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Abstract 

       In this work, The dual-phase-lag (DPL) heat transfer model is introduced  to 

study the problem of isotropic generalized thermoelastic medium with an internal 

heat source that is moving with a constant speed. Thermal loading at the free 

surface of a semi-infinite semiconconducting medium coupled plasma waves with 

the effect of mechanical force during a photothermal process to study the effect of 

the gravity field. The harmonic wave analysis is used to obtain the exact 

expressions for the considered variables, also the carrier density coefficient were 

obtained analytically. The variations of the considered variables through the 

horizontal distance are illustrated graphically under the effects of some several 

parameters based on the DPL model. The results are discussed and depicted 

graphically. 
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1  Introduction 

                 Thermoelasticity theories, which involve finite speed of thermal signals 

(second sound), have created much interest during the last three decades. The 

conventional coupled dynamic thermoelasticity theory (CTE) is based on the 

mixed parabolic hyperbolic governing equations of Biot [1]. Chadwick [2] predicts 

an infinite speed  of propagation of thermoelastic disturbance. To remove the 

paradox of infinite speed for propagation of thermoelastic disturbance, several 

generalized thermoelasticity theories which involve hyperbolic governing 

equations have been developed. The first theory of generalized thermoelasticity is 

Lord and Şhulman's (LS) [3] which introduced the generalization of the 

thermoelasticity theory with one relaxation time parameter (single-phase-lag 

model) through postulating a new law of heat conduction to replace the classical 

Fourier’s law. The Green and Lindsay (GL) [4] model developed a more general 

theory of thermoelasticity involving two thermal relaxation times known as 

temperature rate dependent thermoelasticity. Many researchers and many works 

have been done under these theories [5–6].  

     It is well known that the usual theory of heat conduction based on Fourier's law 

predicts an infinite heat propagation speed. Heat transmission at low temperature 

has been observed to propagate by means of waves. These aspects have caused 

intense activity in the field of heat propagation. Extensive reviews on the so-called 

second sound theories (hyperbolic heat conduction) are given by 

Chandrasekharaiah [7]. The propagation of surface waves in elastic media is of 

considerable importance in earth-quake engineering and seismology due to the 

stratification in the earth’s crust. Tzou [8, 9] has developed a new model called 

dual phase-lag model (DPL), which describes the interactions between phonons 
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and electrons on the microscopic level as retarding sources causing a delayed 

response on the macroscopic scale. For a macroscopic formulation, it would be 

convenient to use the DPL model for the investigation of the micro-structural 

effect on the behavior of heat transfer. The physical meanings and the applicability 

of the DPL model have been supported by the experimental results (see Tzou [10]). 

The DPL proposed by Tzou [8] is such a modification of the classical 

thermoelastic model in which Fourier law is replaced by an approximation to 

modified Fourier law with two different time translations: a phase-lag of the heat 

flux 
qτ  and a phase-lag of temperature gradient θτ . The delay time θτ   is interpreted 

as that caused by the micro-structural interactions (small-scale heat transport 

mechanisms occurring in micro scale) and is called the phase-lag of the 

temperature gradient. The other delay time is 
qτ  interpreted as the relaxation time 

due to the fast transient effects of thermal inertia (small scale effects of heat 

transport in time) and is called the phase-lag of the heat flux.  

     The photothermal method was discovered firstly by Gordon et al. [11] when 

they found an intracavity sample where a laser-based apparatus gave rise to 

photothermal blooming, the photothermal lens. Sometime later, Kreuzer showed 

that photoacoustic spectroscopy could be used for sensitive analysis when laser 

light sources were utilized [12]. Photothermal spectroscopy has been used to 

measure acoustic velocities, thermal diffusion coefficients, sample temperatures, 

bulk sample flow rates, specific heats, and volume expansion coefficients in solids 

