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Il

We attempt once more, as in the global symmetry scheme, to
treat the eigﬁ&mkggynmpggxgnswas %wfgggfgy}yigggt, degenerate in
the limit of a certain symmetryibut split into isotopic spin multi-
plets by a symmetry-breaking term. Here we do not try to describe
the ymmetry v1olatlon in detail, but we ascribe it phenomenologically

e

to the mass dlfferegsgg themselVes, supposing that there is some
analogy.;; the p-e mass difference.

The symmetry is called unitany symmetry and corresponds to
the "unitary group" in three dlmensions in the same way that charge

independence corresponds to the "unitary group" in two dimensions.

{MThe eight infinitesimal generators of the group form a simple Lie
éﬂalgebra, Just like the three components of isotopic spin., In this
important sense, wnitary symmetry is the simplest generalization

of charge independence.

The baryons then correspond naturally to an eight-dimensional

S

irreducible representation of the group; when the mass differences
are turned on, the familiar multiplets appear. The pion and K meson
£it into a similar set of eight particles, aiong with a predicted
pseudoscalar meson ‘ZO having I = 0. The pattern of Yukawa couplings
of w, K and ‘X is then nea?ly determined, in the limit of unitary
symmetry .

The most attractive feature of fhé schemé is that it permits
the description of eight vector mesons by a unified theory of the N

Yang-Mills type (with a mass term). Iike Sakurai, we have a triplet

/
/
/
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beight baryons should all have the same spin and parity and that the

e of vector mesons coupled to the isotopic spin current and a singlet
vector meson &° coupled to the hypercharge current. We also have;a
pair of doublets M and M, strange vector mesons coupled to strangeness-
changing currents that are conserved when the mass differences are
turned off. There is only one coupling constant, in the symmetric
limit, for the system of eight vector mesons. There is some experi-
mental evidence for the existence of QP and M, while e is presumably

the famous I =1, J = 1, n-% resonance.

N\

A ninth vector meson coupled to the baryon current can be v

accommodated naturally in the scheme.

The most important prediction is the qualitative one that the

pseudoscalar and vector mesons should form "octets", with possible
additional "singlets”.

If the symmetry is not too badly broken in the case of the
renormalized coupling constants of the eight vector mesons, then
numerous detailed predictions can be made of experimental results.

The mathematics of the wnitary group is described by con-
sidering three fictitious "leptons", v, e , and u~, vhich may or
may not have something to do with real leptons. If'there is a con-
nection, then it may throw light on the structure of the weak inter-

actions.
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I Introduction

It has seemed likely for many years that the strongly interacting
particles, grouped as they are into isotopic multiplets, would show
traces of a higher symmetry that 1s somehow broken. Under the higher
syrmetry, the eight famillar baryons would be degenerate and form a
supermultiplet. As the higher symmetry is broken, the =, A, Z, and N

would split apart, leaving inviolate only the conservation of isotopic

'spin,of strangeness, and of baryons. Of these three, the first is

partially broken by electromagnetism and the second is broken by the
weak interactions. Only the conservation of baryons and of electric
charge are absolute.

An attemptl’e) to incorporate these ideas in a concrete model
was the scheme of "global symmetry”, in which the higher symmetry was
vélid for the interactlons of the % meson, but broken by those of the
K. The mass differences of the baryons were thus attributed to the K
couplings, the symmetry of which was unspecified, and the strength of
which was supposed to be significantly less than that of the =x cou~
plings.

The theory of global symmetry has not had great success in
predicting experimental results. Also, it has a number of defects.
The pecullar distribution of isotopic multiplets among the observed
mesons and baryons is left unexplained. The arbitrary K couplings
(which are not really particularl& weak) bring in several adjﬁstable
constants. I'urthermore, as admitted in Reference 1l and reemphasized

3,4)

recently by Sakurai in his remarkable articles predicting vector
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mesons, the global model makes no direct connection between physical
couplings and the currents of the conserved symmetry operators.

In place of global symmetry, we introduce here a new model of }

the higher symmetry of elementary particles which has none of these }

S

faults and a number of virtues.

We note that the isotopic spin group is the same as the group
of all witary 2x2 matrices with unit determinant. Each of these
matrices can be written as exp(iA), where A is a hermitian 2x2
matrix. Since there are three independent hermitian 2x2 matrices
(say those of Pauli), there are three components of the isotopic
spin.

Our higher symmetry group is the simplest generalization of
isotopic spin, namely the group of all unitary 3x3 matrices with
unit determinant. There areveight independent traceless 3x3
matrices and consequently the new “unitary spin" has eight com-
ponents. The first three are just the components of the isotopic
spin, the eighth is proportional to the hypercharge Y (which is
+1 for N and K, -1 for Z and K, O for A, Z, x, etc.), and the
remaining four are strangeness-changing operators.

Just as isotdpic spin possessés a three-dimensional repres-
entation (épin 1), so the "unitary spin” group has an eight-dimen-
sional irreducible representation, which we shail call simply'g.
In our theory, the baryon supermultiplet corresponds to this
representation. When the symmetry is reduced, then‘E and Y are

still conserved but the four other components of unitary spin are

899 007




not; the supermultiplet then breaks up into =, Z, A, and N. Thus
the distribution of multiplets and the nature of strangeness or
hypercharge are to some extent explained.

The pseudoscalar mesons are also assigned to the representa-
tion 8. When the symmetry is reduced, théy become the multiplets K,
X, 1, and A, where X is a neutral isotopic singlet meson the exis-
tence of which we predict. Whether the PS mesons are regarded as
fundamental or as bound states, their Yukawa couplings in the limit
of "unitary” symmetry are describable in terms of only two coupling
parameters.

The vector mesons are introduced in a very natural way, by
an extension of the gauge principle of Yang and Millss). Here too
we have a supermultiplet of eight mesdns, corresponding to the
representation 8. In the limit of unitary symmetry and with the
mass of these vector mesons "turned off", we have a completely
gavge-inveriant and minimal theory, Jjust like electromagnetism.
When the mass is turned on, the gauvge invariance is reduced (the
gauge function may no longer be space—time—dependent) but the con-
servation of unitary spin remains exact. The sources of the vector
nesons are the conserved currents of the eight components of the
_unitary spin6).

