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 In the classical vehicle routing problem with backhauls (VRPB) the customers are divided into 
two sets; the linehaul and backhaul customers, so that the distribution and collection services of 
goods are separated into different routes. This is justified by the need to avoid the reorganization 
of the loads inside the vehicles, to reduce the return of the vehicles with empty load and to give 
greater priority to the customers of the linehaul. Many logistics companies have special 
responsibility to make their operations greener, and electric vehicles (EVs) can be an efficient 
solution. Thus, when the fleet consists of electric vehicles (EVs), the driving range is limited due 
to their battery capacities and, therefore, it is necessary to visit recharging stations along their 
route. In this paper the electric vehicle routing problem with backhauls (EVRPB) is introduced 
and formulated as a mixed integer linear programming model.  This formulation is based on the 
generalization of the open vehicle routing problem considering a set of new constraints focussed 
on maintaining the arborescence condition of the linehaul and backhaul paths. Different charging 
points for the EVs are considered in order to recharge the battery at the end of the linehaul route 
or during the course of the backhaul route. Finally, a heuristic initialization methodology is 
proposed, in which an auxiliary graph is used for the efficient coding of feasible solutions to the 
problem. The operation and effectiveness of the proposed formulation is tested on two VRPB 
instance datasets of literature which have been adapted to the EVRPB. 

© 2020 by the authors; licensee Growing Science, Canada 
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1. Introduction 

 
The vehicle routing problem with backhauls (VRPB) can be defined as the problem of determining a set 
of vehicle routes to visit all customer vertices, which are divided into two subsets. The first subset 
contains the vertices of the linehaul customers, each requiring a given quantity of products to be 
delivered. The second subset contains the backhaul customers, where a given quantity of inbound 
products must be picked up and transported to the depot. The VRPB objective is to determine a set of 
vehicle routes to visit all customers in order to satisfy the demand of goods. In such a case, the vehicles 
must attend first the customers with delivery requirements before the customers with collection 
requirements. This customer division is extremely frequent in practical situations in which it is required 
to avoid the permanent reorganization of the goods transported and the linehaul customers have a higher 
priority. 
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Traditional subtour-elimination constraints fit perfectly into VRPs modeled with a single set of vertices, 
where the evaluation of the flow conservation and degree constraints can be made in a general way on 
all vertices. In VRPB, the precedence constraint stipulates that in each circuit the linehaul vertices 
precede the backhaul vertices. This leads to consider some special cases, such as the vertices at the end 
of a lineahaul route, the vertices at the start of a backhaul route and the routes with lineahaul customers 
only. Because of the above, and considering that the problem is known to be NP-hard in the strong sense, 
most of the existing literature about VRPB is related to heuristic and metaheuristic methodologies (Ropke 
& Pisinger, 2006). Few jobs concerning the exact approaches have been proposed and all of them focused 
on the inclusion of bounding techniques or set-partitioning models (Toth & Vigo, 2014). 
 
Thus, we have approached the problem from another point of view; considering a representation of each 
part of the VRPB based on a generalization of the open vehicle routing problem (OVRP). The OVRP 
was first proposed in the early 1980s (Schrage, 1981; Bodin et al., 1983) when there were cases where a 
delivery company did not own a vehicle fleet or its fleet was inadequate for fully satisfying the customers’ 
demand. Therefore, the contractors who were not employees of the delivery company used their own 
vehicles for the deliveries. In these cases, the vehicles were not required to return to the central depot 
after their deliveries because the company was only concerned with reaching the last customer. Thus, the 
goal of the OVRP is to design a set of Hamiltonian paths to satisfying customers’ demand. 
 
In the VRPB, the linehaul routes constitute a subproblem that has an arborescent configuration formed 
by a minimum spanning tree; starting from the depot, spanning all the linehaul customers, and ending up 
at a linehaul customer (Toro et al., 2017a, 2017b; Lourenco et al., 2002). Note that a spanning tree 
becomes a subgraph formed only by Hamiltonian paths if each customer node has a degree less than or 
equal to two. Similarly, the backhaul routes also have an arborescent configuration, entering the depot 
and spanning all the backhaul customers. Thus, the VRPB structure can be seen as OVRPs of linehaul 
and backhaul routes connected by tie-arcs.  
 
With the progress of technology and ecological concerns, electricity has become a solid option for fuel 
replacement. Electric vehicles (EVs) are considered an alternative to implement in the transport sector, 
some advantages of using EVs are: i) the decrease of greenhouse gas release, ii) the reduction in the 
dependence of fossil fuels and iii) the little noise generated. However, the EVs still have to overcome 
some problems associated with the battery’s autonomy, since the technology still needs to grow, and with 
the infrastructure of the charging stations, which are not yet installed massively. Thus, integrated 
planning of routes and charging stations is a problem that has been gaining great importance in the 
transport industry in the last years: Ge et al. (2011); Dharmakeerthi et al. (2012); Liu et al. (2013); Wang 
et al. (2013); Paz et al. (2018); Arias et al. (2017). 
 
Several companies have already deployed electric delivery truck fleets. Generally, the fleet is made up 
of the kind of medium-duty commercial delivery trucks often used to deliver supplies to customers within 
one locality. It is a job particularly well-suited to electric trucks for several reasons: daily routes are often 
exactly the same, meaning range needs are fixed and predictable, and the vehicles always return to a 
charging station at night, making recharging easier. Additionally, because its parcel delivery trucks are 
not in operation overnight, the companies do not rely on public charging infrastructure (Electrification 
Coalition, 2012). Some studies analyze the actual use of EVs in commercial fleets from the point of view 
of the maximum necessary range of autonomy of the battery to cover most of the trips. In Pfriem and 
Gauterin (2013), the data suggests that about 90% of the mobile days could be covered with an EV range 
of 60 km and night recharge. They show a daily mobility far below their maximum range with long 
parking hours at night. Likewise there is no need for fast-charging.  
 
Thus, a topic of great interest for transport companies with EV fleets is the planning of routes considering: 
i) an electric truck fleet, ii) a higher priority in the linehaul customers, iii) a slow recharge at a charging 
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point (CP) which is owned by the company (where the driver can rest or perform other activities) and iv) 
the return of the vehicle to the central depot serving backhaul customers. 
 
This paper proposes a VRPB with a fleet consisting exclusively of EVs, where the customers with 
delivery requirements should not be affected by the recharge time of the battery in the charging stations, 
because these have a higher priority. The EVs must be recharged at the end of the linehaul route or during 
the course of backhaul route. Additionally it is important that the recharge takes place after the EV has 
covered a predetermined minimum distance, in order to take greater advantage of the initial charge of the 
battery. We have named this problem as electric vehicle routing problem with backhaul (EVRPB) and it 
is formulated as a mixed integer linear programming (MILP). The main characteristic of the proposed 
model is that the topological configuration of the solution is taken into account to efficiently eliminate 
the possibility of generating solutions formed by subtours. In order to solve the cases of greater 
complexity and size, a heuristic initialization methodology is proposed in which an auxiliary graph is 
used for the efficient decoding of feasible solutions to the problem given by a permutation. 
 
The rest of the paper is organized as follows. In Section 2 we describe the literature review, presenting 
the contributions found. In Section 3 we present the problem formulation, presenting the nomenclature 
for the variables and parameters used in the mathematical model, also, we describe the model conditions 
and introduce the new mixed integer linear programming (MILP) formulation. In section 4, the 
initialization methodology, based on ILS metaheuristic and an auxiliary graph is presented. In Section 5 
we present a computational study performed on 40 new proposed instances for the EVRPB. Finally, the 
conclusions are presented. 
 
2. Literature review  
 
Because the VRPB is NP-hard in the strong sense (Toth and Vigo, 2014), a lot of heuristic processes are 
appropriate for its solution and, therefore, most existing literature on the VRPB is related to heuristic and 
metaheuristic methodologies with high quality results. Two comprehensive reviews of metaheuristic 
techniques for VRPB are found in Ropke and Pisinger (2006). Two literature reviews cover the main 
works about VRPB: the first, presented by Toth and Vigo (2002), presents the existing work up to 2002 
and the second, by Irnich et al. (2014) focuses on complementing the review up to 2013.  
 
Goetschalckx and Jacobs-Blecha (1989) developed an integer programming formulation for the VRPB 
by extending the formulation of Fisher et al. (1986) to include pickup points. They develop a heuristic 
solution algorithm for this problem which, in turn, is broken into three subproblems. The first two 
subproblems correspond to the clustering decisions for the delivery customers and the pickup customers, 
which are independent generalized assignament problems. The third subproblem consists of solving K 
independent Traveling Salesman Problem (TSP) conformed by delivery and pickup customers, 
considering the precedence constraints, which impose a dependency relationship on all the model 
components.  
 
