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Summary 
Steketee’s Elasticity Theory of Dislocations is generalized to real Earth 
models. Taken into account are; (i) self-gravitation, (ii) radial variation 
of elastic properties, density and gravity, (iii) initial hydrostatic stress, 
(iv) the presence of the liquid core. Volterra’s formula for the displacement 
field is found to hold in the more general circumstances for slip faults. 

The dilemma, previously pointed out by Jeffreys and Vicente, which 
arises when the Adams and Williamson condition is assumed not to hold 
everywhere perfectly in the core, is resolved. This result also bears on 
the theory of Earth tides and tidal loading. 

Changes in the inertia tensor are shown to arise only from spheroidal 
displacement fields of degree zero and two. These fields have virtually 
no attenuation with distance from the fault. In the one example in which 
a direct comparison can be made, the present theory gives a factor of 7.5 
increase over a mapped half-space theory and a factor of 2.9 increase 
over the result for a uniform, spherical Earth, in the contribution to 
secular polar shift and excitation of Chandler wobble. Calculated and 
observed levels appear now to be in agreement. 

1. Introduction 
Models of the deformation fields caused by earthquake faulting, in which the 

fault surface is taken to be a displacement discontinuity in an elastic half-space, have 
been developed to the point where analytical expressions are now available for slip 
faults of arbitrary dip (Rochester 1956; Steketee 1958; Chinnery 1961 ; Maruyama 
1964; Press 1965; Mansinha & Smylie 1971). The subject has been named the 
Elasticity Theory of Dislocations by Steketee to distinguish it from the theory of 
crystal dislocations in physics. 

Recently, the theory has been extended by Ben-Menahem, Singh & Solomon 
(1969) to the case of a uniform, non-self-gravitating, spherical Earth. Interest in the 
theory for more realistic earth models has sprung from Press’ demonstration (Press 
1965) that the deformation fields predicted by the theory are very extensive. 

The effect of the mass displacements given by the half-space theory on the rotation 
of the Earth has been calculated by Mansinha & Smylie (1967). Ben-Menahem & 
Israel (1970) have done the calculation for the displacements in a uniform, non- 
self-gravitating spherical Earth. For this application the change in the inertia tensor 
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is required. The change in the inertia tensor depends only on those parts of the 
displacement field which are spherical harmonics of zero and second degree. 

In this paper, we extend the general elasticity theory of dislocations to self- 
gravitating, radially inhomogeneous Earth models with liquid cores, which we call 
real Earth models (Fig. l), and compute the inertia tensor changes for a number of 
earthquakes whose fault parameters have been obtained by other workers. Impli- 
cations for the rotation of the Earth are discussed. 

D. E. Smylie and L. Mansinha 

2. Equations of equilibrium 
In a real Earth model one must allow for the possibility of an initial state of 

stress Tii. The state of deformation under this initial stress is taken as the reference 
state. The additional stress T~~ and the displacement field ul which it produces are 
measured from the reference state. They are taken to be related by the generalized 
Hooke's law for isotropic media, 

where I, I( are the Lam6 constants and Sji is the Kronecker delta. The summation 
convention will be observed throughout. 

The stresses given by (1) refer to points in the deformedmedium, but in infinitesimal 
strain theory they may equally well be taken to refer to the co-ordinates the points 
had before deformation, for the corrections are of second order in the displacements. 
Because the initial stresses are independent of the displacement field ui and are likely 

Liquid 
core 

Fro. 1 .  Real Earth model. Density, gravity and elastic constants are assumed to 
depend on radius. The inner core is treated as a liquid with the same bulk modulus 
as in the real Earth. The effects of self-gravitation and initial hydrostatic stress are 

included. 
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Elasticity theory of dislocations in real earth models 331 

to be large, the same assumption cannot be made for the Ti,. The total stress field to 
be used at the undeformed points is then 

correct to first order in the displacements. 
To proceed beyond (2) we must specify the Tij. We may follow Rayleigh (1906) 

and take them to be due entirely to hydrostatic equilibrium under self-gravitation. 
If the density and gravity in the reference state are respectively po and go,, 

the hydrostatic pressure being denoted by p o .  

by the equilibrium equation for the deformed state, 
The conditions of equilibrium (3) in the reference state are to be supplemented 

where p is the density, gi is gravity andf, is the body forcelunit volume. 
We may write 

P = PO+Pl ,  ( 5 )  

gi = gol+g,,, (6) 

with p,, g, , representing, respectively, the changes in density and gravity associated 
with the displacement field u,. The change in density can be described as 

aui aP0 a 
8x1 ax, ax, 

-ui - = - - (Po 4, P1 = -Po-  (7) 

correct to first order in the displacements. To the same degree of approximation the 
change in gravity can be written 

where 

V, is the decrease in gravitational potential and G is the universal constant of 
gravitation. 

