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Abstract. We describe the Einstein Toolkit, a community-driven, freely accessible

computational infrastructure intended for use in numerical relativity, relativistic

astrophysics, and other applications. The Toolkit, developed by a collaboration involving

researchers from multiple institutions around the world, combines a core set of components

needed to simulate astrophysical objects such as black holes, compact objects, and collapsing

stars, as well as a full suite of analysis tools. The Einstein Toolkit is currently based

on the Cactus Framework for high-performance computing and the Carpet adaptive mesh

refinement driver. It implements spacetime evolution via the BSSN evolution system and

general-relativistic hydrodynamics in a finite-volume discretization. The toolkit is under

continuous development and contains many new code components that have been publicly

released for the first time and are described in this article. We discuss the motivation behind

the release of the toolkit, the philosophy underlying its development, and the goals of the

project. A summary of the implemented numerical techniques is included, as are results of

numerical test covering a variety of sample astrophysical problems.

PACS numbers: 04.25.D-, 04.30.-w, 04.70.-s, 07.05.Tp, 95.75.Pq
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1. Introduction

Scientific progress in the field of numerical relativity has always been closely tied to the

availability and ease-of-use of enabling software and computational infrastructure. This

document describes the Einstein Toolkit, which provides such an infrastructure, developed

openly and made available freely with grant support from the National Science Foundation.

Now is a particularly exciting time for numerical relativity and relativistic astrophysics,

with major advances having been achieved in the study of astrophysical systems containing

black holes (BHs) and neutron stars (NSs). The first fully general relativistic (GR)

simulations of merging NS-NS binaries were reported in 1999, with further advances over

the next few years [1–5]. However, systems containing BHs proved much more difficult to

evolve numerically until 2005. That year, computational breakthroughs were made following

the development of a generalized harmonic formulation [6] and then a “moving puncture”

approach [7, 8] in the BSSN (Baumgarte-Shapiro-Shibata-Nakamura) formalism [9, 10] that

lead to the first stable long-term evolutions of moving single and multiple BH systems. These

results quickly transformed the field which was now able to effectively evolve the Einstein

field equations for coalescing BH-BH binaries and other systems containing moving BHs,

including merging BH-NS binaries.

These breakthroughs had direct relevance to astrophysics, and enabled exciting

new results on recoil velocities from BH-BH mergers (e.g, [11–16] and references

therein), post-Newtonian (PN) and numerical waveform comparisons and waveform

template generation (e.g., [17–25] and references therein), comparisons between numerical

waveforms [26, 27], determination of the spin of the remnant BH formed in BH-BH

mergers (e.g, [28–33] and references therein), and studies of eccentric BH-BH binaries [34–39].

Meanwhile, general relativistic magneto-hydrodynamics (GRMHD) on fixed background

spacetimes has been successful in multi-dimensional settings since the mid-1990s, focusing

on BH accretion processes and relativistic jet production and evolution (see [40] for a review

of the numerical formalism and [41] for a review of work on disk and jet models). GRMHD

coupled with curvature evolution, on the other hand, which is crucial for modeling large-

scale bulk dynamics in compact binary star coalescence or single-star collapse scenarios,

has started to produce astrophysically interesting results only in the past ∼ 3 − 5 years,

enabled primarily by the availability of long-term stable curvature evolution systems as well

as improved GRMHD algorithms (see [40] for a review). In addition to these developments,

substantial progress has been made in importing more physically motivated equations of

state (EOS), including tabulated versions (e.g., [42–44]) and temperature-dependent models

(e.g., [45–47]). Some codes have also begun to incorporate microphysical effects of neutrino

emission and deleptonization [48, 49].

Many of the successful techniques used to evolve BH-BH binaries have proven to be

equally applicable to merging NS-NS [48, 50–68] and BH-NS [39, 68–84] binaries (for reviews,

see also [85, 86]), allowing for further investigations into the former and the first full GR

simulations of the latter. All recent results use either the general harmonic formalism or the
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BSSN formalism in the “moving puncture” gauge. Nearly all include some form of adaptive

mesh refinement, since unigrid models cannot produce accurate long-term evolutions without

requiring exorbitant computational resources, though some BH-NS simulations have been

performed with a pseudospectral code [70, 71, 74, 75]. Many groups’ codes now include

GRMHD (used widely for NS-NS mergers, and for BH-NS mergers in [69], and some include

microphysical effects as well (e.g., [48, 66, 71]).

In addition to studying binary mergers, numerical relativity is a necessary element for

understanding stellar collapse and dynamical instabilities in NSs. GRHD has been used to

study, among many other applications, massive stars collapsing to protoneutron stars [87–

89], the collapse of rotating, hypermassive NSs to BHs in 2D and 3D (see, e.g., [90–96]), and

non-axisymmetric instabilities in rapidly rotating polytropic NS models [91, 96, 97].

Simultaneously with the advances in both our physical understanding of relativistic

dynamics and the numerical techniques required to study them, a set of general computational

tools and libraries has been developed with the aim of providing a computational core that

can enable new science, broaden the community, facilitate collaborative and interdisciplinary

research, promote software reuse and take advantage of emerging petascale computers

and advanced cyberinfrastructure: the Cactus computational toolkit [98]. Although the

development of Cactus was driven directly from the numerical relativity community, it

was developed in collaboration with computer scientists and other computational fields to

facilitate the incorporation of innovations in computational theory and technology.

This success prompted usage of the Cactus computational toolkit in other areas, such

as ocean forecast models [99] and chemical reaction simulations [100]. At the same time,

the growing number of results in numerical relativity increased the need for commonly

available utilities such as comparison and analysis tools, typically those specifically designed

for astrophysical problems. Including them within the Cactus computational toolkit was

not felt to fit within its rapidly expanding scope. This triggered the creation of the Einstein

Toolkit [101]. Large parts of the Einstein toolkit presently do make use of the Cactus toolkit,

but this is not an requirement, and other contributions are welcome, encouraged and have

been accepted in the past.

2. Requirements

2.1. Scientific

While the aforementioned studies collectively represent breakthrough simulations that have

significantly advanced the modeling of relativistic astrophysical systems, all simulations are

presently missing one or more critical physical ingredients and are lacking the numerical

precision to accurately and realistically model the large-scale and small-scale dynamics of

their target systems simultaneously.

One of the aims of the Einstein Toolkit is to provide or extend some of these missing

ingredients in the course of its development. Over the past three years, routines have been
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added to the code to allow for a wider range of initial data choices, to allow for multithreading

in hydrodynamic evolutions, and to refine the Carpet adaptive mesh refinement driver.

Looking forward, three possible additions to future releases are the inclusion of magnetic

fields into the dynamics via an ideal MHD treatment, more physical nuclear matter equations

of state (EOSs) including the ability to model finite-temperature effects, and higher-order

numerical techniques. All of these are under active development, with MHD and finite-

temperature evolution code already available, though not completely documented, within

the public toolkit releases, and will be made available once they are thoroughly tested and

validated against known results.

2.2. Academic and Social

A primary concern for research groups is securing reliable funding to support graduate

students and postdoctoral researchers. This is easier to achieve if it can be shown that

scientific goals can be attacked directly with fewer potential infrastructure problems, one of

the goals of the Einstein Toolkit.

While the Einstein Toolkit does have a large group of users, many of them do not

directly collaborate on science problems, and some compete. However, many groups agree

that sharing the development of the underlying infrastructure is mutually beneficial for every

group and the wider community as well. This is achieved by lifting off the research groups’

shoulders much of the otherwise necessary burden of creating such an infrastructure, while at

the same time increasing the amount of code review and thus, code quality. In addition, the

Einstein Toolkit provides computer scientists an ideal platform to perform state-of-the-art

research, which directly benefits research in other areas of science and provides an immediate

application of their research.

3. Design and Strategy

The mechanisms for the development and support of the Einstein Toolkit are designed to

be open, transparent and community-driven. The complete source code, documentation

and tools included in the Einstein Toolkit are distributed under open-source licenses. The

Einstein Toolkit maintains a version control system (svn.einsteintoolkit.org) with open

access that contains software supported by the Einstein Toolkit, the toolkit web pages, and

documentation. An open wiki for documentation (docs.einsteintoollkit.org) has been

established where the community can contribute either anonymously or through personal

authentication. Almost all discussions about the toolkit take place on an open mail list

(users@einsteintoolkit.org). The regular weekly meetings for the Einstein Toolkit are

open and the community is invited to participate. Meeting minutes are recorded and publicly

available as well. The Einstein Toolkit blog requires users to first request a login, but then

allows for posting at will. Any user can post comments to entries already on the blog. The

community makes heavy use of an issue tracking system (trac.einsteintoolkit.org), with
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submissions also open to the public.

Despite this open design, some actions naturally have to be restricted to a smaller group

of maintainers. This is true for administrative tasks like the setup and maintenance of the

services themselves, or to avoid large amounts of spam. One of the most important tasks

of an Einstein Toolkit maintainer is to review and apply patches sent by users in order to

ensure a high software quality level. Every substantial change or addition to the toolkit must

be reviewed by another Einstein Toolkit maintainer, and is generally open for discussion on

the users mailing list. This convention, though not being technically enforced, works well in

practice and promotes active development.

4. Core Technologies

The Einstein Toolkit modules center around a set of core modules that provide basic

functionality to create, deploy and manage a numerical simulation starting with code

generation all to way to archiving of simulation results: (i) the Cactus framework “flesh”

provides the underlying infrastructure to build complex simulation codes out of independently

developed modules and facilities communication between these modules. (ii) the adaptive

mesh refinement driver, Carpet, is build on top of Cactus and provides problem independent

adaptive mesh refinement support for simulations that need to resolve physics on length scales

differing by many orders of magnitude, while relieving the scientist of the need to worry about

internal details of the mesh refinement driver. (iii) Kranc, which generates code in a computer

language from a high-level description in Mathematica and (iv) the Simulation Factory, which

provides a uniform, high-level interface to common operations, such as submission and restart

of jobs, for a large number of compute clusters.

4.1. Cactus Framework

The Cactus Framework [98, 102, 103] is an open source, modular, portable programming

environment for collaborative HPC computing primarily developed at Louisiana State

University, which originated at the Albert Einstein Institute and also has roots at the National

Center for Supercomputing Applications (see, e.g., [104–106] for historical reviews). The

Cactus computational toolkit consists of general modules which provide parallel drivers,

coordinates, boundary conditions, interpolators, reduction operators, and efficient I/O in

different data formats. Generic interfaces make it possible to use external packages and

improved modules which are made immediately available to users.

The structure of the Cactus framework is completely modular, with only a very small

core (the “flesh”) which provides the interfaces between modules both at compile- and

run-time. The Cactus modules (called “thorns”) may (and typically do) specify inter-

module dependencies, e.g., to share or extend configuration information, common variables,

or runtime parameters. Modules compiled into an executable can remain dormant at run-

time. This usage of modules and a common interface between them enables researchers to
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1) easily use modules written by others without the need to understand all details of their

implementation and 2) write their own modules without the need to change the source code

of other parts of a simulation in the (supported) programming language of their choice. The

number of active modules within a typical Cactus simulation ranges from tens to hundreds

and often has an extensive set of inter-module dependencies.

The Cactus Framework was developed originally by the numerical relativity community,

and although it is now a general component framework that supports different application

domains, its core user group continues to be comprised of numerical relativists. It is not

surprising therefore, that one of the science modules provided in the Einstein Toolkit is a set

of state of the art modules to simulate binary black hole mergers. All modules to simulate

and analyze the data are provided out of the box. This set of modules also provides a

way of testing the Einstein Toolkit modules in a production type simulation rather than

synthetic test cases. Some of these modules have been developed specifically for the Einstein

Toolkit while others are modules used in previous publications and have been contributed

to the toolkit. In these cases the Einstein Toolkit provides documentation and best practice

guidelines for the contributed modules.

4.2. Adaptive Mesh Refinement

In Cactus, infrastructure capabilities such as memory management, parallelization, time

evolution, mesh refinement, and I/O are delegated to a set of special driver components. This

helps separate physics code from infrastructure code; in fact, a typical physics component

(implementing, e.g., the Einstein or relativistic MHD equations) does not contain any code

or subroutine calls having to do with parallelization, time evolution, or mesh refinement.

The information provided in the interface declarations of the individual components allows

a highly efficient execution of the combined program.

The Einstein Toolkit offers two drivers, PUGH and Carpet. PUGH provides domains

consisting of a uniform grid with Cartesian topology, and is highly scalable (up to more

than 130,000 [107].) Carpet [108–110] provides multi-block methods and adaptive mesh

refinement (AMR). Multi-block methods cover the domain with a set of (possibly distorted)

blocks that exchange boundary information via techniques such as interpolation or penalty

methods.‡ The AMR capabilities employ the standard Berger-Oliger algorithm [111] with

subcycling in time.

AMR implies that resolution in the simulation domain is dynamically adapted to the

current state of the simulation, i.e., regions that require a higher resolution are covered with

blocks with a finer grid (typically by a factor of two); these are called refined levels. Finer

grids can be also recursively refined. At regular intervals, the resolution requirements in the

simulation are re-evaluated, and the grid hierarchy is updated; this step is called regridding.

Since a finer grid spacing also requires smaller time steps for hyperbolic problems, the

‡ Although multi-block methods are supported by Carpet, the Einstein Toolkit itself does not currently

contain any multi-block coordinate systems.
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Figure 1. Berger-Oliger time stepping details, showing a coarse and a fine grid, with time

advancing upwards. Left: Time stepping algorithm. First the coarse grid takes a large

time step, then the refined grid takes two smaller steps. The fine grid solution is then

injected into the coarse grid where the grids overlap. Right: Fine grid boundary conditions.

