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Let A:(at;) be an zxn matrix whose entries for i= j are independent random variables
and ai; :aii. Suppose that every a; ;  is bounded and for eveÍ y i> j we have Eaii: !, D2ai,:62
and Eaii-v.

E. P. Wigner determined the asymptotic behavior of the eigenvalues of I  (semi-circle law).
In particular, for any c > 2a with probability I  - o (1) all eigenvalues except for at most o (n) lie in

the interval t: (_,Í i' c| i).
We show that with probability 1-o(1) a/ /  eigenvalues belong to the above interval 1if

p:0, while in case p= 0 only the largest eigenvalue,lt is outside / , and

, - 
Zl.iaii 

' "'-o í -L ]n,:  , ,i "ll; )

i.e. l, asymptotically has a normal distribution with expectation (n-1)p* v* (o2lp) and, variance
2a'z (bounded variance!).

1. fntuoduction

E. P. Wigner published in 1955 his famous semi-circle law for the distribu-
t ion of eigenvalues of random sFnmetric matrices (used in quantum mechanics).
Here we recall the following generalization due to L. Arnold [ 1]  (see also U. Grenan-
der [ 3] ):

Let A:(ai), l= i, j< n, be an nXn symmetric matrix where the entries arj,
i= j, are independent real-valued random variables. Furthermore, the a, with i > .i

are required to have the same distribution function 4 while all the ú 7'í  possess the

same distribution G. Let )r> ),r> ...4A, be the eigenvalues of A (all real by the

symmetry of l). We also use the notation l; ('4). Further, WA'n or simply W, denoÍ es
their empirical distribution function, i.e.

Wa,,(x): :  (number of eigenvalues = x)ln'

One is interested in the limiting behavior of the sequence W,, of random
distribution functions as n* @.
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Semi-circle law. Assume that ! lxlkdF= -, ! lrlortC= -,k:1,2,... andset D2ai,:
:Yar arr:62. Then

(1) t imW,,(x2o/ i):w6)

in probability, where I l is an absolutely continuous distributionfunction with density
( semi-circle! )

[ 2 1t_ xz11r, for lxl =  t
W(x) :  ltt 

'

[  0 Í o, | x|  = l
Since (l) gives only a limit distribution, it does not describe the behavior

of the largest eigenvalues. This latter is done in the paper of F' Juhász [ 4]  :

Theorem (Juhász [ a| . We use the notations ! | * rar:uo, {  !,| rac: !1,, p1:[L,| 1: | .
Under the conditions of the semi-circle law, in case p> = O we haue with probability
approaching I

(2) Lt(A) :  pn-Fo(n).

For the other eigeru;alues we haue for any e> -O

(3) maxlA,(A)l :  s(nttz+ e} .

I f p:o then for any t,> 0
(4) 

€?}  l1'(l)|  :  g(nrlz+ e:,.

The aim of the present paper is to sharpen the statements (2), (3), (4).

2. The results

Theorem | . Let aí i, i= j, be independent (not necessartly identically distributed)
random uariables bóunded with a common bound K. Assume that for i> j, the ai, haue
a common expectation p and uariance o2, further that Earr:v. Define ai;  for i-< .j b1t

eii:air. (The numbers K, lt, o2, v wil! be kept fixed as n will tend to infinity.)
I f p> -0 then the distribution of the largest eigenualue of the random symmetric

matrix A:(a,) can be approximated in order t ll/ n by a normal clistribttÍ ion of ex.
pectcttion

(5) (n-l)p* v-ro2lp

and uariance 2o2. Further, with probability tending to 1,

(6) ma'x| A,(A)| '=  2o/ í  + o(n1l3| ogn).

That 4garx 11,(A)l cannot be much smaller than 2o fi, is guaranteed by the

semi-circle law.
Note that the largest eigenvalue of the deterministic matrix aii: li for i+ .j,

r7; ; :v, is equal to (n-l)p* v (and all the other eigenvalues equal to-v-p). Thus
the fluctuation of the entries of the matrix changes ,1, only with a normal random
variable N(o,lp,2o2) oÍ  expectation and variance not growing with n.
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Theorem 2. Under the conditions of Theorem 1, in case p:0 we haue

(7) E?\  V'JA)I  :2o / i + o(nlt 'logn) (with prob. tending to I )'

Thus we see that though the semi-circle law allows o(n) eigenvalues to be

larger than (2+ )oln 6nfacttheycould be arbitrarily large), there is at most one
large eigenvalue (in case 1t* 0), and then this large eigenvalue has a bounded variance
(around the expectation (n - l) p-lv + o,lp).