[13–15]. The photothermal generation during a photothermal process was studied 

by many researchers. The thermoelastic (TE) deformation and electronic 

deformation (ED) are prominent deformations of semiconductors and the main 

driven mechanisms for micromechanical structures. The thermal waves in the 

sample cause elastic vibrations [16]. This is the thermoelastic mechanism of elastic 
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deformation. The TE effect is based on the heat generation in the sample and the 

elastic wave generation through thermal expansion and bending [16].  A general 

theoretical analysis of the TE and ED effects in a semiconducting medium during a 

photothermal process consists in modeling the complex systems by simultaneous 

analysis of the coupled plasma, thermal, and elastic wave equations [17]. With the 

development of technologies, the semiconducting materials were used widely in 

modern engineering. The study of wave propagation in a semiconducting medium 

will have important academic significance and application value. However, to the 

researcher's knowledge, the wave propagation problem in a semiconducting 

medium during a photothermal process was not recorded so far. 

        Problem of heat sources acting in an elastic body has got its mathematical 

interest and physical importance.  Mukhopadhyay et al. [18] discussed the theory 

of two-temperature thermoelasticity with two-phase lags. Chakravorty [19] 

discussed the transient disturbances in a relaxing thermoelastic half space due to 

moving stable internal heat source. Kumar and Devi [20] studied 

thermomechanical interactions in porous generalized thermoelastic material 

permeated with heat source. Lotfy [21] studied the transient disturbance in a half-

space under generalized magneto-thermoelasticity with a stable internal heat 

source. Lotfy [22] discussed the transient thermo-elastic disturbances in a visco-

elastic semi-space due to moving internal heat source. Othman [23] studied the 

generalized thermoelastic problem with temperature-dependent elastic moduli and 

internal heat sources. Though the problem of instantaneous and moving heat 

sources in infinite and semi-infinite space has been investigated by many authors 

[18-27], only a few papers are seen to study two dimensional wave propagation 

under the theory of generalized thermo-elasticity with relaxation time where the 

dynamic heat source has been considered in a visco-elastic semi-space.  
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           The gravity effect is generally neglected in the classical theory of elasticity. 

The gravity effect on the problem of wave propagations in solids is very important, 

particularly on an elastic globe, was first studied by Bromwich[28]. Love[29] 

considered the effect of gravity and showed that the velocity of Rayleigh waves 

increased to a significant extent by the gravitational field when wave lengths were 

large. De and Sengupta [30-32] studied many problems of elastic waves and 

vibrations under the effect of gravity field, on the propagation of waves in an 

elastic layer and Lamb’s problem on a plane. Sengupta and Acharya[33] studied 

the interaction of gravity field on the propagation of waves in a thermoelastic 

layer. Das et al. [34] investigated surface waves under the gravity influence in a 

non-homogeneous Rotation effect in generalized thermoelastic solid under the 

gravity influence elastic solid medium. Abd-Alla et al. [35- 37] presented the 

influences of rotation, gravity, magnetic field, initial stress and gravity on Rayleigh 

waves in a homogeneous orthotropic elastic half-space. Othman and Lotfy [38] 

studied the influence of gravity on 2-D problem of two temperature generalized 

thermoelastic medium with thermal relaxation.  

     This paper examines the interaction of gravity field and elastic wave motions at 

the free surface of a semi-infinite semiconducting medium during a photothermal 

process under LS theory and DPL model with internal heat source. The harmonic 

wave method was used to obtain the two temperature parameter under stress, exact 

expression of Normal displacement, Normal force stress, carrier density and 

temperature distribution. The paper also discusses the influences of the thermal 

relaxation times, thermoelastic coupling parameter and thermoelectric parameter 

on the photothermal theory. 
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2  Formulation of the problem and Fundamental equations 