The first exact method is reported by Toth and Vigo (1997), in which an effective Lagrangian bound is 
introduced that extends the methods previously proposed for the capacitated VRP (CVRP). The resulting 
Branch-and-Bound algorithm is able to solve problems with up to 70 customers in total. The second exact 
method is proposed by Mingozzi et al. (1999), in which a set-partitioning-based approach is presented 
and the resulting mixed integer linear programming (MIP) is solved through a complex procedure. The 
results show that the approach is capable of solving undirected problems with up to 70 customers. Toth 
and Vigo state that no exact approaches have been proposed for VRPB during the last decade (Toth and 
Vigo, 2014). In our review, we have reached the same conclusion and new proposals for unified exact 
models of VRPB were not found, since the only two existing proposals are used to derive the relaxations 
on which the exact approaches are based (Toth and Vigo, 1997).  
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Ropke and Pisinger (2006) proposed a unified model that is capable of handling most of the variants of 
the VRPB, they use different metaheuristic techniques for VRPB. Chávez et al. (2018), present a Tabu 
search metaheuristic to solve the routing problem, they divided it into sub-routes, one for linehaul 
customers and one for backhaul customers, in order to obtain a global solution for the minimum cost. 
Chávez et al. (2016), present a multiobjective ant colony algorithm for the Multi-Depot Vehicle Routing 
Problem with Backhauls (MDVRPB) where three objectives are minimized: 
 
i) the traveled distance, ii) the traveling times and iii) the total consumption of energy. 
 
Other two problems in the literature commonly handled by exact methods, where the backhaul load is 
considered, are: i) the mixed vehicle routing problem with backhauls (MVRPB) and ii) simultaneous 
pickups and deliveries. In the first, deliveries after pickups are allowed where the linehaul and backhaul 
customers are mixed along the routes. In the second, the customers may simultaneously receive and send 
goods. Although the differences between these two problems and the VRPB appear to be subtle, they are 
very different; direct comparisons between the problems serving pickups and deliveries in a mixed order 
or simultaneously with problems where the delivery is first and the pickup second should not be 
performed, since they are addressing different requirements. The VRPB is a problem with a special 
structure of the routes that consist of two distinct parts; a delivery and a pickup segment. A complete 
review of these two types of problems can be found in (Ropke & Pisinger, 2006; Wade & Salhi, 2003; 
Parragh et al., 2008). 
 
A recent survey paper with interesting conclusions and research perspectives on the VRPB, including 
models, exact and heuristic algorithms, variants, industrial applications and case studies, are identified 
in (Koç & Laporte, 2017). In this review, the authors highlight the importance of using matheuristic 
algorithms that allow the interoperation of metaheuristic and mathematical programming techniques. 
Additionally, they identify the need for new studies focused on developing effective and powerful exact 
methods to solve all available standard VRPB instances to optimality. The authors also conclude that no 
electric vehicle version has yet been studied for the VRPB. The OVRP has recently received increasing 
attention in the literature and has focused mainly on the development of heuristic methods to find good 
quality solutions quickly. Regarding the exact methods, a branch-and-cut algorithm for the open version 
of the CVRP, addressing the capacitated problem with no distance constraints is proposed by Letchford 
et al. (2007). Pessoa et al. (2008) present several branch-cut-and-price algorithms on a number of vehicle 
routing problem variants, among which is the capacitated OVRP, which is addressed by setting the cost 
of all arcs that have the depot as the endpoint to zero. Salari et al. (2010) proposed a heuristic 
improvement procedure for the OVRP based on integer linear programming techniques to improve a 
feasible solution of a combinatorial optimization problem. Alinaghian et al. (2016) proposed a 
mathematical model in which open paths are used into the problem of cross-docks. To model the open 
path, a dummy node is defined, whose distance to other nodes is considered zero, and from which the 
route starts. A comprehensive literature review on the OVRP is presented in (Li et al., 2007; Toro et al., 
2017b,a). 
 
In relation to EVs, in the context of the VRP, Yang and Sun (2015) present an electric vehicle battery 
swap station location routing problem (BSS-EV-LRP), which aims to determine the location strategy of 
battery swap stations (BSSs) and the routing plan of a fleet of electric vehicles (EVs) simultaneously 
under battery driving range limitations, a four-phase formulated heuristic technique, called SIGALNS, 
is proposed to solve the problem. Goeke and Schneider (2015) propose the Electric Vehicle Routing 
Problem with Time Windows and Mixed Fleet (E-VRPTWMF) to optimize the routing of a mixed fleet 
of electric commercial vehicles (ECVs) which assume energy consumption to be a linear function of the 
distance traveled and the recharging times at stations by time windows. Arias et al. (2017) present a 
probabilistic approach for the optimal charging of electric vehicles (EVs) in distribution systems, where 
the costs of both demand and energy losses in the system are minimised, subjected to a set of constraints 
that consider EVs smart charging characteristics and operative aspects of the electric network. 
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Finally, regarding the decoding of a permutation in the context of the VRP, Ochi et al. (1998) adopt a 
representation where depots are used as trip delimiters. A more straightforward way is to use a sequence 
of customers without trip delimiters, as has been done for the CVRP by Liu et al. (2008). When the 
vehicles are homogeneous, Prins (2004) developed a polynomial time procedure for deliveringa single 
product, using the shortest path problem on an auxiliary acyclic graph. In (Vidal et al., 2012; Cattaruzza 
et al., 2014), the authors present a procedure based on an adaptation of the procedure proposed by Prins, 
which also works on an auxiliary graph. Due to the existence of precedence constraints, the limited 
battery capacity and the different types of existing vertices on the EVRPB, the procedure proposed in 
Prins (2004) cannot be directly used and it is modified as explained in Section 4.2.  
 
3. Proposed model for the EVRPB  
 
3.1. Problem formulation 
 
Fig. 1 shows the optimal solution of an VRPB with 25 customers; in which the first 20 customers 
(numbered from 1 to 20 and represented by circles) are linehaul customers and the other 5 (numbered 
from 21 to 25 and represented by squares) are backhaul customers. The depot is the vertex 0 and the 
dotted lines indicate the connecting arcs that connect the linehaul with the backhaul customers. For this 
instance, the capacity of all vehicles is equal to Q = 1550. The minimum number of vehicles needed to 
serve all the linehaul and backhaul customers is KL = 8 and KB = 2, respectively. These values can be 
obtained by solving the bin packing problem instances associated with the corresponding customer 
subset, which calls for the determination of the minimum number of bins, each with capacity Q, needed 
to serve all customers (Toth and Vigo, 2002). To ensure feasibility, we assume that the number of 
vehicles needed K V must be greater than or equal to the maximum value between KL and KB. The 
demand (delivered or collected) of each customer is shown in the figure with the notation (·). Thus, the 
basic version of the VRPB must satisfy the following conditions: 
 

 Each vertex must be visited exactly once by a single route. That is, each vertex has degree 2. 
 Each route starts and finishes at the depot. 
 Each customer must be fully attended when visited. 
 All customers are serviced from a single depot. 
 The vehicle capacity should never be exceeded in both the linehaul and backhaul route and all 

vehicles should have the same capacity. 
 In each circuit the linehaul vertices precede the backhaul vertices (precedence constraint), if any. 

That is:  
o A circuit of only backhaul customers is not allowed. 
o The last customer of a linehaul route is always connected to the depot or to a backhaul 

customer (BC) who is starting a backhaul route.  
o The last BC of a backhaul route is always connected to the depot. 
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Fig. 1. Vehicle routing problem with backhaul 
(VRPB) 

Fig. 2. Electric vehicle routing problem with 
backhaul (EVRPB) 

 
In the EVRPB, when the electric vehicle ends the linehaul route, the driver can follow several 
alternatives: i) start the backhaul route, ii) return directly to the depot, or iii) rest in the charging point 
and recharge the battery in slow mode until the next day. Figure 2 shows the optimal solution of an 
EVRPB where charging points are represented by diamonds, numbered from 26 to 33. Thus, when the 
charging points and battery life of the EV are considered, the EVRPB must, aditionally, satisfy the 
following conditions: 
 

• Each charging point must be visited by one or more routes, or never be visited. 
• The EVs are fully charged in the depot and in the charging points. 
• The charging points are visited, only if it is necessary, at the end of the linehaul customers or 

during the course of the backhaul route. 
• The charging stations are already built and their demand is equivalent to zero. 

 
3.2. Nomenclature 
 
The nomenclature for the sets, variables and parameters of the proposed model for the EVRPB is 
summarized next. 
 
Sets: 𝐿  Set of linehaul customers. 𝐿 = {1, . . . , 𝑛}.  𝐵  Set of backhaul customers. 𝐵 = {𝑛 + 1, . . . , 𝑛 + 𝑚}. 𝐾  Set of charging points. 𝐾 = {𝑛 + 𝑚 + 1, . . . , 𝑛 + 𝑚 + 𝑘}. 𝐿   Set of linehaul customers and the depot 𝐿 = {0} ∪ 𝐿. Vertex 0 corresponds to the depot.  𝐵   Set of backhaul customers, depot and charging points. 𝐵 = {0} ∪ 𝐵 ∪ 𝐾. 𝐶   Set of linehaul and backhaul customers, including the charging points. 𝐶 = 𝐿 ∪ 𝐵 ∪ 𝐾. 𝑉  Set of Nodes 𝑉 = {0} ∪ 𝐶 . 
Parameters: 𝑀   Distance between nodes 𝑖 and 𝑗.  𝐶   Cost of traveling between nodes 𝑖 and 𝑗.  𝐷   Nonnegative quantity of products to be delivered or collected (demand) of the customers 𝑗 ∈ 𝐶 .𝐾   Number of available vehicles (given in advance). 𝑄  Capacity in goods of the vehicles.  𝐸   Electric capacity of the vehicles (identical vehicles). 
Variables: 𝑠   Binary variable for the use of the path between nodes 𝑖,𝑗 ∈ 𝑉.  𝜉   Binary variable for the use of the path between nodes 𝑖 ∈ 𝐿 and 𝑗 ∈ 𝐵  



M. Granada-Echeverri et al. / International Journal of Industrial Engineering Computations 11 (2020) 137𝑙   Continuous variable indicating the amount of goods transported between nodes 𝑖 and 𝑗. 𝑝   Distance accumulated by the electric vehicle from the depot to the arc (i, j) nodes 𝑖 and 𝑗. 𝑝   Auxiliary variable that indicates the distance between the linehaul customers 𝑗 (LCj) and the 
depot. For a BC or a CP, this distance is denoted by the variables 𝑝  and 𝑝 , respectively.  

