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5%2 Abstract
—
gu Einstein’s equivalence principle was first expressed in terms of the eqguivalence of uniform gravity and an accelerated frame

of reference. Additionally based on the principle of general relativity, Einstein’s equivalence principle for the curved Rieman-
nian physical space was developed and three tests verified. Nevertheless, attempis to present the initial form of Einstein’s
equivalence principle in terms of a space-time metric had failed, and it was claimed that Einstein’s principles are invalid. On
the other hand, Einstein insisted on the fundamental importance of his equivalence principle to general relativity. It is shown
that these failures are due to misconceptions and misinterpretation of Einstein’s theory. To this end, the related misconceptions
are clarified by analyzing the case of uniform rotation. It is found that, in Einstein’s Riemannian space, the frame of reference
has dual structures, a Riemannian structure and a Fuclidean structure that emerge from different, but complementary, methods
of measurements. A Riemannian space together with its Euclidean structure is called an Finstein space named afier its creator,
An Einstein space is a physical space in Einstein’s theory if Einstein’s equivalence principle is satisfied. Afier these theoretical

clarifications, the space-time metric of an accelerated frame is calculated to support Einstein’s equivalence principle.
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i. Introduction
It is generally agreed, as pointed out by Einstein [1], Eddington [2], Pauli [3], Weinberg [4], Misner, Thorne & Wheeler

{5]. Stravmann {6}, and Yu {7]. that Finstcin’s cquivalence principle is the theoretical foundation of general relativity.

However, a surprising fact is, as Einstetn [8) saw i, that few like Eddington [2] understand Einstein’s equivalence principle

in terms of physics adeguately. This is confinmed, for instance, by the (invalid) caloulations of Tolman {91 and Fock {10]. In

addition, Synge [11] professed his misunderstandings on Eingtein’s equivalence principle as follows:

“...1 have never been able 1o understand this principle... Does it mean that the effects of a gravitational field are indis-
tinguishable from the effects of an observer’s acceleration? If so, it is false. In Einstein’s theory, either there is a gravi-
tational field or there is none, according as the Riemann tensor does or does not vanish. This is an absolutc property; it
has nothing to do with any observer’s world ling. . The Principle of Equivalence performed the essential office of mid-
wife at the birth of general relativity .. I saggest that the midwife be now buried with appropriaie honours and the facts
of absolute spacetime be faced.”

Currently, similar misunderstanding surprisingly persists. For instance, Thorne [12] criticized Einstein’s principle as follows:
“In deducing his principle of equivalence, Einstein ignored tida! gravitation forces; he pretended they do not exist. Ein-
stein justified ignoring tidal forces by imagining that you are (and your reference frame) are very small.”

However, these imagined problems have already been explained and answered satisfactorily by Einstein. For instance, the
probiem of tidal forces has been answered in Einstein’s July 12, 1953 letter to A. Rehtz [13] as follows:
“The equivalence principle does not assert that every gravitational field {e.g, the one associated with the Earth) can be
produced by acceleration of the coordinate system. It only asserts that the qualities of physical space, as they present
themselves from an accelerated coordinate system, represent a special case of the gravitational field
This is not an after thought because an accelerated frame alse cannot account for the gravity of a rotating disk [1]. Einstein {8}
explained to Laue, “What characterizes the existence of a gravitational field, from the empirical standpoint, is the non-
vanishing of the Ty (ficld strength), not the non-vaaishing of the Rjay,.” and no gravity is a special case of gravity. This view
is crucial because it allows Einstein to conclude that the geodesic equation is also the equation of motion of a massive particle
under gravity. In fact, Einstein insisted, throughout his life, on the fundamental importance of the principle to his general the-
ory of relativity [8]. On the other hand, Finstein’s insistence on this point has created a puzzle for philosophers and historians

of science [8]. This shows also, how much was Einstein’s equivalence principle being understood in terms of physics.
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Einstein explained the initial form of his equivalence principle in terms of the uniform gravity and acceleration clearly in
1911 and in 1916 [14]. Einstein assumed that the mechanical equivalence of an inertial system K (%, v, z) under a uniform
gravitational field, which generates a gravitational acceleration y (but, system K is free from acceleration), and a system K' (x’,
y’ 2’} accelerated by v in the opposite direction, can be extended to other physical processes. Based on this assumed equiva-
lence, Einstein [14] derived the gravitational red shifis. He found alsc that his equivalence principle is compatible with the
Doppler effecis and even the notion of phoion. Thus, the equivalence principle has been firmly established on the ground of
universality of physics, although the formula for light speeds under gravity needed improvement. This is independent of the
need of a Loreniz Riemannian space, which is additionally due to the principle of general relativity and special relativity [1].