         We consider a homogeneous generalized thermoelastic half-space with 

gravity field, let theoretical analyses of the transport process in a semiconductor 

involve in the consideration of coupled plasma waves, thermal waves and elastic 

waves simultaneously. The carrier density N ( r


, t), temperature distribution T ( r


, 

t), and elastic displacement u ( r


, t) are the main variable quantities. For a medium 

with internal heat source of a linear, homogeneous and isotropic properties of the 

medium whose state can be expressed in terms of the space variables x, z ( r


 is the 

position vector) and the time variable t. The coupled plasma, thermal and elastic 

transport equations can be given below (with new model under gravity and DPL 

model with internal heat source) as a vector form of rectangular coordinate system 

[5, 22, 31, 32] as,  
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The equation of motion with carrier density without gravity takes the form [39]:
 

( ) ),(),(T)1()),(.(),(
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∂
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,
              

 (3)  

In this article, the general case, that is, the non-zero thermal activation coupling 

parameter (κ ) was studied.
 

Where,
τ

κ T

T

N

∂
∂

= 0 , 0N  is equilibrium carrier 

concentration at temperature T [33]. 
ED  is the carrier diffusion coefficient, τ is the 
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photogenerated carrier lifetime, 
gE  is the energy gap of the semiconductor. µ and 

λ  are the Lamé elastic constants, r  is the density, k is the thermal conductivity of 

the sample, 0T  is the absolute temperature. Tαµλγ )23( +=  is the volume thermal 

expansion where Tα  is the coefficient of linear thermal expansion and eC is specific 

heat at constant strain of the solid plate, nδ  is the difference of deformation 

potential of conduction and valence band. 
qττ θ ,  (

qττ θ ≤0 ) are the phase-lag of 

temperature gradient and the phase-lag of heat flux respectively, Q is an internal 

heat source.  In equation (2), the second term on the right side characterizes the 

effect of heat generation by the carrier volume and surface de-excitations in the 

sample and third term describes the heat generated by stress waves respectively. In 

the elastic equation (3), the third and fourth terms describes source term and 

influence of the thermal wave, plasma wave on the elastic wave, respectively [34]. 

We restrict our analysis parallel to xz -plane, so the displacement is defined by 

),,(),,,(),,0,( tzxwtzxuwuu =


. 

The constitutive relations take the form:  

))1()(23()(2σ xx NdT
tz

w

x

u
nT +

∂
∂

++−
∂
∂

+
∂
∂

+= θταµλλλµ ,                                   (4) 

))1()(23()(2σ zz NdT
tx

u

z

w
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∂
∂

++−
∂
∂

+
∂
∂

+= θταµλλλµ ,                                 (5) 

)(σ xz
x

w

z

u

∂
∂

+
∂
∂

= µ ,                                                                             (6) 

By Helmholtzʼs theorem, the displacement vector u can be written in the 

displacement scalar potential functions ),,( tzxΠ and ),,( tzxψ , defined by the 

relations in the non-dimensional form: 

,ψcurlgrad +Π=u
               

)0,,0( ψ=ψ

                                                                                      
(7) 
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this reduces to  
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The field equations and constitutive relations at the plane surface of (equation (3)) 

in generalized linear thermoelasticity with the influence of gravity and without 

body forces and heat sources are  
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where  g  is the acceleration due to the gravity.                                      

For simplicity, we will use the following non-dimensional variables  
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Hence, using scalar function (i) and equation (8) in equations (1)-(4)and (ii), (iii), 

we have (dropping the dashed for convenience). 
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where,  
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There, 1ε represents the thermoelastic coupling parameter and 3ε  denotes the 

thermoelectric coupling parameter.  

Stresses components in non-dimensional form becomes  
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3   Solution of the problem 

For a harmonic wave propagated in the direction, where the wave normal lies in 

the xz-plane. The solution of the considered physical variable can be decomposed 

in terms of normal modes as the following form: 

)exp()](),(),(),(),(),([),,](,,,,,[ ******
ibztxNxxxxxtzxNT ijij +Π=Π ωσθϕψσϕψ ,       (17)   