 
3.3. Proposed Model for the EVRPB 
 
The EVRPB can be defined as the following graph theoretic problem. Let 𝐺 = (𝑉, 𝐴) be a complete and 
directed graph, where 𝑉 = 0 ∪ 𝐶  is the vertex set and 𝐴 is the arc set. The vertex 0 denote the depot and 
vertex set 𝐶  represents the feasible points that the EV can visit, once it leaves the depot. These feasible 
points are conformed by: the set of 𝑛 linehaul customers (LCs), defined as 𝐿 = {1,2, … , 𝑛}, the set of 𝑚 
backhaul customers (BCs), defined as 𝐵 = {𝑛 + 1, , … , 𝑛 + 𝑚} and the set of 𝑘 charging points (CPs), 
defined as 𝐾 = {𝑛 + 𝑚 + 1, , … , 𝑛 + 𝑚 + 𝑘}. Thus, 𝐶 = 𝐿 ∪ 𝐵 ∪ 𝐾 where each vertex 𝑗 ∈ 𝐶  is 
associated with a known nonnegative demand of goods 𝐷  to be delivered or collected, considering that 
if 𝑗 ∈ 𝐾 then 𝐷 = 0. The depot has an unlimited fleet of identical vehicles with the same positive load 
capacity, denoted as 𝑄, and the same electric capacity, denoted as 𝐸 . The number 𝐾  of vehicles for 
use is given in advance. 

This mathematical formulation corresponds to a commodity flow model that uses two binary decision 
variables: 𝑠  that takes value 1 if arc (𝑖, 𝑗) ∈ 𝐴 belongs to the optimal solution and 𝜉  that takes value 1 
if the tie-arc between nodes 𝑖 ∈ 𝐿 and 𝑗 ∈ 𝐵 ∪ 0 is used. The tie-arcs connect the linehaul routes with the 
backhaul routes. The nonnegative flow variable 𝑙  is associated with the flow of goods transported by a 
vehicle through the arc (𝑖, 𝑗) ∈ 𝐴. 𝑝  is a continuous variable indicating the EVs state of charge in 
distance units between nodes 𝑖 and 𝑗. 𝑝  is a continuous auxiliary variable that represents the distance 
between the linehaul node 𝑗 and the depot. 
 

    
(a) Without charging 

point 
(b) CP in the backhaul 

route 
(c) CP at the end of the 

linehaul route 
(d) Only linehaul 

customers 
Fig. 3. Types of routes for the EVRPB 

 
The commodity flow model (1)-(34) is an integer linear programming formulation of the EVRPB 
proposed. Figure 3, described the types of routes that can be found in the solution of EVRPB, where 
circles represent LCs, squares represent BCs and diamonds represent CPs. The EVRPB objetive is to 
minimize the total cost of routes needed to visit all customers or charging points. 
 min = ∈ 𝐶 × 𝑠 + ∈∈

𝐶 × 𝜉  (1) 

subject to  

∈∈
𝑠 = |𝐿|  

(2) 

∈ 𝑙 − ∈ 𝑙 = 𝐷         ∀𝑗 ∈ 𝐿 (3) 

∈ 𝑠 = 1                              ∀𝑗 ∈ 𝐿 (4) 
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∈ 𝑠 + ∈ 𝜉 = ∈ 𝑠        ∀𝑗 ∈ 𝐿 (5) 𝑙 ≤ 𝑄 × 𝑠                                  ∀𝑖 ∈ 𝐿 ,      ∀𝑗 ∈ 𝐿 (6) 

∈ 𝑠 ≥ ∑ ∈ 𝐷𝑄  
 

(7) 

∈ 𝑠 = 𝐾  (8) 

𝑝 = ∈ 𝑀 ∗ 𝑠                     ∀𝑗 ∈ 𝐿 (9) 

∈ 𝑝 − ∈ 𝑝 = 𝑝         ∀𝑗 ∈ 𝐿 (10) 𝑝 ≤ 𝐸 × 𝑠                             ∀𝑖 ∈ 𝐿 ,            ∀𝑗 ∈ 𝐿 (11) 𝑝 ≤ 𝐸 × 𝜉                             ∀𝑖 ∈ 𝐿,              ∀𝑗 ∈ 𝐵 (12) 𝑝 = 𝐸 × 𝑠                            ∀𝑗 ∈ 𝐿 (13) 𝑝 ≥ 𝐷 × 𝜉                                 ∀𝑗 ∈ 𝐿 (14) 

∈∈
𝑠 = |𝐵|  

(15) 

∈ 𝑙 − ∈ 𝑙 = −𝐷          ∀𝑗 ∈ 𝐵  
(16) 

∈ 𝑠 = 1∀𝑖 ∈ 𝐵 (17) 

∈ 𝑠 + ∈ 𝜉 + ∈ 𝑠 = ∈ 𝑠     ∀𝑖 ∈ 𝐵 (18) 𝑙 ≤ 𝑄 × 𝑠                                      ∀𝑖 ∈ 𝐵 ,              ∀𝑗 ∈ 𝐵  (19) 

∈ 𝑠 ≥ ∑ ∈ 𝐷𝑄  
 

(20) 

∈ 𝑠 + ∈ 𝜉 = ∈ 𝑠   
(21) 𝑝 = ∈ 𝑀 𝑠 + ∈ 𝑀 𝜉 + ∈ 𝑀 𝑠         ∀𝑗 ∈ 𝐵 (22) 

∈ 𝑝 − ∈ 𝑝 = 𝑝         ∀𝑗 ∈ 𝐵  
(23) 𝑝 ≤ 𝐸 × 𝑠                               ∀𝑖 ∈ 𝐵,                     ∀𝑗 ∈ 𝐵  (24) 𝑝 ≥ 𝐷 × 𝑠                                   ∀𝑗 ∈ 𝐵 (25) 

∈ 𝑠 + ∈ 𝜉 = ∈ 𝑠                                     ∀𝑖 ∈ 𝐾 (26) 

∈ 𝑙 − ∈ 𝑙 = 0                ∀𝑗 ∈ 𝐾 (27) 

𝑝 = ∈ 𝑀 × 𝑠 + ∈ 𝑀 × 𝜉                            ∀𝑗 ∈ 𝐾 (28) 

∈ 𝑝 − ∈ 𝑝 = 𝑝          ∀𝑗 ∈ 𝐾 (29) 𝑝 ≤ 𝐸 𝑠                                    ∀𝑖 ∈ 𝐾,                    ∀𝑗 ∈ 𝐵 (30) 𝑠 + 𝑠 ≤ 1                                      ∀𝑖 ∈ 𝑉,                     ∀𝑗 ∈ 𝑉 (31) 𝜉 ∈ {0,1}                                          ∀𝑖 ∈ 𝐿,                     ∀𝑗 ∈ 𝐵  (32) 𝑠 ∈ {0,1}                                          ∀𝑖, 𝑗 ∈ 𝑉 (33) 
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The objective function (1) minimises the operating costs and consist of 2 terms. The first corresponds to 
the sum of the total travelling cost of the routes used to deliver and collect the goods and to visit the 
charging points. The second corresponds to the use of the tie-arcs connecting the last customer of a 
linehaul route to the backhaul customer, to the charging point or to the depot. 

The sets of constraints (2)-(8) allow modelling the OVRP for linehaul routes, where (2) and (3) impose 
the connectivity requirements. In the optimal solution of the OVRP, each route has an arborescent 
configuration formed by a minimum spanning tree; starting from the depot, spanning all the nodes, and 
ending at a customer. We have named this subproblem the linehaul open vehicle routing problem 
(LOVRP). In the vehicle routing problem context, the necessary condition for obtaining a minimum 
spanning tree is that the number of arcs be equal to the number of customer nodes. This necessary 
condition is guaranteed by the equality constraint (2), where the number of customer nodes is given by 
the cardinality of the set 𝐿. However, this constraint is necessary but not sufficient because there may be 
customer nodes with a degree greater than two and disconnected solutions can be obtained. 