The boundary points of the refined grids are filled via interpolation. This may require

interpolation in space and in time.

finer grids perform multiple time steps for each coarse grid time step, leading to a recursive

time evolution pattern that is typical for Berger-Oliger AMR. If a simulation uses 11 levels,

then the resolutions (both in space and time) of the the coarsest and finest levels differ by a

factor of 211−1 = 1024. This non-uniform time stepping leads to a certain complexity that is

also handled by the Carpet driver; for example, applying boundary conditions to a fine level

requires interpolation in space and time from a coarser level. Outputting the solution at a

time in between coarse grid time steps also requires interpolation. These parallel interpolation

operations are implemented efficiently in Carpet and are applied automatically as specified in

the execution schedule, i.e. without requiring function calls in user code. Figure 1 describes

some details of the Berger-Oliger time stepping algorithm; more details are described in [108].

Carpet is the main driver used today for Cactus-based astrophysical simulations. Carpet

offers hybrid MPI/OpenMP parallelization and is used in production on up to several

thousand cores [112, 113]. Figure 2 shows a weak scaling test of Carpet, where McLachlan

(see section 5.3 below) solves the Einstein equations on a grid structure with nine levels of

mesh refinement. This demonstrates excellent scalability up to more than ten thousand cores.

In production simulations, smaller and more complex grid structures, serial tasks related to

online data analysis and other necessary tasks reduce scalability by up to a factor of ten.

We estimate that in 2010, about 7,000 core years of computing time (45 million core

hours) will have been used via Carpet by more than a dozen research groups world-wide. To

date, more than 90 peer-reviewed publications and more than 15 student theses have been

based on Carpet [110].

4.3. Simulation Factory

Today’s supercomputers differ significantly in their hardware configuration, available

software, directory structure, queuing system, queuing policy, and many other user-

visible properties. In addition, the system architectures and user interfaces offered by

supercomputers are very different from those offered by laptops or workstations. This

makes performing large, three-dimensional time-dependent simulations a complex, time-

consuming and difficult task. However, most of these differences are only superficial, and the
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Figure 2. Results from weak scaling tests evolving the Einstein equations on a mesh

refinement grid structure with nine levels. This shows the time required per grid point, where

smaller numbers are better (the ideal scaling is a horizontal line). This demonstrates excellent

scalability to up to more than 10,000 cores. Including hydrodynamics approximately doubles

calculation times without negatively influencing scalability.

basic capabilities of supercomputers are very similar; most of the complexity of managing

simulations lies in menial tasks that require no physical or numerical insight.

The Simulation Factory [114, 115] offers a set of abstractions for the tasks necessary

to set up and successfully complete numerical simulations based on the Cactus framework.

These abstractions hide tedious low-level management operations, capture “best practices”

of experienced users, and create a log trail ensuring repeatable and well-documented scientific

results. Using these abstractions, most operations are simplified and many types of

potentially disastrous user errors are avoided, allowing different supercomputers to be used

in a uniform manner.

Using the Simulation Factory, we offer a tutorial for the Einstein Toolkit [101] that

teaches new users how to download, configure, build, and run full simulations of the

coupled Einstein/relativistic hydrodynamics equations on a supercomputer with a few simple

commands. Users need no prior knowledge about either the details of the architecture of a

supercomputer nor its particular software configuration. The same exact set of SimFactory

commands can be used on all other supported supercomputers to run the same simulation

there.

The Simulation Factory supports and simplifies three kinds of operations:

1. Remote Access. The actual access commands and authentication methods differ

between systems, as do the user names that a person has on different systems. Some

systems are not directly accessible, and one must log in to a particular “trampoline”

server first. The Simulation Factory hides this complexity.
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2. Configuring and Building. Building Cactus requires certain software on the system,

such as compilers, libraries, and build tools. Many systems offer different versions of

these, which may be installed in non-default locations. Finding a working combination

that results in efficient code is extremely tedious and requires low-level system

experience. The Simulation Factory provides a machine database that enables users

to store and exchange this information. In many cases, this allows people to begin to

use a new machine in a very short time with just a few, simple commands.

3. Submitting and Managing Simulations. Many simulations run for days or weeks,

requiring frequent checkpointing and job re-submission because of short queue run-

time limits. Simple user errors in these menial tasks can potentially destroy weeks

of information. The Simulation Factory offers safe commands that encapsulate best

practices that prevent many common errors and leave a log trail.

The above features make running simulations on supercomputers much safer and simpler.

4.4. Kranc

Kranc[116–118] is a Mathematica application which converts a high-level continuum

description of a PDE into a highly optimized module for Cactus, suitable for running on

anything from a laptop to the world’s largest HPC systems. Many codes contain a large

amount of complexity, including expanded tensorial expressions, numerical methods, and

the large amount of “glue” code needed for interfacing a modern HPC application with the

underlying framework. Kranc absorbs this complexity, allowing the scientist to concentrate

on writing only the Kranc script which describes the continuum equations.

This approach brings with it many advantages. With these complicated elements

factored out, a scientist can write many different Kranc codes, all taking advantage of the

features of Kranc and avoiding unnecessary or trivial but painstaking duplication. The codes

might be variations on a theme, perhaps versions which use different sets of variables or

formulations of the equations, or they could represent completely different physical systems.

The use of a symbolic algebra package, Mathematica, enables high-level optimizations which

are not performed by the compiler to be implemented in Kranc.

Any enhancements to Kranc can be automatically applied to all codes which are

generated using Kranc. Existing codes have easily benefited from the following features

added to Kranc after the codes themselves were written: (i) OpenMP parallelization support,

necessary for efficient use of modern multi-core processors; (ii) support for multipatch

domains with the Llama [119] code; (iii) automatic generation of vectorized code, where

the equations are evaluated simultaneously by the processor for two grid points at the same

time; and (iv) common sub-expression elimination, and various other optimization strategies.

Within the Einstein Toolkit, the Einstein evolution thorn McLachlan, as well as the

wave extraction thorn WeylScal4, are both generated using Kranc, and hence support all

the above features.
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5. Components

The Einstein Toolkit uses the modular Cactus framework as its underlying infrastructure.

A simulation within Cactus could just use one module, but in practice simulations are often

composed from hundreds of components. Some of these modules provide common definitions

and conventions (see section 5.1). Others provide initial data (see section 5.2), which may be

evolved using the different evolution methods for vacuum and matter configurations described

in sections 5.3 and 5.4, respectively. The thermodynamic properties of fluids are encoded

in equations of state (see section 5.5). Finally, additional quantities which are not directly

evolved are often interesting for a detailed analysis of the simulation’s results. Modules

providing commonly used analysis methods are described in section 5.6.

5.1. Base Modules

Modular designs have proven to be essential for distributed development of complex software

systems and require the use of well-defined interfaces. Low-level interoperability within the

Einstein Toolkit is provided by the Cactus infrastructure. One example of this is the usage of

one module from within another, e.g., by calling a function within another thorn independent

of programming language used for both the calling and called function. Solutions for technical

challenges like this can be and are provided by the underlying framework, in this case Cactus.

However, certain other standards are very hard or impossible to enforce on a technical

level. Examples for these include the exact definitions of physical variables, their units, and,

on a more technical level, the variable names used for the physical quantities. Even distinct

simulation codes typically use very similar scheduling schemes, so conventions describing

the behavior of the scheduler can help coordinate the order in which functions in different

modules are called.

The Einstein Toolkit provides modules whose sole purpose is to declare commonly used

variables and define their meaning and units. These conditions are not strictly enforced, but

instead documented for the convenience of the user community. Three of these base modules,

ADMBase, HydroBase, and TmunuBase, are described in more detail below.

In the following, we assume that the reader is familiar with the basics of numerical

relativity and GR hydrodynamics, including the underlying differential geometry and

tensor analysis. Detailed introductions to numerical relativity have recently been given by

Alcubierre [120], Baumgarte & Shapiro [121], and Centrella et al. [122]. GR hydrodynamics

has been reviewed by Font [40]. We set G = c = 1 throughout this paper, andM⊙ = 1 where

appropriate.

5.1.1. ADMBase The Einstein Toolkit provides code to evolve the Einstein equations

Gµν = 8πT µν , (1)

where Gµν is the Einstein tensor, describing the curvature of 4-dimensional spacetime, and

T µν is the stress-energy tensor. Relativistic spacetime evolution methods used within the
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Cactus framework employ different formalisms to accomplish this goal, but essentially all

are based on the 3 + 1 ADM construction [123], which makes it the natural choice of a

common foundation for exchange data between modules using different formalisms. In the

3+1 approach, 4-dimensional spacetime is foliated into sequences of spacelike 3-dimensional

hypersurfaces (slices) connected by timelike normal vectors. The 3 + 1 split introduces 4

gauge degrees of freedom: the lapse function α that describes the advance of proper time

with respect to coordinate time for a normal observer§ and the shift vector βi that describes

how spatial coordinates change from one slice to the next.

According to the ADM formulation, the spacetime metric is assumed to take the form

ds2 = gµνdx
µdxν ≡ (−α2 + βiβ

i)dt2 + 2βidt dx
i + γijdx

idxj, (2)

where gµν , α, β
i, and γij are the spacetime 4-metric, lapse function, shift vector, and

spatial 3-metric, respectively, and we follow the standard relativistic convention where Latin

letters are used to index 3-dimensional spatial quantities and Greek letters to index 4-

dimensional spacetime quantities, with the index running from 0 to 3. The remaining

dynamical component of the spacetime is contained in the definition of the extrinsic curvature

Kij, which is defined in terms of the time derivative of the metric after incorporating a Lie

derivative with respect to the shift vector:

Kij ≡ − 1

2α
(∂t − Lβ)γij. (3)

The three-metric, extrinsic curvature, lapse function, and shift vector are all declared as

variables in the ADMBase module, the latter two together with their first time derivatives.

The variables provided by ADMBase are:

• The 3-metric tensor, γij: gxx, gxy, gxz,gyy, gyz, gzz

• The extrinsic curvature tensor, Kij: kxx, kxy, kxz, kyy, kyz, kzz

• The lapse function, α: alp

• The shift vector βi: betax, betay, betaz

This base module also defines common parameters to manage interaction between

different modules. Examples are the type of requested initial data or the used evolution

method.

The type of initial data chosen for a simulation is specified by the parameters

initial data (3-metric and extrinsic curvature), initial lapse, initial shift. The

time derivatives of the gauge variables (the lapse and shift) are set by the parameters

initial dtlapse and initial dtshift, respectively. By default, ADMBase initializes the

3-metric and extrinsic curvature to Minkowski (i.e., γij = δij, the Kronecker delta, and

Kij = 0), the shift to zero, and the lapse to unity. Initial data thorns override these defaults

by extending the parameters.

Analogous to specifying initial data, evolution methods are chosen by the

parameters evolution method (3-metric and extrinsic curvature), lapse evolution method,

§ A normal observer follows a worldline tangent to the unit normal on the 3-hypersurface.
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shift evolution method, dtlapse evolution method and dtshift evolution method.

ADMBase does not evolve the 3-metric or extrinsic curvature, and holds the lapse and shift

static. Evolution thorns extend the ranges of these parameters and contain the evolution

code.

The variables defined in ADMBase typically are not used for the actual evolution of

the curvature. Instead, it is expected that every evolution module converts its internal

representation to the form defined in ADMBase after each evolution step. This procedure

enables modules which perform analysis on the spacetime variables to use the ADMBase

variables without direct dependency on any of the existing curvature evolution methods.

5.1.2. HydroBase Similar to ADMBase, the module HydroBase defines a common basis

for interactions between modules of a given evolution problem, in this case relativistic

hydrodynamics. HydroBase extends the Einstein Toolkit to include an interface within which

magnetohydrodynamics may work. HydroBase’s main function is to store variables which are

common to most if not all hydrodynamics codes solving the Euler equations, the so-called

primitive variables. These are also the variables which are needed to couple to a spacetime

solver, and often by analysis thorns as well. As with ADMBase, the usage of a common set

of variables by different hydrodynamics codes creates the possibility of sharing parts of the

code, e.g., initial data solvers or analysis routines. HydroBase also defines commonly needed

parameters and schedule groups for the main functions of a hydrodynamics code.

HydroBase uses a set of conventions known as the Valencia formulation [124–126]. In

particular, HydroBase defines the primitive variables (see [40] for details):

• rho: rest mass density ρ

• press: pressure P

• eps: internal energy density ǫ

• vel[3]: contravariant fluid three velocity vi defined as

vi =
ui

αu0
+
βi

α
(4)

in terms of the four-velocity uµ, lapse, and shift vector .

• Y_e: electron fraction Ye

• temperature: temperature T

• entropy: specific entropy per particle s

• Bvec[3]: contravariant magnetic field vector defined as

Bi =
1√
4π
nνF

∗νi (5)

in terms of the dual F ∗µν = 1
2
εµναβFαβ to the Faraday tensor and the unit normal of the

foliation of spacetime nµ ≡ α−1[1,−βi]T.
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HydroBase also sets up scheduling blocks that organize the main functions which modules

of a hydrodynamics code may need. All of those scheduling blocks are optional, but when

used they simplify existing codes and make them more interoperable. HydroBase itself does

not schedule routines inside most of the groups that it provides. Currently the scheduling

blocks are:

• Initializing the primitive variables

• Converting primitive variables to conservative variables

• Calculating the right hand side (RHS) in the method of lines (MoL)

• Setting and updating an excision mask

• Applying boundary conditions

Through these, the initiation of the primitive variables, methods to recover the

conservative variables, and basic atmosphere handling can be implemented in different thorns

while allowing a central access point for analysis thorns.

5.1.3. TmunuBase In the Einstein Toolkit, we typically choose the stress energy tensor T µν

to be that of an ideal relativistic fluid,

T µν = ρhuµuν − gµνP , (6)

where ρ, uµ, and gµν are defined above, and h = 1+ǫ+P/ρ is the relativistic specific enthalpy.

The thorn TmunuBase provides grid functions for the stress-energy tensor Tµν as well as

schedule groups to manage when Tµν is calculated. In a simulation, many different thorns may

contribute to the stress-energy tensor and this thorn allows them to do so without explicit

interdependence. The resulting stress-energy tensor can then be used by the spacetime

evolution thorn (again without explicit dependence on any matter thorns). When thorn MoL

is used for time evolution this provides a high-order spacetime-matter coupling.