Neglecting products of the small quantities p , ,  g,, (p, ,g, ,  are of the same order 
as the displacements) and combining (2), (3), (4), (5) and (6), we obtain a modified 
equation of equilibrium (Hoskins 1920) with the form 

Equations (1) and (10) supply the necessary modification of the Navier equation 
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of elasticity. In symbolic notation we have 

D. E. Smylie and L. Mansinha 

(A+ 2 p )  V(V .u) - pVx(Vxu) + (VA+ Vp) v .  u+ Vx(UxVp) +V(u. Vp) -uv2 p 

= -v(Po u*go) -90 PI -Po 91 - f. (1 1) 

Additional terms on the LHS of (1 1) arise from allowance for inhomogeneity of the 
elastic properties. The additional terms on the RHS are due, respectively, to dis- 
placement in the initial hydrostatic stress field, action of the initial gravity field on 
the changed density, and action of the changed gravity field on the initial density 
distribution. 

3. Generalization of Volterra’s formula 

We begin with the generalization of the reciprocal theorem of Betti (Sokolnikoff 
1956, pp. 390-391). 

Let there be two systems of surface and body forces t i ,  fi and t i ,  fi’ producing, 
respectively, displacement fields ui and u1) which satisfy the equation of equilibrium 
(lo), augmented by the relations (7), (8) and (9). Let these force systems act on 
material contained in a volume V by a surface S which is such as to allow the diver- 
gence theorem of Gauss to be applied. The work done by the unprimed forces acting 
through the primed displacements is 

where vi is the unit outward normal vector to S. 

forfi from (10) and (7), we can rearrange (12) to read 
Transforming the surface integral with the aid of Gauss’ theorem and substituting 

The second of equations (3) may be written symbolically as 

On taking the curl we have 

= Vx(vp0) = 0. 

But go is a lamellar vector field and hence 

go xvpo = 0. 
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This implies that go and Vpo are parallel. With r as the co-ordinate in the direction 
opposite to go, (13) becomes 

On substituting the expression (1) for T~~ in the first term of the integrand of 
(1 5 )  it becomes 

where the quantity in braces is shown in two equivalent forms. 
The identity 

is easily established from (8) and (9), providing an alternative form for the last term 
in the integrand of (15). 

We are now able to write, with the help of Gauss' theorem, 

auJ au,f 
ax, axJ 
-- 

au, au; 
ax, ax, 
-- 

5 
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334 D. E. Smylie and L. Mansinha 

On the interchange of the primed and unprimed systems of forces and displacements 
only the surface integrals change of all the terms on the RHS of (16). We therefore 
find, finally, that 

+ 1 ~ R G  1 [ ( V l a G  -4~Gp,u, '  

This is the required generalization of the reciprocal theorem of Betti. The surface 
tractions are modified by the contribution from displacement in the initial hydrostatic 
stress field and a new term arises to take into account the effect of self-gravitation. 

We may now use Betti's theorem in the form (17) to obtain the generalization 
of Volterra's formula (Volterra 1907). 

Let the primed system of forces and displacements represent the solution for a 
point force of unit strength at r in the shell (crust plus mantle) and the unprimed 
system of forces and displacements represent the solution of the dislocation problem. 
We take the surface of the Earth to be force free and assume that the Earth is in 
hydrostatic equilibrium in the reference state. The derivation of Volterra's formula 
then closely follows Maruyama (1964, pp. 357-358). There are some exceptions; the 
treatment of the surface integrals in (17) over the core-mantle boundary, the Earth's 
surface and the faces of the dislocation. 

Equation (9) can be rewritten 

The normal component of 

can then be expected to be continuous across boundaries. Together with continuity 
of gravitational potential and the switch in sign of total surface traction, this is 
sufficient to ensure that when (17) is applied to the core, the surface integrals over 
the core-mantle boundary arising from its application to the shell, will be found to 
vanish. 