A spanning tree becomes a subgraph formed only by Hamiltonian paths if each customer node has a 
degree less than or equal to two. Therefore, another necessary condition is given by the sets of degree 
constraints (4) and (5). The indegree constraints (4) impose that exactly one arc enters each customer 
node and, consequently, the outdegree constraints (5) impose that exactly one arc leaves each LC, 
considering two situations: i) a tie-arc can only go from a LC towards a BC or towards the depot and ii) 
only a arc coming from a LC or from the depot can arrive at a LC. However, the addition of these degree 
constraints in directed graphs may not represent a spanning tree, because a disconnected graph can be 
obtained. 

The addition of the flow balance constraint by each customer node avoids getting disconnected solutions, 
since an infeasible solution is obtained when the goods leaving the depot can not reach the LCs. Thus, 
the set of constraints reported in (3) guarantees network connectivity through the flow conservation 
constraint for each LC so that they are fully served when visited. Similarly, the constraints (16) and (27) 
guarantees network connectivity through the balance of the demand flow by each BC and charging point, 
respectively. Note that in the constraints (27) the demand for the CP is considered to be 0. 

The constraints (6) and (7) impose both the vehicle and depot capacity requirements, respectively. The 
first is an upper limit defined by the capacity of the vehicle to transport a quantity of products on any 
linehaul-arc, while the second is a lower limit to the number of routes out of the depot to supply linehaul 
customers, which is determined by the ratio between the total demand to be collected and the vehicle 
capacity. Constraint (8) limits the minimum number of vehicles used on linehaul routes. 

Similarly to the sets of constraints (2)-(8), are established the sets of constraints (15)-(20) for modeling 
the OVRP for backhaul routes (BOVRP). The set of constraints (21) ensures that the number of arcs 
leaving the depot is equal to the number of arcs coming to depot. Comparing (21) and (8) one can see 
that the number of linehaul arcs leaving the depot may be different from the number of backhaul arcs 
arriving at the depot. This case occurs when there are tie-arcs between a linehaul route and the depot. 

The sets of constraints (9)-(14) represent the limitations of EVs when crossing a route of LCs. The 
constraints (9) and (10) guarantee the fulfillment of the distance balance constraint on a LCs route, which 
is necessary for the calculation of the accumulated distance at the moment of crossing every arc (𝑖, 𝑗) of 
the optimal solution. Similarly, constraints (22) and (23) guarantee the fulfillment of the distance balance 
constraint on a BCs route, and (28) and (29) do the same for the set of vertices that are CPs. 

The sets of constraints (11) and (12), ensure that when an arc between LCs or a tie-arc is crossed, 
respectively, the maximum capacity of the vehicles battery, in terms of distance, is not exceeded. 
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Similarly, the sets of constraints (24) and (30) verify compliance with this same electrical capacity 
constraint when an arc between BCs or between a CP and a BC is crossed, respectively. 

The set of equations (13) ensures that the EV leaves the depot with the battery fully charged. The return 
to the depot is always done through a tie-arc or an arc coming out of a backhaul node. Therefore, the 
constraints (14) ensure that the battery charge is sufficient to return to the depot through a tie-arc. The 
constraints (25) do this same verification when the EV returns to the depot through an arc that leaves a 
node backhaul. 

The set of equations (26) imposes that the number of arcs arriving and leaving a CP is the same, 
considering two situations: i) that a tie-arc from an LC or BC can arrive at a CP and ii) that from a CP an 
arc can only be connected to a BC. The direct return from a CP to the depot is not allowed since the 
objective is to take advantage of the total charge of the EV to make a backhaul route, and not only to 
return to the depot. Note that this constraints are similar to (18), which impose that exactly one arc leaves 
each BC visited. In (18) two situations are considered: i) that an arc that arrives at a BC can only come 
from another BC, from a tie-arc that leaves an LC or from a CP, and ii) that an arc from a BC can only 
be connected to another BC or to the depot. 

Finally, the constraints (31) ensure that only one of the two variables 𝑠  or 𝑠  be used. Constraints (32) 
and (33) define all binary decision variables, and constraints (34) define the real variables. The 
mathematical model (1)-(34) can represent the classic VRPB, when the capacity of the battery is not 
considered (𝐸  large enough). 

4. Proposed model for the EVRPB  
 
The computational results obtained on several test instances, show that some cases configure a highly 
restricted problem, where obtaining a feasible integer initial solution requires high computational times. 
This can be evidenced in Tables 1 and 2, in Section 5. Thus, the purpose of the initialization phase is to 
quickly find a feasible integer initial solution through an efficient heuristic algorithm in order to provide 
an initial upper bound to the exact algorithm used by the commercial solver. 

An iterated local search (ILS) algorithm is used as an initialization methodology, whose main 
characteristic is to apply inter-route and intra-route movements to explore the search space generated by 
the solution encoding strategy. One of the key aspects in the implementation of an efficient ILS is to 
properly define the solution encoding strategy. In the TSP, for example, a sequence or permutation of 
customers turns out to be a natural and efficient representation of a feasible solution to the problem, 
which provides the order in which the customers (cities) should be visited and does not require additional 
processes of feasibility or split. In the context of the VRP, Prins (2004) presents an optimal splitting 
procedure (OSP) of a permutation, which in a simple and efficient way allows to obtain a solution 
conformed by feasible routes that leave and arrive at the depot. The algorithm consists of transforming 
the VRP into the shortest path problem (SPP) using an auxiliary graph constructed from the evaluation 
of all possible routes resulting from following the sequence given by the permutation. Therefore, a 
permutation generates multiple feasible solutions to the VRP, but only the best of them is chosen through 
the optimal solution of the SPP. Finally, the feasibility of each route in the VRP is determined by 
compliance with two constraints: i) vehicle capacity and ii) maximum distance traveled. 

In this paper, the encoding of a solution of the EVRPB is done through a sequence of customers without 
trip delimiters and a modified OSP is used to decode it. 
 
4.1. Initial solution 
 
In the context of the EVRPB, a randomly generated permutation (solution) can cause a conflict with the 
existing precedence constraint; e.g., if the first element of the permutation corresponds to a BC then the 
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solution is infeasible because trips leaving the depot directly to BC are not allowed. The same happens 
when the first element of the permutation corresponds to a CP. 

To improve the robustness of the initial solution, a greedy strategy is proposed, where the objective is to 
obtain a quick and simple solution that prioritizes the following conditions: i) the trip starts with an LC, 
ii) from a vertex 𝑖, the nearest vertex 𝑗 must be chosen as destination, where 𝑗 ∈ 𝐶 : 𝑗 =min 𝑀 ,   ∀𝑖 ∈ 𝐶𝑢 , and iii) the compliance of the battery autonomy constraint must be guaranteed. The 
general structure of the strategy is shown in Algorithm 1. 
 
Algorithm 1. Greeddy strategy pseudo code 
Input: EVRPB 10:  else {𝑗 ∈ 𝐿}   

Output: Initial solution Π 11:  
From the vertex j, identify the 
nearest vertex 𝑁𝑉 ∈   𝑉 

1: 𝑛 ← |𝐶 |   12:  end if 
2:  𝑗 ← pick a random linehaul customer from L 13:  𝐴𝐷 ← 𝐴𝐷 + 𝑀 ,  
3: Set the accumulated distance 𝐴𝐷: = 0 14:  𝑗 ← 𝑁𝑉 
4: Set Π: = 𝜙 15:  if (𝐴𝐷 ≥ 𝐸 ) and (𝑉 ≠ 𝜙) then 
5: for i = 1 to n do 16:  𝐴𝐷 ← 0 

6:  Π ← 𝑗   17:  𝑗 ← pick a random vertex from V     
7:  𝑉 = 𝑉 − {𝑗} 18:  end if 
8:  if 𝑗 ∈ 𝐵 ∪ 𝐾   then 19: end for 

9:    
From the vertex j, identify the 
nearest vertex 𝑁𝑉 ∈   𝐵 ∪ 𝐾 20: return Π 

 
4.2. Optimal splitting procedure with backhaul (OSPB) 
 
The main characteristic of the proposed OSPB is that, in addition to feasibility criteria based on the 
vehicle capacity, the following are also considered: i) the autonomy of the battery, ii) the precedence 
constraint, and iii) the minimum number of vehicles given in advance. 

Given a solution Π = 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝐶 ), then obtaining the value of the fitness function requires the 
construction of an auxiliary graph 𝐻 = (𝑉, 𝐴′, 𝑇). 𝑉 is the set of vertices indexed from 0 to |𝐶 |. 𝐴′ is the 
arc set, where each arc(𝑖, 𝑗) represents a feasible trip in which the EV departs from node 0 (depot) and 
visits nodes 𝑖 + 1, 𝑖 + 2, 𝑖 + 3, … , 𝑗 − 1, and 𝑗, consecutively. Thus, the feasible trip visiting vertices 𝑣 = Π  to 𝑤 = Π , in the order they are in Π, is denoted as 𝑇 , ∈ 𝑇. The set 𝐴′ can contain a maximum 
number of trips 𝑛𝑡 = |𝐶 |(|𝐶 | − 1). Thus, 𝑇 is the set of trips, where a trip 𝑇 ,  is conformed, in turn, 
by 𝑢 vertices, which can be LCs, BCs and/or CPs, arranged in any order. The trip distance associated 
with arc(𝑖, 𝑗), 𝑧 , , is calculated according to the following equation: 
 𝑧 , = 𝑀 , + 𝑀 , + 𝑀 ,  

(35) 

 
However, there are different conditions that must be fulfilled so that a trip of the auxiliary graph is 
feasible and so that, in turn, there is a feasible solution to the SPP. 
 