The grid functions provided by TmunuBase are:

• The time component T00: eTtt

• The mixed components T0i: eTtx, eTty, eTtz

• The spatial components Tij: eTxx, eTxy, eTxz, eTyy, eTyz, eTzz

In addition, the grid scalar stress energy state has the value 1 if storage is provided for

the stress-energy tensor and 0 if not.

Thorn ADMCoupling provides a similar (but older) interface between space-time and

matter thorns. However, since it is based on an include file mechanism it is more complicated

to use. We recommend all new matter thorns to use TmunuBase instead.

5.2. Initial Data

The Einstein Toolkit contains many modules used to generate initial data for GR simulations,

including both vacuum and hydrodynamic configurations. These include modules used
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primarily for testing of various components, as well as physically motivated configurations

that describe, for example, single or binary BHs and/or NSs. Many of the modules are

self-contained, consisting of either all the code to generate exact initial solutions or the

numerical tools required to construct solutions known semi-analytically. Others, though,

require the installation of numerical software packages that are included in the toolkit as

external libraries. One example is the TwoPunctures module [127] — commonly used in

numerical relativity to generate BH-BH binary initial data — which makes use of the GNU

Scientific Library [GSL; [128, 129]]. Several modules have also been implemented to read in

data files generated by the Lorene code [130, 131].

Initial data setup is in most cases clearly separated from the evolution that follows.

Typically, initial data routines provide the data in terms of the quantities defined in the

Base modules (see section 5.1), and the evolution modules will later convert these quantities

to forms used for the evolution. For example, an initial data module must supply gij, the

spatial 3-metric, and Kij, the extrinsic curvature. The conversion between the physical

metric and extrinsic curvature and conformal versions of these is handled solely within

evolution modules, which are responsible for calculating the conformally related three metric

γ̃ij, the conformal factor ψ, the conformal traceless extrinsic curvature Ãij and the trace

of the extrinsic curvature K, as well as initializing the BSSN variable Γ̃i should that be

the evolution formalism chosen (see section 5.3 for definitions of these). Optionally, many

initial data modules also supply values for the lapse and shift vector and in some cases their

time derivatives. It is important to note, though, that many dynamical calculations run

better from initial gauge choices set by ansatz rather than those derived from stationary

approximations that are incompatible with the gauge evolution equations. In particular,

conformal thin-sandwich initial data for binaries include solutions for the lapse and shift that

are frequently replaced by simpler analytical values that lead to more circular orbits under

standard “moving puncture” gauge conditions (see, e.g., [72, 132] and other works).

We turn our attention next to a brief discussion of the capabilities of the aforementioned

modules as well as their implementation.

5.2.1. Simple Vacuum initial data Vacuum spacetime tests in which the constraint

equations are explicitly violated are provided by IDConstraintViolate and Exact, a set

of exact spacetimes in various coordinates including Lorentz-boosted versions of traditional

solutions. Vacuum gravitational wave configurations can be obtained by using either

IDBrillData, providing a Brill wave spacetime [133]; or IDLinearWaves, for a spacetime

containing a linear gravitational wave. Single BH configurations include IDAnalyticBH

which generates various analytically known BH configurations; as well as IDAxibrillBH,

IDAxiOddBrillBH, DistortedBHIVP and RotatingDBHIVP, which introduce perturbations to

isolated BHs.

5.2.2. Hydrodynamics Tests Initial data to test different parts of hydrodynamics evolution

systems are provided by GRHydro InitData. This module includes several shock tube
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problems that may be evolved in any of the Cartesian directions or diagonally. All of

these have been widely used throughout the field to evaluate a diverse set of solvers [134].

Conservative to primitive variable conversion and vice versa are also supported, as are tests

to check on the reconstruction of hydrodynamical variables at cell faces (see Sec. 5.4 for more

on this). Along similar lines, the Hydro InitExcision module sets up masks for different

kinds of excised regions, which is convenient for hydrodynamics tests.

5.2.3. TwoPunctures: Binary Black Holes and extensions A substantial fraction of the

published work on the components of the Einstein toolkit involves the evolution of BH-

BH binary systems. The most widely used routine to generate initial data for these is the

TwoPunctures code (described originally in [127]) which solves the binary puncture equations

for a pair of BHs [135]. To do so, one assumes the extrinsic curvature for each BH corresponds

to the Bowen-York form [136]:

Kij
(m) =

3

2r2
(pi(m)N̂

j + pj(m)N̂
i − (γij − N̂ iN̂ j)pk(m)N̂k))

+
3

r3
(εiklS

(m)
k N̂lN̂

j + εjklS
(m)
k N̂lN̂

i), (7)

where the sub/superscript (m) refers to the contribution from BH m = 1, 2; the 3-momentum

is pi; the BH spin angular momentum is Si; the conformal 3-metric γij is assumed to be flat,

i.e. γij = ηij, and N̂
i = xi/r is the Cartesian normal vector relative to the position of each BH

in turn. This solution automatically satisfies the momentum constraint, and the Hamiltonian

constraint may be written as an elliptic equation for the conformal factor, defined by the

condition gij = ψ4γij or equivalently ψ ≡ (det |gij|)1/12:

∆ψ +
1

8
KijKijψ

−7 = 0 (8)

Decomposing the conformal factor into a singular analytical term and a regular term u, such

that

ψ =
m1

2r1
+
m2

2r2
+ u ≡ 1

Ψ
+ u (9)

where m1, m2 and r1, r2 are the mass of and distance to each BH, respectively, and Ψ is

defined by the equation itself, the Hamiltonian constraint may be written as

∆u+

[
1

8
Ψ7KijKij

]
(1 + Ψu)−7 (10)

subject to the boundary condition u → 1 as r → ∞. In Cartesian coordinates, the function

u is infinitely differentiable everywhere except the two puncture locations. TwoPunctures

resolves this problem by performing a coordinate transformation modeled on confocal

elliptical/hyperbolic coordinates. This transforms the spatial domain into a finite cube

with the puncture locations mapped to two parallel edges, as can be seen in figure 3. The

coordinate transformation is:

x = b
A2 + 1

A2 − 1

2B

1 + B2
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Figure 3. Example of a TwoPunctures coordinate system for BH-NS binary initial data

y = b
2A

1− A2

1− B2

1 + B2
cosφ

z = b
2A

1− A2

1− B2

1 + B2
sinφ (11)

which maps R3 onto 0 ≤ A ≤ 1 (the elliptical quasi-radial coordinate), −1 ≤ B ≤ 1 (the

hyperbolic quasi-latitudinal coordinate), and 0 ≤ φ < 2π (the longitudinal angle). Since

u is smooth everywhere in the interior of the remapped domain, expansions into modes in

these coordinates are spectrally convergent and thus capable of extremely high accuracy. In

practice, the field is expanded into Chebyshev modes in the quasi-radial and quasi-latitudinal

coordinates, and into Fourier modes around the axis connecting the two BHs. The elliptic

solver uses a stabilized biconjugate gradient method to achieve rapid solutions and to avoid

ill-conditioning of the spectral matrix.

5.2.4. Lorene-based binary data The ET contains three routines that can read in publicly

available data generated by the Lorene code [130, 131], though it does not currently

include the capability of generating such data from scratch. For a number of reasons, such

functionality is not truly required; in particular, Lorene is a serial code and to call it as an

ET initial data generator saves no time. Also, it is not guaranteed to be convergent for an

arbitrary set of parameters; thus the initial data routine itself may never finish its iterative

steps. Instead, recommended practice is to let Lorene output data into files, and then read

those into ET at the beginning of a run.

Lorene uses a multigrid spectral approach to solve the conformal thin-sandwich equations

for binary initial configurations [132] and a single-grid spectral method for rotating stars.

For binaries, five elliptic equations for the shift, lapse, and conformal factor are written

down and the source terms are divided into pieces that are attributed to each of the two

objects. Matter source terms are ideal for this split, since they are compactly supported, while

extrinsic curvature source terms are spatially extended but with sufficiently rapid falloff at
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Figure 4. Example of a Lorene multi-domain coordinate system for binary initial data. The

outermost, compactified domain extending to spatial infinity is not shown.

large radii to yield convergent solutions. Around each object, a set of nested spheroidal sub-

domains (see figure 4) is constructed to extending through all of space, with the outermost

domain incorporating a compactification to allow it to extend to spatial infinity. Within

each of the nested sub-domains, fields are decomposed into Chebyshev modes radially and

into spherical harmonics in the angular directions, with elliptic equation solving reduced to

a matrix problem. The nested sub-domains need not be perfectly spherical, and indeed one

may modify the outer boundaries of each to cover any convex shape. For NSs, this allows

one to map the surface of a particular sub-domain to the NS surface, minimizing Gibbs error

there. For BHs, excision boundary conditions are imposed at the horizon. To read a field

solution describing a given quantity onto a Cactus-based grid, one must incorporate the data

from each star’s domains at that point.

Meudon Bin BH can read in BH-BH binary initial data described in [137], while

Meudon Bin NS handles binary NS data from [131]. Meudon Mag NS may be used to read

in magnetized isolated NS data [130].

5.2.5. TOVSolver The TOVSolver routine in the ET solves the standard TOV equations

[138, 139] expressed using the Schwarzschild (areal) radius r in the interior of a spherically

symmetric star in hydrostatic equilibrium:

dP

dr
= − (e+ P )

m+ 4πr3P

r(r − 2m)

dm

dr
= 4πr2e

dΦ

dr
=
m+ 4πr3P

r(r − 2m)
, (12)

where e ≡ ρ(1 + ǫ) is the energy density of the fluid, including the internal energy

contribution†, m is the gravitational mass inside a sphere of radius r, and Φ the logarithm

† We note that since different application thorns may define their own local variables, the energy density

is referred to as rho within TOVSolver, as the projected energy density E, defined in Sec. 5.3, is within
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of the lapse. The routine also supplies the analytically known solution in the exterior,

P = TOV atmosphere,

m =M,

Φ =
1

2
log(1− 2M/r) (13)

where TOV atmosphere is a parameter used to define the density of the ambient atmosphere.

Since the isotropic radius r̄ is the more commonly preferred choice to initiate dynamical

calculations, the code then transforms all variables into isotropic coordinates, integrating the

radius conversion formula

d(log(r̄/r))

∂r
=
r1/2 − (r − 2m)1/2

r(r − 2m)1/2
. (14)

subject to the boundary condition that in the exterior,

r̄ =
1

2

(√
r2 − 2Mr + r −M

)

r = r̄

(
1 +

M

2r̄

)2

. (15)

handling with some care the potentially singular terms that appear at the origin.

To facilitate the construction of stars in more complicated dynamical configurations, one

may also apply a uniform velocity to the NS, though this does not affect the ODE solution

nor the resulting density profile.

5.3. Spacetime Curvature Evolution

The Einstein Toolkit curvature evolution code McLachlan [112, 140] is auto-generated from

tensor equations via Kranc (Sec. 4.4). It implements the Einstein equations in a 3 + 1 split

as a Cauchy initial boundary value problem [141]. For this, the Baumgarte-Shapiro-Shibata-

Nakamura (BSSN) conformal-tracefree reformulation [9, 10, 142] of the original Arnowitt-

Deser-Misner (ADM) formalism [123] is employed. McLachlan uses fourth-order accurate

finite differencing for the spacetime variables and adds a fifth-order Kreiss-Oliger dissipation

term to remove high frequency noise. The evolved variables are the conformal factor Φ,

the conformal 3-metric γ̃ij, the trace K of the extrinsic curvature, the trace free extrinsic

curvature Aij and the conformal connection functions Γ̃i. These are defined in terms of the

standard ADM 4-metric gij, 3-metric γij, and extrinsic curvature Kij by:

φ ≡ log

[
1

12
det γij

]
, (16)

γ̃ij ≡ e−4φ γij , (17)

K ≡ gijKij , (18)

McLachlan and a few other thorns. Similar ambiguities exist for other commonly used variable names,

particularly φ and α.
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Ãij ≡ e−4φ

[
Kij −

1

3
gijK ,

]
(19)

Γ̃i ≡ γ̃jkΓ̃i
jk. (20)

The evolution equations are then:

∂0α = − α2f(α, φ, xµ)(K −K0(x
µ)) (21)

∂0K = − e−4φ
[
D̃iD̃iα + 2∂iφ · D̃iα

]
+ α

(
ÃijÃij +

1

3
K2

)
− αS (22)

∂0β
i = α2G(α, φ, xµ)Bi (23)

∂0B
i = e−4φH(α, φ, xµ)∂0Γ̃

i − ηi(Bi, α, xµ) (24)

∂0φ = − α

6
K +

1

6
∂kβ

k (25)

∂0γ̃ij = − 2αÃij + 2γ̃k(i∂j)β
k − 2

3
γ̃ij∂kβ

k (26)

∂0Ãij = e−4φ
[
αR̃ij + αRφ

ij − D̃iD̃jα + 4∂(iφ · D̃j)α
]TF

+ αKÃij − 2αÃikÃ
k
j + 2Ãk(i∂j)β

k − 2

3
Ãij∂kβ

k − αe−4φŜij (27)

∂0Γ̃
i = γ̃kl∂k∂lβ

i +
1

3
γ̃ij∂j∂kβ

k + ∂kγ̃
kj · ∂jβi − 2

3
∂kγ̃

ki · ∂jβj

− 2Ãij∂jα + 2α

[
(m− 1)∂kÃ

ki − 2m

3
D̃iK

+m(Γ̃i
klÃ

kl + 6Ãij∂jφ)

]
− Si, (28)

with the momentum constraint damping constant set to m = 1. The stress energy tensor

Tµν is incorporated via the projections

E ≡ 1

α2

(
T00 − 2βiT0i + βiβjT ij

)
(29)

S ≡ gijTij (30)

Si ≡ − 1

α

(
T0i − βjTij

)
. (31)

We have introduced the notation ∂0 = ∂t − βj∂j. All quantities with a tilde involve the

conformal 3-metric γ̃ij, which is used to raise and lower indices. In particular, D̃i and

Γ̃k
ij refer to the covariant derivative and the Christoffel symbols with respect to γ̃ij. The

expression [· · ·]TF denotes the trace-free part of the expression inside the parentheses, and

we define the Ricci tensor contributions as:

R̃ij = − 1

2
γ̃kl∂k∂lγ̃ij + γ̃k(i∂j)Γ̃

k − Γ̃(ij)k∂lγ̃
lk + γ̃ls

(
2Γ̃k

l(iΓ̃j)ks + Γ̃k
isΓ̃klj

)
(32)

Rφ
ij = − 2D̃iD̃jφ− 2γ̃ijD̃

kD̃kφ+ 4D̃iφ D̃jφ− 4γ̃ijD̃
kφ D̃kφ. (33)

This is a so-called φ-variant of BSSN. The evolved gauge variables are lapse α, shift βi, and

a quantity Bi related to the time derivative of the shift. The gauge parameters f , G, H, and
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η are determined by our choice of a 1 + log [143] slicing:

f(α, φ, xµ) ≡ 2/α (34)

K0(x
µ) ≡ 0 (35)

and Γ-driver shift condition [143]:

G(α, φ, xµ) ≡ (3/4)α−2 (36)

H(α, φ, xµ) ≡ exp{4φ} (37)

η(Bi, α, xµ) ≡ (1/2)Biq(r). (38)

The expression q(r) attenuates the Γ-driver depending on the radius as described below.