)exp(*

0 ibztQQ += ω , 

where ω be a complex circular frequency, i  is the imaginary value, b   is a wave 

number in the z -direction, ,, ** ψΠ )(),(),( ***
xxxN θϕ and )(*

xijσ are the amplitude of 

the physical functions and 0

*

0 QQ = is the magnitude of stable internal heat source. 
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By using the normal mode defined in the Eq. (17), equations (9)-(13), we arrive at 

a system of five homogeneous equations: 

0)( *
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Stress components equations (14)- (16) will take the following forms: 
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We get a sixth order equation by eliminating )(),( **
xx Πθ , )(*

xN  and 

)(*
xψ between Eqs. (18), (19), (20) and (21), we obtain the partial differential 

equation satisfied by )(*
xΠ  

,)(][ *2468 ℜ=Π+−+− xHGDFDEDD                                               (26)                         

where                               
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The above equation can be factorized  
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where, )4,3,2,1(2 =nkn
  are the roots of the homogenous equation of  (31) and the 

characteristic equation of the homogenous equation of  (31), take the form: 

  02468 =+−+− HGkFkEkk   .                                                            (32) 

The general solution of eq. (31), which is bounded as ∞→x , is given by 
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where 1L  is the particular solution of  non homogenous equation (31), we obtain the 

value of 1L  is  
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In a similar way, we get 

   
2

4

1

* )exp(),()( LxkbMx n

n

n +−′=∑
=

ωθ ,                                                                    (35)                      

3

4

1

* )exp(),()( LxkbMxN n

n

n +−′′=∑
=

ω ,                                                                  (36) 

        
4

4

1

* )exp(),()( LxkbMx n

n

n +−′′′=∑
=

ωψ  ,                                                                 (37) 

.

Page 11 of 29

https://mc06.manuscriptcentral.com/cjp-pubs

Canadian Journal of Physics



For R
eview

 O
nly

where, 
H
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So we can write the amplitude value of displacement components by using the 

amplitude of scalar potential functions as: 

*** ψbiDΠ(x)u += ,                                                                                    (39) 

*** ψDΠbi(x)w −= ,                                                                                   (40) 

Using equations (33) and (37)  in (39) and (40) we get the following relations,  
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Where nn MM ′, , nM ′′  and nM ′′′  are some parameters depending on b and .ω  

Substituting from equations (34)-(37) into equations (18)-(21), we have 
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Thus, we have 

Page 12 of 29

https://mc06.manuscriptcentral.com/cjp-pubs

Canadian Journal of Physics



For R
eview

 O
nly

2

4

1

1

* )exp(),()( LxkbMHx n

n

nn +−=∑
=

ωθ ,                                                                 (49) 

3

4

1

2

* )exp(),()( LxkbMHxN n

n

nn +−=∑
=

ω ,                                                                 (50) 

   
4

4

1

3

* )exp(),()( LxkbMHx n

n

nn +−=∑
=

ωψ  .                                                                (51) 

Substituting from equations. (49)- (51) and (33) into equations. (22)- (24), we get 

           
1

4

1

* )exp(),( ςωσ −−=∑
=

xkbMh n

n

nnxx
,                                                                (52)           

         
2

4

1

* )exp(),( ςωσ −−′=∑
=

xkbMh n

n

nnzz
,                                                                (53) 

          
3

4

1

* )exp(),( ςωσ −−′′=∑
=

xkbMh n

n

nnxz
,                                                                (54) 

4

4

1

3 ),()( ibLebMibHk(x)u
xk

n

nnn

* n −+−= −

=
∑ ω ,                                                   (55) 

1

4

1

3 ),()( ibLebMHkib(x)w
xk

n

nnn

* n ++= −

=
∑ ω .                                                     (56) 

where 

        )(2 2153

2

6

2

5 nnnnnn HHHibkbkh +−−−= ααα , )( 3251

2

61 LLLb ++= αας ,            (57) 

       )(2 2153

2

6

2

5 nnnnnn HHHibkkbh +−−+−=′ ααα   ,  )( 3251

2

52 LLLb ++= αας ,        (58) 

         
nnnn Hkbibkh 3

22 )(2 +−=′′   ,  4

2

3 Lb−=ς .                                                           (59) 

4   Applications 

           In this section we determine the parameters )4,3,2,1( =nM n . In the physical 

problem, we should suppress the positive exponentials that are unbounded at 
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infinity. The constants 4321 ,,, MMMM  have to chosen such that the boundary 

conditions on the surface at 0=x (The  boundary  conditions  at  the  interface  

0=x is adjacent to vacuum) take the form:  