On account of continuity of the gravitational potential and the normal component 
of (18), the integral 

-47tGpO 11,') - Vl' -4nGp0 u,) ]  v,dS (19) 

over the surface of the Earth is equivalent to 

evaluated just outside the Earth's surface. There, the gravitational potential satisfies 
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Elasticity theory of dislocations in real earth models 335 

Laplace's equation and (20) may be transformed using Gauss' theorem to 

1 -- s [&(Vl%-Vl'%)]dV 
47rG ax, 

dV = 0, 

where is all of space outside the Earth. The vanishing of the tractions t,, t,' over 
the Earth's surface leaves only the integral 

J Po go(u: ui - ur ~II) vi d s  
S 

to be evaluated there. It clearly is zero for an Earth which is taken to be in hydrostatic 
equilibrium in the reference state. 

The integrals (19) over the faces of the dislocation cancel each other for slip faults, 
since for slip faults there is no discontinuity in the displacement component normal 
to the face of the dislocation. The integrals 

over the faces of the dislocation cancel each other since the tractions 

ti - Po g o  u, V f  

required to maintain the dislocation are equal and opposite on the two faces. Since 
ur' is continuous across the dislocation, for slip faults the integrals 

1 (t;-PogOu,'v,)u,dS 
S 

contribute only 

- 1 Au, t,'dS, 
r 

where Z is the negative face of the dislocation and where 

Au, = u,+ - u,-, 

u,' being the displacement of the positive side of the dislocation and ul- being the 
displacement of the negative side of the dislocation. 

If the unit point force at r is in the i-direction, we find that 

u,(r) = Au, t; dS. 
r 

Equation (1) gives 
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336 D. E. Smylie and L. Mansinha 

where vk is the unit outward normal vector to Z. For slip faults Auj is in the plane 
of X and 

ui(r) = 1 pAuj (g -k 2) vk d S .  
I: 

This is Volterra’s formula which we find to be valid in the more general circumstances 
at hand. 

In (21) u,’ represents the k-component of the displacement field due to a point 
force of unit strength applied at r in the i-direction. To be more specific, let us write 
it as 

uki (r”, r) 

where r” is the point of observation. Consider a second displacement field 

uik(r“, r‘). 

We observe this as the i-component of displacement at rrr caused by a unit point 
force acting in the k-direction at r’. Let us now apply (17) to the shell and core 
with the first point force system as the unprimed system and the second as the primed 
system. Using the same arguments that were used in the derivation of Volterra’s 
formula, the result is 

uki(r’, r) = uik(r, r’). 

If r’ is taken as the position on the dislocation, (21) then transforms to 

This form of Volterra’s formula allows the displacement field to be interpreted as 
being due to the superposition of the displacement fields of a continuous distribution 
of dipole forces over the fault surface. 

The fault geometry and force systems are illustrated in Fig. 2. For strike-slip 
faults we have 

- + ) cos u )  d S  

and for dip-slip faults we have 

where Au, = Au cos a, Au3 = Au sin u. 
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Surface 

# 
Sin a 

Strike- Slip 

I # 
Cos 2 a  

FIG. 2. Fault geometry and focal force systems. 

4. Displacement fields 

parts with vector elements 
A vector field in spherical geometry may be expanded in spheroidal and torsional 

im 
(%I?, = u,,"(r) P,"(cos 8)  exp (imc$), 

and 

respectively, where r, 8 , 4  are the usual spherical polar co-ordinates and the P,,"(cos 8)  
are the associated Legendre functions (Copson 1935). The complete vector field is 
obtained by summing over m from - n  to n and over n from zero to infinity (Smylie 
1965). The justification of such an expansion for solenoidal fields has been given by 
Backus (1958). The lamellar part of the field simply gives an additional contribution 
to the spheroidal mode as may be shown from potential theory. 
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338 D. E. Smylie and L. Mansinha 

The vector elements (23), (24) have the orthogonality properties (Bullard & 
Gellman 1954) 

7 i S,".S',k sinOdOd4 
0 0  

7 if3F.T: sinOdOd4 = 7 iTnm.S,L sinOdOd4 = 0, (26) 
0 0  0 0  

4m(n + 1) 
tnm(r) t'lk(r)6,"6-km, (27) 

0 0  7 fT,".T,k sinOdOd4 = (-1)" 2n+ 1 

where Slk, T i k  have radial coefficients ~ ' [ ' ( r ) ,  u','(r), t','(r) which are at our disposal. 
By choosing each of these in turn to be unity, we can use the properties (25), (26), 
(27) to extract successively the spheroidal radial, spheroidal transverse and torsional 
parts of a vector field. 

