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Abstract 

Einstein's equivalence principle was first expressed in terms of the equivalence of uniform gravity and an accelerated frame 

j)f reference. Additionally based on the principle of general relativity, Einstein's equivalence principle for the curved Rieman­

nian. physical space was developed and three tests verified. Nevertheless, attempts to present the initial fonn of Einstein's 

equivalence principle in terms of a space-time metric had faiJed., and it was daimed that Einstein's principles are invalid. On 

the other baru:L Einstein insisted on the fundamental importance of his equivalence principle to general relativity. 1t 1S shown 

that these failures are due to luisconceptions and misinterpretation ofEinstein's theory. To this end, the related misconceptions 

are clarified by analyzing the case of uniform rotation. It. is found that, in Einstein's Riemannian space, the frame of reference 

has dual structures, a RiemamJian structure and a Euclidean structure that emerge from different, but complementary, methods 

of measurements. A Riemannian space together with its Euclidean strocture is called an Ein....tein space named after its creator. 

An Einsleinspace is a physical space in Einstein's theory ifEinstein's equivalence principle is satisfied. After these theoretical 

clarifications, the space-time metric of an acceleratedframe is calculated. to support Einstein's equivalence principle. 
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l.. latcoourtion 

It is generally agreed. as pointed out by Einstein [lt Eddington {2], Pauli [3], \Veinberg [4]. t-..1isner, Thome & \¥heeler 

(5]., Stramnann {6j., and yuPt t.hat Einstein's equivaJenceprindpJe is the tbe-oretkaJ foundatinn -of general relativity. 

However, a surprising fact tCl, as Einstein lS} saw it., that fe,".' like Eddington [2} understand Einst.ein's equivalence principle 

in terms ofplrysics adequately. Thisisooufinned, for instance, by tbe(invalid) caJcuJatrons of ToJman (9) and Fock {IO]. In 

addition, Synge Ill] professed his misunderstandings on Einstein's equivalence prindple as follows: 

" ... I have never been able to understand this principle...Ooesit lnean that the effects ofa gravitational field areindis­

tinguishable from the effects of an observer's acceleration? If so, it is false. In Einstein's theory, either there is a gravi~  

tational field or tbere is none., according as the Rjemann tensor does or does not vanisb. This is an a b s o l u t e p r o p e r t y ~ it 

has nothing to do with any observer's world line ...The Principle of Equivalence performed the esrential office of m i d ~  

wife at tbebirth of general relativity ... I suggest that the midwife be now buried with appropriate honours and u ~ e  facts 

of absolute spacetime be faced." 

Currently, similar misunderstanding surprisingly persists. For instance, Thome [12J criticized Einstein's principle as follows: 

"In deducing his principle of e q u i v a l e n c e ~  Einstein ignored tidal gravitation f o r c e s ~  he pretended they do not exist. Ein­

stein justified ignoring tidal forces by imagining that you are (and your reference frame) are very small." 

H o w e v e r ~  these imagiJled problems have already been explained and answered satisfactorily by Einstein. For instance, the 

problem of tidal forces has been answered in Einstein's July 12, 1953 letter to A. Rehtz [l3J as fonows: 

"The equivalence principle does not assert that every gravitational field ( e . g . ~  the one associated with the Earth) can be 

produced by acceleration of the coordinate system. It only asserts that the qualities of physical space, as they present 

themselves from an accelerated coordinate system, represent a special case of tlle gravitational field" 

This is not an after thought because an accelerated frame also cannot account for the gravity of a rotating disk [1J. Einstein [S} 

explained to Laue, "What characterizes the existence of a gravitational field, from the empirical st,.andpoint, is the non­

vanishing of the nik (field strength), not the non-vanislung of tbe ~ . "  and no gravity is: a special case of gravity. This view 

is crucial because it aUows Einstein to conclude that t11e geodesic equation is also the equation of motion of a massive pa..1"ficle 

under gravity. In f a c t ~  Einstein i n s i s t ~  throughout his l i f e ~  on the fundamental importance of tlle principle to bis general the­

ory of relativity [8]. On the other hand, Einstein's insistence on this point has created a puzzle for philosophers and historians 

of science [8]. This shows also, how much was Einstein's equivalence principle being understood in terms ofphysics. 
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Einstein explained the initial form of his equivalence principle in terms of the uniform gravity and acceleration clearly in 