The theorems will be proved in the reverse order (7), (6), (5). The determina-
t ion of the distribution of ,1, will be based on two observations. The first one is that,
as proved by Juhász, the largest eigenvalue is a great deal larger than the others,
the second one is that the vector 1:(1,1,..., l) is "nearly" an eigenvector corre-
sponding to 2r. Thus, starting with the init ial value vo:1, practically any numerical
iteration method yields the eigenvalue 1., and the corresponding eigenvector in two-
three steps with a high accuracy. Here we are going to use the von Mises iteration
that will give the approximations ) S,ln and Z S?lZ S; for 2, in the first two
steps (while for the eigenvector the approximations are 1 and S), where S; denotes
the sum of the elements in the i-th row of A, e rd S is the vector (S', , . . ., ,S").

The error of the first approximation is bounded and that of the second is
of order lf n, more precisely we will have

(8) P(IL- Zs?12S,' =  xln) =  c,f x2+ tln.

The quantity 2 S7l Z ,S;  is easily seen to have an asymptotically normal distribu-
t ion with parameters of (5) (see Lemma 3). I t will also be seen that the simpler
quantity

) S,ln* o2lp

approximates l', in order | l1/ í '

3. ProofofTheorem 2

3.1. Just as the earlier papers, we will use the method of Wigner and calculate the
moments of the eisenvalues. I t is well-known that

Thus

Er,* :  i

Z )'f :  tace Ak'

nnnn
E z 

^ !: 'Etrace 
Ak :  E z z ... Z,,,,,,i1í 2... aip_1ip:

í -|  io: lil: l iu_l

:  :  }  E,,,,,o.,,z ... aí u_'iu :
io= l ir:1

k-r/  n n \  * + 1:  Z I  Z Z Ed,,,,e,,,r...air_,nxl:  Zp: l \ io-l ik-l , p:r
l{ ro, t l,...,tk} l:p

Er,t 
, p
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Now we are going to estimate 'E",0. Since p:O,if some arj (i+ j)bas multi-
plicity 1 in the product aioi'ai,í ,...Qix-tix then the expectation of this product is
zero. Thus it is sufficient to count those products in which ayt't! ai; ;  ilj , occurs
with multiplicity not equal to 1. Hence E,.r,.,:0 for p> (kl2)+ 1.

3.2, Let k be even. We sbow that

(9a) En,k,(kl2)+ 7: 
G;i(ű,)",_l)... 

(n-(kl2))ok,

and

(9b) 
o4,rU,.o.o:  

O(kuln)E,t,k,(kt\+ r.

Consider the complete graph on vertex set { 1,2,...,n}  with a loop at every
vertex. We assign to the edge (i,j) the random variable aii:air>  and to the walk
(io,ir, ...,iu) the product of the variables assigned to the edges of the walk. (We use
the word "walk" here rather than "path" for we allow that vertices and edges occur
in the sequence more than once.) Let us estimate, for given p, the sum of the expecta-
t ions of all products with p different vertices (i.e. E,,v,). To this we need estimating
the number of all walks of length k with p different vertices in which every edge
(that is not a loop) occurs at least twice (perhaps once as (a, b) and once as (ó, a)).
We are going to assign a code to such a walk and count the number of possible codes.

I -et us choose first the p vertices in order of occurence in the sequence
I : (io,ir,...,ir).This can be done in n(n-l)...(n-p+ 1) ways. Let us start now
from io and define a code consisting of the symbols "* ", "-" and "(2, u)", where
l< u,u= p, as follows. We define a spanning rooted tree T (having of coursep-1
edges):

(i"_| ,i)QT if j-t 
{ í o, i:  , ..., io-| ),

i.e. to the veftex io€I , io# ig, that edge (i"_1,i,)(7which first leads to l" on the walk.
Now during the walk we mark an edge e by " * " if e(T and we use this edge for
the first t ime (e.g. the walk always starts with a *  unless it starts with a loop);
we mark the edge e with d " -" if e(T and we use the edge for the second time
(regardless of direction), and finally we mark the (yet unmarkeci) edge e:(x,u)
by "(u,o)" if either e{ T or we have used e at least twice before; for defining u, we
start from a and keep on going on the walk and the first t ime we use an edge (y, z)
that does not belong to 7, we take u:y, i.e. u is the place where we leave the edges
of 7. Since any two vertices u) u aÍ e connected on the tree T in a unique way, the
mark (u, u) makes it well defined how we proceed when decoding and see a " - " mark.