A connection between gravity and a curved Riemannian space was established in 1915 [15]. However, a space-time metric
that corresponds to a uniformly accelerated frame of reference remains to be clarified (see Section 4). This incompleteness con-
tributed to a speculation that the deficiency is intrinsic and thus added difficulty in understanding Einstein’s theory. Moreover,
such speculation is supported by both calculations of Tolman {9] and Fock {10] that showed the accelerated frame failed in re-
lating to a metric for uniform gravity, as Einstein’s principle requires.

Recently, such a speculation has been proven incorrect because the field equation is intimately related to Einstein’s equiva-
lence principle. The Maxwell-Newton Approximation [16.17}] (the same as the lincarized field equation for weak gravity due to
massive matter) that produced an accurate bending of light has been derived with Einstein’s equivalence principle together
with the notion of a curved space if Newtonian theory is taken as a form of first order approximation. Thus, Einstein’s equiva-
lence principle is fully compatible with the notion of a curved Riemannian space-time.

However, the question of how the curved space is related to an accelerated frame remains a puzzle. In this paper, it will be
shown that failures of Tolman and Fock are due to the conceptual error that identified a frame of reference with only a Euclid-
ean subspace. Some related conceptual considerations are also addressed (see Sections 2 & 3). Finally, an appropriate metric

form for an accelerated frame will be derived (see Section 4). To this end, et us first identify the existing misconceptions.

2. The Euclidean Structure and Measurements in a Riemannian Space-Time.
Many theorists believed, as Pauli {3] did, that in general relativity “it is necessary to abandon Euclidean geometry” because
“Einstein showed for example of a rotating reference system, the time intervals and spatial distances in non-Galilean systems

cannot just be determined by means of a clock and rigid standard measuring rod.” However, these two statements need some



clarifications. Euclidean geometry is “abandoned” only in the invariant line element [1]. Moreover, Einstein showed only one
type of “measurements”, but he explained inadequately another type of necessary measurements in general relativity [1].

In general relativity, the invariant line element is

2 i, v .
ds” = dx” d
g, it M

where g, is a general space-time metric in a Riemannian space. Since g,,,, is not a constant metric, one cannot hope to derive

from (1) a simple distance formula as in Euclidean geometry that the spatial distance d (P;, P,) of two points P, and P, is still

dPy, Py = [(x; =X + (y; =y +(z; — 2)*1'2, 1))

However, in a different way, the Euclidean structure (2) is actually preserved within the Riemannian geometry.

To illustrate this, let us examine the Schwarzschild solution [1] of Riemannian space (x, vy, z. t),

ds? = (1 - 2Mipydt? - (1 — 2Mi/py 1 dp? - p2do? - p? sin®0dg?, 3)

where

p2 =x2+ y2 +22 , x =psinbcosp, y=psinBsing, and z=pcosd 4)

and « is a coupling constant, and M is the total mass. (For simplicity, an interior solution is not presented here.) Since the met-
ric is defined in terms of p, 8, and ¢, the Riemannian space is actually defined in terms of the Euclidean characteristics (4).
This illustrates that the Euclidean subspace (x, y, z) is necessarily included in Einstein’s Riemannian space. In fact, Einstein
[12] stated that the velocity of light is defined in the sense of Euclidean geometry. The subspace (x, y, z) is called the frame of
reference. Thus, the notion of Riemannian space-time is compatible with the frame of reference having a Euclidean structure.
To understand the Euclidean subspace (X, vy, z) in terms of physical measurements, we must first clarify what “measure”
means in relation to Einstein’s equivalence principle. In Einstein’s theory, the measuring instruments are resting but in a free
fall state (see Section 3). From Einstein’s equivalence principle, time dilation and space contraction are obtained. On the other
hand, if the measuring instruments are resting and are attached to the frame of reference, since the measuring instruments and
the coordinates being measured are under the same influence of gravity, a Euclidean space structure emerges as if gravity did

not exist. Such a Euclidean structure would make a distinct class of Riemannian space (see also Section 3).