When the symmetry is reduced, the eight vector mesons break
up into a triplet é(coupled to the still-conserved isotopic spin
current), a singlet w (coupled to the still-conserved hypercharge

current), and a pair of doublets M and M (coupled to a strangeness-




changing current that is no longer conserved). The particles e and
W were both discussed by Sakurai. The p meson is presumably iden~
tical to the I =1, J =1, n-x resonance postulated by Frazer and
Fulco7) in order to explain the isovector electromagnetic form fac-
tors of the nucleon. The & meson is no doubt the same as the I = 1,
J = 0 particle or 3n resonance predicted by Nambus) and later by
Chew9> and others in order to explain the isoscalar form factors of
the nucleon. The strange meson M may be the same as the K# particle
observed by Alston et al.lo).

Thus we predict that the eight baryons have the same spin and
parity, that K_is pseudoscalar and that X exists, that ¢ and
exist with the properties assigned to them by Sakural, and that M
exists. But besides these qualitative predictions there are also
the many symmetry rules associated with the unitary spin. All of
these are broken, though, by whatever destroys the unitary symmetry,
and it is a delicate matter to find ways in vhich these effects of
a broken symmetry can be explored experimentally.

Besides the eight vector mesons coupled to the unitary spin,
there can be a ninth, which is invariant under unitary spin and 1is
thus not degenerate with the other eight, even in the limit of
unitary symmetry. We call this meson 5°. Presumably it exists too
and is coupled to the baryon current. It is the meson predicted by
Tellerll) and later by Sakurais) and explains most of the hard-core

repulsion between nucleons and the attraction between nucleons and

antinucleons at short distances.




We begin our exposition of the "eightfold way" in the next
Section by discussing unitary symmetry using fictitious "leptons”
which may have nothing to do with real leptons but help to fix the

‘physical ideas in a rather graphic way. If there is a parallel
between these "leptons™ and the real ones, that would throw some
light on the weak interactions, as discussed briefly in Section VI.

Section IIT is devoted to the 8 representatlion and the baryons
and Section IV to the pseudoscalar mesons. In Section V we present
the theory of the vector mesons.

The physical properties to be expected of the predicted
mesons are discussed in Section VII, along with a number of experi-
ments that bear on those properties.
| In Section VIIT we take up the vexed question of the broken
symmetry, how badly it is broken, énd how we might succeed in

testing it.

II The "Ieptons" as a Model for Unitary Symmetry

For the sake of a simple exposition, we begin our discussion
of unitary symmetry with "leptons®, although our theory really con-
cerns the baryons and mesons and the strong interactions. The par-
ticles we consider here for mathematical purposes do not necessarily‘
have anything to do with real leptons, but there are some suggestive
parallels. We consider three leptons, v, e , and p , and their
antiparticles., The neutrino is treated on the same footing as the
other two, although experience suggests that if it is treated as a

four-component Dirac field, only two of the components have physical

859 010




L3

interaction. (Furthermore, there may exist two neutrinos, one
coupled to the electron and the other to the muon.)

As.far as we lknow, the electrical and weak interactions are
absolutely symmetrical between e  and p , which are distinguished,
however from v. The charged particles e~ ﬁnd i~ are separated by
the mysterious difference in their masses. We 'shall not necessarily
attribute this difference to any interaction, nor shall we explain
it in any way. (If one insists on connecting it to an interaction,
one might have to consider a coupling that becomes important only
at exceedingly high encrgies and is, for the time being, only of
academic interest.) We do, however, guess that the p-e mass split-
ting is related to the equally mysterious mechanism that breaks the
unitary symmetry of the baryons and mesons and splits the supermul-
tiplets into isotopic multiplets; For practical purposes, we shall
put all of these splittings into the mechanical masses of the par-

ticles involved.

It is well known that in present gquantum electrodynamics, no
one has succeeded in explaining the e-v mass difference as an electro-
magnetic effect. Without prejudice to the question of its physical
origin, we shall proceed with our discussion as if that mass difference
were "turned on"™ along with the charge of the electron.

If we now "turn off" the p-e mass difference, electromagnetism,
and the weak interactions we are left with a physically vacuous theory
of three exactly similar Dirac particles with no rest mass and no

known couplings. This empty model is ideal for our mathematical

859 011




purposes, however, and is physically motivated by the analogy with
the strongly interacting particles, because it is at the correspoﬁ-
ding stage of total unitary symmetry that we shall introduce the
basic baryon mass and the strong interactions of baryons and mesons.

The symmetric model is, of course, invariant under all unitary
transformations on the three states, v, e , and p .

Iet us first suppose for simplicity that we had only two par-
ticles v and e . We can factor each unitary transformation uniquely
into one which multiplies both particles by the same phase factor
and one (with determinant unity) which leaves invariant the product
of the phase factors of v and e« Invariance under the first kind
 of transformation corresponds to conservation of leptons v and e .
It may be considered separately from'iﬁvariance under the class of
transformations of the second kind (called by maethematicians the
unitary unimodular group in two dimensions).

Fach transformation of the first kind can be written as a
matrix ei¢l, where 1 is the unit 2x2 matrix. The infinitesimal
transformation is 1 + 1(8¢)1 and so the unit matrix is the infini-
tesimal generator of these transformations. The transformations of
the second kind are generated in the same way by the three indepen-
dent traceless 2x2 matrices, which mey be taken to be the three Pauli

isotopic spin matrices Ty T TS. We thus have

3 T
14+1i 2 84
k=1

Jis

as the general infinitesimal transformation of the second kind.

849 012
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Symmetry under all the transformations of the second kind is the
same as symmetry under Tl’ T2, TS’ in other words charge indepen- 
dence or isotopic spin symmetry. The whole formalism of isotopic
spin theory can then be constructed by considering the transfofma-
tion properties of this doublet or spinor (v, e”) and of more com-
plicated objects that transform like combinations of two or more
such leptons.

The Pauli matrices T{ are hermitial and obey the rules

1

Tr 7, 7, = 20,,
iy i
e my) =Rt Ty
{Ti, Tj} = ESiJ 1 . (202)

We now generalize the idea of isotopiec spin by including the
third object p . Again we Tactor the wnitary transformations on
the leptons into those which are generated by the 3x3 unit matrix 1
(and which correspond to lepton conservation) and those that are
generated by the eight independent traceless 3x3 matrices (and which
form the "unitary unimodular group” in three dimensions). We may
construct a typical set of eight such matrices by analogy with the
2x2 matrices of Pauli. We call then Kl......Ks and list them in

Table I. They are hermitian and have the properties

Tr A\, N\, = 23,
i ij
[, ?\J] = 21p o A
L
RTINS - T T N (2.5)

839 013
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where the fijk are real and totally antisymmetric like the Kronecker

symbols e of Eq. (2.2), while the dijk are real and totally sym-

ijk

metric. These properties follow from the equations

T A [Ai, xj] b,

]

= A (A, Aj} - by , (2.4)

 derived from (2.3).