The Γ-driver shift condition is symmetry-seeking, driving the shift βi to a state that

renders the conformal connection functions Γ̃i stationary. Of course, such a stationary state

cannot be achieved while the metric is evolving, but in a stationary spacetime the time

evolution of the shift βi and thus that of the spatial coordinates xi will be exponentially

damped. This damping time scale is set by the gauge parameter η (see (38)) which has

dimension 1/T (inverse time). As described in [144, 145], this time scale may need to be

adapted in different regions of the domain to avoid spurious high-frequency behavior in

regions that otherwise evolve only very slowly, e.g., far away from the source.

Here we use the simple damping mechanism described in (12) of [145], which is defined

as:

q(r) ≡
{

1 for r ≤ R (near the origin)

R/r for r ≥ R (far away)
(39)

with a constant R defining the transition radius between the interior, where q ≈ 1, and the

exterior, where q falls off as 1/r. A description of how q appears in the gauge parameters

may be found in (38).

5.3.1. Initial Conditions Initial conditions for the ADM variables gij, Kij, lapse α, and

shift βi are provided by the initial data routines discussed in Sec. 5.2. From these the BSSN

quantities are calculated via their definitions, setting Bi = 0, and using cubic extrapolation

for Γ̃i at the outer boundary. This extrapolation is necessary since the Γ̃i are calculated from

derivatives of the metric, and one cannot use centered finite differencing stencils near the

outer boundary.

The extrapolation stencils distinguish between points on the faces, edges, and corners of

the grid. Points on the faces are extrapolated via stencils perpendicular to that face, while

points on the edges and corners are extrapolated with stencils aligned with the average of the

normals of the adjoining faces. For example, points on the (+x,+y) edge are extrapolated

in the (1, 1, 0) direction, while points in the (+x,+y + z) corner are extrapolated in the

(1, 1, 1) direction. Since several layers of boundary points have to be filled for higher order

schemes (e.g., three layers for a fourth order scheme), one proceeds outwards starting from

the innermost layer. Each subsequent layer is then defined via the points in the interior and

the previously calculated layers.
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5.3.2. Boundary Conditions During time evolution, a Sommerfeld-type radiative boundary

condition is applied to all components of the evolved BSSN variables as described in [142].

The main feature of this boundary condition is that it assumes approximate spherical

symmetry of the solution, while applying the actual boundary condition on the boundary of

a cubic grid where the face normals are not aligned with the radial direction. This boundary

condition defines the right hand side of the BSSN state vector on the outer boundary, which

is then integrated in time as well so that the boundary and interior are calculated with the

same order of accuracy.

The main part of the boundary condition assumes that one has an outgoing radial wave

with some speed v0:

X = X0 +
u(r − v0t)

r
, (40)

where X is any of the tensor components of evolved variables, X0 the value at infinity, and

u a spherically symmetric perturbation. Both X0 and v0 depend on the particular variable

and have to be specified. This implies the following differential equation:

∂tX = − vi∂iX − v0
X −X0

r
, (41)

where vi = v0 x
i/r. The spatial derivatives ∂i are evaluated using centered finite differencing

where possible, and one-sided finite differencing elsewhere. Second order stencils are used in

the current implementation.

In addition to this main part, it is also necessary to account for those parts of the

solution that do not behave as a pure wave, e.g., Coulomb type terms caused by infall of

the coordinate lines. It is assumed that these parts decay with a certain power p of the

radius. This is implemented by considering the radial derivative of the source term above,

and extrapolating according to this power-law decay.

Given a source term (∂tX), one defines the corrected source term (∂tX)∗ via

(∂tX)∗ = (∂tX) +

(
r

r − ni∂ir

)p

ni∂i(∂tX) , (42)

where ni is the normal vector of the corresponding boundary face. The spatial derivatives ∂i
are evaluated by comparing neighboring grid points, corresponding to a second-order stencil

evaluated in the middle between the two neighboring grid points. Second-order decay is

assumed, hence p = 2.

As with the initial conditions above, this boundary condition is evaluated on several

layers of grid points, starting from the innermost layer. Both the extrapolation and radiative

boundary condition algorithms are implemented in the publicly available NewRad component

of the Einstein Toolkit.

This boundary condition is only a coarse approximation of the actual decay behavior

of the BSSN state vector, and it does not capture the correct behavior of the evolved

variables. However, one finds that this boundary condition leads to stable evolutions if

applied sufficiently far from the source. Errors introduced at the boundary (both errors
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in the geometry and constraint violations) propagate inwards with the speed of light [140].

Gauge changes introduced by the boundary condition, which are physically not observable,

propagate faster, with a speed up to
√
2 for the gauge conditions used in McLachlan.

5.4. Hydrodynamics Evolution

Hydrodynamic evolution in the Einstein Toolkit is designed so that it interacts with the metric

curvature evolution through a small set of variables, allowing for maximum modularity in

implementing, editing, or replacing either evolution scheme.

The primary hydrodynamics evolution routine in the Einstein Toolkit is GRHydro, a code

derived from the public Whisky code [94, 146–148] designed primarily by researchers at AEI

and their collaborators. It includes a high resolution shock capturing (HRSC) scheme to

evolve hydrodynamic quantities, with several different reconstruction methods and Riemann

solvers, as we discuss below. In such a scheme, we define a set of “conserved” hydrodynamic

variables, defined in terms of the “primitive” physical variables such as mass and internal

energy density, pressure, and velocity. Wherever derivatives of hydrodynamic terms appear in

the evolution equations for the conserved variables, they are restricted to appear only inside

divergence terms (referred to as fluxes) and never in the source terms. By calculating fluxes at

cell faces, we may obtain a consistent description of the inter-cell values using reconstruction

techniques that account for the fact that hydrodynamic variables are not smooth and may

not be finite differenced accurately. All other source terms in the evolution equations may

contain only the hydrodynamic variables themselves and the metric variables and derivatives

of the latter, since the metric must formally be smooth and thus differentiable using finite

differencing techniques. Summarizing these methods briefly, the following stages occur every

timestep:

• The primitive variables are “reconstructed” at cell faces using shock-capturing

techniques, with total variation diminishing (TVD), piecewise parabolic (PPM), and

essentially non-oscillatory (ENO) methods currently implemented.

• A Riemann problem is solved at each cell face using an approximate solver. Currently

implemented versions include HLLE (Harten-Lax-van Leer-Einfeldt), Roe, and Marquina

solvers.

• The conserved variables are advanced one timestep, and used to recalculate the new

values of the primitive variables.

We discuss the GRHD formalism, the stages within a timestep, and the other aspects of the

code below, noting that the documentation included in the released version is quite extensive

and covers many of these topics in substantially more detail.

5.4.1. Ideal general relativistic hydrodynamics (GRHD) The equations of ideal GR

hydrodynamics evolved by GRHydro are derived from the local GR conservation laws of mass
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and energy-momentum:

∇µJ
µ = 0, ∇µT

µν = 0 , (43)

where ∇µ denotes the covariant derivative with respect to the 4-metric, and J µ = ρuµ is the

mass current.

The 3-velocity vi may be calculated in the form

vi =
ui

W
+
βi

α
, (44)

where W = (1 − vivi)
−1/2 is the Lorentz factor. The contravariant 4-velocity is then given

by:

u0 =
W

α
, ui = W

(
vi − βi

α

)
, (45)

and the covariant 4-velocity is:

u0 = W (viβi − α) , ui = Wvi . (46)

The GRHydro evolution scheme is a first-order hyperbolic flux-conservative system for

the conserved variables D, Si, and τ , which may be defined in terms of the primitive variables

ρ, ǫ, vi, such that:

D =
√
γρW, (47)

Si =
√
γρhW 2vi, (48)

τ =
√
γ
(
ρhW 2 − P

)
−D , (49)

where γ is the determinant of γij. The evolution system then becomes

∂U

∂t
+
∂F i

∂x i
= S , (50)

with

U = [D,Sj, τ ],

F i = α
[
Dṽ i, Sj ṽ

i + δ i
jP, τ ṽ

i + Pv i
]
,

S = α
[
0, T µν

(
∂gνj
∂xµ

− Γλ
µνgλj

)
,

α

(
T µ0∂ lnα

∂xµ
− T µνΓ 0

µν

)]
. (51)

Here, ṽ i = v i − βi/α and Γλ
µν are the 4-Christoffel symbols. The time integration and

coupling with curvature are carried out with the Method of Lines [149]. The expressions for

S are calculated in GRHydro by using the definition of the extrinsic curvature to avoid any

time derivatives whatsoever, as discussed in detail in the code’s documentation, following a

suggestion by Mark Miller based on experience with the GR3D code.



The Einstein Toolkit 24

5.4.2. Reconstruction techniques In order to calculate fluxes at cell faces, we first must

calculate function values on either side of the face. In practice, reconstructing the primitive

variables yields more stable and accurate evolutions than reconstructing the conservatives.

In what follows, we assume a Cartesian grid and loop over faces along each direction in

turn. We define qLi+1/2 to be the value of a quantity q on the left side of the face between

qi ≡ q(xi, y, z) and qi+1 ≡ q(xi+1, y, z), where xi is the ith point in the x-direction, and qRi+1/2

the right side of the same face.

For total variation diminishing (TVD) methods, we let:

qLi+1/2 = qi +
f(qi)∆x

2
; qRi+1/2 = qi+1 −

f(qi+1)∆x

2
(52)

where f(qi) is a slope-limited gradient function, typically determined by the values of qi+1−qi
and qi − qi−1, with a variety of different forms of the slope limiter available. In practice, all

try to accomplish the same task of preserving monotonicity and removing the possibility of

spuriously creating local extrema. Implemented methods include minmod, superbee [150],

and monotonized central [151].

The piecewise parabolic method (PPM) is a multi-step method based around a quadratic

fit to nearby points interpolated to cell faces [152], for which qL and qR are generally equivalent

except near shocks and local extrema. The version implemented in GRHydro includes the

steepening and flattening routines described in the original PPM papers, with a simplified

dissipation procedure. Essentially non-oscillatory (ENO) methods use a divided differences

approach to achieve third-order accuracy via polynomial interpolation [153, 154].

Both ENO and PPM yield third-order accuracy for smooth monotonic functions, whereas

TVD methods typically yield second-order accurate values. Regardless of the reconstruction

scheme chosen, all of these methods reduce to first order near local extrema and shocks.

5.4.3. Riemann solvers The Riemann problem involves the solution of the equation

∂tq + ∂if
i(q) = 0 (53)

at some point X representing a discontinuity between constant states. The exact solution can

be quite complicated, involving five different waves with different characteristic speeds for a

hydrodynamic problem (8 for GRMHD), so GRHydro implements three different approximate

solvers to promote computational efficiency. In each case, the solution takes a self-similar

form q(ξ), where ξ ≡ (x − X)/t represents the characteristic speed from the original shock

location to the point in question in space and time.

The simplest method implemented is the Harten-Lax-van Leer-Einfeldt solver [155, 156]

(HLL or HLLE, depending on the reference), which uses a two wave approximation to

calculate the evolution along the shock front. With ξ− and ξ+ the most negative and most

positive wave speeds present on either side of the interface, the solution q(ξ) is assumed to
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take the form

q =





qL if ξ < ξ−
q∗ if ξ− < ξ < ξ+
qR if ξ > ξ+,

(54)

with the intermediate state q∗ given by

q∗ =
ξ+q

R − ξ−q
L − f(qR) + f(qL)

ξ+ − ξ−
. (55)

The numerical flux along the interface takes the form

f(q) =
ξ̂+f(q

L)− ξ̂−f(q
R) + ξ̂+ξ̂−(q

R − qL)

ξ̂+ − ξ̂−
, (56)

where

ξ̂− = min(0, ξ−), ξ̂+ = max(0, ξ+). (57)

It is these flux terms that are then used to evolve the hydrodynamic quantities.

The Roe solver [157] involves linearizing the evolution system for the hydrodynamic

evolution, defining the Jacobian matrix A ≡ ∂f
∂q

(see (53)), and working out the eigenvalues

λi and left and right eigenvectors, li and r
j, assumed to be orthonormalized so that li ·rj = δji .