We first apply this expansion method to the unit force systems illustrated in Fig. 2. 
Taking them to be situated at the spherical polar co-ordinates (r,, O,, 0) and oriented 
so that x1 is in the direction of increasing 8, x2 in the direction of decreasing 4 and 
x3 in the direction of decreasing r, we have the strike-slip system 

? 
- 6(r-ro)6'(O-00)6(4) cos a 

1 
z e [ r  

6(r-ro)6(O-O0)6'($) sin a 
1 

(m 

1 -s~(r-ro)6(e-eo)6($)  cosa 

+ - 6(r-ro)6'(O-0,,)6(4) sina , 1 4 
r 

and the dip-slip system 

6(r - ro) 6(0 -Oo) 5'(4) cos 2a 
1 1 z i p ( =  

+s'(r - ro) s(e - 0,) 6(+) sin 2a) 

1 + 4 ( - xe 6(r - ro) s(e - 0,) 6'(4) sin 2a 

+6'(r -ro) 6(O-Oo) 6(4) cos 2a , 11 
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Elasticity theory of dislocations in real earth models 339 

where P, 8, 6 are the unit vectors in the co-ordinate directions and 6,6' are the Dirac 
function and its derivative. The angle a denotes the dip of the fault surface. After 
taking the limit as O0 approaches zero (this may be done by using suitable recurrence 
relations among the Legendre functions and the property P,,"'(l) = gorn, the strike- 
slip system is found to have the non-vanishing radial coefficients 

2n+ 1 
8 nr u,,-'(r) = -n(n+1)b(r-r0) cosa, 

2n+ 1 
8nr u,,l(r) = - -6(r-r0) cos a, 

2n+ 1 
8 nr u,,-'(r) = - -6'(r-r0) cos a, 

2n+ 1 
8nr2 n(n + 1) v,,'(r) = S'(r -ro) cos a, 

3i(2n+ 1) 
16xr3 u,,-'(r) = - (n-l)(n+2)c5(r-ro) sina, 

3i(2n+ 1) 
16nr3 n(n+ 1) un2(r) = 6(r -ro) sin a, 

2n+ 1 
8nr3 

t,,O(r) = - - 6(r - ro) sin a, 

i(2n + 1) 
8nr2 

t,,-l(r) = - 6'(r - ro) cos a, 

i(2n + 1) 
8nr2 n(n+ 1) r,,l(r) = - b'(r -ro) cos a, 

(n - l)(n + 2) 6(r - ro) sin a, 3(2n+ 1) 
1 6 d  

t,,-'(r) = 

6(r - ro) sin a, 3(2n + 1) 
16nr3 n(n + 1) tn2(r) = 
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while the dip-slip system has the non-vanishing radial coefficients 

2n+ 1 
4nr 

D. E. Smylie and L. Mansinha 

uno(r) = - d'(r-ro) sin h, 

i(2n + 1) 
8nr3 

i(2n + 1) 
8nr3 

i(2n + 1) 
8nr2 

u,-'(r) = - n(n + 1) d(r-ro) cos 2a, 

u,'(r) = - - 6(r - ro) cos 2a, 

q,-'(r) = - 6'(r - ro) cos 2a, 

i(2n + 1) 
8nr2 n(n+ 1) 

(n- l)(n+2)6(r-ro) sin2ct, h + l  vn-z(r) = - - 
8nr3 

vn'(r) = 6'(r - ro) cos 2a, 

2n+ 1 
6(r - ro) sin 2a, 

o.2(r) = - 8nr3 n(n+ 1) 

2n+ 1 
8 nr t,,-'(r) = - -d'(r-r0) cos2a, 

2n+l 
8nr2 n(n+ 1) t,,'(r) = d'(r - ro) cos 2a, 

i(2n + 1) 
8nr3 n(n + 1) t,,'(r) = 6(r - ro) sin 2a. 

The expressions (30), (31) are for force systems situated at r = ro on the polar axis 
with the particular orientations shown in Fig. 2. 

The expansion of the modified Navier equation (1 1) and the gravitational relations 
(8) and (9) in spheroidal and torsional parts is well known from free oscillations 
theory (Alterman, Jarosch & Pekeris 1959). To obtain the static equations for the 
shell it is only necessary to let the angular frequency go to zero and to introduce a 
body force. 
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Elasticity theory of dislocations in real earth models 3 4 1  

For n > 1, we then obtain the sixth-order system of linear, non-homogeneous 
differential equations for the spheroidal part, 

dY 1 21 1 n(n + 1) 1 
dr ( 1 + 2 p ) r Y l +  m y ~ +  (1+2p)rY39 

- = -  

I y 3  + r 9  rz ( 1 + 2 p )  
2n(n + 1) (31 + 2p)  