4.2.1.   Trip feasibility 
 

Constraints of precedence and vehicle capacity: according to the precedence constraint, a necessary 
condition for a trip 𝑇 ,  to be feasible is that the first vertex corresponds to an LC. Additionally, a trip is 
still feasible if the first 𝑡 ≤ 𝑢 customers of the trip 𝑇 ,  are LCs (see condition (36)) and the sum of their 
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demands, 𝐷𝐿 , , does not exceed the capacity of the vehicle (see constraint (38)). Another necessary 
conditions for trip feasibility is that after visiting the LCs only BCs or CPs can be visited (see condition 
(37)) and the sum of their demands, 𝐷𝐵 , , does not exceed the capacity of the vehicle (see constraint 
(39)). {𝑣, Π , Π , … , Π } ⊆ 𝐿 (36) {Π , Π , … , 𝑤} ⊆ {𝐵 ∪ 𝐾} (37) 

𝐷𝐿 , = 𝐷 ≤ 𝑄 
 

(38) 

𝐷𝐵 , = 𝐷 ≤ 𝑄 
 

(39) 

Battery autonomy constraint: the trip 𝑇 ,  may contain 𝑐 charging points in positions {𝑞 , 𝑞 , … 𝑞 }, 𝑞 <𝑞 < ⋯ < 𝑞 . When an EV visits a CP its battery is fully charged, which implies that the battery 
consumption, in terms of distance, is equivalent to the maximum distance, 𝐸𝐷 , , traveled between CPs 
(including the depot). Therefore, the autonomy of the battery is guaranteed with the constraint (40). 

𝐸𝐷 , = max 𝑀 , + 𝑀 , ;    𝑀 , ;  … 𝑀 , + 𝑀 , ≤ 𝐸  

 
(40) 

4.2.2.   Construction of the auxiliary graph 
 

A simple example with three LCs, 𝐿 = {1,2,3}, three BCs, 𝐵 = {4,5,6}, and three CPs, 𝐾 = {7,8,9} is 
given in Fig. 4, which shows different types of solutions, in the EVRPB context, that can be obtained 
from the decoding of a permutation. Fig. 4a shows a grand tour, given by the permutation Π ={3,2,7,6,1,8,4,9,5}, that starts and ends at the depot. This solution can be obtained directly from the 
sequence given by the permutation without the need for a split procedure. Note that this initial 
permutation can be obtained using Algorithm 1. It is assumed that all the arcs have a distance of 20 km, 
except 𝑀 ,  = 50 km. Additionally, it is considered that 𝑀 , = 20𝑘𝑚  ∀𝑗 ∈ 𝑉, 𝐸 = 60 and 𝑄 = 15. 
Fig. 4a shows in parentheses the quantity of products that will be delivered in the LCs or that will be 
collected in the BCs. Fig. 4b shows a feasible solution of EVRPB consisting of two routes. This solution 
is feasible because the load capacity of the vehicle is not exceeded and the autonomy of the battery is 
guaranteed with the charge points 7 and 8. However, despite complying with the two previous capacity 
constraints, an infeasible solution can be obtained when there is a trip from the depot to a BC, as shown 
in Fig. 4c. The step-by-step construction of the auxiliary graph is shown in Fig. 5. 
 

   
(a) Grand tour (b) Feasible solution (c) Infeasible solution 

Fig. 4. Types of solution 
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(a) Step One: express delivery to a LC (b) Step Two: feasible trips from the permutation 

  
(c) Step three: infeasibility reduction by shifting a CP (d) Step four: infeasibility reduction by pickup 

express to an BC 

Fig. 5. Construction of the auxiliary graph 
 
Initially, in step one shown in Figure 5a, all feasible trips that leave the depot, go to a LC and return to 
the depot are considered and stored in 𝐴′. For example, the trip 𝑇 ,  of the auxiliary graph corresponds 
to an EV that leaves the depot, travels 20 km to the LC, delivers 15 units of product and travels another 
20 km back to the depot. In this step, the depot is the origin vertex of the SPP and corresponds to the 
vertex i+1 in the auxiliary graph. Thus, the trip is characterized by a total distance of 40 km, a battery 
consumption of 40 km , 15 units delivered and 0 collected (𝑇 , : (40,40,15,0)). This trip is feasible in 
terms of: battery life span compared to the distance traveled (see (40)), vehicle capacity (see (39) and 
(38)) and precedence constraint (see (36) and (37)). 

Then, in step two (see Figure 5b), all feasible trips are obtained, following the sequence given by the 
solution Π. For example, the trip 𝑇 ,  corresponds to a feasible trip consisting exclusively of LCs; the 
trip 𝑇 ,  is not considered because a return to the depot from a CP is not allowed; the trip 𝑇 ,  (see Figure 
4b) corresponds to a feasible trip with a path 𝑧 , = 100, a maximum battery consumption 𝐸𝐷 =max{60,40} = 60 ≤ 𝐸 , and 15 units delivered and 10 collected (𝑇 , : (100,60,15,10)). Note that a 
trip leaving the depot to a vertex 𝑗 ∈ 𝐵 ∪ 𝐾 is infeasible since it is not allowed to go directly from the 
depot to a BC or a CP. All feasible trips found in this step are added to 𝐴′. 
 
4.2.3.   Feasibility of the SPP 
 
Of all the possible trips of a Π solution, only a percentage is feasible and they make up the arc set 𝐴′ of 
the auxiliary graph. However, in the EVRPB, obtaining a feasible solution from the SPP may not be 
possible since, eventually, the auxiliary graph may be disconnected. Note that, in Figure 5b, the trip 𝑇 ,  
is infeasible by battery autonomy, which produces an infeasible graph for the SPP, since there is not at 
least one path between the depot and the last vertex of the permutation. Therefore, the next two steps 
consist of a process of reduction of infeasibility, which are applied sequentially until obtaining a feasible 
auxiliary graph for the SPP. 

Step three: if there is a CP in the position 𝑘 of the permutation that does not belong to a trip, in 
concordance with the condition (41), then this CP is shifted to the first position of the permutation. Π ∈ 𝐾: ∀ ∈ 𝐴 , = 0 (41) 

Thus, the original permutation is modified and denoted as Π = {9,3,2,7,6,1,8,4,5}. 
 
It is important to note that this step, implicitly, corresponds to a particular case of a well-known 
neighborhood structures so-called INSERT, which consists of removing the customer at the 𝑖𝑡ℎ position 
from the permutation and then inserting it into the 𝑗𝑡ℎ position, 𝑖 ≠ 𝑗. This case is illustrated in Figure 
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5c. Note that the depot is still the origin vertex of the SPP and becomes the vertex 𝑖 + 2 in the auxiliary 
graph after the CP is shifted.  

More generally, the EV departs from node 0 and visits nodes 𝑖 + 𝑂𝑟𝑖𝑔𝑖𝑛, 𝑖 + 𝑂𝑟𝑖𝑔𝑖𝑛 + 1, 𝑖 + 𝑂𝑟𝑖𝑔𝑖𝑛 +2, … , 𝑗 − 1, and 𝑗, consecutively, considering that 𝑂𝑟𝑖𝑔𝑖𝑛 = 0 for the initial permutation Π and 𝑂𝑟𝑖𝑔𝑖𝑛 =𝑂𝑟𝑖𝑔𝑖𝑛 + 1 each time a CP is shifted. Therefore, 𝐴′ contain one arc (𝑖, 𝑗), 𝑖 < 𝑗, if a trip from 𝑣 =Π  to 𝑤 = Π  is feasible. 

Step four: if there is still a vertex 𝑏 of the permutation that does not belong to a trip, in concordance with the 
condition (42), then, exclusively for this BC, an express pickup with a very high distance traveled value is allowed 
(big M), as shown in Figures 4c and 5d with the trip 𝑇 , . The value of M is defined as the total distance traveled 
by the grand tour. Π ∈ 𝐵: ∀ ∈ 𝐴 , = 0 (42) 

 
4.2.4.   Integrated algorithm for the optimal split with backhaul 
 
The integration of all the steps, described above, allows building a connected auxiliary graph enabled to 
generate a feasible solution to the SPP. However, this solution could eventually be unfeasible for the 
EVRPB due to the need of creating a highly penalized arc in the auxiliary graph, corresponding to a 
direct trip from the depot to a BC (express pickup). The general structure of the OSPB strategy is shown 
in Algorithm 2. A binary variable F = 0 is used to indicate that the SPP solution is infeasible for the 
EVRPB (see line 13). When this happens, it is necessary to implement an infeasibility improvement 
process, for which, we propose a simple iterated local search technique. 
 