Defining the characteristic variables wi = li · q, the characteristic equation becomes

∂tw + Λ∂xw = 0 (58)

with Λ the diagonal matrix of eigenvalues. Letting ∆wi ≡ wL
i −wR

i = li · (qL − qR) represent

the differences in the characteristic variables across the interface, the Roe flux is calculated

as

f(q) =
1

2

(
f(qL) + f(qR)−

∑
|λi|∆wir

i
)

(59)

where the eigenvector appearing in the summed term are evaluated for the approximate Roe

average flux qRoe =
1
2
(qL+qR). The Marquina flux routines use a similar approach to the Roe

method, but provide a more accurate treatment for supersonic flows (i.e., those for which the

characteristic wave with ξ = 0 is within a rarefaction zone) [158, 159].

5.4.4. Conservative to primitive conversion In order to invert eqs. (47) – (49), solving for the

primitive variables based on the values of the conservative ones, GRHydro uses a 1-dimensional

Newton-Raphson approach that solves for a consistent value of the pressure. Defining the

(known) undensitized conservative variables D̂ ≡ D/
√
γ = ρW , Ŝi = Si/

√
γ = ρhW 2vi and

τ̂ ≡ τ/
√
γ = ρhW 2 −P − D̂, as well as the auxiliary quantities Q ≡ ρhW 2 = τ̂ + D̂+P and

Ŝ2 = γijŜ
iŜj = (ρhW )2(W 2 − 1), the former of which depends on P and the latter of which

is known, we find that

√
Q2 − Ŝ2 = ρhW and thus

ρ =
D̂

√
Q2 − Ŝ2

Q
(60)
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W =
Q√

Q2 − Ŝ2

(61)

ǫ =

√
Q2 − Ŝ2 − PW − D̂

D̂
. (62)

Given the new values of ρ and ǫ, one may then find the residual between the pressure and

P (ρ, ǫ) and perform the Newton-Raphson step, so long as the values of ∂P
∂ρ

and ∂P
∂ǫ

are known.

5.4.5. Atmospheres, boundaries, and other code details GRHydro uses an atmosphere, or

extremely-low density floor, to avoid problems involving sound speeds and conservative-

to-primitive variable conversion near the edges of matter distributions. The floor density

value may be chosen in either absolute (rho abs min) or relative (rho rel min) terms. The

atmosphere is generally assumed to have a specified polytropic EOS, regardless of the EOS

describing the rest of the matter within the simulation. Whenever the numerical evolution

results in a grid cell where conservative to primitive variable conversion yields negative values

of either ρ or ǫ, the cell is reassigned to the atmosphere, with zero velocity.

At present, only flat boundary conditions are supported for hydrodynamic variables,

since it is generally recommended that the outer boundaries of the simulation be placed

far enough away so that all cells near the edge of the computational domain represent the

atmosphere.

GRHydro has the ability to advect a set of passive scalars, referred to as “tracers”, as

well as the electron fraction of a fluid, under the assumption that each tracer X follows the

conservation law

∂t(DX) + ∂i(αṽ
iDX) = 0. (63)

5.5. Equations of State

An equation of state connecting the primitive state variables is needed to close the system

of GR hydrodynamics equations. The module EOS Omni provides a unified general equation

of state (EOS) interface and back-end for simple analytic and complex microphysical EOSs.

The polytropic EOS

P = KρΓ , (64)

where K is the polytropic constant and Γ is the adiabatic index, is appropriate for adiabatic

(= isentropic) evolution without shocks. When using the polytropic EOS, one does not need

to evolve the total fluid energy equation, since the specific internal energy ǫ is fixed to

ǫ =
KρΓ

(Γ− 1)ρ
. (65)

Note that the adiabatic index Γ = d lnP/d ln ρ is related to the frequently used polytropic

index n via n = 1/(Γ− 1).
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The gamma-law EOS‡,
P = (Γ− 1)ρǫ , (66)

allows for non-adiabatic flow but still assumes fixed microphysics, which is encapsulated in

the constant adiabatic index Γ. This EOS has been used extensively in simulations of NS-NS

and BH-NS mergers.

The hybrid EOS, first introduced by [160], is a 2-piecewise polytropic with a thermal

component designed for the application in simple models of stellar collapse. At densities

below nuclear density, a polytropic EOS with Γ = Γ1 ≈ 4/3 is used. To mimic the stiffening

of the nuclear EOS at nuclear density, the low-density polytrope is fitted to a second polytrope

with Γ = Γ2 & 2. To allow for thermal contributions to the pressure due to shock heating, a

gamma-law with Γ = Γth is used. The full EOS then reads

P =
Γ− Γth

Γ− 1
KρΓ1−Γ

nuc ρΓ − (Γth − 1)(Γ− Γ1)

(Γ1 − 1)(Γ2 − 1)
KρΓ1−1

nuc ρ

+ (Γth − 1)ρǫ . (67)

In this, the total specific internal energy ǫ consists of a polytropic and a thermal contribution.

In iron core collapse, the pressure below nuclear density is dominated by the pressure of

relativistically degenerate electrons. For this, one sets K = 4.897 × 1014 [cgs] in the above.

The thermal index Γth is usually set to 1.5, corresponding to a mixture of relativistic (Γ = 4/3)

and non-relativistic (Γ = 5/3) gas. Provided appropriate choices of EOS parameters (e.g.,

[161]), the hybrid EOS leads to qualitatively correct collapse and bounce dynamics in stellar

collapse.

EOS Omni also integrates the nuc eos driver routine, which was first developed for the

GR1D code [49] for tabulated microphysical finite-temperature EOS which assume nuclear

statistical equilibrium (NSE). nuc eos handles EOS tables in HDF5 format which contain

entries for thermodynamic variables X = X(ρ, T, Ye), where T is the matter temperature

and Ye is the electron fraction. nuc eos also supports calls for X = X(ρ, ǫ, Ye) and carries

out a Newton iteration to find T (ρ, ǫ, Ye). For performance reasons, nuc eos employs simple

tri-linear interpolation in thermodynamic quantities and thus requires finely spaced tables

to maintain thermodynamic consistency at an acceptable level. EOS tables in the format

required by nuc eos are freely available from http://stellarcollapse.org.

5.6. Analysis

It is often beneficial and sometimes necessary to evaluate analysis quantities during the

simulation rather than post-processing variable output. Beyond extracting physics, these

quantities are often used as measures of how accurately the simulation is progressing. In the

following, we describe the common quantities available through Einstein Toolkit modules, and

how different modules approach these quantities with differing assumptions and algorithms.

The most common analysis quantities provided fall broadly into several different categories,

‡ For historic reasons, this EOS is referred to as the “ideal fluid” EOS in GRHydro.
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including horizons, masses and momenta, and gravitational waves. Note that several modules

bridge these categories and some fall outside them, including routines to perform constraint

monitoring and to compute commonly used derived spacetime quantities. The following

discussion is meant as an overview of the most common tools rather than an exhaustive list

of the functionality provided by the Einstein Toolkit. In most cases, the analysis modules

work on the variables stored in the base modules discussed in Sec. 5.1, ADMBase, TmunuBase,

and HydroBase, to be as portable as possible.

5.6.1. Horizons When spacetimes contain a BH, localizing its horizon is necessary for

describing time-dependent quasi-local measures such as its mass and spin. The Einstein

Toolkit provides two modules — AHFinder and AHFinderDirect — for locating the apparent

horizons (AHs) defined locally on a hypersurface. The module EHFinder is also available to

search an evolved spacetime for the globally defined event horizons.

EHFinder [162] evolves a null surface backwards in time given an initial guess (e.g., the

last apparent horizon) which will, in the vicinity of an event horizon, converge exponentially

to its location. This must be done after a simulation has already evolved the initial data

forward in time with enough 3D data written out that the full 4-metric can be recovered at

each timestep.

In EHFinder, the null surface is represented by a function f(t, xi) = 0 which is required

to satisfy the null condition gαβ∂αf∂βf = 0. In the standard numerical 3+1 form of the

metric, this null condition can be expanded out into an evolution equation for f as

∂tf = βi∂if −
√
α2γij∂if∂jf (68)

where the roots are chosen to describe outgoing null geodesics. The function f is chosen such

that it is negative within the initial guess of the horizon and positive outside, initially set to a

distance measure from the initial surface guess f(t0, x
i) =

√
(xi − xi0)(xi − xi(0))− r0. There

is a numerical problem with the steepening of ∇f during the evolution, so the function f is

regularly re-initialized during the evolution to satisfy |∇f | ≃ 1. This is done by evolving

df

dλ
= − f√

f 2 + 1
(|∇f | − 1) (69)

for some unphysical parameter λ until a steady state has been reached. As the isosurface

f = 0 converges exponentially to the event horizon, it is useful to evolve two such null surfaces

which bracket the approximate position of the anticipated event horizon to further narrow

the region containing the event horizon.

However, event horizons can only be found after the full spacetime has been evolved.

It is often useful to know the positions and shapes of any BH on a given hypersurface for

purposes such as excision, accretion, and local measures of its mass and spin. The Einstein

Toolkit provides several algorithms of varying speed and accuracy to find marginally trapped

surfaces, of which the outermost are AHs. All finders make use of the fact that null geodesics

have vanishing expansion on an AH which, in the usual 3+1 quantities, can be written

Θ ≡ ∇in
i +Kijn

inj −K = 0 (70)
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where ni is the unit outgoing normal to the 2-surface.

The module AHFinder provides two algorithms for locating AHs. The minimization

algorithm [163] finds the local minimum of
∮
S
(Θ − Θo)

2d2S corresponding to a surface of

constant expansion Θo, with Θo = 0 corresponding to the AH. For time-symmetric data, the

option exists to find instead the minimum of the surface area, which in this case corresponds

to an AH. An alternative algorithm provided by AHFinder, the flow algorithm [164], on

which EHFinder is also based. Defining a surface as a level set f(xi) = r − h(θ, φ) = 0,

and introducing an unphysical timelike parameter λ to parametrize the flow of h towards a

solution, (70) can be rewritten

∂λh = −
(

α

ℓmax(ℓmax + 1)
+ β

)(
1− β

α
L2

)−1

ρΘ (71)

where ρ is a strictly positive weight, L2 is the Laplacian of the 2D metric, and α, β, and ℓmax

are free parameters. Decomposing h(θ, φ) onto a basis of spherical harmonics, the coefficients

aℓm evolve iteratively towards a solution as

a
(n+1)
ℓm = a

(n)
ℓm − α + βℓmax (ℓmax + 1)

ℓmax (ℓmax + 1) (1 + βℓ(ℓ+ 1)/α)
(ρΘ)

(n)
ℓm (72)

The AHFinderDirect module [165] is a faster alternative to AHFinder. Its approach is

to view (70) as an elliptic PDE for h(θ, φ) on S2 using standard finite differencing methods.

Rewriting (70) in the form

Θ ≡ Θ(h, ∂uh, ∂uvh; γij, Kij, ∂kγij) = 0 , (73)

the expansion Θ is evaluated on a trial surface, then iterated using a Newton-Raphson method

to solve J · δh = −Θ, where J is the Jacobian matrix. The drawback of this method is that

it is not guaranteed to give the outermost marginally trapped surface. In practice however,

this limitation can be easily overcome by either a single good initial guess, or multiple less

accurate initial guesses.

5.6.2. Masses and Momenta Two distinct measures of mass and momenta are available

in relativistic spacetimes. First, ADM mass and angular momentum evaluated as either

surface integrals at infinity or volume integrals over entire hypersurfaces give a measure of

the total energy and angular momentum in the spacetime. The module ML ADMQuantities

of the McLachlan code [166] uses the latter method, creating gridfunctions containing the

integrand of the volume integrals [167]:

M =
1

16π

∫

Ω

d3x

[
e5φ

(
16πE + ÃijÃ

ij − 2

3
K2

)
− eφR̃

]
(74)

Ji =
1

8π
εij

k

∫

Ω

d3x

[
e6φ

(
Ãj

k +
2

3
xjD̃kK − 1

2
xjÃℓn∂kγ̃

ℓn + 8πxjSk

)]
(75)

on which the user can use the reduction functions provided by Carpet to perform the volume

integral. We note that ML ADMQuantities inherits directly from the BSSN variables stored in

McLachlan rather than strictly from the base modules. As the surface terms required when
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converting a surface integral to a volume integral are neglected, this procedure assumes that

the integrals of D̃ieφ and e6φεij
kxjÃℓ

k over the boundaries of the computational domain

vanish. The ADM mass and angular momentum can also be calculated from the variables

stored in the base modules using the Extract module, as surface integrals [136]

M = − 1

2π

∮
D̃iψd2Si (76)

Ji =
1

16π
εijk

∮ (
xjKkm − xkKjm

)
d2Sm (77)

on a specified spherical surface, preferably one far from the center of the domain since these

quantities are only properly defined when calculated at infinity.

There are also the quasi-local measures of mass and angular momentum, from any AHs

found during the spacetime. Both AHFinderDirect and AHFinder output the corresponding

mass derived from the area of the horizon mH =
√
A/(16π).

The module QuasiLocalMeasures implements the calculation of mass and spin

multipoles from the isolated and dynamical horizon formalism [168, 169], as well as a number

of other proposed formulæ for quasilocal mass, linear momentum and angular momentum

that have been advanced over the years [170]. Even though there are only a few rigorous

proofs that establish the properties of these latter quantities, they have been demonstrated

to be surprisingly helpful in numerical simulations (see, e.g., [171]), and are therefore an

indispensable tool in numerical relativity. QuasiLocalMeasures takes as input a horizon

surface, or any other surface that the user specifies (like a large coordinate sphere) and can

calculate useful quantities such as the Weyl or Ricci scalars or the three-volume element of

the horizon world tube in addition to physical observables such as mass and momenta.

Finally, the module HydroAnalysis additionally locates the (coordinate) center of mass

as well as the point of maximum rest mass density of a matter field.

5.6.3. Gravitational Waves One of the main goals of numerical relativity to date is modeling

gravitational waveforms that may be used in template generation to help analyze data from

the various gravitational wave detectors around the globe. The Einstein Toolkit includes

modules for extracting gravitational waves via either the Moncrief formalism of a perturbation

on a Schwarzschild background or the calculation of the Weyl scalar Ψ4.