1 1 1 dY 3 

dr r P --Y1+ 7 Y 3 +  - Y 4 ,  - = -  

3 Po - - Y 4 -  T Y 5 - u r , ,  r 

n(n + 1) n(n + 1) 2 
- = -4nGpo - dY6 

Y 5 -  - Y 6 9  r Y3+ r2  dr r 

where 
Y l  = u,", 

2unm - n(n + 1) v,"' 
r 

dunm 

m 
Y 3  = Vn 9 

v," - u," 

Y 5  = a,", 

with 
c o n  

V, = C C @,,"'(r) Pnm(cos8) exp (im4). 
n = O  m = - n  
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342 D. E. Smylie and L. Mansinha 

The y's represent, respectively, radial displacement, change in normal stress, 
transverse displacement, transverse shear stress, decrease in gravitational potential 
and change in radial gravitational flux density. unrm, u,,,"' are the radial coefficients 
of the spheroidal part of the body force. 

In the liquid core u?,'", vnrm are zero and the conditions of hydrostatic equilibrium 
(3), (14) prevail, even in the deformed state. We have 

and 
gxvp = 0, 

where p is the hydrostatic pressure. Hence, equipotential surfaces, isobaric surfaces 
and surfaces of equal density remain parallel after the deformation. Thus, an individual 
fluid particle is able to move about force free on such surfaces in the absence of 
viscosity. y , ,  therefore, becomes indeterminate and we can no longer identify in- 
dividual fluid particles. On eliminating y 3  and taking the limit of zero rigidity, the 
system (32) is found to degenerate to 

y1 = - y 5 ,  1 
g o  

-=- dy5 41rGp0 y s + y s ,  
dr g o  

-= [- l67rGpO + n(f l+ l ) ]  I'2 dJ16 
J's- [ - 47d:o + "1 r Y 6 .  1 dr g o  r 

The second equation of this set implies zero dilatation, in agreement with the 
condition that there is zero change in core volume for displacement fields with n 2 1 .  
Zero dilatztion is implied only if 

d Po g o  - (Inpo) # - - 
dr I '  (34) 

Equality in the relation (34) would give the condition of Adams & Williamson 
(1923). It has been assumed to hold in treatments of the theory of Earth tides and 
tidal loading (Takeuchi 1950; Longman 1963). As Jeffreys & Vicente (1966) point 
out, the Adams & Williamson condition requires both chemical homogeneity and an 
adiabatic temperature distribution. These requirements are unlikely to be met 
exactly everywhere in the core. 

The last two equations of the set (33) are decoupled from the others, reflecting 
the fact that for n 2 1 the only interaction of the shell and core is gravitational. These 
equations have only one solution regular at r = 0. Together with the first of the 
equations (33), this would appear to determine all of the variables at the core-rnantle 
boundary except y, in terms of a single free constant. Thus, only two free constants 
would be available to satisfy, as we shall see, three conditions at the Earth's surface. 
This led Jeffreys & Vicente (1966) to conclud3 that a solution may be impossible 
when the inequality (34) holds. However, we cannot insist on continuity of y ,  at 
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Elasticity theory of dislocatioos in real earth models 34 3 

the core-mantle boundary. The mantle may be allowed to project into the liquid 
core provided the prevailing total hydrostatic pressure of the core is assumed at its 
base. The resulting discontinuity in y, gives rise to the required third free constant. 
Fig. 3 shows the conditions which exist at the core-mantle interface. Table 1 compares 
the present treatment of the core-mantle boundary conditions with the treatments of 
Longman (1963) and Jeffreys t Vicente (1966). 

The state of deformation in the core is then specified by the radial displacement of 
the gravitational equipotentials given by the first equation of the set (33) and by the 
second equation of this set which implies that the isobaric surfaces and.surfaces of 
equal density experience the same radial displacement. 

Near r = 0, the last two equations of the system (33)  have the regular solutions 

j v 5  = Cr"+ ..., 
y6 = (n-3)Crn-' + ..., 

where 
4nGpO r - = 3+Dr+ ... 

go 

Table 1 

Comparisons of various treatments of core-niantle boundary conditions for spheroidal 
deformations of degree n 2 1 

DILATATION 

ADAMS AND 

CONDITION 

Y l  

WILLIAMSON 

Y2 

Y3 

Y4 

Y5 

Y6 

LONGMAN 
(1963) 

A # 0, undetermined 
in the core but related 
to yl there 

Holds for elastic equili- 
brium under gravity 

Continuous but un- 
determined in the core 

Continuous, not identi- 
cally zero in the core 

Discontinuous, un - 
determined in the core 
and on its boundary 

JEFPREYS AND VICENlT 
( 1966) 

