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Abstract The Eldgjá lava flood is considered Iceland’s largest volcanic eruption of the
Common Era. While it is well established that it occurred after the Settlement of Iceland
(circa 874 CE), the date of this great event has remained uncertain. This has hampered
investigation of the eruption’s impacts, if any, on climate and society. Here, we use high-
temporal resolution glaciochemical records from Greenland to show that the eruption began in
spring 939 CE and continued, at least episodically, until at least autumn 940 CE. Contempo-
rary chronicles identify the spread of a remarkable haze in 939 CE, and tree ring-based
reconstructions reveal pronounced northern hemisphere summer cooling in 940 CE, consistent
with the eruption’s high yield of sulphur to the atmosphere. Consecutive severe winters and
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privations may also be associated with climatic effects of the volcanic aerosol veil. Iceland’s
formal conversion to Christianity dates to 999/1000 CE, within two generations or so of the
Eldgjá eruption. The end of the pagan pantheon is foretold in Iceland’s renowned medieval
poem, Vǫluspá (‘the prophecy of the seeress’). Several lines of the poem describe dramatic
eruptive activity and attendant meteorological effects in an allusion to the fiery terminus of the
pagan gods. We suggest that they draw on first-hand experiences of the Eldgjá eruption and
that this retrospection of harrowing volcanic events in the poem was intentional, with the
purpose of stimulating Iceland’s Christianisation over the latter half of the tenth century.

1 Introduction

The Eldgjá (‘fire gorge’) eruption occurred along an approximately 75-km-long fissure system
associated with Katla volcano, which lies beneath the Mýrdalsjökull ice cap (Fig. 1). It is the
largest known lava flood eruption of the Common Era—an estimated 19.6 km3 of magma
(dense-rock equivalent) were erupted, mostly effusively, accompanied by the emission of 30–
70 Tg of SO2 into the atmosphere (Thordarson et al. 2001). These figures compare with the
14.7 km3 of lava and tephra output (dense-rock equivalent; Thordarson and Self 1993) and 122
Tg of SO2 emission (Thordarson et al. 1996) reckoned for the 1783–1784 Laki eruption.
Despite its size and its known occurrence after the ‘Settlement’ of Iceland in circa 874 CE
(Eldgjá’s deposits lie stratigraphically above the so-called Settlement tephra layer of the 870s
CE; Grönvold et al. 1995; Thordarson et al. 2001; Schmid et al. 2016), the date of the Eldgjá
eruption has remained unclear (Larsen 2000; Óladóttir et al. 2008; Baillie and McAneney
2015). No direct references to it have hitherto been noted in contemporary sources. The
Landnámabók (Iceland’s ‘Book of Settlements’; Benediktsson 1968), first written in the

Fig. 1 a Locations of Eldgjá, the NEEM drill site and medieval documentary evidence referenced in the text
covering 939–942 CE. b Section of the 75-km-long Eldgjá eruption fissure at Ófærufoss. c The Codex Regius;
finger points to beginning of stanza 57 of Vǫluspá
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twelfth century, appears to document the aftermath of the Eldgjá eruption but does not provide
a clear date. It records that the first settlers in the area of the eruption site were Ásbj rn
Reyrketilsson and his brother Steinfiðr. Ásbj rn is noted as a particular devotee of the pagan
god Thor, to whom he dedicated his part of the settled land, by designating it Þórsm rk (‘Thor’s
wood’). This area seems later to have been abandoned, likely as a result of the eruption. It is
explicitly described as a ‘wasteland’ in other twelfth-century sources (the Icelandic word is
eyði and is referred to by Benediktsson 1968).

Published estimates for the eruption date are 934 ± 2 CE (Hammer et al. 1980), 938 ± 4 CE
(Zielinski et al. 1995) and 933 ± 1 CE (Vinther et al. 2006). They are based on analyses of
Greenland ice cores which preserve both sulphate and tephra fallout associated with the
eruption. The most widely quoted date in the literature is 934 CE and draws on evidence
from ice cores and medieval sources (Stothers 1998). Another date that has been proposed is
939 CE based on observation of a blood-red Sun as recorded in an Irish chronicle, suggestive
of a manifestation of volcanic haze (McCarthy and Breen 1997). This attribution to Eldgjá was
assumed correct by Sigl et al. (2015) and used as tie point in their revision of the Greenland Ice
Core Chronology 2005 (GICC05) timescale in this period. With this evident uncertainty in the
literature on Eldgjá, it remains critical to confirm when the eruption occurred.