The module Extract uses the Moncrief formalism [172] to extract gauge-invariant

wave functions Q×

ℓm and Q+
ℓm given spherical surfaces of constant coordinate radius. The

spatial metric is expressed as a perturbation on Schwarzschild and expanded into a tensor

basis of the Regge-Wheeler harmonics [173] described by six standard Regge-Wheeler

functions {c×ℓm
1 , c×ℓm

2 , h+ℓm
1 , H+ℓm

2 , K+ℓm, G+ℓm}. From these basis functions the gauge-

invariant quantities:

Q×

ℓm =

√
2(ℓ+ 2)!

(ℓ− 2)!

[
c×ℓm
1 +

1

2

(
∂r −

2

r

)
c×ℓm
2

]
S

r
(78)
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Q+
ℓm =

1

Λ

√
2(ℓ− 1)(ℓ+ 2)

ℓ(ℓ+ 1)

(
ℓ(ℓ+ 1)S(r2∂rG

+ℓm − 2h+ℓm
1 )

+ 2rS(H+ℓm
2 − r∂rK

+ℓm) + ΛrK+ℓm

)
(79)

are calculated, where S = 1 − 2M/r and Λ = (ℓ − 1)(ℓ + 2) + 6M/r. These functions then

satisfy the wave equations:

(∂2t − ∂2r∗)Q
×

ℓm = − S

[
ℓ(ℓ+ 1)

r2
− 6M

r3

]
Q×

ℓm (80)

(∂2t − ∂2r∗)Q
+
ℓm = − S

[
1

Λ2

(
72M3

r5
− 12M(ℓ− 1)(ℓ+ 2)

r3

(
1− 3M

r

))

+
ℓ(ℓ2 − 1)(ℓ+ 2)

r2Λ

]
Q+

ℓm (81)

where r∗ = r+2M ln(r/2M−1). Since these functions describe the 4-metric as a perturbation

on Schwarzschild, the spacetime must be approximately spherically symmetric for the output

to be interpreted as first-order gauge-invariant waveforms.

For more general spacetimes, the module WeylScal4 calculates the complex Weyl scalar

Ψ4 = Cαβγδ n
αm̄βnγm̄δ, which is a projection of the Weyl tensor onto components of a null

tetrad. WeylScal4 uses the fiducial tetrad [174], written in 3+1 decomposed form as:

ℓµ =
1√
2
(uµ + r̃µ) (82)

nµ =
1√
2
(uµ − r̃µ) (83)

mµ =
1√
2

(
θ̃µ + iφ̃µ

)
(84)

where uµ is the unit normal to the hypersurface. The spatial vectors {r̃µ, θ̃µ, φ̃µ} are

created by initializing r̃µ = {0, xi}, φ̃µ = {0,−y, x, 0}, and θ̃µ = {0,√γγikεkℓmφℓrm}, then
orthonormalizing starting with φ̃i and invoking a Gram-Schmidt procedure at each step to

ensure the continued orthonormality of this spatial triad.

The Weyl scalar Ψ4 is calculated explicitly in terms of projections of the 3-Riemann

tensor onto a null tetrad, such that

Ψ4 = Rijkℓn
im̄jnkm̄ℓ + 2R0jkℓ

(
n0m̄jnkm̄ℓ − m̄0njnkm̄ℓ

)

+ R0j0ℓ

(
n0m̄jn0m̄ℓ + m̄0njm̄0nℓ − 2n0m̄jm̄0nℓ

)
. (85)

For a suitably chosen tetrad, this scalar in the radiation zone is related to the strain of the

gravitational waves since

h = h+ − ih× = −
∫ t

−∞

dt′
∫ t′

−∞

Ψ4dt
′′ . (86)

While the waveforms generated by Extract are already decomposed on a convenient

basis to separate modes, the complex quantity Ψ4 is provided by WeylScal4 as a complex
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grid function. For this quantity, and any other real or complex grid function, the module

Multipole interpolates the field u(t, r, θ, φ) onto coordinate spheres of given radii and

calculates the coefficients

Cℓm (t, r) =

∫
sY

∗

ℓmu(t, r, θ, φ)r
2dΩ (87)

of a projection onto spin-weighted spherical harmonics sYℓm.

5.6.4. Object tracking We provide a module (PunctureTracker) for tracking BH positions

evolved with moving puncture techniques. It can be used with (CarpetTracker) to have the

mesh refinement regions follow the BHs as they move across the grid. The BH position is

stored as the centroid of a spherical surface (even though there is no surface) provided by

SphericalSurface.

Since the punctures only move due to the shift advection terms in the BSSN equations,

the puncture location is evolved very simply as

dxi

dt
= −βi, (88)

where xi is the puncture location and βi is the shift. Since the puncture location usually

does not coincide with grid points, the shift is interpolated to the location of the puncture.

Equation ((88)) is implemented with a simple first-order Euler scheme, accurate enough for

controlling the location of the mesh refinement hierarchy.

Another class of objects which often needs to be tracked are neutron stars. Here is it

usually sufficient to locate the position of the maximum density and adapt AMR resolution

in these regions accordingly, coupled with the condition that this location can only move at

a specifiable maximum speed.

5.6.5. Other analysis modules The remaining analysis capabilities of the Einstein Toolkit

span a variety of primarily vacuum-based functions. First, modules are provided to calculate

the Hamiltonian and momentum constraints which are used to monitor how well the

evolved spacetime satisfies the Einstein field equations. Two modules, ADMConstraints and

ML ADMConstraints provide these quantities. Both calculate these directly from variables

stored in the base modules described in Sec. 5.1, explicitly written as:

H = R−Ki
jK

j
i +K2 − 16πE (89)

Mi = ∇jKi
j −∇iK − 8πSi (90)

where Si = − 1
α
(Ti0 − βjTij). The difference between these modules lies in how they access

the stress energy tensor Tµν , as the module ADMConstraints uses a deprecated functionality

which does not require storage for Tµν .

Finally, ADMAnalysis calculates a variety of derived spacetime quantities that are often

useful in post-processing such as the determinant of the 3-metric det γ, the trace of the

extrinsic curvature K, the 3-Ricci tensor in Cartesian coordinates Rij and its trace R, as

well as the 3-metric and extrinsic curvature converted to spherical coordinates.
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5.7. Simulation Domain, Symmetries, Boundaries

5.7.1. Domains and Coordinates. Cactus distinguishes between the physical domain, which

lives in the continuum, and discrete domain, which consists of a discrete set of grid points.

The physical domain is defined by its coordinate extent and is independent of the numerical

resolution; in particular, the boundary of the physical domain has a width of zero (and is

thus a set of measure zero). The discrete domain is defined indirectly via a discretization

procedure that specifies the number of boundary points, their location with respect to the

physical boundary, and either the grid spacing or the number of grid points spanning the

domain. This defines the number and location of the grid points in the discrete domain.

The discrete domain may have grid points outside of the physical domain, and may have a

non-zero boundary width. This mechanism ensures that changes in the numerical resolution

do not affect the extent of the physical domain, i.e., that the discrete domains converge to

the physical domain in the limit of infinite resolution. The Einstein Toolkit provides the

CoordBase thorn that facilitates the definition of the simulation domain independent of the

actual evolution thorn used, allowing it to be specified at run time via parameters in the

same way that parameters describing the physical system are specified. CoordBase exposes

a public runtime interface that allows other thorns to query the domain description in a

uniform way. This is used by Carpet to query CoordBase for the discrete grid when creating

the hierarchy of grids, automatically ensuring a consistent grid description between the two

thorns. Evolution thorns such as McLachlan use the domain information to decide which

points are evolved and therefore require the evaluation of the right-hand-side expression, and

which ones are set via boundary or symmetry conditions.

5.7.2. Symmetries and Boundary Conditions. The Einstein Toolkit includes two thorns,

Boundary and SymBase, to provide a generic interface to specify and implement boundary

and symmetry conditions. The toolkit includes built-in support for a set of reflecting or

rotating symmetry conditions that can be used to reduce the size of the simulation domain.

These symmetries include periodicity in any of the coordinate directions (via the Periodic

module), reflections across the coordinate planes (via the Reflection module), 90◦ and 180◦

rotational symmetries (via the RotatingSymmetry90 and RotatingSymmetry180 modules

respectively) about the z axis, and a continuous rotational symmetry (via the Cartoon2D

thorn) [175]. Cartoon2D allows fully three dimensional codes to be used in axisymmetric

problems by evolving a slice in the y = 0 plane and using the rotational symmetry to

populate ghost points off the plane (see Figure 5).

In applying symmetries to populate ghost zones, the transformation properties of

tensorial quantities (including tensor densities and non-tensors such as Christoffel symbols)

are correctly taken into account, just as they are in the interpolation routines present in

Cactus. Thus, symmetries are handled transparently from the point of view of user modules

(see Figure 6 for an illustration).

The Boundary thorn serves as a registry for available boundary conditions and provides
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y

x

z

Figure 5. Grid layout of a simulation using Cartoon2D. The z-axis is the axis of rotational

symmetry. Image courtesy of Denis Pollney.
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Figure 6. Iterative transformation of a point x in quadrant 3 to the corresponding point

x′′ for which there is actual data stored. In this example, two reflection symmetries along

the horizontal and vertical axis are present. Notice how the vector components change in

transformations A and B.
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basic scheduling to enforce all requested boundary conditions at the proper times. It also

provides a basic set of boundary conditions to be used by user thorns. The “flat” boundary

conditions often used for hydrodynamic variables that approach an atmosphere value fall in

this category. More complicated boundary conditions are often implemented as modifications

to the evolution equations and are not handled directly by Boundary. Examples are the

radiative (Sommerfeld) and extrapolation boundary conditions provided by thorn NewRad.

5.7.3. Adaptive Mesh Refinement The Einstein toolkit currently supports feature-based

mesh refinement, which is based on extracting quantities such as the locations of BHs

or NSs and then constructing a mesh hierarchy (stacks of refined regions) based on the

locations, sizes, and speeds of these objects. This allows tracking objects as they move

through the domain. One can also add or remove stacks if, for instance, the number of

objects changes. Full AMR based on a local error estimate is supported by Carpet, but the

Einstein Toolkit does not presently provide a suitable regridding thorn to create such a grid.

If initial conditions are constructed outside of Carpet (which is often the case), then the

initial mesh hierarchy has to be defined manually. In order to facilitate the description of the

mesh hierarchy the Einstein toolkit provides two regridding modules in the CarpetRegrid

and CarpetRegrid2 thorns. Both thorns primarily support box-in-box type refined meshes,

which are well suited to current binary BH simulations in which the high-resolution regions

are centered on the individual BHs. Figure 7 shows a typical set of nested boxes during the

inspiral phase of a binary BH merger simulation.

x=0

Figure 7. Nested boxes following the individual BHs in binary BH merger simulation (see

Section 6.2), with the location of the individual BHs found by PunctureTracker. The

innermost three of the nine levels of mesh refinement used in this simulation are shown.

Notice the use of RotatingSymmetry180 to reduce the computational domain.

CarpetRegrid provides a number of different ways to specify the refined regions, e.g., as

a set of boxes centered around the origin or as an explicit list of regions that make up the grid
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hierarchy. Traditionally, groups using CarpetRegrid have employed auxiliary thorns that are

not part of the Einstein Toolkit to create this list of boxes based on information obtained

from apparent horizon tracking or other means. CarpetRegrid2 provides a user-friendly

interface to define sets of nested boxes that follow BHs or other tracked objects. Object

coordinates are updated by CarpetTracker, which provides a simple interface to the object

trackers PunctureTracker and NSTracker (see section 5.6.4) in order to have the refined

region follow the moving objects. CarpetRegrid2 contains code to handle the π-symmetry

provided by RotatingSymmetry180, enforcing the symmetry on the resulting grid layout (see

Figure 8).

y = 0

x = 0

Figure 8. Grid layout created by CarpetRegrid2. In this example we use one ghost point,

one boundary point, and two buffer points as well as RotatingSymmetry180. There are

two refinement levels present, a coarse one represented by big red circles and a fine one

represented by small black circles. The filled black circle is the single point specified by

the user. CarpetRegrid2 surrounded it with a layer of buffer points, indicated by the cyan

filled circles. The open circles are ghost and boundary points which are maintained by

Carpet. The presence of the π-symmetry forces CarpetRegrid2 to create the tiny region to

the bottom left of the grid. It serves only as a source for the boundary condition.

6. Examples

To demonstrate the properties of the code and its capabilities, we have used it to simulate

common astrophysical configurations of interest. Given the community-oriented direction of

the project, the parameter files required to launch these simulations and a host of others

are included and documented in the code releases, along with the data files produced by

a representative set of simulation parameters to allow for code validation and confirmation

of correct code performance on new platforms and architectures. As part of the internal

validation process, nightly builds are checked against a set of benchmarks to ensure that

consistent results are generated with the inclusion of all new commits to the code.

The performance of the Toolkit for vacuum configurations is demonstrated through

evolutions of single, rotating BHs and the merger of binary black hole configurations

(sections 6.1 and 6.2, respectively). Linear oscillations about equilibrium for an isolated
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NS are discussed in section 6.3, and the collapse of a NS to a BH, including dynamical

formation of a horizon, in section 6.4. Finally, to show a less traditional application of the

code, we show its ability to perform cosmological simulations by evolving a Kasner spacetime

(see section 6.5).

6.1. Spinning BH

As a first example, we perform simulations of a single distorted rotating BH. We use

TwoPunctures to set up initial data for a single puncture of mass Mbh = 1 and

dimensionless spin parameter a = Sbh/M
2
bh = 0.7. Evolution of the data is performed

by McLachlan, apparent horizon finding by AHFinderDirect and gravitational wave

extraction by WeylScal4 and Multipole. Additional analysis of the horizons is done

by QuasiLocalMeasures. The runs were performed with fixed mesh refinement provided

by Carpet, using 8 levels of refinement on a quadrant grid (symmetries provided by

ReflectionSymmetry and RotatingSymmetry180). The outer boundaries were placed at

R = 256M . We performed runs at 3 different resolutions: the low resolution was

0.024M(3.072M), medium was 0.016M(2.048M) and high was 0.012M(1.536M), where the

numbers refer to the resolution on the finest (coarsest) grid. The runs where performed using

the tapering evolution scheme in Carpet to avoid interpolation in time during prolongation.