1)  A thermal boundary conditions that the surface of the half-space is subjected to  

       thermal shock 

),(),,( tzftzxT = ,      0
),,0(
=

∂
∂

x

tzT .                                                         (60) 

2) A mechanical boundary condition that surface of the half-space is subjected to 

an arbitrary normal force *

1p  is 

*

1),,0( ptzxx −=σ   ,                                                                 (61)  

where )exp(1

*

1 ibztpp += ω , 1p  is the  magnitude of  mechanical force. 

3) A mechanical boundary condition that surface of the half-space must be    

     continuous at the boundary  0=x  

     0),,0( =tzxzσ ,                                                                         (62) 

4)  During the diffusion process, the carriers can reach the sample surface, with a  

      finite probability of recombination. So the boundary condition for the carrier   

      density can be given below: 

.
),,0(

N
D

s

x

tzN

e

=
∂

∂                                                                     (63)  

Substituting the expressions of the variables considered into the above boundary 

conditions, we can obtain the following equations satisfied by the parameters 
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0)exp(),(
4

1

1 =−∑
=

xkbMkH n

n

nnn ω ,                                                              (64) 

                        
11

4

1

)exp(),( pxkbMh n

n

nn −=−−∑
=

ςω ,                                                           (65)               

 0)exp(),( 3

4

1

=−−′′∑
=

ςω xkbMh n

n

nn
,                                                              (66) 

N
D

s
xkbMkH

e

n

n

nnn −=−∑
=

)exp(),(
4

1

2 ω .                                                        (67)    

Invoking the boundary conditions (64)-(67) at the surface 0=x  of the plate, we obtain 

a system of four equations. After applying the inverse of matrix method (or Cramer’s 

rule), we have the values of the four constants 4321 ,,,, jM j = . Hence, we obtain the 

expressions of all physical quantities of the plate. 

5   Particular cases 

5.1. Neglecting gravitational effect (i.e. 0=g ) in equations (i) and (ii), the expressions 

for displacements, force stresses, conductive temperature and temperature distribution 

reduces in a photothermal generalized thermoelastic medium with internal heat source.  

5.2. Neglecting internal heat source (i.e. Q=0), we get the expressions for displacement, 

force stresses, conductive temperature and temperature distribution in a generalized 

thermoelastic medium with gravity. 

5.3. When we put 0=θτ in the above equations, it reduced to the equation of the LS 

theory. 

6   Numerical Results and Discussions 

The silicon (Si) material was chosen for these purposes of numerical evaluations. 

For which  we  have  the physical constants as follows (parameters in SI unit) in 
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the table 1 (The MATLAB 2008a program was used on a personal computer. The 

accuracy main-trained was 7 digits for the numerical program) 

 
210 /10x64.3 mN=λ  210 /1046.5 mN×=µ  3/2330 mkg=r  s

510x5 −=τ  

K8000 =T  33110x9 mdn

−−=  smDE /105.2 23−×=  eVEg 11.1=  

)/(695 KkgJCe =  1610x14.4 −−= Ktα  sms /2=  2=t  

3.00 −=ω  4=P  1.0=ξ  1=z  

9.0=b  s02.0=θτ  sq 2.0=τ  21 =p  

Table1: the physical constants in SI unit for the silicon (Si) material 

   Since we have ξωω i+= 0  where the imaginary unit is i , )sin(cos0 titee
tt ξξωω +=  

and for small value of time, we can take 0ωω = (real). The numerical technique, 

outlined above, was used for the distribution of the real part of the thermal 

distribution T , the displacement components wu, , Carrier density N and the 

stress ( xzzzxx σσσ ,, ) distribution for the problem. The field quantities, temperature, 

displacement components and stress components depend not only on space x  and 

time t  but also on the thermal relaxation time θττ ,q
. Here all the variables are 

taken in non dimensional forms and displayed graphically as 2D plots.  