We revisit the questions of the timing and consequences of the Eldgjá eruption by
exploiting a serendipitously-fixed chronological tie-point for the NEEM-2011-S1 ice core
from northern Greenland and the high-resolution glaciochemical record that the core provides.
The marker concerned is the ‘Millennium Eruption’ of Changbaishan volcano (also called
Tianchi, Baitoushan and Paektu, and located on the border between China and DPR Korea),
now known to have occurred in late 946 CE (Oppenheimer et al. 2017). The fallout from this
event (including tephra) is clearly identified in the aforementioned ice core (Sun et al. 2014), as
is that from the Eldgjá eruption, enabling us to make a precise calculation of the timing of the
latter event. With the secure date, we investigate the eruption’s climatic impacts and associated
environmental and societal consequences. We conclude by drawing attention to one of
Iceland’s most celebrated medieval poems, Vǫluspá, which appears to record the Eldgjá
eruption.

2 Methods

The foundation of our dating analysis is a high-resolution dataset for the NEEM-2011-S1
ice core from northern Greenland drilled at 77.45° N, 51.06° W (Jensen et al. 2014),
approximately 1900 km northwest from Katla volcano. We have focused on a section of
the core that contains the signatures of both the Eldgjá eruption and the Millennium
Eruption of Changbaishan. In addition to non-sea-salt sulphur (nssS), calcium (Ca) and
chlorine (Cl) concentrations, determined by inductively coupled plasma mass spectrome-
try (Sigl et al. 2013), we carried out a replicate analysis on a parallel ice-core section
(Oppenheimer et al. 2017). NEEM-2011-S1 data coverage (by depth) for the section of
interest in the mid-tenth century was 91% for the original continuous flow analysis (Sigl
et al. 2013; Jensen et al. 2014) but we achieved 96% with our replicate analysis, improving
definition of seasonal cycles. The largest remaining data gap is 10 cm (corresponding to
less than 6 months—annual layers are approximately 20.5 cm thick) and situated 3 years
before the Millennium Eruption signature. This arose from removal of a fracture that could
have been contaminated with core drilling fluid.
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We also generated reconstructions of Northern Hemisphere summer temperature anomalies
(NH1, NH2) using a dataset of 14 tree-ring widths and 16 maximum-density clusters (Stoffel
et al. 2015). The latter contain less biological memory, compared to tree-ring width data, and
are thus better suited to assess the interannual climate variability associated with volcanic
forcing. NH1 is based on a bootstrap linear model using principal component analysis to
calibrate 30 tree-ring regional clusters against a mean of observational June–July–August
(JJA) 40°–90° N temperature (1805–1976) over land from the Berkeley Earth Surface dataset
(BEST). To account for decreasing chronologies back in time, a nested approach was applied.
The final reconstruction was achieved by splicing all the nested time series (n = 32), and after
the mean and variance of each nested reconstruction segment had been adjusted to the best
replicated nest (1775–1976). Calibration and validation statistics (R2 = 0.25–0.51, r2 = 0.19–
0.45, reduction of error = 0.20–0.47, coefficient of efficiency (ce) = 0.18–0.45) confirm the
predictive skill of the reconstruction.

NH2 is an alternative reconstruction based on a two-step procedure. First, linear regression
analysis was applied to calibrate the cluster series to JJA-gridded temperature anomalies (with
respect to 1961–1990) from the Climatic Research Unit (CRU, University of East Anglia) and
BEST datasets. For each cluster, we kept either the CRU or BEST reconstruction, depending
on the significance level of the verification statistics (reduction of error, coefficient of
efficiency). Seven reconstructions failing classical calibration and verification tests were
excluded from the final NH2 reconstruction. Averaging was performed to composite 23 cluster
reconstructions into the NH2 chronology.