1911 and in ]916 [14]. Einstein assumed that the mechanical equivalence of an inertial system K (x, y, z) under a uniform 

gravitational field, which generates a gravitational acceleration 'Y (but, system K is free from acceleration), and a system K' (x', 

y' z') accelerated by y in the opposite direction, can be e:\1ended to other physical processes. Based on this assumed equiva­

lence, Einstein [14} derived the gravitational red shifts. He found also that his equivalence principle is compatible with the 

Doppler effects and even the notiooof photon. Tbus, the equivalence 'principle has been firmly established on the ground of 

universality of physics, although the formula for light speeds under gravity needed improvement This is independent of the 

need ofa Lorentz Riemannian space, which is additionally due to the principle of general relativity a11d special relativity [1]. 

A connection between gravity and a curved Riemannian space was established in 1915 [15]. However, a space-time metric 

that corresponds to a uniformly accelerated frame of reference remains to be clarified (see Section 4). This incompleteness con­

tributed to a speculation that the deficiency is intrinsic and thus added difficulty in understanding Einstein's theory. Moreover, 

such speculation is supported by both calculations of Tolman {9] and Fock [10] that showed the accelerated frame failed in re­

lating to a metric for uniform. gravity, as E i n ~ e i n ' s principle requires. 

Recently, such a speculation has been proven incorrect because the field equation is intimately related to Einstein's equiva­

lence principle. The Maxwell-Newton Approximation [16.17] (the same as the linearized field equation for weak gravity due to 

massive matter) that produced an accurate bending of light has been derived with Einstein's equivalence principle together 

with the notion of a curved space if Newtonian theory is taken as a form of first order approximation. Thus, Einstein's equiva­

lence principle is full)' compatible with the notion ofa curved Riemannian space-time. 

However, the question of how the curved space is related to an accelerated frame remains a puzzle. In this paper, it will be 

shown that failures of Tolman and Fock are due to the conceptual error that identified a frame of reference with only a EucIid­

ean subspace. Some related conceptual considerations are also addressed (see Sections 2 & 3). Finally, an appropriate metric 

form fOT an accelerated frame will be derived (see Section 4). To tlrisend, let us first identify the existing misconceptions. 

2. The Euclidean Structure and Measurements in a Riemannian Space-T i m e ~  

Many theorists believed, as Pauli (3] did, that in general relativity "it is necessary to abandon Euclidean geometry" because 

"Einstein showed for example of a rotating reference system, the time intervals and spatial distances in non-Galilean systems 

cannot just be determined by means of a clock. and rigid standard measuring rod." However, these two statements need some 
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clarifications. Euclidean geometry is "abandoned" only in the invariant line element [I}. Moreover, Einstein showed only one 

type of"meaSUTements"~  but he explained inadequately another type of necessary measurements in general relativity [1]. 

In general relativity, the invariant line element is 

2 f.l v
ds =g dx dx , (1)

f.lv 

where 1;tv is a general space-time metric in a Riemannian space. Since 1;w is not a constant metric, one cannot hope to derive 

from (I) a simple distance formula as in Euclidean geometry that the spatial distance d (PI' P2) of two points PI and P2 is still 

(2) 

However, in a different way, the Euclidean structure (2) is actually preserved within the Riemannian geometry. 

To illustrate this, Jet us examine the Schwarz.schiJd solution [l] ofRiemannian space (x, y, z~  t), 

(3) 

where 

x = p sinOcos<p, y = p sinOsin<p, and z =p cosO (4) 

and K is a coupling constant, and M is the total mass. (For simplicity, an interior solution is not presented here.) Since the met­

ric is defined in terms of p, e, and <p, tbe Riemannian space is actuaJ]y defined in tenns of the .Euclidean characteristics (4). 

This illustrates that the Euclidean subspace (x, y, z) is necessarily included in Einstein's Riemannian space. In fact, Einstein 

[121 stated that the velocity of light is defined in the sense ofEuclidean geometry. Tbe subspace (x, y, z) is called tbe frame of 

reference. Thus, the notion of Riemannian space-time is compatible with the frame of reference baving a Euclidean structure. 