We use altogether p-l" * ", the same number of "-", and k* 2p* 2 other
marks, further the number of "* " rnarks is always at least as iarge in any first sec-
t ion of the code as that of the "-" marks. I t can be checked easily that different
walks will have different code-sequences and in case p:(kl2)+ 1 all codes (*  and

- oniy in this case) belong to walks. The number of such *  sequences is well-known
I  t2p-)\

to be equal to il-' ] l (see e.g.[5] , Problem 1.33), thus the number of code' p (p-ll'
seouences is at most

G -!, *  r) 
pz(k - 2p +  2) L 

f i -i)



-

THE EIGENVALUES OF RANDOM SYMMETRIC MATRICES 237

The expectation of a particular product aioi, .'. aiu_,;u C&Í |  be estimated

lEaror, ... eru_riul =  oz,-2 Kk-2P+ 2

(since Efa;rft< Kk-zoz for k> 3, iljJ, andhence

lE,,o,rl =  ozp-zKk-2p+ 2n(n- t)... (n- p+ U(, ! . ^ l ,,ro-,, r't |  (2p-2): '
"\ k-zp+ l)' p\  p-l)-'

: l Sn'L'P'

Further En,k,(ktz.t+ l satisfies (9a). Now we have S,,k,p-t<  S,,k,p(K2k6l@o2n)) whence

,I , rl 
E,' o, rl <  E n, k, (kt 2) +  L2Kz k6 I  (4o2 n)

if only K2k6l(4o2n)-112, e.g. for k< (olK)rtBnr/6.

3.3. Using Markov's inequality we get from (9a) and (9b)

P(max | '|  :=  2o / i + u):  P(max | A| k ,- (2o Í í  + ,)o) =

=  (zo / í  + ,)_u Emax| ,| k =  (2o / i + ,)-o,< ulz)+ | 2kok _

:  | i (t -_-:_\o =  / í ,-o,lG,{ i+ ,).
\  2oVn-lu)

3s1 ft: (olK)uIn1tE and u:50Kntl3 log n, then

(10a) P(max p"l > 2oli+ Slt< r'r'logn) - llnto for n:>  ko.

Now, for n)no, E Z 1!= +  En,k,qkt21i-rtthus we get similarly

(lOb) P(max lAl =  2: l/ i- 50Knt'31ogn) =  llnlo for n >  no.

4. The proofof(Q

Lemma t. I Í  A:(ai) is an nXn real symmetric matrix, and B:A-IJ (where J is
the matrix with all I  entries) then

12(A) <  LL(B).

Proof. A'(l7:  
's3á'l" 

and by the Courant-Fisher theorem (cf. [ 2] )

(11) )"2(A) :  -"in .f,í ] o 
* l"'

llxll:1
thus

7,(A) = .# .iiil",":  .# li: f 
x(B+ tJ)x:  

.# Í j l 
xBx<  A,(B),

since (x, 1):0 implies -Ix:0. I
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Similarly, for the smallest eigenvalue 
^ __(A) 

of ,4 we get

Lemma 2. I Í  A:(a,,) is a real symmetric matrix, and B:A_tJ, t:> O, then

1--(A) =  A--(B).

Proof. For r> 0 the matrix r.ris positive definite (i'e. xr.rx> O for all x€R,), hence

)'--(A):  
,,T,tl. 

xAx>  
'T/g, 

xB* + ,F/g, * t/ *  
=  ,,T/ !, 

xBx :  )'--(B). I
Thus, (6) follows from Theorem 2 on substituting r:pr. !

5. The investigation of 1.,

5.1. Let us split the vector tr into an eigenvector v of ,1, and a component
orthogonal to v:

(12) I  :  y+ r, (v, r) :  g, Av :  )"rv.

First we will show that the "remaining term" r is very small (short) with
large probability (llrllr= 4o2lp2 cf. (19)).

- Let S; denote the sum of elements of A in the i-th row, S:(I ir, ..., S") and
Esi:np-p+ y: iL. Applying the linear operation A to (12) we get

(13) S: ll:  Ay* Ar:2,v* Ar.
Subtract Zl from both sides of (13)

S -ZI  :  (Ar- L)v + (Ar - Lr).

Since both r and Ár (and all their linear combinations) are orthogonal to v,
applying the theorem of Pythagoras we find

(14) Z 6,-L),:  lls-rlll, :  ()r-L)2llvllz+ l!Ar-Lrllz.
i-r

We will need a good approximation for the left-hand side of (14).

Lemma 3. Under the conditions and notations of Theoreru t we haue

(1 5) P(lZ (s, - z), - n, orl :>  2o2 nltz x) =  1 f xz,

(16) ,(l? 
4 

a,r(s,* z)(s, -L)l=  n2(K3* x)) =  I f x2,

(17) E(Z Sln) :  (n-1)p* v :  L, D,(Z S,l") :2o2+ (o1-2oz)ln,

where of;  is the common oariance of the uariables air. According to the central limit
theorem, ZSJ" is actually uery nearly normal.