To enhance the signal-to-noise ratio and to quantify the reconstructed cooling in the context
of climate variability prevailing at the time of the eruptions investigated here, we transformed
JJAvalues of the NH1 and NH2 records into temperature anomalies. This was achieved with a
31-year moving average time window as a reference to compute the yearly anomalies (for
924–954 CE, 931–961 CE and 1768–1798, so as to span both the Eldgjá and Laki eruptions).

In order to map the spatial extent of the cooling induced by the Eldgjà and Laki eruptions,
we used a gridded reconstruction developed by Guillet et al. (2017). (The Laki eruption was
investigated for comparative purposes, given its similarities with the Eldgjá eruption.) Only
grid points with a coefficient of efficiency exceeding 0.1 were used for the spatial represen-
tation of temperature anomalies.

3 Results and discussion

3.1 Timing and duration of the eruption

Figure 2 shows the sub-annual resolution chlorine (Cl), calcium (Ca) and non-sea salt sulphur
(nssS) stratigraphy for the NEEM-2011-S1 core. The Millennium Eruption sulphur anomaly,
confirmed by the presence of identifiable ash (Sun et al. 2014), is modest. Far more striking is
a pronounced nssS signal that begins 7.5 years earlier, i.e. in 939 CE (Fig. 2). This can be
firmly attributed to Eldgjá because the prominent horizon is also present in the GISP2 ice core,
from which glass shards have been extracted and matched geochemically to Eldgjá composi-
tions (Zielinski et al. 1995).

Seasonality is pronounced for Ca (typically peaking in late winter/spring; Kang et al. 2015)
and Cl (peaking in midwinter and associated with long-range transport of marine aerosol from
the sea surface and/or from sea ice by North Atlantic storms; Davidson et al. 1989; Rhodes
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et al. 2017). A smaller summer peak in Cl occurs around July (Davidson et al. 1989), attributed
to sea spray from Greenland coastal areas. These seasonal signals pinpoint the timing and
prolongation of the Eldgjá eruption. The volcanic sulphur signal picks up strongly as the
938/939 CE winter Cl and Ca peaks wane but before the summer 939 CE Cl peak. We
cannot be certain that the initial deposition indicated in the record derives from the first
phase of the eruption, but if it does, it points to an eruption onset in spring 939 CE,
assuming transport of aerosol between source and sink of a few weeks at most. Sulphur
concentration reaches a peak before the 939/940 CE winter Cl spike, then falls and then
rises again coincident with the winter 939/940 CE Cl peak. Sulphur abundance declines
in early 940 CE but remains elevated through much of the year. There is a subsidiary
sulphur spike before the winter 940/941 CE Cl peak, suggestive of the eruption’s
persistence to around autumn 940 CE. While it is possible that the eruption continued
after this time without further deposition to northern Greenland, it appears to have been
significantly shorter (with episodic activity spanning around 1.5 years) than has previ-
ously been suggested. For instance, Zielinski et al. (1995) considered a 3–6-year duration
based on sulphate measurements for the GISP2 ice core, while Thordarson et al. (2001)
entertained episodic activity spanning up to 8 years. This matter is pertinent to the
timeline and intensity of sulphur emission to the atmosphere and thus for understanding
atmospheric and climatic change resulting from the eruption.

One striking feature of the glaciochemical signal is the high magnitude of the Cl spike
in the 939/940 CE winter. Inspection of the Na record (not shown here) indicates that the
Cl abundance exceeds that which can be accounted for by sea salt deposition, pointing to
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Fig. 2 Chlorine (Cl), calcium (Ca), and non-sea salt sulphur (nssS) concentrations in the NEEM-2011-S1 ice
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a contribution from volcanic fallout. This is confirmed by the presence of trace metals
such as thallium and bismuth (not shown here). This winter Cl spike is accompanied by a
peak in S whereas the initial S deposition (spring-to-autumn 939 CE) is not coupled with
a Cl anomaly. Zielinski et al. (1995) noted the same sequence in their analysis of the
GIPS2 ice core (recovered at a site in central Greenland, more than 600 km from the
NEEM drill site): sulphate preceding chloride deposition. The tephra they extracted from
the GISP2 core were co-located within the high chloride section.

