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THE ELASTIC ANOMALY OF KCN AT 168 K
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Résumé. 2014 Nous avons mesuré la largeur Brillouin de phonons longitudinaux (q// e//[1 , 0, 0]) et
de phonons transverses mous (q//[1,1, 0] ; e,//[0, 0, 1]) dans la phase cubique, au-dessus de la transi-
tion de phase élastique. Une théorie semi-phénoménologique est proposée pour décrire la variation
de ces largeurs ainsi que celles des constantes élastiques avec la température. On explique en parti-
culier pourquoi il n’apparait aucun effet spectaculaire sur la largeur des phonons transverses, quoique
la constante élastique correspondante tende vers zéro.

Abstract. 2014 The Brillouin linewidths of longitudinal phonons (qllell[1, 0, 0]) and soft transverse
phonons (q//[1, 1, 0] ; e//[0, 0, 1]) have been measured for the first time in KCN in its cubic phase
above the elastic phase transition temperature. We propose a semi phenomenological model which
explains the temperature variation of both these linewidths and of the related elastic constants, and,
in particular, the absence of any spectacular variation of the transverse phonon linewidth close to the
transition in spite of the soft character of the related elastic constant.
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1. Introduction. - At room temperature, Potassium

cyanide possesses the rock salt structure. Nevertheless,
the Ca) symmetry of the CN- molecule is not compa-
tible with the cubic-symmetry of its site, which implies
a certain degree of disorder in the crystal. Indeed,
neutron elastic scattering [1] has shown that the

cyanide molecules preferentially point in one of
the 8 equivalent [1, 1, 1] directions.

This crystal transforms at 168 K into an ortho-
rhombic structure [2] (D") characterized by the

elongation of a [1, 1, 0] diagonal, and the decrease of
the corresponding [1, 1, 0] diagonal. In this structure,
the CN- molecules are parallel to the long diagonal
with a residual head to tail disorder.
The study of these two phases and of the transition

between them has been made by various techniques
including NMR [3], heat capacity measurements [4],
and light scattering [5-6]. Inelastic neutron studies of
the high temperature phase have also been per-
formed [7-8]. Nevertheless, the most important infor-
mation concerning the phase transition has been
obtained by ultrasonic [9] and Brillouin scattering [10]
measurements. Those have revealed that :

- The C44 elastic constant, which has the same
C 112013 C12

order of m agn itude as C11’ - 2 C12 ait room tempéra-
ture, decreases by one order of magnitude at the phase
transition. This elastic constant seems thus to be the

soft mode associated with the transition.
- The transition is of first order, as the extrapola-

tion of C44(T) leads to its vanishing at Ty = 154 K
compared to the actual (168 K) value of 7c
- No dispersion of C44(co) is revealed between the

ultrasonic and Brillouin scattering measurements.

In order to get more information on this phase
transition we have repeated Buchenau and Krasser’s
Brillouin scattering experiment [10] but we have

included the measurement of the signal linewidth, for
some longitudinal and transverse phonons. In the next
section we shall discuss our experimental results,
which confirm the values obtained in [10] but also
reveal a moderate increase of the phonon linewidths
for both the transverse and longitudinal cases. In the
third section, we shall briefly discuss a semi-phenome
nological model which allows a quantitative des-

cription of our data to be given. Some implications of
the model and of its relationship with other experi-
mental data, including some very recent Brillouin
measurements under hydrostatic pressure [11], will

(*) Equipe de Recherches Associée au C.N.R.S., n° 480.
(**) Laboratoire Associé au C.N.R.S., no 71.
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be given in the last section of this paper. A second
paper will deal with the case of NaCN which presents
the same succession of phases, and the same type of
problems.