The non-zero elements of fij and dijk are given in Table IT

for our choice of Ki. Even and odd permutations of the listed in-

k

dices correspond to multiplication of fi.

ik by +1 respectively and of

The general infinitesimal transformation of the second kind

is, of course,

A,
1+12849, -2% . (2.5)
1

by analogy with (2.1). Together with conservation of leptons, in-
variance under the eight %i corresponds to complete "unitary sym-
metry" of the three leptons.

It will be noticed that %l, %2, and %3 correspond to T Té,
and T, for v and e  and nothing for the muon. Thus, if we ignore
symmetry between (v, e7) and the muon, we still have conservation
of isotopic spin. We also have conservation of %8, which commutes
with %l, kz, and %3 and is diagonal in our representation. We can
diagonalize at most two A's at the same time and we have chosen

them to be %3 (the third component of the ordinary isotopic spin)

and %8’ vhich is like strangeness or hypercharge, since it distin-

R
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guishes the isotopic singlet p~ from the isotopic doublet (v, e”)
and commutes with the isotopic spin.

Now the turning-on of the muon mass destroys the symmetry
under %u, %5, A, and %7 (i.e., under the “strangeness-changing"
components of the ™unitary spin”) and leaves lepton number, "iso-
topic spin”, and "strangeness"” cbnserved. The electromagnetic
" Interactions (along with the electron mass) then break the conser-
vation of Rl and Kz, leaving lepton number %5, and strangeness con-
served. Finally the weak interactions allow the strangeness to be
changed (in muon decay) but continue to conserve the lepton number
?Z and the electric charge
“3 + z§ -
. 3

where ql is the number of leptons minus the number of antileptons

Q = (2.6)

‘Ll

n,

mlo

and equals 1 for v, e, and p~ (i.c., the matrix 1).

We see that the situation is Just what is needed for the
baryons and mesons. We transfer the symmetry under unitary spih to
them and assign them strong couplings and basic symmetrical masses.
Then we turn on the mass splittings, and the symmetry under the Lth,
5th, 6th, and 7th components of the unitary spin is lifted, leaving
baryon mumber, strangeness, and isotopic spin conserved. Electro-
magnetism destroys the symmetry under the lst and 2nd components of
the spin, and the weak interactions destroy strangeness conservation.

Finally, only charge and baryon number are conserved.

N

C
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w
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IITI Mathematical Description of the Baryons

In the case of isotopic spinhg, we know that the various pos-
sible charge multiplets correspond to "irreducible representations”
of the simple 2x2 matrix algebra described above for (v, e). Each
muitiplet has 2T 4+ 1 components, where the quantum number I distin-

guishes one representation from another and tells us the eigenvalue

';’

I(I + 1) of the operator I 12 , which commutes with all the ele-
i=1
ments of the isotopic spln group and in particular with all the
3

infinitesimal group elements 1 4+ 1 2 6491 I.. The operators Ii
i=L
are represented, within the multiplet, by hermitian (21 + 1) x (2T + 1)

matrices having the same commutation rules

[z, Ij] = ey I (3.1)

as the 2x2 matrices Ti/2. For the case of I = 1/2, we have just

I, = Ti/2 within the doublet.

If we start with the doublet representation, we can build up
all the others by considering superpositions of particles that trans-

form like the original doublet. Thus, the antiparticles e+, -v also

form a doublet. (thice the minus sign on the antineutrino state
ete” + Ty
2

dimensional representation for which 211 the Ii are zerb. Calling

or field.) Taking , we obtain a singlet, that is, a one-

the neutrino and electron ey with o = 1, 2, we can describe the

singletv by J§-e e or, more con01sely, J%JEé.- The three components

+

of a triplet can be formed by taking ety = % E(Tl - iT2)e,

- =
e e - VvV

1~ - 1 — -
—pF = J§-e Tz €5 and ve =73 ('rl + iT )e. Rearranging

839 U16
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these, we have just /%fg Tj e with j = 1, 2, 3. Among these three

states, the 3x3 matrices I IE of the three components of I are

i
given by

ko g (3.2)

i 13k
Now let us generalize these familiar results to the set of
three states v, e , and p o Call them 4, vith o =1, 2, 3 end use

74 to mean 2&‘la’ etc. For this system we define Fi = %% with

1 =1, 25ee00e8, Just as‘Ii = %% for isotopic spin. The Fi are
the 8 components of the unitary spin operator F in this case and
we shall use the same notation in all representations. The first
three components of I are identical with the three components of
the isotopic spin I in all cases, while FB will always be Jg‘ times
the hypercharge Y (linearly related to the strangeness). In all

representations, then, the components of F will have the same com-

mutation rules
(7, FJ.] = A P (3.3)

that they do in the simple lepton representation for which

F, = ki/e. (Compare the commutation rules in Eq. (2.3).) The

trace properties and anticommutation properties will not be the

same in all representations any moreAthan they are for I. We see

that the rules (3.1) are just a special case of (3.3) with indices

1, 2, 3, since the f's equal the e's for these values of the indices.
We must call asttention at this point to an important difference

between unitary or F spin and isotopic or.z spin. Whereas, with a

—

simple change of sign on 7} we were able to construct from e,

899 017




a doublet transforming underi Just like e o2 Ve are not able to do
the same thing for the F spin when we consider the three antileptbns
zoz compared to the three leptons ‘Zoc’ Truve, the antileptons do gilve
a representation for F, but it is, in mathematical language, inequi-
valent to the lepton representation, even though it also has three
dimensions. The reason is easy to see: when we go from leptons to
antileptons the elgenvalues of the electric charge, the third com-
ponent of I, and the lepton number all change sign, and thus the
eigenvalues of FS chahge sign. But they were E%E?’ Eﬁﬁ?’ and \ﬁ%
for leptons and so they are a different set for antileptons and no
similarity transformation can change one representation into the
other. We shall refer to the lepton representation as 3 and the
antilepton representation as E}