These observations and comparisons are puzzling. The variable combinations of
sulphur, chlorine and tephra in the Greenland ice could reflect source conditions and/or
plume chemistry and transport. The Eldgjá products are dominated by lava flows but
include an estimated 1.3 km3 (dense-rock equivalent) of tephra associated with at least
16 explosive phases of the eruption, sourced at various points along the fissure system
(Moreland 2017). These explosive phases included sub-glacial phreatomagmatic erup-
tions earlier in the eruption history, which gave way to magmatic eruptions as the fissure
system extended well beyond the ice cap (Moreland 2017). This progression may well be
reflected in the nature and content of tephra and volatile species carried in the volcanic
cloud and in the scavenging of volatiles by hydrometeors and ash particles. However, we
also have to consider that we lack information on the chemistry (including photochem-
istry) and transport of the plume during the course of the eruption. In particular, we do
not know the transit times, trajectories or heights of the plumes that deposited materials
to the surface at the ice core sites.

The high amplitudes of the winter 940/941 and winter 941/942 Cl peaks might be explained
by increased sea ice (a significant source of Na and Cl to the interior of Greenland in winter;
Rhodes et al. 2017). If correct, this postulated growth in sea ice might be attributable to climate
forcing of the Eldgjá eruption and might represent a pattern common to other boreal volcanic
eruptions.

3.2 Climatic variation during/after the eruption

We next examine the climate response of the eruption using the two tree-ring-based
reconstructions (NH1 and NH2; see Sect. 2; Stoffel et al. 2015). These represent
Northern Hemisphere (NH; > 40° N) summer (JJA) land temperatures (Fig. 3a) for the
past 1500 years. Cooling associated with Eldgjá amounts to ~ 0.7 °C for NH1 and ~
1.5 °C for NH2, the 42nd and second largest summer cooling signals, respectively, in the
1500-year-long reconstructions. For comparison, Fig. 3b also shows the reconstructions
spanning the period of the 1783–1784 Laki eruption. Summer cooling linked to Laki is
similar for both reconstructions, ~ 1.2 °C, the sixth and eighth largest summer cooling in
the NH1 and NH2 datasets, respectively. All these anomalies lie below the fifth percen-
tile of coolest years for both reconstructions. JJA-gridded temperature reconstructions are
shown for 939, 940 and 941 CE (Fig. 3c–e) and for the years around the 1783–1784 Laki
eruption (Fig. 1 in Supplementary Content). In 940 CE, cooling is most pronounced in
Central Europe, Scandinavia, the Canadian Rockies, Alaska and Central Asia and
reaches − 2 °C (with respect to 1961–1990). Notably, for both Icelandic eruptions, the
hemispheric cooling is seen in just one summer (although the anomaly persists in parts of
Canada and Central Asia in 941 CE; Fig. 3e). This contrasts with the 2–5-year summer
cooling signals associated with large, sulphur-rich explosive eruptions of equatorial
volcanoes (Stoffel et al. 2015).
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3.3 Annals and chronicles attesting to atmospheric optical phenomena, climatic

anomalies and food crises

Our secure date for the eruption focuses attention on an entry in the Chronicon Scotorum, an
Irish chronicle for 939 CE (McCarthy and Breen 1997): ‘the Sun was of the colour of blood
from the beginning of one day to the middle of the following day’ (Supplementary Content).
The entry is egregious—nowhere else in the entire chronicle is a blood-red Sun recorded. We
find a similar report in the Annales Casinates, compiled in an abbey southeast of Rome
(Supplementary Content). An entry plausibly dated to mid-July 939 CE reads ‘We looked at
the sun, it did not have any strength, neither light nor heat. But we saw the sky and the colour
[or ‘appearance’] of it changed, as though viscous. And others said that they saw the sun as
though half’ (Supplementary Content). Such descriptions are echoed in observations made
eight centuries later as volcanic haze sourced from the 1783–1784 Laki eruption spread across
the Mediterranean (Grattan and Brayshay 1995; Thordarson et al. 1996).