2. Experimental technique and results. - For the
study of the Brillouin spectra, we used a device
described previously [12]. The light source is a single-
frequency argon ion laser with an output power of
about 800 mW for each of the two wavelengths
À1 = 4 880 A and Â2 = 5 145 Á. In order to achieve
both a high contrast and a high resolution, the double-
passed plane Fabry-Pérot interferometer, used as a
monochromator, is followed by a confocal Fabry-
Pérot interferometer of 50, 100 or 250 mm thickness.
Fast repetitive scans are performed, in order to avoid a
distorsion of the profile due to the frequency drift of
the laser. The maximum resolving power of this device
is equal to 10g (corresponding to a bandwidth of
about 10 MHz), with a contrast greater than 10’. The
high resolving power allows measurement of both the
frequency shifts and the linewidths of Brillouin lines
to be made. Furthermore, the contrast of this spectro-
meter enables us to study Brillouin spectra in samples
of poor optical quality and to perform backscattering
experiments, where a strong parasitic laser line cannot
be avoided.

Samples of different origins were used. One of
the KCN samples was grown from aqueous solu-
tion [13]. The others were grown at the Département
de Recherches Physiques by the Bridgman method.
The faces of the crystals were parallel to the [1, 0, 0],
[0, 1, 0] and [0, 0, 1] planes respectively. The ci i elastic
constant was obtained by measurement of the longi-
tudinal Brillouin frequency shift in backscattering
(longitudinal acoustic wave propagating along
q = [1, 0, 0]). The velocity of this wave is vL = (c 11/ P ) 1/2 .
In right-angle scattering experiments, with the same
sample, the acoustic waves responsible for the Brillouin
scattering propagate with q = (1//2) [1, 1, 0]. The
measurement of the frequency shift of the transverse
component gives the value of the c44 elastic constant
and of the corresponding velocity vT = (C44/P) 1/2 . The
mixture c’ = 1(c11 + C12 + 2 C44) can be deduced
from the frequency shift of the longitudinal Brillouin
component.
From the relation :

where vB is the Brillouin frequency shift, vo the fre-
quency of the incident light, n the index of refraction,
v the sound velocity, c the light velocity and 0 the
scattering angle, it can be seen that, for a given scatter-
ing geometry, variations of v with temperature leads to
variations of the frequency. Therefore, the tempera-
ture dependence of the velocity is studied at variable
frequency, but at constant wave vector q.
The temperature dependence of both the density

and the refractive index must be taken into account in

the calculation of the elastic constants. The density
was taken from [9]. The temperature variations of the
refractive index were obtained from the relation

Our measurement Of VT as a function of temperature
is in good agreement with that of Krasser et al. [10].
These results, as well as the longitudinal velocities VL
are plotted vs temperature in figures 1 and 2 ; they
agree with the ultrasonic values [9] to within experi-
mental accuracy.
The measurements of the Brillouin linewidths F are

shown in figure 3. All the curves show an increase of F
with decreasing temperature. As this increase could
be due to various possible parasitic effects, we have
tried to test the influence of the most important ones,
as discussed below.

The sample heating by the laser could produce
differences in temperature between elementary scat-
tering volumes, leading to a line broadening increasing
near the phase transition. This effect can be ruled out
as no differences have been found between experiments
performed at different incident powers. Another

origin of broadening could be the strain field in the
crystal, whose amplitude increases near the transition

FIG. 1. - The longitudinal sound velocity VL =c11P as a functionP
of temperature. x ref. [10] e our measurements - theory.
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FIG. 2. - The transverse sound velocity VT = c44 as a functionà
of température. X ref. [ 10] e our measurements theory.

FIG. 3. - The Brillouin linewidths. a) TL (q / [1, 0, 0] ; e f [1, 0, ]) ;
b) TT (q f [1, 1, 0] ; e % [0, 0, 1]) as a function of temperature.