A = 0 is possible, but a 
solution based on this 
assumption may be im- 
possible 

If assumed to hold a 
solution is possible 

Continuous 

Continuous 

Discontinuous 

PRESENT PAPER 

A = O  

Doas not hold 

Discontinuous, but total 
core volume unchanged, 
known throughout the 
core 

Discontinuous but equal 
to zero in the core. value 
at base of mantle 
determined by disconti- 
nuity in y1 

Discontinuous, undeter- 
mined in the core and 
on its boundary 

Continuous and equal to zero in the core and on its boundary 

Continuous Continuous, a given Continuous 
value of y5(0) . y y  
supply. the missing 
condition 

Continuous 
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344 D. E. Smylie and L. Mansinha 

and C and D are constants. With the variable change 

Y5 z5 = 2"-1 = Cr+ ..., 

we then integrate 

subject to 

- c, z5 = 0, - - dZS 
dr 

at r = 0. 
(r = b), we obtain the conditions 

When the integration is carried forward to the core-mantle boundary 

Core -mantle 
boundary 

_/- - -  

Gravi l a  tional 

I? 

FIG. 3. Conditions at the deformed core-mantle boundary for spheroidal 
displacements of degree n 2 1. The deformation in the liquid core is defined 
by the gravitational equipotentials, isobaric surfaces and surfaces of equal density, 
all of which are material surfaces. The mantle may project into the core provided 

the prevailing hydrostatic stress in the core is assumed at its base. 
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Elasticity theory of dislocations in real earth models 345 

to be applied at the base of the shell in the integration of the set of equations (32). 
a, B are determined by the core integration and the free constants A, B, C are fixed 
by the three conditions which prevail at the Earth‘s surface (r = d) ,  

Y ,  = 0, y4 = 0, 

The first two conditions ensure that the Earth‘s surface is force free, while the third 
reflects the fact that the change in gravitational potential is of internal origin and 
becomes harmonic outside the Earth. 

For n = 0, there can be no transverse spheroidal components and the third and 
fourth equations of the system (32), obtained by equating them, no longer hold. We 
are left with 

In the core for n = 0, we have 

2 1 
Y l +  y Y z 9  

dY 1 
-I-- 

dr r 

These have the regular solutions 

y ,  = Ar+ ... , 
y ,  = A [3A(o) - $nGp0(O)’ rz + ...I, 
y ,  = B+2nGpo(0)ArZ+ ..., 
y6 = O, 
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We, therefore, require the integration through the core of 

2 1 
- -y,+ T Y 2 1  

dY 1 -= 
dr r 

subject to t.,e conditions 

Y ,  = 0, 

Y, = B, 

-= dyi A ,  
dr 

-= dy5 0, 
dr 

at r = 0. This integration leads to the conditions 

Y, = A %  Y5 = BY, 

Y2 = A h  y6 = 0, 

to be applied at the base of the shell in the integration of the set of equations (35). 
u, p, y are determined by the core integration and the free constants A ,  B are fixed 
by the conditions at the surface, 

Y 2  = 0, y5 = 0. 

For n = 0, y6 is seen to vanish throughout the Earth and the system (35) becomes 

dv, 212 1 

dY2 - 
dr 

For n 2 1, the torsional part of the displacement field in the shell is described by 

1 1 -- dyl - - y, + - yz, 
dr r P 

(36) 
m 3 -= -  

dr r2 
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where 

dt," 1 
Y 2  = P (F - p!"). 

The y's now represent transverse displacement and transverse shear stress, respectively. 
There is no torsional field in the core, and for n = 0 it vanishes in the shell as well. 

The conditions to be applied in the integration of (36) through the shell are 

and 
y ,  = 0, at r = b, 

y2 = 0, at I' = d. 

Calculation of the displacement fields is now reduced to the integration of systems 
of linear differential equations with singular non-homogeneities of the forms given 
by (30) and (31). In this situation, the propagator matrix formalism can be usefully 
applied (Gilbert & Backus 1966). 

The propagator matrix P ( r , p )  is the solution of the homogeneous system of 
equations 

(37) 
d 
dr -m, P) = P(r ,  P> 

with the initial condition 

PO, P )  = I, 
where I is the unit matrix. 