Now let us consider anotﬁer set of "particles” Qx transfor-
ming exactly like the leptons Z& under wnitary spin and take their
antiparticlesjﬂx. We follow the same procedure used above for the
isotopic spin and the doublet e. We first construct the state

J%-fa.la or j%fi,ﬁ. Just as ;%? gave & one-di@insional represen-
tation of I for which all the Ii were Zero, SO §%§ gives a one-

dimensional representation of F for which all the Fi are zero.
AnA

Call this one-dimensional representation 1.

e T, e
Now, by analogy with = with 1 =1, 2, 3, we form
Y '*:ﬁ;’“ :

LA 4L

—yﬁi—- with 1 = 1, 25,¢06e¢.8. These states transform under unitary

spin F like an irreducible representation of dimension 8, which we
Y

shall call 8. In this representation, the 8x8 matrices ng of the

o
ef

G
-
-y
ao
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elght components Fi of the unitary spin are gilven by the relation

gk _
Py = ifiJk s (3.4)

analogous to Eq_o (502)0
When we formed an isotoplc triplet from two isotopic doublets,

in the discussion Epeceding Eq. (3.2), we had to conéider linear com-

eT, e
binations of the -—Vﬁﬁ—- in order to get simple states with definite

electric charges, etce We must do ﬁhé same here. Using the symbol ~

for "transforms like", we define

5~ 2T - 1AL ~ Dty

2T~ TN + 17\2)4; ~ p%"

2° ~Jé'i AL ~ i‘i]é-lf—“"—:

p o~ 3T - )L ~ 8

n ~ -él- T(A; - iN)L ~ gte”

g —231 T + IN) £ ~ oty

B~ S TN, + IN)L ~ %"

A "fivi A £ ~ (0% + D% - 25t /B (3..5) |

The most graphic description of what we arevdoing is given in the ,
last column, where we have introduced the notation Do, D+, and S+
for the L particles analogouséto the £ particles 7} e+, and u+
respectively. D stands for dpuﬁlet and S for singlet with respect

to isotopic spin. Using the last colum, it is easy to see that the

Qi) 5319

(el o4
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isotopic spins, electric charges, end hypercharges of the multiplets
are exactly as we are accustomed to think of them for the baryons |
listed.,

We say, therefore, that the eight known baryons form one
degenerate supermultiplet with respect to unitary spin.. When ﬁe
introduce a perturbation that transforms like the u~e mass difference,
the supermultiplet will break up into exactly the known multiplets.
(of course, D will split from S at the same time as e , v from p )

Of course, another type of baryon is possible, namely a sin-
vglet neutral one that transforms like /%ﬁi,e. If such a particle
exists, it may be very heavy and highly unstable. At the moment,
there is no evidence for it.

We shall attach no physical sipnificance to the .£ and T
"particles” out of which we have éonstructed the baryons. The dis-
cussion up to this point is really Jjust a mathematical introduction

to the properties of unitary spin.

IV Pseudoscalar Mesons

We have supposed that the baryon filelds N, transform like an

J
octetlgﬁundertgz so that the matrices of:g for the baryon fields are
given by Eq. (3.4). We now demand thét all mesons transform ﬁnderji
in éuch a way as to have F-invariant strong couplings. If the 8
mesons ni are to have Yukawa couplings, they must be coupled to

NO,N for some matrices Oi, and we must investigate how such bilinear

i

forms transform under‘E.
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In mathematical lanéua.ge , what we have done in Section III is
to look at the direct productz x 3 of the rejpre_senta.tions ;5. and 3
and to find that it reduces to the direct sum of ‘Q and 1. Ve identi-
fied 8 with the baryons and, for the time being, rdismissed ‘2:. What
we must now do 1is to look at E x 8. Now it is easy to show tha;b
actually § is equiva.lent‘ to E 3 this is unlike the situation for :?‘;_
and é. (We note that the. values of Y, I3 , Q, etc. 'are symmetrically
disposed ebout zero in the 8 représentation.' ) So the e.nti'bary'ons
transform essentially like the baryons and we must reduce out the

direct product 8 x 8. Standard group theory glves the result

8xg=1+8+8+10+TW 2T, (1)

where g_z = 27 (this can happen only wvhen lhe dimension is the cube
of an integer). The represen’cation 27 breaks up, vhen mass differ-
ences are turned on, into an isotopic singlet, triplet, and quintet
with ¥ = 0, a doublet and a quartet with ¥ = 1, a doublet and a
guartet with ¥ = -1, a triplet with ¥ = 2, and a triplet with
Y = -2. The representation 10 breaks up, tnder the‘ sa.me. conditions,
into a triplet with ¥ = O, a doublet with ¥ = ~1, a quartet with
Y = +1, and a singlet with ¥ = +2. The cpnjugate representation E
looks the same, of course, but with equal and opposite vlalues of Y.
None of these much resembles the pattern of the known mesons.

The 8 representation, occurring twiée, looks just the same
for mesons as for baryons and is very suggestive of the known =, K,

and K mesons plus one more neutral pseudoscalar meson with I = 0,

rgg 021
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Y = 0, vhich corresponds to A in the baryon case. Iet us call this
meson 2° and suppose it exlsts, with a fairly low mass. Then we
have identified the known pseusoscalar mesons with an octet under
unitary symmetry, Jjust like the baryons. The representatioﬁsgk, 10,
§§, and gz may also correspond to mesons, even pseudoscalar ones,
but presumably they lie higher in mass, some or all of them perhaps
so high as to be physically meaninglesse.

To describe the eight pseudoscalar mesons as belonging to
8, we put (very much as in (3.5))

o]
X = Ty

= (ny. - in,) 2
o= (nl + ine)/Jﬁ'
M=
K = (y - 11:5)//2“
= (ng - in,) NVZ
—1;5 = (mg + in7)/\/§

KW o= (my + 17:5)//5 (%.2)

and we know then that the matrices of F connecting the ﬁj are

Just the same as those connecting the Nj’ namely ng = _ifijk

To couple the 8 mesons invariantly to 8 baryons (say vy 75),

we must have a coupling

2ig N 7501Nni (k.3)
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for which thé relation
(r,, oj] = if, 0 (b.k)

holds. Now the double occurrence of 8 in Eq. (k.1) assures us
that there are two indepehdent sets of eight 8x8 matrices Oi obey-
ing (4.4). One of these sets evidently consists of the Fy them-
selves. It is not hard to find the other set if we go baék to the
commutators and anticommutators of the A matrices in the 3 repres-

entation (Eq. (2.3)). Just as we formed ng = 'ifijk’ we define

o
i - a4, (4.5)

and it is easy to show that the D's also satisfy Eq. (4k.4). We
recall that where the I matrices are imaginary and antisymmetric
with respect to the basis we have chosen, the D's are real and
symmetric.