. our measurements - theory.

temperature. We have tried to observe the influence of
strains on the velocity by applying uniaxial pressures
of about 100 kgB . cm- 2 the sample. These pressures did
not lead to a noticeable change in the elastic constants,
so that the corresponding broadening can be neglected.
Furthermore, the strain field strongly depends on the
origin of the crystal, the samples grown from solutions

being nearly free of strains while those obtained by the
Bridgman method are strongly strained. The same
measurements, performed on the two samples, lead to
similar results, showing that the influence of strains is
not the origin of the increase of the linewidth. We have
therefore concluded that the observed increase of r
near the transition temperature is of intrinsic origin.
This effect nevertheless does not exceed a factor of

three, while the room temperature value of the line-
width is smaller than 200 MHz. In the next section, we
shall propose a model for the temperature variation of
both the elastic constants and the linewidths ; we shall
then show that this model correctly fits our data.

3. Discussion. - The preceding results can be

explained by a simple model which takes into account
the ferroelastic nature of the transition. We shall first

briefly describe this model, then use it to interpret our
results.

3. 1 A MODEL FOR THE FERROELASTIC TRANSITION
OF NaCN AND KCN. - The ordering of molecules
in plastic crystals is often described with the help of
an Ising spin model where the spin variables label the
different available orientations of the molecule. Such a

description is not valid here as the available orienta-
tions differ between the two phases (see introduction).

Nevertheless, a more realistic description of the
probability distribution function of the molecular
orientation provides an alternative way of exhibiting
variables which, in the vicinity of a phase transition,
have the same thermodynamics as the previous
variables. 

Let us describe the long range orientational order of
the molecules at a temperature T by

where :

- P(6, cp) is the probability of finding a molécule .
with angular variables 0, cp ;
- Fj’(O, cp) is the complete set of surface harmonics

related to the Oh group [14] ;
- J is an integer ;
- k a composite index with 2 J + 1 values, which

describes at the same time :

e the irreducible representation of the cubic point
group under which Fkj(0, cp) transforms ;

. the dimensionality of this representation ;

. the number of times this representation is included
in the 2 J + 1 surface harmonics with index J.

In order for (3) to represent the crystal probability
distribution of the molecules, Âl must clearly be zero
if k does not belong to the unity representation of the
cubic point group.

Nevertheless, if the reorientation time of the

molecules is fast enough with respect to some local
deformations of the environment of the molécules,
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the other Â’ coefficients can serve as a basis for the
expansion of a local, slowly varying probability

where R labels a crystal site.
The space Fourier transform of the corresponding

variables Â kj(q) can then serve as a basis for the expan-
sion of the corresponding energy and entropy.

In particular, in the vicinity of a phase transition,
it can be shown [15] that these deformations add to the
free energy a term of the form

In this expression, T is the temperature and S and E
are two (infinite) square matrices describing respec-
tively the entropy and the energy related to a change in
the probability distribution function of the molecule,
while q is a vector of the first Brillouin zone.
The free energy F and, in particular, the tensorial

sets Skkjj(0) and Ekkjj(0), corresponding to the long
wavelength limit (q - ,0) must be invariant under the
symmetry operations of the crystal point group ;
Skkjj(o) and Ekkjj(0) transform according to the product
of the two representations implied by the index k, 
and k’. As such a product contains the unity repre-
sentation only if the two involved representations are
equivalent, the only non zero coefficients Skkjj(0) and
E§§1(0) will be those for which k and k’ belong to the
same irreducible representation of the crystal point
group Oh.
We can summarize this discussion by stating that,

in the long wavelength limit, which is the case we are
interested in here, there always exists additional,
slowly time varying variables, coupled by symmetry
arguments, and that linear combination of these
variables can play the same role as a pseudo spin
variable in a Landau type description of the thermo-
dynamics of a phase transition. Finally, local fluctua-
tions of non conserved quantities usually follow rate
equations in the long time limit. We shall make this
assumption here, which is also valid for the q - 0
limit of their spatial Fourier transform.

In the rest of this paper, we shall thus be entitled to
use a pseudo spin formalism, quite analogous to the
one used for example by Yamada et al. [16] in the case
of NH4Br, to describe the phase transition of KCN.