Algorithm 2.  OSPB pseudo code 
Input: EVRPB, Initial solution Π      6:  Π ← 1 apply step three to Π    % Section (4.2.3) 

Output:  7:  𝑂𝑟𝑖𝑔𝑖𝑛 ← 𝑂𝑟𝑖𝑔𝑖𝑛 + 1 

 𝑇 : set of solution trips to the SPP 8:  [𝐴′, 𝑇] ← apply steps one and two to Π  

 𝐹 : value of the SPP objective function 9:  Π ← Π  

 𝐹: binary variable, where 𝐹 = 1 if the solution is feasible 10: end while 

 Π: permutation that can eventually be modified in step three 11: while there are BCs disconnected according to (42) do 
1: 𝐹 ← 1    %Initially, feasibility is assumed 12: [𝐴′, 𝑇] ← apply step four to Π    % Section (4.2.3) 

2: 𝑂𝑟𝑖𝑔𝑖𝑛 ← 1    %SPP origin vertex 13: 𝐹 ← 0    %Infeasible solution (express pickup to a BC) 
3: [𝐴′, 𝑇] ← apply steps one and two to Π    %Section (4.2.2) 14: end while 
4: return Π 15: [𝑇 , 𝐹 ] ← 𝑆𝑃𝑃(𝑉, 𝐴′, 𝑇, )    % SPP Solution can be 

computed in 𝑂(𝑛 ) ((See Cormen et al. (2001)).).   5: while there are CPs disconnected according to (41) do  
   16: return 𝑇 ,𝐹 , 𝐹, Π 

 
4.3. Iterated local search 
 
The OSPB proposed makes it possible for the EVRPB to be coded through a permutation and, therefore, 
many heuristic and metaheuristic strategies can be implemented easily to obtain efficient solutions. 
However, our objective is to present a simple technique based on local search that allows to obtain 
quickly a feasible integer solution of the EVRPB, that can be used as the upper limit in the solution of 
the larger and more complex instances when they are resolved through the proposed MIP model. 

The iterated local search technique (ILS) is a method that uses a two-phase search approaches. In the first 
phase, denoted as exploration, a sequence of solutions is generated by applying perturbations to the 
current best solution. In the second phase, denoted as intensification, the current best solution is refined 
using an embedded heuristic strategy that allows to generate quality neighbors. The main objective of 
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the ILS is to obtain better results than the ones obtained using repeated random trials of that heuristic 
strategy. Interested readers are directed to Stützle (1999); Martin et al. (2003). 

The pseudo code of the ILS proposed is illustrated in the Algorithm 3. In the line 4 of the algorithm it is 
established that while the solution is infeasible, for the EVRPB, typical and simple neighborhood 
structures will be applied to achieve feasibility. There are a large number of neighborhood structures 
developed by several authors (Taillard, 1993). However, all of them are basically generated by two types 
of moves, so-called SWAP and INSERT (Van Breedam, 1994). In lines 5 and 6 of the algorithm these 
two types of movements are considered. In line 5, of the Algorithm 3, the SWAP movement is applied 
as a disturbance strategy. The SWAP is swapping the customers at the 𝑖𝑡ℎ position and the 𝑗𝑡ℎ position 
in the permutation, 𝑖 ≠ 𝑗.  

In step three of the OSPB shown in the Algorithm 2, the INSERT movement was applied implicitly, 
seeking an infeasibility improvement in the current solution. Therefore, in line 6 of the Algorithm 3 the 
INSERT movement is also used. 
Algorithm 3.   ILS pseudo code 
Input: EVRPB      7:  if 𝐹 < 𝐹  then {acceptance criteria} 

Output:  S: set of arcs of the feasible integer solution for the EVRPB 8:   Π ← Π  
1: 𝐹 ← 1    %Initially, feasibility is assumed 9:   𝐹 ← 𝐹  

2: Π ←   Greddy strategy (see Algorithm 1) 10:  end if 
3: [𝑇 , 𝐹 , 𝐹, Π] ← OSPB(Π)    (see Algorithm 2) 11: end while 
4: while F==0 do {the solution is unfeasible} 12: 𝑆 ←  Arcs that make up the trips of 𝑇  
5:  Π ← SWAP(Π) 13: return 𝑆 
6:  𝑇 , 𝐹 , 𝐹, Π ← OSPB(Π )   

 
 
5. Computational results  
 
The proposed model corresponds to a MILP formulation and was implemented in AMPL 
(Foureretal,1990) and solved with GUROBI 6.5 (called with the optimal gap option equal to 0%), with a 
time limit of 14400 seconds, on a computer intel core i5-4210 2,4 Ghz, 4 GB of RAM. Two datasets of 
scenarios are used in order to show the operation and effectiveness of the proposed formulation. The first 
dataset, denoted as GJ dataset, was proposed by Goetschalckx and Jacobs-Blecha (1989) and contains 
62 instances with a range between 20 and 150 customers. Details on how these scenarios were generated 
can be consulted in (Toth and Vigo, 2002). The second dataset, denoted as TV dataset, was proposed by 
Toth and Vigo (1997) and contains 33 instances between 21 and 100 customers. All the instances were 
kept with their original data, only the locations of the charging points of the set 𝐾 were added. The set of 
test instances for the EVRPB can be downloaded from 
http://academia.utp.edu.co/planeamiento/sistemas-de-prueba/. 

Additionally, two types of results are presented. In order to show the efficiency of the proposed model, 
the first type of results corresponds to the direct solution of the MILP model using a commercial solver 
only. Because by making the battery life very long the proposed model can represent the standard VRPB, 
then a comparison of the our results versus the best-known solution (BKS) reported in the literature for 
the VRPB is presented too. The second type of results shows the performance of the ILS technique in 
those cases in which optimality was not reached in the direct EVRPB solution. In Table 1 and Table 2, 
the results for the VRPB using the GJ and TV datasets, respectively, are compared with those obtained 
by earlier methods, which are the stateof-the-art methods for VRPB instances from the literature (Toth 
and Vigo (1997); Mingozzi et al. (1999); Ropke and Pisinger (2006)). In Table 1, we give in columns 1-
7: the problem name, the number of LCs, the number of BCs, the number of CPs, the capacity of the 
vehicle and the autonomy of the battery, respectively. The BKS obtained by earlier methods are presented 
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in column 8. These methods correspond to the heuristic algorithm (HA) proposed by Ropke and Pisinger 
(2006), to the exact algorithm (TV) proposed by Toth and Vigo (1997) and to the exact algorithm (EHP) 
proposed by Mingozzi et al. (1999). The Euclidean distances were rounded to one decimal and the final 
result was rounded to an integer. 

Table 1  
Computational results for the VRPB cases from Goetschalckx and Jacobs-Blecha (1989)    