Now what is the physical dlfference between coupling the
pseudoscalar mesons T, by means of Di and by means of Fi? It lies
in the symmetry under the operation

R: pe»E7, no =, 1t 17, %1%, Ao

KTes 47, e +8°, n7es 417, 1% 1%, 22 2°,  (4.6)

which is not a member of the unitary group; but a kind of reflec-
‘tion. In the language of Ni’ we may say that R changes the sign
of the second, fifth, and seventh particles; we note that Kg, AS’
and K7 are imaginary while the others are real. From Table II we

can see that under these sign changes fijk is odd and dijk even.
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It may be that in the limit of unitery symmetry the coupling
of the pseudoscalar mesons is invarient under R as well as the uni-
tary group. In that case, we choose either the plus sign in (4.6)
and the D coupling or else the minus sign and the F coupling. The
two posgible coupling patterns are listed in Table III. |

If only one of the patterns is picked out (case of R-invariance)
it is'presumably the D coupling, since that gives a large AnZ inter-
action (while the F coupling gives none) and the NnZ 1nteraction is
the best wey of explaining the binding of A particles in hypernuclei.

In general, we may write the Yukawa coupling (whether funda-
mental or phenomenological, depending on whether the n, are elemen-

i

tary or not) in the form

it = 218, N 7g [@Di + (1 -« F;] N, . (&.7)

We note that in no case is it possible to make the couplings
AKN and ZKN both nuch smaller than the NnlN coupling. Since the
evidence from photo-K production seems to indicate smaller effective
coupling constants for AKN and ZKN than for NN (indeed that was the
basis of the global symmetry scheme) we must conclude that our sym-
metry is fairly badly broken. We shall return to that question in
~ Section VII.

A simple way to read off the numerical factors in Table III,
as well as those in Table IV'for the vector mesons, is to refer to
the chart in Table V, which gives the transformation properties of
mesons and baryons in terms of the conceptual "leptons” and "L

particles” of Section III.
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An interesting remark about the baryon mass differences may
be added at this point. If we assume that they transform like the
p~e mass difference, that is, like the 8th component of the unitary
spin, then there are only two possible mass-difference matrices,

F8 and D8' That gives rise to a sum rule for baryon masses:

1/2 (mN +mg) = 3/% my + 1/4 my, , (k.8)

which is very well satisfied by the observed masses, much better
than the corresponding sum rule for global symmetry.
There is no particular reason to believe, however, that the

analogous sum rules for mesons are obeyed.

V  Vector Mesons

The possible transformation properties of the vector mesons
under‘g are the same as those we have already examined in the
pseudoscalar case. Again it seems that for low mass states we can
safely ignore the representations EZ’ %9,'and Eg. We are left with
1 and the two cases of 8,

A vector mesén transforming according toli'woubi have Q = 0,
I =0, 7Y =0 and would be coupled to the total baryon current
iﬁypN, which is exactly conserved. Such a meson may well exist and
be of great importance. The possibility of 1ts existence has been
envisaged for a long time.

We recall that the conservation of baryons is associated

with the invariance of the theory under infinitesimal trensformations

N—>(1L+1i68)N 5 (5.1)
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vhere € 1s a constant. vThis is gauge~invariance of the first kind.
We may, however, consider the possibility that there is also gaugé
inveriance of the second kind, as discussed by Yang and Iee12>.
Then we could make &€ a function of space-time. In the free baryon
Iegrangian

IN = - N(?’a 6(1 + mO)N (5'2)
this would produce a new term
Ly —> Ly - 1'1'\1'7061\150‘2 (5.3)

which can be cancelled only if there exists a neutral vector meson

field B, coupled to the current Ny N:

Ly = -1/4 (aozBa ) aaléa)g

I&nt = ifoNde By (5.4)

and which undergoes the gauge transformation

B, —> B, + 1/fO 3,8 . (5.5)

As Yang and Iee pointed out, such a vector meson is massless
and if it existed with any appreciable coupling constant, it would
simulate a kind of anti-gravity, for baryons but not leptons, that
is contradicted by experiment.

We may, however, take the point of view that there are vector
mesons assoclated with a gauge-invariant Iagrangian plus a mass term,
which breaks the gauge invariance of the second kind while leaving

inviolate the gauge invariance of-the first kind and the conservation
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law. Such situations have been treated by Glashowld), Salam and

1) )

Ward , and others, but particularly in thie connection by Sa.k.urai3 .

The vector meson transforming according tobi_would then be of

ll), Sakurais), and others have discussed the

such a kind. Teller
notion that such a meson mey be quite heavy and very strongly coupled,
binding baryons and anti-baryons together to make the pseudoscalar
mesons according to the compound model of Fermi and Yangls). We
shall leave this possibility open, but not consider 1t further here.
If it is right, then the Yukewa couplings (4.7) must be treated as
phenomenological rather than fundamental; from an immediate practical
point of view, it may not make much difference.

We go on to consider the 8 representation. An octet of wvector
mesons would break up into an isotopic doublet with Y = 1, which we
shall call M (by analogy with K - the symbol L is already used to
mean © or p); the corresponding doublet M analogous to K; a triplet
Q with ¥ = O analogous to n; and a singlet w® with Y =0 analogous
to «x°.

We may tentatively identify M with the K reported by Alston
et al.lo) at 884 Mev with a width [ =~ 15 Mev for break-up into
% + K. Such a narrow width certainly points to a vector rather than
a scalar state. The vector meson e may be identified, as Sakurai
has proposed, with the I =1, J = 1, n-n resonance discussed by
Frazer‘and Fulco7) in connection with the electromagnetic structure
of the nucleon. The existence of «° has been postulated for simi-

lar reasons by Nambug), Chewg), and others.

loTate! 5‘,% ?}7
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In principle, we have a choice again between couplings of the
LE and thelg type for the vector meson octet. But there is no ques-
tion which is the more reasonable theory. The current iﬁijay is the
current of the F-spin for baryons and in the limit of unitary sym-
metry the total F spin current is exactly conserved. (The conserva-
tion of the strangeness-changing currents, those of Fh’ F5, F6,‘and
F7, is broken by the mass differences, the conservation of F2 and
F3 by electromagnetism, and that of F3 and FB separately by the weak
interactions. Of course, the current of the electric charge

_ Py
Q = e(]?3 + 73-) (5.6)

is exactly conserved.)