It is easily verified that the solution of the system of non-homogeneous equations 

is then given by 
r 

Y@> = 1 P(r,p)gO)dp+P(r,b)y(b) .  
b 

If g(r) = G6(r-r0), where G is a constant vector, 

If g(r) = Gd'(r-r0), 

Integration from ro to r and then back to ro gives 

P(r,  ro) P(ro, r) = I .  
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Differentiating and using (37) we get 
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n 
- P(r, ro) P(ro, r )  = - P(r,  ro) &,) W O ,  r). 
dr0 

Right multiplication of (40) by P(r, ro) allows us to write (39) as 

P(r,  ro) A(ro) G + P(r, b) Y@), r > r~ 

P(r ,  b) Y@), r < ro. 
(41) Y(r) = 

In calculations involving (38), (41), it is convenient to use the propagator matrix 
property 

W-, c)  = P(r, ro) Wo,c) ,  
which on right multiplication by P-'(ro,  c) becomes P(r, ro) = P(r, c) P -  '(r0,  c), where 
c may be chosen arbitrarily. 

Summation of the solutions provided by (38), (41) over all n, m yields the dis- 
placement fields for the slip fault point force systems (28), (29). By (22) these are 

0.6 
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0.2 

0 

-0.2 

'0 .4  

-0.6 

-0.8 
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Elasticity theory of dislocations in real eartb models 349 

then to be integrated over the fault surface to give the complete displacement fields. 
In carrying out the fault integration, changes in angular co-ordinates can be handled 
by co-ordinate rotations while changes in radius can be handled by operations with 
the propagator matrix. 

The four spheroidal mode solutions of degree two, used in calculating the excitation 
of wobble and secular polar shift (see Section S), are shown in Fig. 4(a), (b), (c) and 
(d). The integrations were performed using the standard fourth order Runge-Kutta 
method and cubic interpolation of the Earth model B ,  of Bullen & Haddon (1967). 

0.2 - 

-0.2 - 

-0.4 - 

F - 0.8 

-l.O0 t----u- 0.2 0.4 0.6 0.8 

Relative radius. 

FIO. 4 (u), (b), (c) and (4. Spheroidal deformation fields of degree two which 
determine secular polar shift and excited Chandler wobble. They represent 
solutions for sources 

5 5 
8nr 8nr 

5 5 
8 m  8nr 

uZf = - $(r-ro), u2, = - p W - r d ,  

u2f = - $(r--ro) and u2, = - pSYr-ro), 

respectively. Source depths are at 0.1 d. 
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The step size used in the core was 0.05 d. In the shell, two step sizes were used, 0.01 d 
for the complimentary function integration and 0.0004d for the particular integral, 
the latter step size allowing accurate location of the source functions. The core- 
mantle boundary was taken to be at b = 0-55d for convenience in carrying out the 
integrations. 

5. Change in the inertia tensor 

The effect the displacement fields described in the previous section have on the 
rotation of the Earth can be evaluated from the changes in the components of the 
inertia tensor (Mansinha C Smylie 1967). To first order in the small quantities 
uJr, uelr, uo/(r sine), they are 

AZll = 2 j r [ y ( l - s i n 2 8  COs24)-ue cos8 sin8 cos2~+uo  sin8 cos(b sin4]dm, 

AZZ2 = 2 r[u,(l -sin2 0 sin’ 4)-ue ws 8 sin 8 sin’ q5 -u4 sin 8 ws 4 sin 41 dm, 

A133 = 2 j r [u, sin2 8 + u, cos 8 sin 81 dm, (42) 

= - jr[2ur sin’8 C O S ~  sin4+2ue wse sin8cos4 sin4 

+ u4 sin 8(ws2 4 - sin’ 4)] dm, 

Al 1J = - r [2ur cos 8 sin 8 cos 4 + Ue(COS2 8 - sin’ 8) cos (b - uo cos 8 sin 41 dm, 

A Z 2 3  = - r [2u, cos 8 sin 8 sin (b + uo(cos2 8- sin’ 8) sin (b +uo cos 8 cos 41 dm, 

where the integrations are to be carried over all mass elements dm of the Earth. 
The integrands in (42) can all be cast in the form of scalar products of the dis- 

placement field with particular spheroidal vectors of degree zero and two. For 
example, we may write 

AZ,, = 2jru .S’dm 

where s’ is the spheroidal vector with radial coefficients 

u0O‘ = 3, 
U’O‘ = 3 
u2” = -*, 
u, ’‘ = -2,  

0’0’ = 4, 
U2Z’ = - *¶ 

V’ 2’ = - 1. - - 

The orthogonality properties (25), (26) then allow the expressions (42) to be reduced 
to 