To make a useful distinction, such a class should be called the Einstein Spaces named after its creator. Then, an Einstein
space would be a physical space that models reality only if Einstein’s equivalence principle is satisfied.

The notion of frame of reference plays a crucial role in the theory of general relativity, as pointed out by Fock {10}, in par-
ticular to Einstein’s equivalence principle, but Fock incorrectly identified the frame of reference with a Euclidean subspace. A
related problem is that Pauli [3] regards the eguivalence principle essentially as just the existence of local Minkowski spaces.
The popular version of the equivalence principle expressed by Pauli {3] is the following:

“For every infinitely small world region (i.e. a world region which is so small that the space- and time-variation of gravity
can be neglected in it) there always exists a coordinate system Ko (X, X3, X3. X4) in which gravitation has no influence
either in the motion of particles or any physical process.”
Einstein strongly objected Pauli’s version as reported in details by Norton [8]. The notion of acceleration with respect to a
frame of reference is essential in Einstein’s equivalence principle [10]. It has been shown that static acceleration may not exist
for a non-constant metric, and this situation leads to inconsistent in physics {17].

Since other related physical considerations such as acceleration are ignored, Pauli’s version is actually only a mathematical
statement of the Lorentz manifold {11]. A noted difference from Pauli version is that Einstein requires additionally: i) “the spe-
cial theory of relativity applies to the case of the absence of a gravitational field [14, p.115]” and ii) a local Minkowski space is
obtained by choosing the acceleration. Einstein {14, p.118] wrote, “... we must choose the acceleration of the infinitely small
{(“local™) system of coordinates so that no gravitational field occurs; this is possible for an infinitely small region.” In fact, ac-
celeration with respect to a frame of reference is crucial for measurements in Einstein’s general relativity (see Section 3).

Nevertheless, the inadequacy of Pauli’s version for a world region of a physical space was not a serious problem until it is
incorrectly claimed that the existence of Local Minkowski space had replaced Finstein’s equivalence principle such that the
physical validity of any Lorentz manifold could be justified. Consequently, Einstein’s theory is distorted and his notion of

physical space {1,13,14] has been ignored to the point that professional relativists ofien ask what is a physical space.

3. The Principle of General Relativity, Uniform Rotation, and Riemannian Space-Time
Einstein considered a Galilean (inertial) system of reference K (X, v, z, t) and a system K’ (x’, y’, 2°, t’) in uniform rotation
Q relatively to K. The origins of both systems and their axes of Z permanently coincide. (The gravity of this example would be

useful for the calculation of the gravity related to a uniformly accelerated frame.) For reason of symmetry, a circle around the



origin in the x-y plane of K may at the same time be regarded as a circle in the x’-y’ plane of K’. Then, according to special

relativity, in the x-y plane and the x’-y’ plane, the metrics of K and K’ [1,18] are respectively the following:

ds?=c?dt?-dr?-r2 dp?-dz2  where x=rcosd, y=rsin¢, 5)
and

ds? =(c2- QY dr? - d@r? - (1 - QrYcylr? gp2 - dz? (6)
Then,

$ds= (1 - Q¥ Uy Viy foz” dg' = 2nr(1 - Q2 xX=reosd¢, y=rsnd. (7

would be the circumstance of a circle of radius r’ (= r) for an observer in K’. Moreover, as Einstein pointed out, “an observer at
the commeon erigin of co-ordinates, capable of observing the clock at the circumferences by means of light, would therefore sce
it lagging behind the clock beside him”. So, he will be obliged to define time in such a way thut the rate of a clock depends
upon where the clock may bhe {14]. Thus, Einstein also defined a physical space-time coordinate system together with its metric
that is related to local clock rates and local spatial measurements.

To illustrate Einstein’s equivalence principle and the notion of Einstein space, let us first derive metric (6). Consider the

coordinate transformation to the uniformly rotating disk [18], in terms of Newton’s notion of “absolute time” as follows:

x=x"cos -y sin, y=x"sinOt+y cosQt, and 7Z=2 (8a)
or
r=r, z=2z". ¢=¢ +O (8b)
in cylindrical coordinate systems of K and K’, where Q is the angular velocity. Here, we take advantage of the fact that one can

start with an arbitrary coordinate system of a Riemannian space. Then, from (5) the resulting metric has the following form,

ds? = (2 - Q2 dt? - 202 d’dt — dr'? - 12 dd'? — dz2 6

However, the mathematical system K* (X°, y’, z’, t) is not a physical space-time coordinate system for the uniformly rotating