Sakurai has already suggested that e is coupled to the iso-
topic spin current and ® to the hypercharge current. We propose in
addition that the strange vector mesons M are coupled to the strange-

ness-changing components of the F spin current and that the whole
system is completely invariant under I before the mass-differences
have Pbeen turned on, so that the three coupling constants (suitably
defined) are approximately equal even in the presence of the mass
differences.

Now the wvector mesons themselves carry ¥ spin and therefore
contribute to the current which is their source. The problem of con-
structing a nonlinear theory of this kind has been completely solved
in the case of isotopic spin by Yang and Miils 5) and by Shaw 5).

" We have only to generalize their result (for three vector mesons) to

the case of F spin and eight vector mesons.
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We may remark parenthetically that the Yang-Mills fheory is
irreducible, in the sense that all the 3 vector mesons are coupléd
to one another inextricably. We msy always make a “reducible" theory
by adjoining other, independent vector mesons like the field Ba dis-
cussed earlier in connection with the baryon current. It is an
interesting méthematical problem to find the set of all irreducible
Yang-Mills tricks. Glashow and the authorl6) have shown that the
problem is the same as that of finding all the simple Lie algebras,
one that was sdlved long ago by the mathematicians. The possible
dimensions are 3, 8, 10, 14, 15, 21, and so forth. Our generali-
zation of the Yang-Mills trick is the simplest one possible.

But let us "retuwrn to our sheep”, in this case the 8 vector
mesons. We Tirst construct a completely gauge-invariant theory and
then add a mass term for the mésons. Iet us call the eight fields
eia’ just as we denoted the eight pscudoscalar fields by T, We
may think of the Ni’ the Ly and the (o 25 vectors in an
8-dimensional space. (The index « here refers to the four space-
time components of a vector field.) We use our totally antisym-

metric tensor fij to define a cross product

k

fijk AJ B, . (5.7)

(a=xB), =

The gauge transformation of the second kind analogous to Egs. (5.1)

and (5.5) is performed with an eight-component gauge function ¢:
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N—>N+gxN

£a*£a+gx£a'(madaﬂ~
35-—)33+£x1t~ (5.8)

We have included the pseudoscalar meson field for completeness,
treating it aé elementary. We shall not write the n-N and possi-

ble n-xt couplings in what follows, since they are not relevant and
may simply be added in at the end. The bare coupling parameter is 1

We define gauvge-covariant field strengths by the relation

E’ae = aagﬁ - erEa + 27o£a X ﬁB (5.9)

and the gauge-invariant Iagrangian (to which a common vector meson

mass term is presumably added) is simply

1 TR
L=- E\QQB “gaﬂ - mo u:-l-\l ‘_I‘\I_ - uI_\‘T'Ya (aa}l + ayo\g(x x»]'E)

2

. i ’ .
o x 33"2(6a35+27ofaxﬁ) (aa£+27ou€ax£) . (5.10)

There are trilinear and gquadrilinear interactions amongst the wvec-
tor mesons, as usual, and also trilinear and quadrilinear couplings
with the pseudoscalar mesons. All these, along with the basic cou-
pling of vector mesons to the baryons, are characterized in the
limit of no mass differences by the single coupling parameter Yo
The symmetrical couplings of Jgo:to the bilinear currents of baryons
and pseudoscalar mesons are listed in Table.IV. In Section VII, we
shall use them to predict a number of approximate relations among
experimental quantities relevant to the vector mesons.

As in the case of the pseudoscalar couplings, the various

3 030
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vector couplings will have somewhat different strengfhs when the
mass differences are included, and some couplings which vanish in
(5.10) will appear with smell coefficients. Thus, in referring to
experimental renormelized coupling constants (evaluated at the
physicgl messes of the vector mesons) we shall use the notation
TNAM? 7NNe , etcs In the limit of uwnitary syﬁmetry, all of these

that do not vanish are equal.

VI Weak Interactions

So far the role of the legtons in unitary symmetry has been
purely symbolic. Although we introduced a mathematical F spin for
v, e , and pu , that spin is not coupled to the eight vector mesons
that take up the F spin gauge for baryons and mesons. If we take
it seriously at all, we should probably regard it as a different
spin, but one with the same mathematical properties.

Iet us make another point, which may seem irrelevant but pos-
sibly is not. The photon and the charge operator +to which it is
coupled have not so far been explicitly included in our scheme.

They must be put in as an afterthought, alohg with the corresponding
gauge transformation, which was the model for the more peculiar
gauge transformations we have trested. If tﬁe weak interactlons are

carriedl7)

18,19)

by vector bosons Xa'and generated by a gauge transforma-
tion of their own, then these bosons and gauges have been
ignored as well. Such considerations might cause us, if we are in

a highly speculative frame of mind, to wonder about the possibility

that each kind of interaction has its own type of gauge and its own
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set of vector particles and that the algebraic properties of these
gauge transformations conflict with one another.

When we draw & parallel between the "F spin" of leptons and
the F spin of baryons and mesons, and when we discuss the weak inter-
actions at all, we are exploring phenomena that transcend the scheme
we are using. Everything we say in this Section must be regarded as
highly tentative and useful only in laying the groundwork for a pos~
sible future theory. The same is true of any physical interpretation
of the mathematics in Sections II and IIT.

We shall restrict our discussion to charge - exchange weak
currents and then only to the vector part. A complete discussion of
the axial vector weak currents mey involve more complicated concepts
and even nev mesonseo) (scalar and/or axial vector) lying very high
in energy.

The vector weak current of the leptons is just‘77OF +';xau .

If we look at the abstract scheme for the baryons in Eq. (3.5), we
see that a baryon current with the same transformation properties
under F would consist of two parts: one, analogous to ;709, would
have lAEl =1 and AS = 0, while the other, analogous to —177(2“ s
would have ‘AE' = 1/2 and AS/AQ = +1. These properties are exactly
the ones we are accustomed to associate with the weak interactions of
baryons and mesons.