3.2 PHASE TRANSITION AND THE ELASTIC CONS-

TANT C44. - As the phase transition is characterized
by the vanishing of C44, and the corresponding defor-
mation transform as the irreducible F2g representation,
it is natural to couple to this deformation a pseudo
spin variable which belongs to the same representation.
We shall write it Â’(i = 1, 2, 3), and the part of the free

energy which we need to consider here may be written,
in the elastic limit up to second order as

In this expression, g represents the linear coupling
between the elastic deformations e4, es or e6 with the Â

variables, while J(T - To) represents the entropy and
energy associated, in the vicinity of the transition
temperature, with the same pseudo spin variables.

If we consider only those acoustic transverse

phonons which propagate with qe[l, 1, 0] and

e//[0, 0, 1], the same free energy may conversely be
written as

where

M being the mass of an elementary cell, and Q the
amplitude of the phonon mode.

Equation (7) is just the free energy associated with a
coupled spin phonon system, and its dynamics and
thermodynamics can thus be obtained by methods
identical to those of [16].

If the pseudo spins are assumed to have a diffusive
dynamics, one easily obtains the coupled system of
equations

where y represents a relaxation associated to the
individual pseudo spin, while the usual damping of the
acoustical phonons is written the form 00FFq2 wQ in order
to take into account the fact that the experiments are
performed at constant II q II, but that it is a time

response function which is actually obtained.
If one assumes that the light is scattered only by the

modulation of the dielectric tensor by the lattice

deformation, the Brillouin intensity is just propor-
tional to the imaginary part of the deformation
Green’s function, which is easily obtained by elimi-
nating A between the two equations (8). The Brillouin
intensity is thus proportional to :
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where

and where it has been taken into account that

This last inequality expresses the fact that the pseudo
spin relaxation time is short with respect to the time
evolution of the long wavelength probability fluctua-
tion described by the variable A. (Note that this

inequality is implied by the absence of dispersion
between Haussuhl’s result [9] and ours.)
The implications of (9) and (10) are threefold.
a) The phase transition (which is accompanied by

an alignment of the CN- molecules in the [1, 1, 0] direc-
tion) does not take place at To, but at a value Ty such

(see also section IV, a)). 
b) The phonon linewidth, at constant q, is given

by (10). Formulae (10) and (11) have been used to fit
our data for the c44 phonons.
We find that, in the region 168-273 K, the elastic

constant c44 can be represented by (see Fig. 1)

with

The negative value for To means that in the absence of
important coupling to the elastic constant, the Â
fluctuations would never condense at any positive
temperature. (Note that, in this formula, the thermal
expansion of the crystal, which should also affect the
temperature variation of the elastic constant of the

crystal, has not been taken into account, and that the
same effect has been also neglected in the rest of the
discussion.)

Using the above value for To, the corresponding
Brillouin linewidth can be represented in accordance
with (10) by

with

and the corresponding fit is shown on figure 3b.

c) Phase transition and the elastic constant c11 --
Another coupling mechanism between the Â variables
and the longitudinal phonons must be used to explain
both the temperature dependence and the linewidth
of the longitudinal phonons propagating along the
[1, 0, 0] direction. Indeed, this coupling cannot be
a linear one, as the corresponding deformation is

of the A,1g, or the Eg representation, while the

À variables are of the F2g representation. Such a
problem is very usual in phase transitions, and has
been treated in the case of the antiferroelastic transi-
tions by Pytte [17]. As the product F2g ® F2g contains
both representations, one sees that the fluctuations of
the Â variables can easily couple to longitudinal
phonons, through an energy term (where only those
longitudinal phonons have been taken into account)
of the form

The influence of the fluctuations of the À 2 variables
on the elastic constant ci i and on the linewidth of the

longitudinal phonons can be easily obtained from
Pytte’s results when one notes that the diffusive

dynamics assumed for the pseudo spins should give
the same results as that of the overdamped phonons
considered by Pytte, and that, furthermore, the dis-
persion of the diffusive mode must have cubic symme-
try. One then obtains

Our experimental data can be well fitted by (14a)
and (14b) (see Figs 2 and 3a) with

4. Final remarks. - We conclude this paper with a

few remarks on the proposed model which was based
on our measurements.