The near-contemporary chronicle, Res Gestae Saxonicae, written at the abbey of Corvey
(east of Paderborn in Germany), similarly records blood-red sunlight and also tells that the
winter of 939/940 CE was exceptionally severe (Supplementary Content). Irish annals also
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attest to a severe winter of 940/941 CE, with rivers and lakes freezing over (Supplementary
Content). Chinese sources as well indicate uncommonly severe winters in 939/940 CE, 940/
941 CE and 941/942 CE. Remarkably, snow is reported in Inner Mongolia in June 939 CE.
Unusual snowfall reoccurred the following winter (939/940 CE) when the Later Jin emperor
Shi Jingtang lamented 50 continuous days of snow, which ‘harmed the people’ (Supplemen-
tary Content). The next winter was likewise difficult. In early February 941 CE, ice was
observed in Qingzhou (modern Shandong province) to extend 100 li (50 km) out from the
coast, into the Bohai Sea. The winter of 941/942 CE was as well ‘extremely cold’. In late
December 941 CE, the Grand Canal in Jiangdu (modern Jiangsu province) froze over
(Supplementary Content). Again, these observations mirror records of the severe winter of
1783/1784 during the Laki eruption (Witham and Oppenheimer 2004), though the relationship
with volcanic forcing remains unclear (D’Arrigo et al. 2011; Schmidt et al. 2012; Cole-Dai
et al. 2014).

A further point of comparison between these two great Icelandic eruptions is suppressed
flow of the Nile—records from the Roda nilometer in Cairo indicate anomalously low
discharge in 939 CE (Popper 1951). This phenomenon has been interpreted as a dynamical
response of the atmosphere to volcanic aerosol with weakened summer monsoonal precipita-
tion in the source areas of the Nile (Oman et al. 2006; Manning et al. 2017).

These reports of climatic anomalies coincide with food shortages from 940 CE recorded in
a variety of narrative sources (Supplementary Content; Newfield 2015), implicating the Eldgjá
eruption in substantial reductions in arable output in some regions of Western and Eastern
Eurasia for which evidence is extant. For instance, the Ta’rīkh Jazīrat Şiqilliya or Cambridge
Chronicle, a tenth- or eleventh-century list of events in Sicily, recounts a dire subsistence crisis
in AH 328 (939–940 CE) that led to desertion and abandonment of fortresses and countryside
(Amari 1880). In his Antapodosis, written circa 950 CE, Liudprand of Cremona mentions a
food shortage that ‘devastated Italy’ in 941 CE (Supplementary Content). Famine also
persisted into 941 CE at least in parts of the Benelux countries (Supplementary Content)
and, according to later sources, Germany (Zusätze Röchell’s zu Frühern Chronisten 1856,
p.187–8). Parts of France, Switzerland and the Benelux countries were afflicted still in 942 CE
when Flodoard of Rheims wrote in his Annales of a ‘great food shortage through all Francia
and Burgundia’ (Supplementary Content). Dearth and subsistence crises also visited the
Baghdad area from 940 to 941 CE (Ibn al-jawzi 1992; Bar Hebraeus 2003) and the Maghreb
(Skylitzes 2010).

As indicated, hardship accompanied the uncommonly cool temperatures experienced in
eastern China as well. In mid-May 941 CE, there are reports of both widespread starvation and
public relief efforts in Henan and Shandong provinces, which could suggest an uneven
occurrence of harvest failure (regions without public granaries suffered more), and in winter
941/942 CE of starving soldiers (Supplementary Content). Extensive flooding reported in
eastern China in the spring of 941 CE, possibly fuelled by heavy winter snowfall, and
inundations in the autumn of the same year undoubtedly aggravated food shortages. Flooding
recurred in the late spring of 942 CE, which may indicate that winter 941/942 CE was
unusually long (Supplementary Content).