Now the same kind of current we have taken for the leptons
can be assigned to the conceptual bosonsbL of Section III. Suppose

it to be of the same strength. Then, depending on the relative sign
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of the lepton and L weak currents, the matrices in the baryon system
mey be F's or D's.

Suppose, in. the AS = 0 case, the relative sign is such as to
give F. Then the resulting current is Just one campoﬁent of the
isotopic spin current; and the seme result will hold for mesons.

Thus we will have the conserved vector current that has been pro-
posedl7) to explein the lack of renormslization of the Fermi constant.

In the AS = 1 case, by taking the same sign, we could get the
almost-conserved strangeness—changing vector current, the current of
Fy, + 1F . ’

Further specﬁlations along these lines might lead to a theory

21)

of the weak interactions .

VII Properties of the New Mesonsg

The theory we have sketched is fairly solid only in the realm
of the strong interactions, and we shall restrict our discussion of
predictions to the interactions among baryons and mesons.

We predict the existence of 8 baryons with equal spin and
parity following the pattern of N, A, %, and Z. ILikewise, given
the n and its coupling constant, we predicﬁ a8 pseudoscalar K and a
new particle, the %9, both coupled (in the absence of mass differ-
ences) as in Eq. (4.7), and we predict pion couplings to hyperons as
in the same equation.

Now in the limit of unitary symmetry an encrmous number of

selection and intensity rules apply. For exsmple, for the reactions

Rete) 033
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PS meson + baryon — PS meson + baryoh, there are only 7 independent
amplitudes. Likewise, baryon-baryon forces are highly symmetric.
However, the apparent smallness of gi/&ﬂ for NKA and NKZ compared to
NN indicates that unitary symmetry is badly broken, assuming that
it is wvelid at all. Wé must thus rely principally on qualitative
predictions for tests of the theory; in Section VIII we take up the
question of how quantitétive testing may be possible.

The most clear-cut new prediction for the pseudoscalar mesons
is the existence of TXO, which should decay into 27y like the no,
unless it is heavy enough to yield xt + 1+ 7 with appreciable
probability. (In the latter case, we must have (x*x") in an odd
state.) A°-—>3x is forbidden by conservation of I and C. For a
sufficiently heavy ‘%P, the decay x° ~>lx is possible, but
hampered by centrifugal barriers.

Now we turn to the vector mesons, with coupling pattern as

given in Table IV. We predict, like Sakurai, the p meson, pre-
sumably identical with the resonance of Frazer and Fulco, and the
W meson, éoupled to the hyperchaxge. In addition, we predict the
strange vector meson M, which may be the same as the Kf of Alston
et al.
Some of these are unstable with respect to the strong inter-
actions and their physical coupling constants to the decay products

are given by the decay widths. Thus, for M—>K + x, we have

T i
MKn k ‘
Mo =2 % =3 (7.2)

Ui
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where k is the momentum of one of the decay mesons. We expect, of
course, &a 0052‘\9 angular distribution relative to the polarization
of M and & charge ratio of 2:1 in favor of K° + «* or K" + «”,

For the I =1, J = 1, n-n resonance we have the decay e —» 2n

with width
2
M.l 10 (7.2)
e 3 hx m 2 ‘
e -
: r‘ 2
Using a value n e = 4,5 m. o we would have ~m %1? and agreenent

2

with the theory of Bowcock et al.7) would require a velue of 17&::?

of the order of 2/3. If, now, we assume that the mass of M is
really around 880 Mev, then Eq. (7.1) yields PM = é -250 Mev.
If the width is around 15 Mev, then the two values of %1? are
certainly of the same order.

We can obtain information about vector coupling constants in
several other ways. If we assume, with Sakurai and Dalitz, that
the Y of Alston et al.22) (at 138(5 Mev with decay Y + A) is
a bound state of K and N in a potential associated with the exchange
of W and e then with simple Schrgdinger theory we can roughly
estimate the relevant coupling strengths. In the Scﬁrgdinger
approximation (which is fairly bad, of course) we have ‘the potential

-m,r -m,r

. W
e "Kke e L i Tikp e e

V(triplet) = -3 - T = o = . (7.3).

If ® has a mass of around 400 Mev (as suggested by the isoscalar

form factor of the nucleon) then the right binding results with both
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2
%? of the order of 2/3.

A most important result follows if this analysis has any ele-
ment of truth, since the singlet potential is
-meT

7. Y
NNy ‘KKp e
T -3 g Y r (7.4)

Yo 7 )
V(singlet) =~ -3 NNwh“KKa) &

A singlet version of Y* should exist considerably below the energy
of Y* itself. Call it Y:,‘ If it is bound by more than 100 Mev or
50, it is metastable and decays primarily into A+ y, since A + x
is forbidden by charge independence. Thus Y: is a fake ZO, with

I % 0 and different mass, and may have caused some difficulty in
experiments involving the production of z° at high energy. If,
because of level shifts due to absorption, Y: is not very far below
Y*, then it should be detectable in the same way as Y*; one should

observe its decay into n + Z.

Bound systems like Y and Y: should bccur not only for KN
but also for K=, (In the limit of unitary symmetry, these come to
the same thing.)

The vector coupling cohstants occur also in several important
poles. (For the unstable mesons, these are of course not true poles,
unless we perform an analytic continuation of the scattering amplitude

onto & second sheet, in which case they become poles at complex
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“energles; they behave almost like true poles, however, when the
jwridths of the vector meson states are small.) There is the pole
at q2 = -mfi in the reactions =~ + p—>A+ K and 1" + D22 + K;

a peaking of K in the forward direction has already been obsérved
in some of these reactions and should show up at high energies in
all of them. ILikewise the pole at q_2 = -mf[ in the reaction

K+ N—M + N should be observable at high energies and its strength
can be predicted directly- from the width of M. In the reactions

t 4+ N—>A+Mand « + N—>Z + M , there is a pole at q2 =-—m§ and
measurement of its strength can determine the coupling constants
gﬁKA/lm and gﬁm/hn for the K meson.

In #N scattering, we can measure the pole due to exchange
of the p meson. In KN and KN scattering, there are poles fram
the exchange of @ and of w; these can be separated since only
the former occurs in the charge-exchange reaction. In NN scattering
with charge-exchange, there is a e meson pole in addition to the
familiar pion pole. Without charge exchange, the situation is
terribly complicated, since there are poles from n, p, @, X, and B.