6.1. Comparison between LS theory and DPL model 

          The first group (figure 1), shows the curves predicted by two different 

theories of thermoelasticity. In this group, solid lines represent the solution in the 

LS theory, and the dashed lines represent the solution derived using the DPL 

model. The field quantities, temperature, displacement components  and stress 

components depend not only on space x  and time t  but also on the thermal 

relaxation time θτ and 
qτ . Here all the variables are taken in non dimensional 

forms. We notice that the results for the temperature, the displacement, stress 

distribution and Carrier density when the relaxation time is including in the heat 

equation are distinctly different from those when the relaxation time is not (phase-

lag   of   temperature gradient 0=θτ ) mentioned in heat equation, because the 

thermal waves in the Fourier's theory of heat equation travel with an infinite speed 

of propagation as opposed to finite speed in the non-Fourier case. This 
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demonstrates clearly the difference between the theory of thermoelasticity (LS) 

and DPL model. 

6.2.   Effect   of   gravitational field  

         The second group (figure 2), shows the variation of the temperatureT , the 

displacementsu , w , the stresses distribution xxσ , xzσ  and the carrier density N  

distribution against horizontal distance x for different values of  the gravity. It is 

seen from first shape that the distribution of the temperature T  has a slight increase 

change with an increasing of the gravity. It is observed from this figure thatT , 

starting from its positive values and fast increases to reach its highest value and 

smooth decreases to arrive the zero value as x  tends to infinity. From the second 

shape, it is appear that the distribution of displacement u   sharp decreases in the 

beginning to its minimum value and return arriving to the zero value with the 

increased values of the x axis; also, it decreases with an increasing of the gravity. It 

is depicted from the third shape  that the displacement component w start from the 

positive values when 5=g  and 8.9=g ,  but start from negative value when 0.0=g , 

to reach  a maximum value  and the decreases tending to zero as x  tends to infinity 

and it has the opposite behaviour of   displacement u ,  increasing with an 

increasing of the earth gravity for small values of  x  axis. The fourth and fifth 

shapes, they are seen that the distribution of the stress ( xzxx σσ , ) distribution does 

affect strongly by the difference values of the gravity while they have sharp 

decreases  when start to arrive the minimum value then increases arriving to zero 

as x tends to infinity. The sixth shape, it is obvious that the Carrier density N has 

large variation with decreasing of g and tends to zero as x tends to infinity.  

 

6.3.   Effect   of   thermoelectric coupling parameter (photothermal effect) 

       The third group (figure 3), shows the thermoelectric coupling parameter 

3ε under DPL model and 8.9=g  , (the case of different three values of 

thermoelectric coupling parameter) has a significant effect on all physical fields.  

With the decreases in the thermoelectric coupling parameter 3ε  causes increasing 

of the amplitude of T , also we have the inverse conclusion can be obtained for 

Carrier density N  for DPL wave.  The variations of physical quantities distribution 

are similar in nature for different value of thermoelectric coupling parameter. The 

value of these quantities approaches to zero when   the distance x  increases (the 

effect of thermoelectric coupling parameter decreases with increases in horizontal 

distance).  The displacement components u and the normal stress under different 

thermoelastic coupling parameters have the opposite behaviour, with the increase 
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in the thermoelastic coupling parameter a decrease in the displacement components 
u and inverse conclusion can be obtained for the normal stress.  