Although historical sources do not record pronounced aridity in Europe, the Old World
Drought Atlas identifies exceptionally dry conditions north of the Alps in the summers of 942–
944 CE (Cook et al. 2015). Severe spring–summer drought conditions are observed widely in
eastern China in 942–943 CE as well. At the same time, there were locust infestations both in
Central Europe in 941 CE (Zusätze Röchell’s zu Frühern Chronisten 1856, p.187) and in the
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Yellow River basin in 942–943 CE (Supplementary Content). In 943 CE, famine inflated
foodstuff prices and families migrating for want of food are referenced alongside reports of
tens of thousands of deaths in eastern China. Hundreds of thousands of deaths were reported
the following year (Supplementary Content). The European evidence is terser and less
speculative, but subsistence crises there likely contributed greatly to human mortality and to
a vast cattle plague, exacerbating the agricultural consequences of summer cooling (Newfield
2015). It appears that multiple environmental anomalies, potentially synergistic, coalesced to
challenge the subsistence strategies of contemporaries in many and disparate regions. In
Europe, the Middle East and China, the conditions for famine and mortality mounted over a
number of years after the Eldgjá eruption.

3.4 Vǫluspá and the Eldgjá eruption

Returning to the eruption itself, we focus on one of Iceland’s most celebrated medieval poems,
the apocalyptic Vǫluspá (‘the prophecy of the seeress’). It is included in the Codex Regius (Fig.
1c), written circa 1270 CE, but recapitulating much earlier poetry and Scandinavian and
Germanic folklore (Orchard 2011). We suggest it contains literary references to the Eldgjá
eruption and that these assume wider significance in the context of Iceland’s conversion to
Christianity. The poem describes how the revered pagan god Odin raises a prophetess from the
dead. She foretells the end of the pagan pantheon and the coming of a new (and singular) god
in a series of portents, one being the rearing of a monstrous wolf that will swallow the Sun.
The descriptions, found notably in stanzas 41 and 57, are strongly suggestive of an eruption of
the magnitude, duration and likely impacts of the Eldgjá eruption:

41: Fylliz fj rvi
feigra manna,
rýðr ragna sj t
rauðum dreyra;
sv rt verða sólskin
of sumur eftir,
veðr ll válynd.
Vituð ér enn—eða hvat?

[The wolf] is filled with the life-blood
of doomed men,
reddens the powers’ dwellings
with ruddy gore;
the sun-beams turn black
the following summers,
weather all woeful:
do you know yet, or what?

57: Sól tér sortna,
sígr fold í mar,
hverfa af himni
heiðar stj rnur.
Geisar eimi
ok aldrnara,
leikr hár hiti
við himin sjálfan.

The sun starts to turn black,
land sinks into sea;
the bright stars
scatter from the sky.
Steam spurts up
with what nourishes life,
flame flies high
against heaven itself.

The poetic circumlocution ‘what nourishes life’ from stanza 57 is generally taken to refer to
fire. The two stanzas taken together, describing an explosive and fiery event reaching up to the
sky in which the air above first turns blood-red, while the land seems to recede, and then the
Sun and other heavenly bodies are obscured by darkness over several years, suggest a close
literary interpretation of what might have been observed at first hand when Eldgjá erupted (see
also Supplementary Content). Referring to stanza 41, the Icelandic mediaevalist, Sigurður
Nordal, who edited Vǫluspá, noted that ‘I do not think I have ever understood this description
until I saw volcanic ash falling in a clear sky from the eruption of Katla in 1918. The sun was
shining then, but it was dark, as was all its shine. Impressive as a total eclipse of the sun is (as
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popular beliefs and folktales witness), this was yet much more grim and terrible’ (Nordal
1923). Thorarinsson (1981) also recognised the volcanic allusions in the poem but suggested
that these were references to an eruption of Katla in 1000 CE.

Further lines in the poem suggest volcanic manifestations. In stanza 38, ‘venom-drops
flowed in through the roof-holes’, which may recall acid rain associated with volcanic plumes.
This finds an echo in Pastor Jón Steingrímsson’s account of the Laki eruption: ‘more poison
fell from the sky than words can describe: ash, volcanic hairs, … rain full of sulphur and
saltpetre…’ (Steingrímsson and Kunz 1998). In stanza 52, there is a reference to the fire giant
‘Surt comes from the South with what damages branches’. In verse 60, the gods are said to
come together at their home to commemorate these ‘mighty events’. The fact that the
devastation of the mythical fire-giant Surt is said to ‘come from the South’ maps on to the
geographical location of Eldgjá, which is even now designated as situated in Suðurland (‘the
southern part of the country’).