The initial data corresponds to a rotating BH perturbed by a Brill wave and, as such, has a

non-zero gravitational wave content. We evolved the BH using 4th-order finite differencing

from T = 0M until it had settled down to a stationary state at T = 120M .

Figure 9 shows the ℓ = 2,m = 0 mode of rΨ4 extracted at R = 30M , and its numerical

convergence. In the top plot the black (solid) curve is the real part and the blue (dashed) curve

is the imaginary part of rΨ4 for the high resolution run. Curves from the lower resolution are

indistinguishable from the high resolution curve at this scale. In the bottom plot the black

(solid) curve shows the absolute value of the difference between the real part of the medium

and low resolution waveforms while the blue (dashed) curve shows the absolute value of the

difference between the high and medium resolution waveforms in a log-plot. The red (dotted)

curve is the same as the blue (dashed) curve, except it is scaled for 4th order convergence.

With the resolutions used here this factor is (0.0164 − 0.0244) / (0.0124 − 0.0164) ≈ 5.94.

Figure 10 shows similar plots for the ℓ = 4,m = 0 mode of rΨ4, again extracted at

R = 30M . The top plot in this case shows only the real part of the extracted waveform but

for all three resolutions (black solid curve is high, blue dashed curve is medium and red dotted

curve is low resolution). Since the amplitude of this mode is almost a factor of 20 smaller

than the ℓ = 2,m = 0 mode there are actually small differences visible between resolutions

in the beginning of the waveform. The bottom plot shows the convergence of the real part

of the ℓ = 4,m = 0 mode (compare with the bottom plot in Figure 9) and demonstrates

that even though the amplitude is much smaller we still obtain close to perfect fourth-order

convergence.

In addition to the modes shown in Figure 9 and 10 we note that the extracted
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Figure 9. The extracted ℓ = 2,m = 0 mode of Ψ4 as function of time from the high

resolution run (top plot). The extraction was done at R = 30M . Shown is both the real

(solid black curve) and the imaginary (dashed blue curve) part of the waveform. At the

bottom, we show the difference between the medium and low resolution runs (solid black

curve), between the high and medium resolution runs (dashed blue curve), and the scaled

difference (for 4th order convergence) between the medium and low resolution runs (dotted

red curve) for the real part of the ℓ = 2,m = 0 waveforms.
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Figure 10. Real part of the extracted ℓ = 4,m = 0 mode of Ψ4 as function of time (top

plot) for the high (solid black curve), medium (dashed blue curve) and low (dotted red curve)

resolution runs. The extraction was done at R = 30M . The bottom plot shows for the real

part of the ℓ = 4,m = 0 waveforms the difference between the medium and low resolution

runs (solid black curve), the difference between the high and medium resolution runs (dashed

blue curve) as well as the scaled (for 4th order convergence) difference between the medium

and low resolution runs (dotted red curve).
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ℓ = 4,m = 4 mode is non-zero due to truncation error, but shows fourth-order convergence

to zero with resolution (this mode is not present in the initial data and is not excited during

the evolution). Other modes are zero to round-off due to symmetries at all resolutions.

Since there is non-trivial gravitational wave content in the initial data, the mass of the

BH changes during its evolution. In figure 11, we show in the top plot the irreducible mass as

calculated by AHFinderDirect as a function of time at the high (black solid curve), medium

(blue dashed curve) and low (red dotted curve) resolutions. The inset shows in more detail the

differences between the different resolutions. The irreducible mass increases by about 0.3%

during the first 40M of evolution and then remains constant (within numerical error) for the

remainder of the evolution. The bottom plot shows the convergence of the irreducible mass

by the difference between the medium and low resolutions (black solid curve), the difference

between the high and medium resolutions (blue dashed curved) as well as the scaled difference

between the high and medium resolutions for fourth-order (red dotted curve) and third-order

(green dash-dotted curve). The convergence is almost perfectly fourth-order until T = 50M ,

then better than fourth-order until T = 60M , and finally between third-order and fourth-

order for the remainder of the evolution. The lack of perfect fourth-order convergence at

late times may be attributed to non-convergent errors from the puncture propagating to the

horizon location at the lowest resolution.

Finally, in Figure 12 we show the total mass (top plot) and the change in the spin,

∆S = S(t) − S(t = 0), as calculated by QuasiLocalMeasures. In both cases the black

(solid) curve is for high, blue (dashed) for medium and red (dotted) for low resolution. Since

the spacetime is axisymmetric the gravitational waves cannot radiate angular momentum.

Thus any change in the spin must be due to numerical error and ∆S should converge to zero

with increasing resolution. This is clearly shown in the bottom plot of Figure 12; the green

(dash-dotted) curve (the high resolution result scaled by a factor of 1.78 for second-order

convergence to the resolution of the medium resolution) and the blue (dashed) curve are on

top of each other. Since the QuasiLocalMeasures thorn uses an algorithm which is only

second-order accurate overall, this is the expected result. The increase of about 0.22% in the

mass of the BH is caused solely by the increase in the irreducible mass.

6.2. BH Binary

To demonstrate the performance in the code for a current problem of wide scientific interest,

we have evolved a non-spinning equal-mass BH binary system. The initial data represent a

binary system in a quasi-circular orbit, with an initial separation chosen to be r = 6M so we

may track the later inspiral, plunge, merger and ring down phases of the binary evolution.

Table 1 provides more details about the initial binary parameters used to generate the initial

data. The TwoPunctures module uses these initial parameters to solve (10), the elliptic

Hamiltonian constraint for the regular component of the conformal factor (see section 5.2.3).

The spectral solution for this example was determined by using [nA, nB, nφ] = [28, 28, 14]

collocation points, and, along with the Bowen-York analytic solution for the momentum
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Figure 11. The top plot shows the irreducible mass of the apparent horizon as a function

of time at low (black solid curve), medium (blue dashed curve) and high (red dotted curve)

resolutions. The inset is a zoom in on the y-axis to more clearly show the differences between

the resolutions. The bottom plot shows the convergence of the irreducible mass. The black

(solid) curve shows the difference between the medium and low resolution results, the blue

(dashed) curve shows the difference between the high and medium resolution results. The

red (dotted) and green (dash-dotted) show the difference between the high and medium

resolutions scaled according to fourth and third-order convergence respectively.
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Figure 12. The top plot shows the total mass and the bottom plot shows the change in

spin (i.e. ∆S = S(t) − S(t = 0) of the BH as a function of time. In both plots the black

(solid) curve is for high, blue (dashed) for medium and red (dotted) for low resolution. In

the bottom plot the green (dash-dotted) curve shows the high resolution result scaled for

second-order convergence. The agreement with the medium resolution curve shows that the

change in spin converges to zero as expected.

constraints, represents constrained GR initial data {γij, Kij}. The evolution is performed by

the McLachlan module.

The simulation domain spans the coordinate range

[[xmin, xmax], [ymin, ymax], [zmin, zmax]] = [[0, 120], [−120, 120], [0, 120]], where we have taken

advantage of both the equatorial symmetry (implemented by the ReflectionSymmetry

module) and the 180◦ rotational symmetry around the z-axis, which we apply at the x = 0

plane using the RotatingSymmetry180 module. Carpet provides a hierarchy of refined
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Configuration x1 x2 px py m MADM

QC3 3.0 -3.0 0.0 0.13808 0.47656 0.984618

Table 1. Initial data parameters for a non-spinning equal mass BH binary. The punctures

are located on the x-axis at positions x1 and x2, with puncture bare mass parameters

m1 = m2 = m, and momenta ±~p.

grids centered at each puncture. Here, we used 7 levels of refinement, where the box edge

coordinate lengths are given by [128, 32, 16, 8, 4, 2] in units of the total binary mass, which

is set to unity. Note that overlapping boxes are automatically redefined by Carpet into one

unique region before the domain decomposition takes place.

Figure 13 shows the two puncture tracks throughout all phases of the binary evolution,

provided by the PunctureTrackermodule. In the same plot we have recorded the intersection

of the apparent horizon 2-surface with the z = 0 plane every time interval t = 10M during

the evolution. A common horizon is first observed at t = 116M . These apparent horizons

were found by the AHFinderDirect module and their radius and location information stored

as a 2-surface with spherical topology by the SphericalSurface module. The irreducible

mass and dimensionless spin of the merged BH were calculated by the QuasiLocalMeasures

module, and were found to be 0.647M and −0.243M−2, respectively.

Two modules are necessary to perform the waveform extraction. The first one,

WeylScal4, calculates the Weyl scalar Ψ4 in term of the metric components and its

derivatives; these were computed to be 4-th order accurate in this example. The second

module, Multipole, interpolates the Weyl scalars onto spheres with centers and radii

specified by the user, and performs a spherical harmonic multipole mode decomposition.

Figure 13 shows the real and imaginary parts of the (l = 2, m = 2) mode for Ψ4 extracted

on a sphere centered at the origin at Robs = 60M . The number of grid points on the sphere

was set to be [nθ, nφ] = [120, 240], which yields an angular resolution of 2.6 × 10−2 radians,

and an error of the same order, since the surface integrals were calculated by midpoint rule

– a first order accurate method.

In order to evaluate the convergence of the numerical solution, we ran five simulations

with different resolutions, and focus our analysis on the convergence of the phase and

amplitude of the Weyl scalar Ψ4. The mesh spacings adopted for the coarser grid

in the AMR hierarchy for these different runs were {hlow, hmed, hmedh, hhigh, hhigher} =

{2.0M, 1.5M, 1.25M, 1.0M, 0.75M}, respectively, while the finer grid spacings can be easily

found by dividing them by 2k for the kth level of mesh refinement.For this example, we set

{hflow, h
f
med, h

f
medh, h

f
high, h

f
higher} = {3.125M, 2.344M, 1.953M, 1.563M, 1.172M}×10−2 for the

finest grid in the different AMR hierarchies, respectively.

Here, we consider the phase φ(t) and the amplitude A(t) of the Weyl scalar Ψ4 at

Robs = 60M . In order to take differences between the numerical values at two different

grid resolutions, we use an 8-th order accurate Lagrange operator to interpolate the higher-

accuracy finite difference solution into the immediately coarser grid. We have experimented
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Figure 13. In the left panel, we plot the tracks corresponding to the evolution of two

punctures initially located on the x-axis at x = ±3. The solid blue line represents puncture

1, and the dashed red line puncture 2. The circular dotted green lines are the intersections of

the apparent horizons with the z = 0 plane plotted every 10M during the binary evolution.

A common horizon appears at t = 116M . In the right panel, we plot the real (solid blue

line) and imaginary (dotted red line) parts of the (l = 2,m = 2) mode of the Weyl scalar Ψ4

as extracted at an observer radius of Robs = 60M .

with 4-th and 6-th order as well, to evaluate the level of noise these interpolations could

potentially introduce, but did not observe any noticeable difference and we report here on

results from the higher-order option.

In Figure 14, we show the convergence of the amplitude and phase of the Weyl scalar by

plotting the logarithm of the absolute value of the differences between two levels of resolution.

The differences clearly converge to zero as the resolution is increased. We also indicate on

both plots the time at which the gravitational wave frequency reaches ω = 0.2/M . We

follow a community standard, agreed to over the course of the NRAR[176] collaboration,

that constrains the numerical resolution so that the accumulated phase error is not larger

than 0.05 radians at a gravitational wave frequency of ω = 0.2/M . From the plot, we assert

that the phase error between the higher and high resolutions and the one between high and

medium-high resolutions satisfies this criterion, while the phase error between the medium-

high and medium resolutions barely satisfies the criterion; and the one between medium and

low resolutions does not. We conclude then that the three highest resolution runs do have

sufficient resolution to extract waveforms for use in the construction of analytic waveform

templates.
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Figure 14. Weyl scalar amplitude (left panel) and phase (right panel) convergence. The

long dashed red curves represent the difference between the medium and low-resolution runs.

The short dashed orange curves show the difference between the medium-high and medium

resolution runs. The dotted brown ones, the difference between high and medium-high

resolutions, while the solid blue curves represent the difference between the higher and high

resolution runs. The dotted vertical green line at t = 154M indicates the point during the

evolution at which the Weyl scalar frequency reaches ω = 0.2/M . Observe that the three

highest resolutions accumulate a phase error below the standard of 0.05 radians required by

the NRAR collaboration.

6.3. Linear oscillations of TOV stars

The examples in the previous subsections did not include the evolution of matter within

a relativistic spacetime. One interesting test of a coupled matter-spacetime evolution

is to measure the eigenfrequencies of a stable TOV star (see, e.g., [177–181]). These

eigenfrequencies can be compared to values known from linear perturbation theory.

We begin our simulations with a self-gravitating fluid sphere, described by a polytropic

equation of state. This one-dimensional solution is obtained by the code described in

section 5.2.5, and is interpolated on the three-dimensional, computational evolution grid.

This system is then evolved using the BSSN evolution system implemented in McLachlan

and the hydrodynamics evolution system implemented in GRHydro.

For the test described here, we set up a stable TOV star described by a polytropic

equation of state p = KρΓ with K = 100 and Γ = 2, and an initial central density of

ρc = 1.28 × 10−3. This model can be taken to represent a non-rotating NS with a mass of

M = 1.4M⊙. The computational domain is a cube of length 640M with a base resolution

of 2M (4M, 8M) in each dimension. Four additional grids refine the region around the star

centered at the origin, each doubling the resolution, with sizes of 120M, 60M, 30M and 15M,

resulting in a resolution of 0.125M (0.25M, 0.5M) across the entire star.
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Figure 15. Evolution of the central density for the TOV star. Clearly visible is an initial

spike, produced by the interpolation of the one-dimensional equilibrium solution onto the

three-dimensional evolution grid. The remainder of the evolution however, the central density

evolution is dominated by continuous excitations coming from the interaction of the stellar

surface with the artificial atmosphere.