To understand the Euclidean subspace (x, y, z) in terms of physical measurements, we must first clarify what "measure" 

means in relation to Einstein's equivalence principle. In Einstein's theory, the measuring instruments are resting but in a free 

faU state (see Section 3). From Einstein's equivalence principle., time dilation and space contraction are obtained. On the other 

hand, if the measuring instruments are resting and are attached to the frame of reference.. since tbe measuring instruments and 

the coordinates being measured are under the same influence of gravity, a Euclidean space structure emerges as ifgravity did 

not exist. Such a Euclidea.n structure would make a distinct class of Riemannian space (see also Section 3). 

A 
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To make a useful distinction, such a class should be called the Einstein Spaces named after its creator. Then, an Einstein 

space would be a physical space that models reality only ifEinstein's equivalence principle is satisfied. 

The notion of frame of reference plays a crucial role in the theory of general relativity, as pointed out by Fock [10], in par­

ticular to Einstein's equivalence principle, but Fock incorrectly identified the frame of reference ""lith a Euclidean subspace. A 

related problem is that Pauli [3] regards the equivalence principle essentially as j u . . ~  the existence of local Minkowski spaces. 

The popular version of the equivalence principle expressed by Pauli {3] is the foUO'.'ving: 

"For every infinitely small world region (i.e. a world region which is so small that the space= and time-variation of gravity 

can be neglected in it) there always exists a coordinate system Ko (XI, Xz, X3, X4) in which gravitation has no influence 

either in the motion of particles or any physical process." 

Einstein strongly objected Pauli's version as reported in details by Norton (8]. The notion of acceleration with respect to a 

frame of reference is essential in Einstein's equivalence principle [10]. It has been shown that static acceleration may not exist 

for a non-constant metric, and this situation leads to inconsistent in physics {17]. 

Since other related physical considerations such as acceleration are ignored, Pauli's version is actually only a mathematical 

statement of the Lorentz manifold (II]. A noted difference from Pauli version is that Einstein requires additionally: i) "the spe­

cial theory of relativity applies to the case of the absence of a gravitational field [14, p.115]" and it) a local Minkowski space is 

obtained by choosing the acceleration. Einstein (14, p.118) wrote, "... we must choose the acceleration of the infinitely small 

("local") system of coordinates so that no gravitational field o c c u . r s ~  this is possible for an infinitely small region." In fact, ac­

celeration with respect to a frame nf reference is crucial for lneasurements in Einstein's general relativity (see Section 3). 

Nevertheless, the inadequacy of Pauli's version for a world region of a physical space was not a serious, problem until it is 

illCOrrectly claimed that the existence of I...ocal Minkowski space had replaced Einstein's equivalence principle such that the 

physical validity of any Lorentz manifold could be justified Consequently, Einstein's theory is distorted and his notion of 

physical space [I,13,14] has been ignored to the point that professional relativists nften ask what is a Physical space. 

3. The Principle of General Relativity, Uniform Rotation, and Riemannian Space-Time 

Einstein considered a Galilean (inertial) system of reference K (x, y, z, t) and a system K' (x', y', z', t') in uniform rotation 

Q relatively to K. The origins ofboth systems and their axes of Z permanently coincide. (The gravity of this example would be 

useful for the calculation of the gravity related to a uniformly accelerated frame.) For reason of symmetry, a circle around the 
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origin in the x-y plane of K may at the same time be regarded as a circle in the x' -y' plane of K'. Then, according to special 

r e l a t i y j t y ~  in the x-:y plane and the x'-y' plane, the metrics ofK and K' (1)8] are respectively the following: 

where x == r cos ep, y == r sin~,  (5) 

and 

(6) 

Then, 

x' == r' cos ~',  y' == r' sin ~ ' .  (7) 

would be the circumstance of a circle of r a d i u . ~  T' (== r) for an observer in K'. Moreover, as. Einstein pointed out, "an observer at 

the COlllJllQJl origin of co-ordinates." capable ofobserving the dock at the circumferences by means of I j g h ~  would therefore see 

it lagging behind the clock beside him". So. he will be obliged to define time in such a wl{V that the rate ofa clock d e p e n d ~  

upon where the clock may he fl4l ThUs., Einstein also defined a physical space-time coordinate system together uith itf; metric 

that is related to local clock rates and local s.patial measurements. 