disk K’ because what measured in a resting local clock is time 1° but not time 7. In other words, metric (6°) together with its

coordinates K* is not a space-time coordinate system, as Einstein defined, that can be used for physical measurement.
Nevertheless, metric (6°) alone can be used to derive mefric (6), which has been claimed as incompatible with (5) by some

theorists. To obtain a physical coordinate system including the time t’ of the rotating disk, a comparison of (6) and (6’) leads 1o,



do’ =dd-Qdt ; {9a)
and

cdt’ = fedt - (rQ/Rrdd}f1 — (xQ/c)?}! . (9b)

Thas, it is necessary to modify the time coordinate t’. Relation (9) makes clear that metric (6) is related to the flat metric (5).
The time dilation and the spatial contraction in general relativity 1,14}, are results duc to comparisons with a clock and a
measuring rod in relatively rest at the beginning of a free fall. To verify this, consider a particle P resting at (r’, ¢°, z°). Then, P

has the velocity of Qr in the ¢’ -direction, which is denoted by dx”. It follows that the Lorentz coordinate transformation is,

rdd = [1 — /)22 [dx+ 1Qdt™’] ;. (10a)
and

cdt = [1 — (fQYe)?F V2 fedt™ + (rYc)dx ) . (10b)
Then,

rdd’ = [1 - (1P 2 dx” and  cdt’ =[1 - @)V 2 cdt” (11a)
and

ds2=c2dt"? —dx"2 - dr? —do? (11b)

These are exactly the time dilation and spatial contraction. This illustrates that a particle resting at K’, can attached to a local
Minkowski space. Thus, this is also an example of Einstein’s version of infinitesimal equivalence principle.

However, for the coordinate system K* (x°, ¥, z°, 1), the question of time dilation is complicated because Einstein’s equiva-
lence principle is not applicable. Nevertheless, let us assume the Einstein’s equivalence principle could be applied to K*.
Mathematically, for a particle P resting at K¥, the state vector of P is (0, 0, 0, dt). According to (9), P is also resting at K’ with

a state vector (0. 0. 0. dt”). Then the local Minkowski space for P is identical to (11b). It thus follows that

ax” = {1 - @) 2 rdg (122)
and

dt” = [1 - (rQ/cP)2 dt - [1 — (rQUe)2eCUC) 1. (120)
Thus,

dt = [1 — (e} V2 dr (12¢)

would be considered as the time dilation since a clock rest at K* has d¢’ = 0. The problem of this derivation is that the parame-

ter “t” is not the local time for the frame K’ (x°, y" 2°).



Since metric (6°) satisfies Pauli’s “equivalence principle”, Pauli’s version is clearly inadequate in physics. This calculation
confirms that Einstein’s equivalence principle is applicable only to a physical space. Thus, in spite of general covariance, the
Jreedom toward the physical space-time coordinate systems that can he used for physical interpretation is severely limited.

The directional spatial contraction as indicated in metric (6), is measured with a resting measuring rod in the state of free
fall. However, if a spatial measurement is performed with 2 measuring rod which is attached to the frame K’ (x°, ¥°, 2), it
would appear as Euclidean. In fact, it is based on this implicit assumption that the cylindrical coordinate system is well defined
in K’. Thus, as shown in examples (3) and (6), the distance in terms of the Fuclidean structure is necessary and complemen-
tary to the metric for the Riemannian space that produces the local distance. The system K* (x°, y°, 2’, 1} has a Euclidean sub-
space, but the time t is not associated with the frame K’ (x°, y’, 2°). Although K* is diffeomorphic to K, K* is not a physical
space-time since it fails the physical requirement of local time. Thus, diffeomorphic manifolds may not be equivalent in general
relativity as Wald {19] and Logunov & Mestvirishvilli [20] believed.

Thus, an Einstein space is a Riemannian space with a Euclidean structure, and it is a physical space if it sufficiently satisfies
all physical requirements, including Einstein’s equivalence principle. However, as in special relativity, the Euclidean character-

istics, on which a physical coordinate system is based, are not invariants.