Instance    MILP-VRPB MILP-EVRPB 
Id   n   m   k   𝐾  Q  𝐸   BKS Sol.  𝐾   Gap   Time   Sol.   𝐾   𝐾  Gap   𝑡    𝑡   
A1   20  5   8   8   1,550   32,000   TV :  229,886  229,886 5 0.00  1.85  238,725 5  3  0.00  1.61 45 
A2   20  5   7   5   2,550   35,000   TV :  180,119  180,119 4 0.00  2.70  196,755 5  2  0.00  0.02 212 
A3   20  5   3   4   4,050   38,000   TV :  163,405  163,405 4 0.00  0.02  188,439 5  1  0.00  0.03 19 
A4   20  5   5   3   4,050   50,000   TV :  155,796  155,796 3 0.00  1.24  161,438 3  1  0.00  0.05 8 
B1   20  10  3   7   1,600   40,000   TV :  239,080  239,080 6 0.00  16.35  249,239 7  2  0.00  0.06 350 
B2   20  10  6   5   2,600   30,000   TV :  198,048  198,048 5 0.00  12.14  210,792 5  3  0.00  204.25 506 
B3   20  10  7   3   4,000   45,000   TV :  169,372  169,372 3 0.00  0.05  169,634 3  2  0.00  0.35 1 
C1   20  20  5   7   1,800   35,000   TV :  249,448  250,557 7 0.00  22.00  253,276 7  3  0.00  32.61 642 
C2   20  20  7   5   2,600   34,000   TV :  215,020  215,020 5 0.00  24.82  219,450 5  4  0.00  101.02 699 
C3   20  20  7   5   4,150   30,000   TV :  199,346  199,346 4 0.00  0.37  220,125 5  5  0.00  48.05 487 
C4   20  20  8   4   4,150   35,000   TV :  195,366  195,366 4 0.00  0.35  205,365 4  3  0.00  101.03 351 
D1   30  8   9   12  1,700   30,000   TV :  322,530  322,530 6 0.00  28.04  333,623 5  4  0.00  400.57 11,250 
D2   30  8   5   11  1,700   38,000   TV :  316,709  316,709 6 0.00  407.00  318,253 6  2  0.00  890.95 4,500 
D3   30  8   6   7   2,750   35,000   TV :  239,479  239,479 4 0.00  7.04  264,332 7  4  0.00  10.62 316 
D4   30  8   7   5   4,075   38,000   TV :  205,832  205,832 4 0.00  28.01  214,203 5  3  0.00  42.61 61.05 
E1   30  15  5   7   2,650   45,000   TV :  238,880  238,880 4 0.00  11.00  241,088 4  2  0.00  122.32 9,240 
E2   30  15  5   4   4,300   48,000   TV :  212,263  212,263 4 0.00  3.11  214,072 4  2  0.00  1.08 46.52 
E3   30  15  8   4   5,225   40,000   TV :  206,659  206,659 3 0.00  24.17  216,350 4  4  0.00  634.26 1,290 
F1   30  30  5   6   3,000   58,000   TV :  263,173  263,173 6 0.00  539.00  264,565 6  0  0.00  2,233.20 9,800 
F2   30  30  7   7   3,000   35,000   TV :  265,213  265,213 7 0.00  47.00  268,600 7  4  0.00  2,312.59 4,350 
F3   30  30  10  5  4,400   40,000   TV :  241,120  241,120 5 0.00  12.00  246,297 5  4  0.00  1,709.05 4,000 
F4   30  30  10  4  5,500   48,000   TV :  233,861  233,861 4 0.00  15.00  235,224 4  3  0.00  150.02 2,900 
G1   45  12  7   10  2,700   50,000   EHP : 306,305  306,305 6 0.00  6,268  308,779 6  0  2.98  1,628.21 14,400 
G2   45  12  3   6   4,300   46,000   TV :  245,441  245,441 4 0.00  72.00  265,498 4  1  8.78  2,304.00 14,000 
G3   45  12  5   5   5,300   45,000   TV :  229,507  229,507 4 0.00  60.64  252,495 4  1  11.68  2,498.62 14,000 
G4    45  12  2   6   5,300   50,000   HA:  232,521  232,521 4 0.00   14.56  262,976 6  0  8.87  2,265.32 14,400 
G5   45  12  7   5   6,400   58,000   TV :  221,730  221,730 4 0.00  24.13  225,600 4  1  0.00  1,120.21 13,954 
G6   45  12  3   4   8,000   55,000   TV :  213,457  213,457 4 0.00  5.89  225,829 4  2  1.33  1,278.00 14,400 
H1   45  23  4   6   4,000   54,000   TV :  268,933  268,933 4 0.00  158.00  269,652 5  0  0.00  140.00 13,900 
H2   45  23  4   5   5,100   60,000   TV :  253,365  253,365 4 0.00  4.02  255,964 5  0  0.00  21.04 38.06 
H3   45  23  4   4   6,100   60,000   TV :  247,449  247,449 4 0.00  1.06  253,316 4  1  0.00  64.01 6,225 
H4   45  23  6   5   6,100   50,000   TV :  250,221  250,221 4 0.00  1.95  257,848 5  1  0.00  18.03 915.01 
H5   45  23  5   4   7,100   60,000   TV :  246,121  246,121 4 0.00  0.17  253,294 4  1  0.00  140.01 1,091 
H6   45  23  5   5   7,100   50,000   TV :  249,135  249,135 4 0.00  0.67  257,670 5  1  0.00  14.00 1,760 
I1   45  45  5   10  3,000   56,000   HA:  350,246  350,246 10 1.05  14,400  351,553 10  0  2.60  2,332.21 14,400 
I2   45  45  9   7   4,000   58,000   EHP : 309,943  309,943 7 0.00  2,857  309,943 7  0  0.00  180.00 12,961 
I3    45  45  10  5  5,700   55,000   HA:  294,507  294,507 5 0.00   3,897  296,676 5  2  0.00  105.08 12,684 
I4    45  45  8   6   5,700   55,000   EHP:  295,988  295,988 6 0.00   137.89  297,067 6  1  0.00  1,221.00 4,710 
I5    45  45  8   7   5,700   45,000   HA:  301,236  301,236 7 0.00   44.97  301,738 7  1  0.00  1,676.05 3,328 
J1   75  19  7   10  4,400   45,000   EHP:  335,006  335,006 8 2.44  14,400  349,639 8  0  9.43  1,232.00 14,400 
J2   75  19  8   8   5,600   70,000   HA:  310,417  310,801 8 2.11  14,400  315,408 8  0  4.95  2,300.01 14,400 
J3    75  19  11  6   8,200   55,000   HA:  279,219  279,219 6 0.00   123.15  279,272 6  1  0.00  0.09 346.32 
J4   75  19  6   7   6,600   65,000   HA:  296,533  296,945 7 3.03  14,400  299,376 6  0  5.94  1,260.32 14,400 
K1   75  38  12  10  4,100   45,000   HA:  394,376  394,071  9 1.38  14,400  452,086 9  3  15.40  1,800.21 14,400 
K2    75  38  10  8   5,200   55,000   HA:  362,130  362,130 7 0.00   5,617  381,504 8  0  8.31  2,804.65 14,400 
K3    75  38  14  9   5,200   48,000   EHP:  365,694  365,694 7 0.00   4,985  378,576 6  1  6.98  3,000.00 14,400 
K4    75  38  6   7   6,200   62,000   HA:  348,950  348,950 6 0.00   6,530  378,049 6  3  10.30  1,200.54 14,400 
 BKS: best known solution values reported by first time. 
 MILP-VRPB: results for the MILP proposed model, considering an unlimited autonomy of the battery. 
 MILP-EVRPB: results for the EVRPB using the MILP proposed model. 
 𝐾 : number of available vehicles to use (given in advance) 
 𝐾 : number of vehicles performing routes conformed by linehaul and backhaul customers. 
 𝐾 : number of charge points visited by the electric vehicles. 
 Gap (%): percentage gap is calculated as (𝑧 − 𝐿𝐵)/𝐿𝐵. 
 𝑡 : computing time until finding the first feasible integer solution. 𝑡 : overall computing time. 
  : optimality proven for the first time.  : new BKS. 
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Table  2  
Computational results for the VRPB cases from Toth and Vigo (1997)    

Instance      MILP-VRPB (𝐸 ⟶ ∞)    MILP-EVRPB  
Id   n  m   k   𝐾    Q   𝐸    BKS   Sol.   𝐾    Gap   Time   Sol.   𝐾    𝐾    Gap   𝑡    𝑡   

EIL2250A  11   10   2   3   6,000  120  TV :   371   371   3   0.00   0.01   379   3   1   0.00  0.02  1  
EIL2266A  14   7   2   3   6,000  100  TV :   366   366   3   0.00   0.01   430   3   2   0.00  0.04  15  
EIL2280A  17   4   4   3   6,000  100  TV :   375   375   3   0.00   0.01   394   2   2   0.00  5.04  30  
EIL2350A  11   11   5   2   4,500  250  TV :   682   682   2   0.00   0.01   706   2   2   0.00  0.01  2  
EIL2366A  15   7   4   2   4,500  250  TV :   649   649   2   0.00   0.01   667   2   1   0.00  0.03  5  
EIL2380A  18   4   3   2   4,500  200  TV :   623   623   2   0.00   0.01   671   2   1   0.00  0.01  2  
EIL3050A  15   14   4   2   4,500  250  TV :   501   501   2   0.00   0.01   506   2   1   0.00  4.91  50  
EIL3066A  20   9   7   3   4,500  200  TV :   537   537   3   0.00   0.30   537   3   0   0.00  1.87  25  
EIL3080A  24   5   4   3   4,500  180  TV :   514   514   3   0.00   0.30   518   3   1   0.00  1.82  20  
EIL3350A  16   16   5   3   8,000  300  TV :   738   738   2   0.00   0.14   742   2   1   0.00  0.01  1  
EIL3366A  22   10   3   3   8,000  250  TV :   750   750   2   0.00   0.38   758   2   2   0.00  1.02  2  
EIL3380A  26   6   4   3   8,000  300  TV :   736   736   3   0.00   7.31   859   3   0   0.00  0.03  1  
EIL5150A  25   25   5   3   160  250  TV :   559   559   3   0.00   1.80   559   3   0   0.00  2.01  5  
EIL5166A  34   16   7   4   160  150  TV :   548   548   4   0.00   2.01   553   4   1   0.00  10.56  58  
EIL5180A  40   10   6   4   160  200  TV :   565   565   3   0.00   26.11   569   3   1   0.00  2.51  3,250  
EILA7650A  37   38   4   6   140  350  TV :   739   739   6   0.00   64.21   760   6   0   0.00  18.52  747  
EILA7666A  50   25   5   7   140  350  TV :   768   768   6   0.00   743.00   768   6   0   0.00  2.09  10,820  
EILA7680A  60   15   4   8   140  200  TV:   781   781   5   0.99   14,400   802   5   1   5.80  328.21  14,400  
EILB7650A  37   38   5   8   100  120  TV :   801   801   7   0.00   40.96   812   7   2   0.00  2.08  12,850  
EILB7666A  50   25   5   10   100  450  TV :   873   873   8   0.94   14,400   873   8   0   2.50  3.01  14,400  
EILB7680A  60   15   8   12   100  450  TV :   919   933   6   3.92   14,400   934   5   1   5.40  2.10  14,400  
EILC7650A  37   38   6   5   180  150  TV :   713   713   5   0.00   8.64   720   5   0   0.00  22.00  13,521  
EILC7666A  50   25   2   6   180  120  EHP   734   734   6   0.00   185.00   763   6   1   0.00  10.01  9,800  
EILC7680A  60   15   5   7   180  350  TV:   733   733   5   1.50   14,400   747   4   1   4.62  2.01  14,400  
EILD7650A  37   38   6   4   220  150  TV :   690   690   4   0.00   6.03   703   4   3   0.00  3.03  653  
EILD7666A   50   25   10   5   220  150  TV:   715   715   5   0.00    32.54   721   5   1   0.00  12.09  4,015  
EILD7680A   60   15   5   6   210  170  EHP:   694   694   4   0.00    845.00   701   5   0   0.00  4.54  12,800  
EILA10150A   50   50   6   4   200  450  HA:   831   831   4   0.00    938.00   844   5   1   3.18  3.63  14,400  
EILA10166A  67   33   5   6   200  180  TV :   846   846   6   0.00   6.00   851   6   1   0.00  2.32  1,750  
EILA10180A  80   20   7   7   200  100  HA:   857   859   6   0.82   14,400   938   5   4   9.41  6.38  14,400  
EILB10150A   50   50   8   7   112  240  HA:   925   923    7   0.00    792   983   7   0   10.60  3,900  14,400  
EILB10166A  67   33   3   10   112  200  HA:   989   971    8   2.99   14,400   984   8   0   5.53  10.91  14,400  
EILB10180A  80   20   7   11   112  850  HA:   1,008   1013   9   1.46   14,400   1,023  8   0   5.20  28.00  14,400  
 The nomenclature of this table is the same as that presented in Table 1.  
 