4.1 ORDER OF THE TRANSITION. - In order to

describe the phase transition of KCN from the cubic
phase 1 to the orthorhombic phase II, we have used a
Landau type free energy in which the soft mode is of
the F2g representation. Nevertheless, for obtaining
the order of this transition, the free energy must be
expanded up to higher orders in the corresponding
variables. When this is done, it is found [18] that, when
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an elastic constant c44 goes to zero, as the symmetrized
cube of F2g contains the unity representation, the
transition is always of first order. This seems to agree
with the experiment, as we have found that Tc* is equal
to 154 K while the actual transition takes place at
Tc = 168 K, for a still finite value of c44.

Nevertheless, this does not account for the present
situation because this first order transition should

bring the crystal into a rhombohedral symmetry D3d
(see [18]), while the transition is actually to D2h sym-
metry. The terms of order 4 and 6 in the soft mode
variables must thus be taken into account to explain
the first order character of the transition. In such a
case the exact value of Tc has no analytical expression
in terms of the coefficients of the free energy expansion,
and cannot be easily discussed. We believe that the
role of these coefficients, and of their pressure depen-
dence can also explain the very recent experiments
under hydrostatic pressure of Hocheimer et al. [11].
They find that Te increases with pressure while the
actual value of c44 at any temperature is very little
affected by the pressure variation. As is seen from

equation (11), the value of c44 in the high temperature
phase depends only on the temperature (and pressure)
variation of J(T - To), the second order term in À in
the free energy (equation (6)). On the other hand, the
actual Te depends in a precise manner on the value of
the higher order coefficients. The pressure results can
thus be explained by assuming that the high order
coefficients have a greater pressure dependence than
J(T - To), an assumption which is not in contra-
diction with the conclusions of ref. [11].

4.2 MOLECULAR PROBABILITY FUNCTION AND PHASE

TRANSITION. - The discussion given above implies
that, below Tc, the probability distribution func-
tion P(O, ç) contais some components which
transform as F2g, while, above Tc, the same compo-
nents represent a diffusive excitation in the crvstal’ 

Following the reference given in [14], the two lowest
variables transforming as F2g are associated with
surface harmonics with J = 2 and J = 4 respectively.
However, if one assumes that, in Raman scattering

experiments on both cyanides, the principal light
scattering mechanism is the rigid rotation of the CN-
molecules, it is easily shown [19] that the low fre-
quency F2g spectrum exactly represents the time

Fourier transform of the correlation function

 Â’2(t) Âi2(0) &#x3E; where as in equation (1) the subscript 2
stands for the corresponding value of J while the
superscript i = 1, 2, 3 labels the three components of
this F2g type variable. 

This F2, spectrum has been measured as a func-
tion of the temperature [5], and can be correlated
with our description of the phase transition. If
we again use equation (9) in the low frequency region
(10 cm-1  w  30 Ocm- 1), we find that the intensity
at fixed frequency co is proportional to J(T - To)
(the coupling with the sound waves being negligibly
small at this frequency). A plot of this intensity versus
temperature is given in figure 4. Though there is a
small scatter in the data, this intensity is clearly
constant with temperature. This means that the order
parameter Â does not contain any J = 2 contribution
and that any realistic microscopic model will have to
take into account the fact that the order parameter
contains only contributions from surface harmonics
with J &#x3E; 4.

Fic. 4. - The F2g intensity of the Raman spectrum of KCN at
w = 30 cm-1. The straight line is a least square fit of the results.
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