When the pole term includes a baryon vertex for the emission
or absorption of a vector meson, we must remember that there is a
"strong magnetic” term analogous to a Pauli moment as well as the
renormalized vector meson coupling constant.

In a relatively short time, we should have a »considera'ble

body of information about the vector mesons.
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VIII ‘ Violations of Unitary Symmetry

We have mentioned that within the unitary scheme there is no
way that the coupling constants of K to both NA and NZ can both be
muich smaller than 15, except through large violations of the symmetry.
Yet experiments on photoproduction of K particles seem to point to
such a situation. Even if unitary symmetry exists as an underlying
pattern, whatever mechanism is responsible for thé mass differences
apparently produces a wide spread among the renormalized coupling
constants as well., It is true that the binding of A particles in
hypernuclei indicates a nAZ coupling of the same order of magnitude
as the nllN coupling, but the anomalously small renormalized con-
stants of the K meson indicate that a quantitative check of unitary f
symmetry will be very difficult.

What ébout the vector mesons? Iet us discuss first the P
and 4@ fields, which are coupled to conserved currents. For typical

couplings of these fields, we have the relations

e = 720 e @) F (8.1)
2w = 72 zgtp [ @] 2 (8-2)
pNN o 23\f 1 ’ ’
o = 7o Ls@) | V) (o)] = (8.3)

etc. Here each renormalized coupling constant is written as a pro-
duct of the bare constant, a vacuum polarization renormalization
factor, and a squared form factor evaluated at zero momentum trans-

fer. The point is that at zero momentum transfer there is nc vertex
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renormalization because the source currents are conserved. To check,
for eiample, the hypothesis that e is really coupled to the isotopic
spin current, we must check that 7§ in (8.1) is the same as 75 in
(842). Ve can measure (say by "pole experiments" and by the width
of the m-n resonance) the renormalized constants on the left. The
quantities V2 are of the order unity in any case, and their ratios
can be measured by studying electromagnetic form factors23).

The experimental check of "universality" between (8.1) and
(8.2) is thus possible, but that tests only the part of the theory
already proposed by Sakurai, the coupling of e to the isotopic spin
current. To test unitary symmetry, we must compare (8.2) and (8.3);
but then the ratio Zs(e)/ZSQD) comes in to plague us. We may hope,
of course, that this ratio is sufficiently close to unity to make
ﬁhe agreement striking, but we would like a better way of testing
unitary symmetry quantitatively.

When we consider the M meson, the situation is worse, since
the source current of M is not conserved in the presence of the
mass differences. For each coupling of M, there is a vertex renor-
malization factor that complicates the comparison of coupling
strengths.

An interesting possibility arises if the vector charge -
exchange weak current is really given in the [z&s( = 1 case by the
current of Fh + iF5 Just as it is thought to be given in the

AS = 0 case by that of Fl'i ir, (the conserved current) and if the
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AS =0 and lAS‘ = 1 currents are of equal strength, like the ev
and pv currents. Then the leptonic \Asﬂ = 1 decays show renor- 
malization factors that must be related to the vertex renormaliza-
tion factors for the M meson, since the source currents are assumed
to be the same. The experimental evidence on the decay K-—on + lep-
tons then indicates a renormelization factor, in the square of the
amplitude, of the order of 1/20. 1In the decays A —>p + leptons
and Z° ~»n + leptons, both vector and axial vector currents appear
to be renormalized by comparable factors.

The width for decay of M into K + =, if it is really about
15 Mev, indicates that the renormalized coupling constantlyihM/hﬂ
is not much smaller than 7§ﬂﬂ/hn ~ 2/3 and so there is at present
no sign of these small factors in the coupling constants of M.
It will be interesting, however, to see what the coupling constant
7§Aﬁ/hﬁ comes out, as determined from the pole in T+ p—>40 4+ KP.

We have seen that the prospect is rather gloomy for a quan-
titative test of unitary symmetry, or indeed of any proposed higher
symmetry that is broken by mass differences or strong interactions.
The best hope seems to lie in the possibility of direct study of
the ratios of bare constants in experimenﬁs involving very high
energies and momentum transfers, much larger than all masseseh).
However, the theoretical work on this subject is reétricted to
renormalizeble theories. At present, theories of the Yang-Mills

25)

type with a mass do not seem to be renormalizable s, and no one

knows how to improve the situation.
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It is in any case an important challenge to theoreticians to
construct a satisfactory theory of vector mesons. It may be useful
to remark that the difficulty in Yang-Mills theories is caused by
the mass. It is also the mass which spoils the gauge invariance of
the first kind. Iikewise, as in the p-e case, it may be the mass
that produces the violation of symmetry. Similarly, the nucleon and
pion masses break the conservation of any axial vector current in
the theory of weak interactions, It may be that a new approach to
the rest masses of elementary particles can solve meny of our pre-

sent theoretical problems.

IX  Acknowledgments

The author takes great pleasure in thanking Dr, S. L. Glashow
and Professor R. P. Feynman for their enthusiastic help and encour-
agement and for numerous ideas, although they bear none of the blame
for any errors or defects in the theory. Conversations with

Professor R. Block about Lie algebras have been very enlightening.




-39-

TABIE I.

A Set of Matrices 7\1.

>
i

-1

o @ ©

8

g

3

i}

-1




-4o-

TABLE Il.

Non-zero elements of fijk and dijk' The fijk are odd under

permutations of any two indices while the dijk are even.

iJk

123
147
156
2h6
257
345
367
458

678

fijk ,

1
1/2
-1/2
1/2
1/2

1/2

o
o
Yo

ijk

118
146
157
228
2l7
256

338

355
366
377
Lhg
558
668
778

888

043

44 5%
/3
1/2
1/2
3
-1/2
1/2
AWNED
1/2
1/2
-1/2
-1/
-1/(2/3)
-1/(2/3)
-1/(2/3)
-1/(2/3)
-1/V/3
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TABIE III.
Yukaws intersctions of pseudoecalar mesons with baryons,

assuming pure coupling through D.

=0
-t

o 0= = 2 o 2% O _ w0
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TABIE IIT (cont.)
Yukawa interactions of pseudoscelar mesons with baryons,
sgsuming pure coupling through F.
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TABLE IV.

Trilinear couplings of e's to n's and N's,
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TABIE V.
Transformetion properties of baryons and mesons,

assuming pseudoscalar mesons coupled through D.
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TABIE V (cont.)
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