ∂� = ∂�. If u is a

continuous positive solution in � of the equation

(3.2) min
{|∇u| − Λu, −1∞u

} = 0,

with zero boundary values, then Λ = Λ∞.

Proof. Fix a point x0 ∈ � so that

δ(x0) = 1

Λ∞
.

Without loss of generality we may assume that x0 = 0. Suppose that Λ > Λ∞.
Then the ball B(0, 1/Λ) is strictly contained in �. Indeed it is away from ∂�. Let
ρ(x) be the distance function to the boundary of the ball B(0, 1/Λ). Both Cρ(x)

and u(x) are solutions of (3.2) in B(0, 1/Λ) for any positive constant C. By the
comparison principle we have

log Cρ(x) 5 log u(x)
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in the ball B(0, 1/Λ), leading to a contradiction as C → ∞. Therefore we must
have Λ 5 Λ∞.

If Λ < 0, then |∇u| − Λu > 0 because u is positive. Thus, equation (3.2)
becomes 1∞u = 0 whose only solution with zero boundary values is the zero
function. Therefore Λ = 0.

We claim that Λ |= 0. If not, equation (3.2) becomes

(3.3) min
{|∇u|, −1∞u

} = 0.

Using the definition of a viscosity solution, we easily to check that, in fact, (3.3) is
equivalent to −1∞u = 0, again forcing u to vanish.

So far we have proved that 0 < Λ 5 Λ∞. Suppose that Λ < Λ∞ and denote
�ε = {x ∈ R

n dist(x, �) < ε}. Since ∂� = ∂� and � is compact, we have for
small ε > 0 that Λ∞(�ε) > Λ. Now let �Λ be the domain obtained by connecting
�ε to a ball of radius 1/Λ with a sufficiently narrow tube. For this new domain the
reciprocal of the maximum of the distance from the boundary is now Λ and also
� ⊂ �Λ. Consider a genuine ∞-eigenfunction of �Λ, say uΛ. Both CuΛ and u

are solutions to the same equation in �. The comparison principle (2.3) can be used
in this situation, since uΛ is positive on ∂�. It gives

log u(x) 5 log CuΛ(x)

for x ∈ �. We arrive at a contradiction by letting C → 0+. ut
3.4. Remark. It is quite easy to give an example of a domain � and a number
0 < Λ < Λ∞ for which the above argument cannot be applied. Nevertheless we
think that the result itself is true even without the assumption ∂� = ∂�.

§4. Examples

We now use the limit equation (1.22) to conclude that the distance function

δ(x, y) = 1 − (|x| + |y|)√
2

is not a genuine ∞-eigenfunction of the square

� = {
(x, y) : |x| + |y| < 1

}

centered at the origin. In other words, δ(x, y) is not the limit of eigenfunctions
up(x, y) as p → ∞. Note that Λ∞ = √

2. The ridge set of � (the set of points at
which δ is not in C1) consists of the intersection of � with the coordinate axes.

4.1. Proposition. Along the ridge of � the distance function δ(x, y) is not a viscosity
subsolution of

(4.2) min{|∇u| − √
2 u, −1∞u} = 0.
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Fig. 4.1.
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Proof. Select a point in the ridge, for example, the point
(
0, 1

2

)
. We will exhibit a

C2 function φ(x, y) satisfying

(4.3) δ
(
0, 1

2

) = φ
(
0, 1

2

) = 1

2
√

2
,

(4.4) δ(x, y) < φ(x, y) in a neighborhood of
(
0, 1

2

)
,

(4.5) min
{∣∣∇φ

(
0, 1

2

)∣∣ − √
2 φ

(
0, 1

2

)
, −1∞φ

(
0, 1

2

)}
> 0.

This shows that δ(x, y) cannot be a subsolution of min
{|∇u|−√

2 u, −1∞u
} = 0.

To find this φ start out with
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φ0(x, y) = 1

2
√

2
+ ax − 1√

2

(
y − 1

2

) + bx2 + cx(y − 1
2 ) + d

(
y − 1

2

)2

and require that
1 − (|x| + |y|)√

2
< φ0(x, y)

in a neighborhood of (0, 1
2 ). Elementary considerations show that the choice a =

1/2
√

2, b = −1, c = 0 and d = 0 gives us a function φ0 satisfying (4.3), (4.4) with
“5” instead of “<”, and (4.5). To get the strict inequality just consider φ(x, y) =
φ0(x, y) + x4 + (y − 1

2 )4. ut
In the case of the square one can prove uniqueness of smooth (C1) genuine

∞-eigenfunctions. Although we believe that solutions are indeed of class C1 off
the center of the square, we have not yet been able to prove it.

Normalizing u∞ so that u∞(0, 0) = δ(0, 0) = 1/
√

2 we have

1√
2

−
√

x2 + y2 5 u∞(x, y) 5 δ(x, y)

by comparison. The lower bound is the distance to the largest inscribed circle. On
the lines x = ±y we have equality u∞ = δ. This shows that u∞ cannot be a
concave function. However, log u∞ is concave; cf. [S]. The graph of the solution
on a square is shown in Figure 4.1 and the graph of the diagonal cross-section,
showing the lack of concavity, is shown in Figure 4.2.
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