4. Uniform Acceleration and Einstein’s Equivalence Principle in Riemannian Space
The analysis of a rotating disk suggests that there are similarities with respect to the case of a uniform acceleration. Based

on similarity to the case of the rotating disk, the metric for the case of uniform acceleration would be

ds2=(c2-v)d? - (1 -v¥eyldx2-dy? - dz2, (13)

where v(t") is the relative velocity of the coordinate systems in the x’-direction. Metric (13) has a Euclidean structure as if v

were zero. In other words, for the acceleration in the x-direction, the metric would have the following form,

ds? = (c2 - 2U) dt'2- (1 - 2U/c2)1dx’? —(dy’2 + dz’2), and c¥/2>U(X, 1) =0 (14)

Note that a uniform acceleration cannot exist forever, otherwise the resulting speed would exceed the velocity of light.

Tt follows that a uniform acceleration must be started at some time, for instance, t = t5 < 0, and then decreased some

time afterward. Moreover, a uniform gravity must be confined in a finite region; otherwise the light speed as the maximum



velocity would be violated. Thus, uniform gravity like an electromagnetic plane wave, also docs not really exist in nature.
Thus, the equivalence of acceleration and uniform gravity is best described, as Einstein did, in terms of an elevator. In prac-
tice, the uniform gravity is essentially a Jocal idealization of a non-uniform gravity.

Consider a system K’ accelerated with an acceleration g relative to an inertial system K. Then, if the coordinates of the

origin of K’ in system Kg is (Xg-{1), 0, 0, 1), we have

d*X,
=a, (153)
dr?
and
XpM =X @ +at22; y=y; z2=7", if v0)=0. (15b)

where X,,.(0) is arbitrary. Thus, to obtain a transformation compatible with form (14), we may assume similar to (11) that

dx’ = dx — v(x,t) dt. X= X - Xg(0) + a2 (16a)
and
cdt’ = [1 - F(x., O] fedt - Kx, H)cldx], (16b)

where v(x, 1) is a relative velocity of the two systems, and f (x, t) is an unknown function. Note that (15a) is equivalent to

2
dx’=0; and sz:a (%zv and -gv;za). (16¢)
t

Substituting (16) to metric form (14), a comparison with the flat metric leads to three relations as follows:

(1 = 2U/c2y ! + (1 - Fy2(1 - 2U/c2) ey = -1 ; (17a)

(1 =20/ i) + (1 - Fy2(1 - 2U/c2)y = 1 ; (170)

(1-2U/c2y v = (1 —Fy¥(1 - 2U/cD)f . (17¢)
It follows that

v =(1 = Fy2(1 — 2Uk2)2f | 1-vii2=(1-2U/2); and v=r (18a)

Thus
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U=>2220; and F=20/c2= (/o) (18b)

Since v is the relative velocity of the two systems of coordinates K’ and K, as expected, metric (14) is in the form of (13).

Also, in terms of physics, (16) is in complete agreement with (11) as shown be the following relations:

dx’ =dx -vdt; . (192)
and

odt’ = [1 — (v/e)* ] edt - veldx] ; (19b)
or

dx = [1 — (v/e)?ldx” + veledt . (19¢)
and

cdt =cdt’ + [1 — (v/o) lveldx . (19d)

The limitation on the velocity of light and the definite sign of ds? for the time line element, also requires

A

22> U, )20, and ,
o ) ds® ¢ &

from the geodesic equation for the case of dx’/ds = 0.

On the other hand, the gravitational acceleration of a particle in K’ is equivalent to

dx=0; (21a)
and
ds=cdt, d’ = -vdt, and  dt = [1 - (vic)? ) ldt. 21b)
Thus,
d*x' dv ou
—_—=- and -a=—. 21¢
ds? cdt Ox' @21c)

where a is the constant acceleration by assumption. Thus, if U is independent of the time t’,

Ux)=-ax"+C , or U(Xx)=-a(x —xy) (22)

where C is a constant. Since U(x’) is bounded according to (20}, we must also have a range for x’. From (16a), we have

U=-a(x - x -X,(0)). (23)

mn
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According to (21a) d&x =0, x + X,;-(0) should be considered as just an arbitrary constant. Thus, (23) agrees with (22).

To verify time dilation and spatial contraction, one should consider a system in relative rest at the beginning of a free fall.