To illustrate Einstein's eqtrivalence principle and tlle notion of Einstein space, Jet usfust derive metric (6). Consider the 

coordinate transformation to the uniformly rotating disk [18], in terms of Newton's notion of "absolute time" as follows: 

x == x' cos Ot - y' sin Ot, y == x' sin Ot + y' cos O ~  and z=z' (8a) 

or 

r = r', z == z'. cp == cp' + Qt. (8b) 

in cylindrical coordinate systems of K and K', where 0 is the angular velocity. Here, we take advantage of the fact that one can 

start with an arbitrary coordinate system of a Riemannian space. Then, from (5) the resulting metric has the following form, 

(6') 

However, the mathematical system K* (x', y', z', t) is not a physical space-time coordinate system for the unifonnly rotating 

disk K' because what measured in a resting local clock is time t' but not time t. In other words, metric (6') together 'with its 

coordinates K* is not a space-time coordinate system. as Einstein defined, that can be used for physical measurement. 

Nevertheless, metric (6') alone can be used to derive metric (6), wllich has been claimed as incompatible 'with (5) by some 

theorists. To obtain a physical coordinate system including the time t' of the rotating d i ~  a comparison of (6) and (6') leads to, 
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dq,' = dq, - Odt ~  (9a) 

and 

edt' = [edt - (rQ/c)rd4>J[l - (rQ/c)2t1 . (9b) 

Thus, it is necessary to mod.ifY the time coordinate 1'. Relation (9) makes clear that metric (6) is related to the flat metric (5). 

The time dilation and the spatial contraction in general relativity [lJ4J, are results due to comparisons with a clock and a 

measuring rod in relatively rest at the beginning of a free falL To verify t ~  consider a particle P resting at (r', <fl', z'). Then, P 

has the velocity of Or in the 4>' -directio~  which is denoted by dx". It follows that the Lorentz coordinate transformation is, 

(10a) 

and 

edt = [1 - (rOlc)2}-l/2 (cdt" + (rQ/c)dx"} . (lOb) 

Then, 

and edt' = [1 ­ (rOIc)2yl/2 edt" (lla) 

and 

(lIb) 

These are exactly the time dilation and spatial contraction. This illustrates that a particle r e ~ 1 i n g  at K', can attached to a local 

Minkowski space. Thus, this is also an example of Einstein's version of infinitesimal equivalence principle. 

However, for tbe coordinate system K* (x', y', z\ 1), the question of time dilation is complicated because Einstein's equiva­

lence principle is not applicable. Nevertheless, let us assume the Einstein's equivalence principle could be applied to K *. 

Mathematically, fOT a particle P Te~1ing  at K*, the state "vector ofP is (0,0,0, <it). According to (9), P is also resting at K' with 

a state vector (0. O. O. df). Then the local Minkowski space for P is identical to (lIb). It thus follows that 

(12a) 

and 

(12b) 

Thus, 

(l2c) 

wouJd be considered as the time dilation since a dock rest at K* has &p' = O. The probJem of this derivation is that the parame­

ter "t" is not the local time for the frame K' (x', y' z'). 
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Since metric (6') satisfies Pauli's "equivalence principle", Pauli's version is clearly inadequate in physics. This calculation 

confirms that Einstein's equivalence principle is applicable only to a ph)'sicaI space. Thus, in 1'>pite ofgeneral covariance, the 

freedom toward the physical space-time coordinate systems that can be usedfor physical interpretation is severely limited. 

The directional spatial contraction as indicated in metric (6), is measured \\lth a resting measuring rod in the state of free 

fall. However, if a spatial measurement is performed with a measuring rod. which is attached to the frame K' (x', y', z'), it 

would appear as Euclidean. In fuct, it is based on this implicit assumption that thecyIindrical coordinate S)'stem is well defined 

in K'. Thus, as shown in examples (3) and (6), the distance in tenns of the Euclidean structure is necessary and complemen­

tary to the metric for the Riemannian space that produces the local distance. The S)'stem K* (x', y', z', t) has a Euclidean sub­

space, but the time t is not associated with the frame K' (x', y' 70'), Although K* is diffeomorphic to K, K* is not a physical 

space-time since it fails tbe physical requirement of local time. Thus, diffeomorphic manifolds may not be equivalent in general 

relativity as Wald (19] and Logunov & Mernririshvilli [20} believed 

Thus, an Einstein space is a Riemannian space with a Euclidean structure, and it is a physical space if it sufficiently satisfies 

all physical requirements, including Einstein's equivalence principle. However. as in special relativity, the Euclidean character­

istics, on which a physical coordinate system is based, are not invariants. 