In Figure 15 we show the evolution of the central density of the star over an evolution

time of 1300M (6.5ms). The initial spike is due to the perturbation of the solution resulting

from the interpolation onto the evolution grid. The remaining oscillations are mainly due

to the interaction of the star and the artificial atmosphere and are present during the whole

evolution. Given enough evolution time, the frequencies of these oscillations can be measured

with satisfactory accuracy.

In Figure 16 we show the power spectral density (PSD) of the central density

oscillations computed from a full 3D relativistic hydrodynamics simulation, compared to

the corresponding frequencies as obtained with perturbative techniques (kindly provided

by Kentaro Takami and computed using the method described in [182]). The PSD was

computed using the entire time series of the high-resolution run, by removing the linear

trend and averaging over Hanning windows overlapping half the signal length after padding

the signal to five times its length. The agreement of the fundamental mode and first three

overtone frequencies is clearly visible, but are limited beyond this by the finite numerical

resolution. Higher overtones should be measurable with higher resolution, but at substantial

computational cost.

Within this test it is also interesting to study the convergence behavior of the coupled

curvature and matter evolution code. One of the variables often used for this test is the

Hamiltonian constraint violation. This violation vanishes for the continuum problem, but is

non-zero and resolution-dependent in discrete simulations. The expected rate of convergence

of the hydrodynamics code lies between 1 and 2. It cannot be higher than 2 due to the
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Figure 16. Eigenfrequency mode spectrum of a TOV star. Shown is the power spectral

density of the central matter density, computed from a full 3D relativistic hydrodynamics

simulation and compared to the values obtained by perturbation theory. The agreement of

the frequencies of the fundamental mode and the first three overtones is clearly visible.

directional flux-split algorithm which is of second order. Depending on solution itself, the

hydrodynamics code is only of first order in particular regions, e.g., at extrema (like the

center of the star), or at the stellar surface.

Figure 17 shows the order of convergence of the Hamiltonian constraint violation, using

the three highest-resolution runs, at the stellar center and a coordinate radius of r = 5M

which is about half way between the center and the surface. The observed convergence rate

for most of the simulation time lies between 1.4 and 1.5 at the center, and between 1.6 and 2

at r = 5M, consistent with the expected data-dependent convergence order of the underlying

hydrodynamics evolution scheme.

6.4. Neutron star collapse

The previous examples dealt either with preexisting BHs, either single or in a binary, or

with a smooth singularity free spacetime, as in the case of the TOV star. The evolution

codes in the toolkit are, however, also able to handle the dynamic formation of a singularity,

that is follow a neutron star collapse into a BH. As a simple example of this process, we

study the collapse of a non-rotating TOV star. We create initial data as in section 6.3

using ρc = 3.154 × 10−3 and KID = 100, Γ = 2, yielding a star model of gravitational mass

1.67M⊙, that is at the onset of instability. As is common in such situations (e.g., [95]), we

trigger collapse by reducing the pressure support after the initial data have been constructed

by lowering the polytropic constant KID from its initial value to K = 0.98KID = 98. To

ensure that the pressure-depleted configuration remains a solution of the Einstein constraint
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Figure 17. Convergence factor of Hamiltonian constraint violation at r = 0M and r = 5M.

The observed convergence order of about 1.5 at the center of the star is lower then the

general second order of the hydrodynamics evolution scheme. This is expected because the

scheme’s convergence rate drops to first order at extrema or shocks, like the stellar center or

surface. Consequently, the observed convergence order about half way between the stellar

center and surface is higher than 1.5, but mostly below 2.

equations (89) in the presence of matter, we rescale the rest mass density ρ such that the

total energy density Tnn does not change:

ρ′ +K(ρ′)2 = ρ+KIDρ
2. (91)

Compared to the initial configuration, this rescaled star possesses a slightly higher central

density and lower pressure. This change in K accelerates the onset of collapse that would

otherwise rely on being triggered by numerical noise, which would not be guaranteed to

converge to a unique solution with increasing resolution. In order to resolve the star as

well as to push the outer boundary far enough away (so that the star and the numerical

outer boundary are not in causal contact during the simulation) we employ a fixed mesh

refinement scheme. The outermost box has a radius of R0 = 204.8M⊙ and a resolution of

3.2M⊙ (2.4M⊙, 1.6M⊙, 0.6M⊙ for higher convergence levels). Around the star, centered

about the origin, we stack 5 extra boxes of approximate size 8× 2ℓM⊙ for 0 ≤ ℓ ≤ 4, where

the resolution on each level is twice that of the surrounding level. In order to resolve the

large density gradients developing during the collapse, two more levels with radii 4M⊙ and

2M⊙ are placed inside the star. We use the PPM reconstruction method and the HLLE

Riemann solver to obtain second-order convergent results in smooth regions. Due to the

presence of the density maximum at the center of the star and the non-smooth atmosphere

at the edge of the star, we expect the observed convergence rate to be somewhat lower than

second order, but higher than first order. In Figure 18, we plot the approximate coordinate

size of the star as well as the circumferential radius of the apparent horizon that eventually
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Figure 18. Coordinate radius of the surface of the collapsing star and radius of the

forming apparent horizon. The stellar surface is defined as the point where ρ is 100

times the atmosphere density. R is the circumferential radius of the apparent horizon and

Rg = 2M⋆ = 2 × 1.63M⊙. An apparent horizon forms at a time roughly equal to when

the mass of the star is enclosed in its gravitational radius, forming a black hole and causally

disconnecting the evolution in the interior from the outside spacetime. The lower x-axis

displays time in code units where M⊙ = G = c = 1, and the upper x-axis shows the

corresponding physical time using 1M⊙ = 4.93µs.
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Figure 19. Convergence factor for the Hamiltonian constraint violation at the center of the

collapsing star. We plot convergence factors computed using a set of 4 runs covering the

diameter of the star with ≈ 60, 80, 120, and 240 grid points. The units of time on the upper

and lower x-axes are identical to those of Figure 18.
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forms in the simulation. The apparent horizon is first found at approximately the time when

the star’s coordinate radius approaches its Schwarzschild radius, though one needs to keep

in mind that the Schwarzschild radius is a circumferential radius, whereas the meaning of

the coordinate radius in our BSSN calculation is likely somewhat different. In Figure 19, we

display the convergence factor obtained from

Hh1
−Hh2

Hh2
−Hh3

=
hQ1 − hQ2

hQ2 − hQ3
, (92)

for the Hamiltonian constraint violation at the center of the collapsing star. Here Hhi
is the

Hamiltonian constraint violation (89) at the center of the star for a run with resolution hi.

Up to the time when the apparent horizon forms, the convergence order is an expected ≈ 1.5.

At later times, the singularity forming at the center of the collapsing star renders a pointwise

measurement of the convergence factor at the center impossible.

6.5. Cosmology

The Einstein Toolkit is not only designed to evolve compact-object spacetimes, but also to

solve the initial-value problem for spacetimes with radically different topologies and global

properties. In this section, we illustrate the evolution of an initial-data set representing a

constant-t section of a spacetime from the Gowdy T 3 class [183, 184]. Models in this class

have the line element:

ds2 = τ−1/2eλ/2(−dτ 2 + dz2) + τ [eP (dx+Qdy)2 + e−Pdy2] (93)

defined on a 3-torus −x0 ≤ x ≤ x0, −y0 ≤ y ≤ y0, −z0 ≤ z ≤ z0, with the functions P ,

Q and λ to be determined by the Einstein equations. For P = Q = λ = 0, a coordinate

transformation t = 4/3 τ 3/4 (plus a rescaling of the spatial coordinates) casts the line element

into the form:

ds2 = −dt2 + t4/3(dx2 + dy2) + t−2/3dz2 (94)

which represents the familiar Kasner spacetime for a homogeneous but anisotropically

expanding universe. In the 3+1 decomposition described above, this reads:

α(t) = 1 (95)

βi(t) = 0 (96)

γij(t) = diag(t4/3, t4/3, t−2/3) (97)

Kij(t) = − diag(
2

3
t4/3,

2

3
t4/3,

1

3
t−2/3) (98)

In Figure 20, we show the full evolution of the t = 1 slice of spacetime (94), along with

the associated error for a sequence of time resolutions.
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Figure 20. Top: the evolution of a vacuum spacetime of the type (93), with P = Q = λ = 0;

the initial data are chosen as γij = δij and Kij = diag(−2/3,−2/3, 1/3). Bottom: the

numerical error for a sequence of four time resolutions dt = [0.0125, 0.025, 0.05, 0.1]; the

errors are scaled according to the expectation for fourth-order convergence.

7. Conclusion and Future Work

In this article, we described the Einstein Toolkit, a collection of freely available and easy-

to-use computational codes for numerical relativity and relativistic astrophysics. The code

details and example results present in this article represent the state of the Einstein Toolkit

in its release ET 2011 05 “Curie,” released on April 21, 2011.

The work presented here is but a snapshot of the Einstein Toolkit’s ongoing development,

whose ultimate goal it is to provide an open-source set of robust baseline codes to realistically

and reproducibly model the whole spectrum of relativistic astrophysical phenomena
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including, but not limited to, isolated black holes and neutron stars, binary black hole

coalescence in vacuum and gaseous environments, double neutron star and neutron star

– black hole mergers, core-collapse supernovae, and gamma-ray bursts.

For this, much future work towards including proper treatments of magnetic fields, more

complex equations of state, nuclear reactions, neutrinos, and photons will be necessary and

will need to be matched by improvements in infrastructure (e.g., more flexible AMR on

general grids) and computing hardware for the required fully coupled 3-D, multi-scale, multi-

physics simulations to become reality. These tasks, as well as the others mentioned below,

are likely to occupy a great deal of the effort spent developing future versions of the Einstein

Toolkit over the next few years.

Without a doubt, collapsing stars and merging BH-NS and NS-NS binaries must be

simulated with GRMHD to capture the effects of magnetic fields that in many cases will alter

the simulation outcome on a qualitative level and may be the driving mechanisms behind

much of the observable EM signature from GRBs (e.g., [185]) and magneto-rotationally

exploding core-collapse supernovae (e.g., [186]). To date, all simulations that have taken

magnetic fields into account are still limited to the ideal MHD approximation, which

assumes perfect conductivity. Non-ideal GRMHD schemes are just becoming available (see,

e.g., [187, 188]), but have yet to be implemented widely in many branches of numerical

relativity.

Most presently published 3D GR(M)HD simulations, with the exception of recent work

on massive star collapse (see, e.g., [87]) and binary mergers (see, e.g., [48]), relied on simple

zero-temperature descriptions of NS stellar structure, with many assuming simple polytropic

forms. Such EOSs are computationally efficient, but are not necessarily a good description

for matter in relativistic astrophysical systems. The inclusion of finite-temperature EOSs,

derived from the microphysical descriptions of high-density matter, will lead to qualitatively

different and much more astrophysically reliable results (see, e.g., [87]). In addition, most

GR(M)HD studies neglect transport of neutrinos and photons and their interactions with

matter. Neutrinos in particular play a crucial role in core-collapse supernovae and in

the cooling of NS-NS merger remnants, thus they must not be left out when attempting

to accurately model such events. Few studies have incorporated neutrino and/or photon

transport and interactions in approximate ways (see, e.g., [48, 66, 87, 189]).

Besides new additions of physics modules, existing techniques require improvement. One

example is the need for the gauge invariant extraction of gravitational waves from simulation

spacetimes as realized by the Cauchy Characteristic Extraction (CCE) technique recently

studied in [112, 190, 191]. The authors of one such CCE code [190] have agreed to make

their work available to the whole community by integrating their CCE routines into the

Einstein Toolkit release 2011 11 “Maxwell,” which will be described elsewhere.

A second much needed improvement of our existing methods is a transition to

cell-centered AMR for GR hydrodynamic simulations, which would allow for exact flux

conservation across AMR interfaces via a refluxing step that adjusts coarse and/or fine grid

fluxes for consistency (e.g., [111]). This is also a prerequisite for the constrained transport
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method [192] for ensuring the divergence-free condition for the magnetic field in a future

implementation of GRMHD within the Einstein Toolkit. Work towards cell-centered AMR,

refluxing, and GRMHD is underway and will be reported in a future publication.

While AMR can increase resolution near regions of interest within the computational

domain, it does not increase the convergence order of the underlying numerical methods.

Simulations of BHs can easily make use of high-order numerical methods, with eighth-order

convergence common at present. However, most GRMHD schemes, though they implement

high-resolution shock-capturing methods, are limited to 2nd-order numerical accuracy in the

hydrodynamic/MHD sector while performing curvature evolution with 4th-order accuracy or

more. Higher order GRMHD schemes are used in fixed-background simulations (e.g., [193]),

but still await implementation in fully dynamical simulations.

Yet another important goal is to increase the scalability of the Carpet AMR

infrastructure. As we have shown, good scaling is limited to only a few thousand processes

for some of the most widely used simulation scenarios. Work is in progress to eliminate

this bottleneck [194]. On the other hand, a production simulation is typically composed of a

large number of components, and even analysis and I/O routines have to scale well to achieve

overall good performance. This is a highly non-trivial problem, since most Einstein Toolkit

physics module authors are neither computer scientists nor have they had extensive training in

parallel development and profiling techniques. Close collaboration with experts in these topics

has been fruitful in the past and will be absolutely necessary for the optimization of Einstein

Toolkit codes for execution on the upcoming generation of true petascale supercomputers on

which typical compute jobs are expected to be running on 100,000 and more compute cores.
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[142] Alcubierre M, Brügmann B, Dramlitsch T, Font J A, Papadopoulos P, Seidel E, Stergioulas N and

Takahashi R 2000 Towards a stable numerical evolution of strongly gravitating systems in general

relativity: The Conformal treatments Phys. Rev. D 62 044034
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