 

6.4. Effect of Phase Lag of the Heat Flux ( qτ ) 

   The fourth group (figure 4), displays the influence of the phase-lag of the heat 

flux 
qτ  (with fixed value of 1.0=θτ ). First and fourth shapes shows the variations 

of temperature distribution T and Carrier density N with distance x. The pattern 

observed for 1=qτ , 2=qτ and 3=qτ are the same behaviour  in nature with 

increases values which clearly reveals the effect of phase lag of the heat flux. The 

second shape depicts the variations of displacement component w with distance x. 

The behaviour of w with reference to x is same i.e. oscillatory for 1=qτ , 2=qτ and 

3=qτ with difference in their magnitude. The variations of force stress xzσ  with 

distance x is depicted in three shape. The values of normal force stress xzσ    for  

1=qτ , 2=qτ and 3=qτ  show  similar  patterns  with different degree of sharpness. 

i.e. the values for 1=qτ , 2=qτ and 3=qτ increases sharply in the beginning and 

then decreases alternately with distance x.  

6.5.   Effect   of   Phase-lag   of   Temperature Gradient ( θτ ) 

         Group 5 (figure 5), shows the comparison between the normal stress xxσ , 

displacement component w, the stress xzσ  distribution and Carrier density N, the 

case of different three values of the phase-lag of temperature gradient θτ . The 

computations were carried out for a values of 8.0=qτ  and 8.9=g . Figure 5, exhibit 

the variation of all physical quantities with distance x  for phase-lag of temperature 

gradient, in which we observe the following: significant difference in all physical 

quantities are noticed for different value of the non dimensional phase-lag of 

temperature gradient θτ  and all curves similar oscillatory pattern with different 

degree of sharpness in magnitude. The value of all physical quantities converges to 

zero with increasing the distance x and satisfies the boundary conditions at 0=x .  

6.6.   Effect   of   internal heat source 

The sixth group (figure 6), displays the variations of some physical variables with 

distance x  in the presence and absence of internal heat source ( i. e. with 

( 0.100 =Q )and without ( 0.00 =Q ) internal heat source) under DPL model and 

gravity. It is found that the presence of heat source has caused both decreasing and 
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increasing effects on the displacement and stress distributions. On the other hand, 

both thermodynamical and Carrier density N distributions are significantly 

increased due to presence of heat source, as can be seen from the plots as shown in 

figure 6 . 

 

7   Conclusion 

      The dual-phase-lag (DPL) model plays a significant role on all the physical 

quantities, i.e. effect of phase-lag of heat flux (
qτ ) and effect of phase-lag of   

temperature   gradient   ( θτ ) (effects of the thermal relaxation times) are   observed   

and have strong effect on   the harmonic functions.  The influences of the coupling 

parameters (thermoelastic parameter and thermoelectric parameter) are evident 

under DPL theory. The presence of gravity is very sensitive in all the physical 

quantities. The method used in this work provides a quite successful in dealing 

with such problems. The effect of moving internal heat source has an essential role 

in changing the values of the some distributions. The method   of normal mode 

gives exact solutions in the generalized thermoelastic medium without any 

assumed restrictions on the actual physical quantities that appear in the governing 

equations of the problem considered. This work can serve for the analysis and 

design of the thermal resistance coated materials, as well as many engineering 

practices related to interface analysis and design.  
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Figure 1 The thermal temperature, the displacement u , the stresses distribution xxσ  and the carrier 

density N distribution under  LS theory and DPL model.  
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Figure 2 The thermal temperature, the displacementu , w , the stresses distribution xxσ , xzσ  and the 

carrier density N distribution with different values of  gravity .  
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 Figure 3   The temperature, the displacement components, normal force stress and the carrier density with    

                    the distance under different thermoelectric coupling parameters when 11 =ε
.
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Figure 4 Variations of some physical quantities with distance x for phase-lag of heat flux at 1.0=θτ  
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Figure 5 Variations of some physical quantities with distance x for phase-lag of temperature gradient at 

8.0=qτ       
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Figure 6 Variations of some physical quantities with distance x with and without internal heat source 

under DPL model.
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