AZll = 47c r3 p o ( r ) [ ~ u o o ( r ) + ~ u z o ( r ) - ~ u 2 ’ ( r )  -&u2-’(r) 
0 i 

+ 3vZ0(r) - + ~ ~ ’ ( r )  - *v2-’(r)] dr, 
d 

AZ22 = 47c 1 r3 p o ( r ) [ ~ u o o ( r ) + ~ u 2 0 ( r ) + ~ u 2 2 ( r ) + ~ u 2 - 2 ( r )  
0 

+ 3vZ0(r) + +,’(r) + &v2 -’(r)] dr, (43) 
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A133 = 4n r3 p o ( r ) [ ~ u o o ( r ) - ~ u z o ( r ) - ~ u z o ( r ) ]  dr, 
0 i 

d 

351 

AIl , = 4ni r3 po(r) [ - +uZ2(r) + &uZ-'(r) - Yu2' ( r )  + & ~ , - ~ ( r ) l  dr, 
0 

d 

d 

At the core-mantle boundary there is a discontinuity in the radial displacement 
(see Fig. 3). In the core, the radial displacement is defined by the distortion of the 
gravitational equipotentials, but the deformed core-mantle boundary does not 
coincide with an equipotential surface. There is, therefore, a redistribution of super- 
ficial core material (but no net change in core volume) necessary to fit the deformed 
core into the deformed shell. This redistributed core material contributes 

A J = 2nb4 p o  (b- )  [+Auoo + &AuZo - +Auz2 - &Auz -'I, 
AJzz = 2nb4 po(b - ) [+Auoo+&Au,o+~Au,2+~Auz-2 ] ,  

AJ33 = 2nb4 po(b-)[+Auoo-f$Au,o], 

AJ,, = 2nib4pO(b-)[-4Au22+&AuZ-2],  

AJ13 = 2nb4 p,(b-)[+Au,' -hAu2-'], 

AJ23 = 2nib4 p,(b-)[+Au,' +hAu,-'], 

to the changes in the components of the inertia tensor, where Aunm is the excess of 
the radial displacement of the base of the shell over that of the gravitational equipo- 
tential coincident with the core-mantle boundary in the undeformed state. 

An examination of the expressions (43), (44) shows that the spheroidal mode of 
degree zero contributes only an equal amount to each of the diagonal components 
of the inertia tensor. This contribution will, therefore, be the same in all centre of 
mass coordinate systems. Since the excitation of wobble and secular polar shift 
depend on two of the off-diagonal components of the inertia tensor, we can ignore 
the zero degree spheroidal mode in these calculations. We are concerned only with 
the four fundamental spheroidal modes of degree two shown in Fig. 4. 

The integrations in (43) were carried out using the trapezoidal rule in the core 
and for the particular integral in the shell. Simpson's # rule was used for the comple- 
mentary functions in the shell. 

The scale of the displacement fields in Fig. 4 is evidently large compared to possible 
fault geometries. Finite faults have therefore been approximated by point sources. 
This approximation would appear to be justified by the work of Ben-Menahem & 
Israel (1970) on uniform, non-self-gravitating, spherical Earth models where the finite 
and point source solutions are found to differ only slightly except in the case of very 
deep dip-slip faults. 

Results for several earthquake fault models and comparisons with previous 
calculations are summarized in Table 2. 
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6. Discussion 

Generalization of the Elasticity Theory of Dislocations to real Earth models has 
shown Volterra's formula for the displacements to hold for slip faults. The visuali- 
zation of the dislocation as giving rise to a displacement field, which is the super- 
position of the displacement fields due to a system of point forces on the fault surface, 
is retained. 

The conditions prevailing at the core-mantle boundary are shown not to require 
the assumption of the Adams & Williamson condition in the core. We believe this is 
the first time they have been treated correctly in a static problem. The theory of 
Earth tides and tidal loading are also affected. 

Secular polar shift and excited Chandler wobble depend on the spheroidal dis- 
placements of second degree. These fields have virtually no fall off with distance 
from the fault. Observations on the position of the Earth's rotation axis should reflect 
a global integration of the strain field. 

There is a very strong increase of the effect on the Earth's rotation with focal 
depth. As noted in Table 2 there is an increase of nearly an order of magnitude in 
going from shallow to deep events with the same fault parameters. 

There now appears to be no diiliculty in accounting theoretically for both the 
secular polar shift and Chandler wobble excitation as being due to earthquakes. 
Improved pole path measurements should provide a better understanding of earth- 
quake mechanism. 
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