4. Uniform Acceleration and Einstein's Equivalence Principle in Riemannian Space 

The analysis of a rotating disk suggests that there are similarities with respect to the case of a uniform acceleration. Based 

on similarity to the case of the rotating disk, the metric for the case ofuniform acceleration would be 

(13) 

where v(1') is the relative velocity of the coordinate systems in the x' -direction. Metric (13) has a Euclidean structure as if v 

were zero. In other words, for the acceleration in the x - d i r e c t i o n ~  the metric would have the following form, 

(14) 

Note that a uniform acceleratron cannot exist forever, otherwise the resulting fypeed would exceed the velocity of light. 

It follows that a uniform acceleration must be started at some timer for instance. t = to < O. and then decreased some 

time afterward. M o r e o v e r ~  a unifonn gravity must be confined in a finite r e g i o n ~  otben,rjse the light speed as the maximum 
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velocity would be violated Thus" uniform gravity like an electromagnetic plane w a v e ~  also does not really exist in nature. 

Thus, the equivalence of acceleration and uniform gravity is best described, as Einstein did, in temts of an elevator. In prae­

tice., the uniform gravity is essentiaUy a local idealization ofa non-uniform gravity. 

Consider a system K' accelerated with an acceleration a relative to an inertial system Ko. Then, if the coordinates of the 

origin ofK' in system·Ku is (Xo·,(t}, 0, 0, t), we have 

d 2 ,X(). 
--=a (15a) 

dt
2 

and 

z = z', jf v{O) = (). (l5b) 

where Xo,(O) is arbitrary. Thus, to obtain a transformation compatible \"ith form (14), we may assume similar to (11) that 

dx' = dx - v(x,t) dt. x = x' - Xo,(O) + at2/2 (16a) 

and 

edt' = [1 - F(x., Oyl[cdt - f(x, t)c-ldx] , (l6b) 

where v(x, t) is a relative velocity of the two systems, and f (x, t) is an unknown function. Note that (15a) is equivalent to 

dx dv 
dx':=O ; and (-. =V and -=a). (l6e)

dt dt 

Substituting (16) to metric form (14), a comparison with the flat metric leads to three relations as follows: 

(17a) 

(17b) 

(l7c) 

It follows that 

1 - vf/e'- = (1 - 2U/c2); and v=f (18a) 

Thus 

o 
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u = (v)2/2 ~  0; and F = 2U/c2 = (v/c)2. (ISh) 

Since v is the relative velocity of the two systems of coordinates K' and:l<o, as expected, metric (14) is in the form of (13). 

A l s o ~  in terms o f p h y s i c s ~  (16) is in complete agreement with (1 1) as shawn be the fonowing relations: 

dx' = dx -vdt; (19a) 

and 

edt' = [1 - (vJc)2r1[cdt - vc-1dx) ; (l9b) 

or 

dx = [1 - (v!c)2y1dx' + vc-1edt' . (lge) 

and 

edt =edt' + [1 - (v/c)2]-lvc-1dx' . (19d) 

The limitation on the velocity of lightalld the definite sign ofds2 for the time line element, also requires 

c212> U(x', 1') 20, and (20) 

from the geodesic equation for the case ofdx'Ids = O. 

On the other band, the gravitational acceleration of a particle in K' is equivalent to 

(2Ia) 

and 

ds = edt, dx' = -vdt, (lIb) 

Thus, 

au
and -a=-. (2Ie)

ax' 

where a is the constant acceleration by assumption. Thus, ifU is independent of the time t', 

Vex') = -ax' + C , or Vex') = -a (x' - xo) (22) 

where C is a constant Since U(x') is bounded according to (20), we must also have a range for x'. From (16a), we have 

v = -a (x' - x - Xo,(O) ). (23) 

1" 
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According to (21a) dx == 0, x + Xo,(O) should be considered as just an arbitrary constant. Thus, (23) agrees with (22). 

To verify time dilation and spatial contraction., one should consider a system jn relative rest at the beginning of a free fall. 

Let us consider the following Lorentz coordinate transformation, 

dx = [1 - (v/c)2]-l/2 [dx" + vdt"] , (24a) 

and 

edt = [1 - (v/c)2r1l2 [cd!" + (vIc) dx"). (24b) 

where v = [2U(x')]I12. Then, we have the expected relation 

dx' = [1 - (v/C)2)l/2 dx" , and cdt' = [1 - (v/c)2}-l/2 edt" . (24c) 

and 

(24d) 

Thus, the initial fomi of Einstein's equivalence principle is indeed compatible with the notion ofRiemallllian space. 