(18)
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Lemma 3 will be proved in $ 6 by elementary probability means. Returning to
(14), the relation (r, v):0, the Courant-Fisher theorem(11) and Theorem2 (for-

mula (10a)) imply that llArll<  ).r(A)llrll < 3o / r llrll wittr very large probability. Thus

Ar-Lr is at least (f-So{ ")lrt l in length, whence

(19) ll.ll'=  2{ .S,,- L)'l(L- 1r)'-=  2n2o2f (pn-3o[n)' ".4ozf p2

with probability > 1-1.
n

5.2. Now we apply the von Mises iteration method (cf. [ 6] ) for determining the

eigenvalue ,tr.

(20) z sTlz si :  (s, sy(l, s) :  llAlll2lgAl) :  llA,v-rArll'zl(v* r, )"rvaAr) :
:  (,t|  

| |  
v| | , +  ll Ár| | ) l Q'| | v| | , 1- r Ar) :  At l (| |  Ar| | 2 - A,r Aryz E .

The remaining term on the right of (20) will be estimated using (17) and (19). Since
í  l\

llArll2-< )6zp llrll'z[with probability = l-;), we get from (19)

(21) | | Ár| | 2 '. (4o2l1f)9o2n =  (50oalp2)n

( 1'l

[ * .p.. ,* i).

Now lr,4rl= llrllll,arll together with (19) and (21) give

(22) lrArl = . (2} oBlP) li
( 1\

[ * .p.. 
,-i).

A, can always be estimated í rom above by m,ax Z| o,i| < Klz, thus (2l),(22)

and(17)showthattheremainingtermontherightof (20)isof theorder O(tf 1[ fl,mote
precisely 

í |  
',sl 

|  . _\(23) "[ lÉ * -/ ,|  
,l| i)=  t1"

(where c= 50KoBllt3).

5.3. Actualty the above remaining term is of order O(lln), which gives (8). This
will be proved by improving on (22).

(24) rAr is bounded in probability (cf. Qaa)).

Let us expand the sum on the left of (16).

(2s) 
4 4 

o,,(5,-Z)(Si-r) :  (S-21, l(S-r1) :  (A!- Ll, A(A1 - Ll)) :

:  (/ ., -I )v *  Ar - Lr, )"r(Ar- L)v *  Azt - LAr) :

:  )'r(L *  L)' ll vll 2 +  r,43r - 2Lll Arll2'f L2 r Ar.
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We show that the left hand side of (25), the first three terms on its right
and L2 are all of the order O(n'z) (with large probability), thus rlr is bounded in
probability, i.e.

(24a) P(lrArl =  Cz* x) - Crlx2-lO(lln).

Indeed, the left hand side of (25) can be estimated by (16). In the first term of the

right hand side l,trl < Kn,llvllz= n and the boundedness of )"-L follows from (18) and

(23). Further ,lrA} rl <  l,1rl3llrll'z=  (3 o 1/n)'1lo'1 1^ rz;1:  
g(natz) according to (19) and Theo-

rem2' Finallv' bv (21)' 
2LlArll2 <  2L(5ooarpz)n :  o(nz).

Thus we established (24a), and hence, through (20), also (8).

6. The proof of Lemma 3

6.1. Denote bij:aij-Eai;  and fru and fru the sums in (15) resp. (16). Since ftu:
:  Z 6;L),:  z (z ó,,)', thus

í ij

E,ű: z z zEbí jbí k:  2 zEbí jbik+ z 2 Eb?k:(n2-n)o2lno!'
i j  k i+ jk ú  k

Further.
D2 25 : 'l? 

I  ) b'ub,u- (nz - n)oz - no!]  :

:  E Z 4 4 4 Z Z b* bjkb'* b'* -(("-n)oztnof,)2'

Now the expectation of b; l"biybrxbr*  is non-zero only if every factor in it
has a multiplicity > 2. Thus

D' 2,u -, 4 4 4 ? ufrrl.-({ r' -n\o' + nol)z *

+ 2E Z 4 ? onui,- 4 ? bil :  o(onns).

i* i

(15) follows from Chebyshev's inequality.

6.2. (16) will be proved similarly.

EZt:  :  2 Z o,, ) bi1"b1*  :  Z Z ) Ea,,b,obrr, :  nzvoz* nEb?i,
ijkí jk

and

(26) D226 :  4 1 4 ? ? 4 
Eaiibi1,b i1"at,b,* b,*  -(n2yo2 + nEb?í )z,

The expectation of such a 6-product is non-zero only if there are more co-

incidences am-ong the indices, i.e. if l{ i,i,k, I ,J'K\ l< 4. Thus, among the n6 terms

in (26) only na is non-zero, hence

D2Eru: 91'41'

(Actually, it is O(nB), but we do not need that.)
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6.3. The proof of (17) is trivial. For (18) we use the following identity.
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