If our attribution of these parts of Vǫluspá to manifestations and climatic consequences of
the Eldgjá eruption is correct, our secure date for the eruption implies that Vǫluspá was
composed after 939/940 CE.

3.4.1 The Christianisation of Iceland

In calling attention to experiences and memories of the Eldgjá eruption as signs that the
old pagan ways were doomed, Vǫluspá suggests that the eruption acted as a catalyst for
the profound cultural change brought about by conversion to Christianity. While this was
a gradual process over the latter half of the tenth century, and there existed a Christian
population of Celtic roots even since the settlement of Iceland, the official date for
conversion (kristnitaka) is 999/1000 CE. This followed a heated national parliament at
Þingvellir (where annual gatherings had been held since 930 CE, before the Eldgjá
eruption). In Kristni saga (‘the story of the conversion’), written in the thirteenth century,
one of the key events is the sudden arrival of a man reporting a volcanic eruption. He
claims that lava is threatening the land of one of the chieftains, Þóroddr of Ölfus, who
was evidently on the Christian side. When the pagans noted that this was a sign of the
gods’ displeasure, another powerful chieftain, pointing to the dramatic landscape of
Þingvellir itself, asks ‘What were the gods enraged by when the lava we are standing
on here and now was burning?’ (Grønlie 2006). Later traditions evidently associated the
conversion with volcanic events, just as Vǫluspá does, in that case likely the Eldgjá
eruption itself.

4 Conclusions and final remarks

Through the serendipity of the 775 CE solar particle event being recorded in a tree killed
by the Millennium Eruption of Changbaishan volcano, and the high-resolution
glaciochemistry of the NEEM-2011-S1 ice core, we have been able to constrain the
onset of the Eldgjá eruption to circa spring 939 CE. The eruption persisted, likely
episodically, at least until around autumn the following year. Aspects of the deposition
of volcanic materials to the Greenland ice surface, as recorded in both the NEEM-2011-
S1 and GISP2 ice cores, are puzzling and warrant further investigation. In particular,
highly depth-resolved analysis of tephra and volatile species in various arctic ice cores,
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including sulphur isotope measurements, might reveal insights into both volcanic source
conditions and atmospheric chemistry and transport of the volcanic plumes.

Abundant medieval sources attest to the spread of atmospheric haze associated with the
eruption, and many contemporary sources are suggestive of climatic effects (severe winters in
939/940 and 940/941 CE) and societal consequences (abandonments, food shortage, animal
mortalities) in Europe and China. In their similarity to some of the experiences following the
eruption of Laki in 1783–1784, these findings reinforce our understanding of the long-range
impacts of lava flood eruptions.

Since the traditional date for the Settlement of Iceland is 874 CE, and the initial migration is
supposed to have been completed within 60 years, dating the Eldgjá eruption to 939–940 CE
places it squarely within the experience of the first two or three generations of settlers: indeed,
it is plausible that some of the first wave of migrants, brought over as children, witnessed the
eruption.

Our linking of lines in the apocalyptic poem, Vǫluspá, to experiences of Eldgjá and its
aftermath, and the accepted literary interpretation of the poem as a prophecy of the demise of
the pagan gods, focuses attention on the eruption’s significance in the context of Iceland’s
Christianisation in the latter decades of the tenth century. We should recall that the effects of
the 1783–1784 Laki eruption and associated ‘haze famine’ were devastating for Iceland—
more than a fifth of the population perished within a couple of years. The early colonists in the
tenth century are unlikely to have fared better during the Eldgjá eruption, nor, given their
Scandinavian and British Isles ancestry, would they have been as familiar with volcanism as
Icelanders were by the eighteenth century (Hartman et al. 2017). Recalling, too, that the Laki
eruption was seen by contemporary observers as retribution from God (e.g. Steingrímsson and
Kunz 1998), and the association of volcanic ‘fires’ with the tortures of Hell, a role for the
Eldgjá eruption in fuelling theological debate and proselytisation in the tenth century seems
plausible.
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