However., there is an arbitrary constantin the potential U. This uncertainty is actually a necessary feature that a unifonn 

gravity can be considered as a local idealization of a non-unifomi gravity. Without this arbitrary constant, one cmmot a<ljust the 

metric for uniform gravity to have the same local value of a changeable non-uniform gravity. Note also that metric (14) for a 

uniform gravity has the form of the Schwarzschild exterior solution far from the source. Just as the plane wave is a local ideali­

741tion of an electromagnetic wave., the uniform gravity can be considered as a localideaJization of the SchwarzschiJd solution. 

As a local idealization, one may not expect that metric (14) satisfies the norntal boundary condition at infinite, just as an elec­

tromagnetic plane-wave has the same amplitude everywhere., and appears as 11aving no source. 

5. Discussions and Conclusions 

An interesting result of this calculation is that it confirms Einstein's 1911 calculation on the gravitational red shifts is valid 

in terms of the Euclidean structure and this explains why the notion of a curved space was not used. The notion of Einstein 

space clarifies that it is valid to consider the frame of reference as if a three-dimensional Euclidean structure. Since a Euclidean 

structure is independent of gravity" it makes sense to define the Euclidean structure first to obtain the Schwarzschild solution. 

To calculate the space-time metric of uniform gravity related to an accelerated frame, it is crucial to recognize the dual 

characteristics of the spatial subspace of Einstein's Riemannian space-time. Thus, the equivalence of gra'vitational force and 

1 1 
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acceleration is accurately valid. In other words, the criticisms ofFock and his followers [21] on Einstein's general relativity are 

baseless. This further strengthens the status ofEinstein's equivalence principle that has been further established due to its role 

in the derivation of the Maxwell-Newton Approximation [16,17}. Weinberg [4, p.3] declared, '"In my view, it much more useful 

to regard general relativity above aU as a theory of gravitation, whose connection "lith geometry arises from the peculiar em­

pirical properties of gravitation, properties summarized by Einstein's Principle of the Equivalence of Gravitation and Inertia." 

In Einstein's theory (I), the reality is modeled mth a physical space (-time) that has a frame of reference for the descriptions 

of the interested physics. In such a physical space, all physical requirements are sufficiently satisfied. From Einstein's simple 

example of uniform rotation, we have learned also that a change of sign ofds2 in a coordinate would manifest the in,'alidity of 

a physical requirement beyond that region. Einstein [lJ4] has shown that such a physical space is a Riemannian manifold with 

a Lorentz metric and a physically 'valid space-time coordinate system that time is measured by a local dock. 

Thus, a different coordinate system can fail as a space-time coordinate system in physics although most calculations can be 

carried out with an aIbitrary mathematical coordinate system (see Sections 2 & 3) Moreover, it has been illustrated that the 

local Minkowski space at a point is obtained by means of choosing the appropriate accelerationc This requires that the coordi­

nates of a physical space must have physical meanings. As iJJustrated in Sections 3 ~  Einstein's equivalence principle is applica­

ble only in a physical space. Otherwise, the so-calculated local time rate and local spatial contraction would be incorrect in 

physics. Since the conditions for a physical space must be taken into c o n s i d e r a t i o n ~  Einstein's equivalence principle is not 

really a local principle in a manifold aCi Fock [10] believed 

Now, it is clear that Einstein's equivalence principle cannot be replaced mth merely the existence of local Minkowski 

spaces, since Pauli's '''equivalence principle" has been proven as inadequate in physics. (There is Lorentz manifold that is not 

diffeomorphic to a physical space {17].) Otherwise, not only this will surely end up in theoretical disagreement with Einstein, 

but also against the weighty fact that there are non-scalars in physics. Moreover, the existence of definitive gravitational red 

shifts testifies that a valid space-time coordinate system cannot be arbitrary. 

In conclusion, a uniform acceleration, as an idealization, is valid for an illu..qration of Einstein's equivalence principle as a 

foundation of general relativity. It is hope that this paper would help clarifying the confusions on this subject in the literature. 

In particular, the author wishes that the damages done by Fock's erroneous approach would be rectiflCd On this basis; one may 

expect that general relativity would be infused with new life and be even more fruitful in the future. 

1') 
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