Let us consider the following Lorentz coordinate transformation,

dx = [1 - (v/c)?112 [dx” + vdt"] , (24a)
and

cdt = [1 — (v/©)2]V2 [edt” + (vic) AX). (24b)
where v = [2U(x*)]!2. Then, we have the expected relation

d< =[1 - (v/0)})2 dx” , and cdt’ =[1 — (vic)2) V2 cdt” . (24¢)

and

ds2 = c2 a2 ax2 - (dy'2 + d2'2). (24d)

Thus, the initial form of Einstein’s equivalence principle is indeed compatible with the notion of Riemannian space.

However, there is an arbitrary constant in the potential U. This uncertainty is actually a necessary feature that a uniform
gravity can be considered as a local idealization of a non-uniform gravity. Without this arbitrary constant, one cannot adjust the
metric for uniform gravity to have the same local value of a changeable non-uniform gravity. Note also that metric (14) for a
uniform gravity has the form of the Schwarzschild exterior solution far from the source. Just as the plane wave is a local ideali-
zation of an electromagnetic wave, the uniform gravity can be considered as a local idealization of the Schwarzschild solution.
As a local idealization, one may not expect that metric (14) satisfies the normat boundary condition at infinite, just as an elec-

tromagnetic plane-wave has the same amplitude everywhere, and appears as having no source.

5. Discussions and Conclusions
An interesting result of this calculation is that it confirms Einstein’s 1911 calculation on the gravitational red shifts is valid
in terms of the Euclidean structure and this explains why the notion of a curved space was not used. The notion of Einstein
space clarifies that it is valid to consider the frame of reference as if a three-dimensional Euclidean structure. Since a Euclidean
structure is independent of gravity, it makes sense to define the Euclidean structure first to obtain the Schwarzschild solution.
To calculate the space-time metric of uniform gravity related to an accelerated frame, it is crucial to recognize the dual
characteristics of the spatial subspace of Einstein’s Riemannian space-time. Thus, the equivalence of gravitational force and

11
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acceleration is accurately valid. In other words, the criticisms of Fock and his followers [21] on Einstein’s general relativity are
baseless. This further strengthens the status of Einstein’s equivalence principle that has been further established due to its role
in the derivation of the Maxwell-Newton Approximation [16,17]. Weinberg [4, p.3] declared, “In my view, it much more useful
to regard general refativity above all as a theory of gravitation, whose connection with geometry arises from the peculiar em-
pirical propetties of gravitation, properties summarized by Einstein’s Principle of the Equivalence of Gravitation and Inertia.”

In Einstein’s theory {1}, the reality is modeled with a physical space (-time) that has a frame of reference for the descriptions
of the interested physics. In such a physical space, all physical requirements are sufficiently satisfied. From Einstein’s simple
example of uniform rotation, we have learned also that a change of sign of ds? in a coordinate wonld manifest the invalidity of
a physical requirement beyond that region. Einstein [1,14} has shown that such a physical space is a Riemannian manifold with
a Lorentz metric and a physically valid space-time coordinate system that time is measured by a local clock.

Thus, a different coordinate system can fail as a space-time coordinate system in physics although most calculations can be
carried out with an arbitrary mathematical coordinate sysiem (see Sections 2 & 3) Moreover, it has been illustrated that the
local Minkowski space at a point is obtained by means of choesing the appropriate acceleration. This requires that the coordi-
nates of a physical space must have physical meanings. As illustrated in Sections 3, Einstein’s equivalence principle is applica-
ble only in a physical space. Otherwise, the so-calculated local time rate and local spatial contraction would be incorrect in
physics. Since the conditions for a physical space must be taken into consideration, Einstein’s equivalence principle is not
really a local principle in 2 manifold as Fock [10] believed.

Now, it is clear that Einstcin’s equivalence principle cannot be replaced with merely the existence of local Minkowski
spaces, since Pauli’s “equivalence principle” has been proven as inadequate in physics. (There is Lorentz manifold that is not
diffeomorphic to a physical space {17].) Otherwise, not only this will surely end up in theoretical disagrecment with Einstein,
but also against the weighty fact that there are non-scalars in physics. Moreover, the existence of definitive gravitational red
shifts testifies that a valid space-time coordinate system cannot be arbitrary.

In conclusion, a uniform acceleration, as an idealization, is valid for an illustration of Einstein’s equivalence principle as 2
foundation of peneral relativity. It is hope that this paper would help clarifying the confusions on this subject in the literature.
In particular, the anthor wishes that the damages done by Fock’s erroncous approach would be rectified. Onu this basis, one may

expect that general relativity would be infused with new life and be even more fruitful in the future.
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