In columns 9-12 the characteristics of the solution for the standard VRPB are presented. The solution obtained by 
solving the MILP model are presented in column 9. Column 10 shows the number of vehicles 𝐾  performing 
routes conformed by linehaul and backhaul customers. Thus, 𝐾 − 𝐾  is the number of vehicles performing routes 
conformed by linehaul customers exclusively (see Figure 6). Columns 11 and 12 show the percentage gap and 
computing time (expressed in CPU seconds), respectively. In columns 13-18 the results obtained by solving the 
MILP model for the EVRPB are presented. The number of recharging points (𝐾 ), used to recharge the EV 
batteries, are presented in column 15. Columns 17 and 18 show, respectively, the time it takes for the solver to 
find the first feasible integer solution and the total computation time until reaching the reported solution. 

Regarding the standard VRPB, when 𝐸  is considered large enough, the optimality for the GJ dataset was proved 
for the first time for 8 instances. One new best-known solutions was found for the instance k1. Optimality was 
achieved in 42 of the 47 scenarios (see Table 1). For the TV dataset the optimality of 4 TV instances is proven for 
first time. Two new best-known solutions were found considering both heuristic methods and exact methods. 
Optimality was achieved in 27 of the 33 cases (see Table 2). As can be seen from the computational results, the 
proposed model produces high quality results, obtaining equal or better upper bounds in all instances, and the final 
lower bounds prove stronger than those obtained by earlier methods. 

Regarding the EVRPB, the optimality for the GJ dataset was achieved in 34 of the 47 intances and for the TV 
dataset, the optimality was achieved in 24 of the 33 intances. It is interesting to note that in some instances the 
number 𝐾  is 0, which implies that the EVs did not have the need to visit CPs. However, in some of these cases, 
such as the instance H1, the optimal solution found for the EVRPB differs from that found for the VRPB. This 
happens because, in the case of the EVRPB, the autonomy of the battery forces the model to generate a different 
solution, even using a different number of vehicles 𝐾 , with an objective function of greater value. 

Note that among the instances for which it was not possible to achieve optimality, the instances G1, G2, G3, G4, 
G6, I1, J1, J2, J4, K1, K2, K3, K4, EILA7680A and EILB10150A present the longest times 𝑡 . Therefore this set 
of instances is quite interesting to be addressed with the initialization methodology based on ILS. Table 3 shows 
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a comparison of the computational results obtained with the proposed mathematical model, the ILS technique and 
the model with initialization methodology. It can be seen that the proposed ILS technique is quite efficient to find 
a feasible integer solution in a short time, as shown in columns 6 and 7 of the table. However, in 14400 seconds 
the ILS technique, by itself, fails to achieve the results obtained with the exact model, as observed when comparing 
columns 2 and 5 of the table. Finally, when the first feasible integer solution (FFIS) found efficiently by the ILS 
method is used, the results obtained in 14400 seconds surpass all the previous ones, as can be seen in columns 8 
and 9 of the table. Note that for the G6 instance the methodology reached optimality. The detailed routes of the 
optimal solution of this instance are shown in Figure 6. In Table 4, the detailed routes of the solutions of the 
aforementioned instances for the EVRPB are shown. 

 Table 3  
Comparison of the computational results obtained with the proposed mathematical model, the ILS technique and 
the model with initialization methodology 

 MILP-EVRPB from Tables 1 and 2  ILS   MILP-EVRPB with initialization methodology   
Instance  Sol . Gap (%)  𝑡  Sol . FFIS  𝑡   Sol .  Gap (%)  𝑡   

G1  308,779 2.98  1,628.21  356,854 401,562  0.02  307,965  1.63  14,400  
G2  265,498 8.78  2,304.00  368,951 427,632  0.01  262,126  7.20  14,400  
G3  252,495 11.68  2,498.62  321,458 456,554  0.01  248,214  6.67  14,400  
G4  262,976 8.87  2,265.32  314,284 434,842  0.08  261,306  8.12  14,400  
G6  225,829 1.33  1,278.00  327,773 417,266  0.95  224,966  0.00  8,997  
I1  351,553 2.60  2,332.21  424,681 586,442  3.53  350,814  1.10  14,400  
J1  349,639 9.43  1,232.00  382,459 526,168  1.04  344,192  5.80  14,400  
J2  315,408 4.95  2,300.01  428,624 501,451  1.23  313,486  3.82  14,400  
J4  299,376 5.94  1,260.32  379,915 482,714  0.09  297,766  2.43  14,400  
K1  452,086 15.40  1,800.21  488,922 612,456  14.02  421,546  7.60  14,400  
K2  381,504  8.31  2,804.65  428,561 594,821  8.65  378,744  7.53  14,400  
K3  378,576 6.98  3,000.00  394,522 602,451  10.02  366,134  3.91  14,400  
K4  378,049 10.30  1,200.54  398,205 598,428  16.32  355,109  3.30  14,400  

EILA7680A  802 5.80  328.21  1,088 1,355  3.04  799  4.89  14,400  
EILB10150A  983 10.60  3,900.21  1,224 1,550  2.04  934  4.76  14,400  

 Sol : solution obtained in 14,400 seconds.   Sol : solution obtained in 𝑡  seconds (overall computing time). 
 𝑡 : computing time until finding the first feasible integer solution. 
 FFIS: first feasible integer solution found by the ILS method in 𝑡  seconds. 
 

 

Fig. 6. Optimal solution of the instance G6 found using the MILP-EVRPB with initialization 
methodology 
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6. Conclusions and future works  
 
In this paper, we have presented a new general-purpose model for modeling the EVRPB by mixed integer 
programming. The results show that the proposed commodity flow model produces good quality 
solutions and allows to resolve efficiently instances proposed in the literature with up to 150 customers. 
The EVRPB is a problem of current interest that occurs in transport companies with fleets of electric 
vehicles that collect and deliver goods to customers. In relation to the standard VRPB it is appreciated 
that the EVRPB is a problem of greater complexity and much more restricted when it comes to finding 
a feasible integer solution. Thus, an iterated local search algorithm is presented for to obtain quickly and 
effectively a feasible integer solution of the EVRPB. When this solution is used as the upper limit in the 
solution of larger and more complex instances, the results obtained are much better than those obtained 
independently by the ILS technique or by the MIP model. We believe that from the point of view of the 
exact model, the results could further improve with the inclusion of bounding techniques or set-
partitioning models, which could significantly increase the size and number of the instances solvable by 
exact techniques. From the point of view of heuristic techniques, the optimal splitting procedure of a 
permutation that we propose can be widely adapted and improved to much more elaborated heuristic 
techniques that allow to reach better solutions in instances of greater size. 
 
Table 4  
Detailed routes for the EVRPB 

Instance Sequence (Blue points = LCs; red points = BCs; magenta points = CPs) 
G1: 𝑟 =42 44 22 3 35 37 56 ; 𝑟 =39 18 24 16 5 50 55 51 ; 𝑟 =34 36 21 26 10 46 57 48 ; 𝑟 =31 41 2 20 45 ; 𝑟 =25 17 11 27 30 

47 ; 𝑟 =14 28 23 15 49 52 54 ; 𝑟 =12 33 9 43 19 ; 𝑟 =7 ; 𝑟 =4 29 40 6 13 ; 𝑟 =1 8 32 38 53 
G2: 𝑟 =  45 20 2 17 25 11 27 30   47  ; 𝑟 =  42 44 29 13 6 40 22 41    ; 𝑟 =  39 18 24 14 28    ; 𝑟 =  34 36 21 26 10   46 57 48  ; 𝑟 =  23 15 5 16   50 55 51 49 52 54 ; 𝑟 =  12 33 9 43 19 4 7 31    ; 𝑟 =  1 8 32 38 37 35 3   56 53 
G3: 𝑟 =  45 20 38 32 8 1 3 35 37   56 53  ; 𝑟 =  39 18 24 14 28 21 26 36 10   57 46 62 52 54  ; 𝑟 =  34 25 17 2 11 27 30   47 48  ; 𝑟 =  23 15 5 16   50 55 51 49  ; 𝑟 =  7 42 44 29 13 6 40 22 41 31 ; 𝑟 =  4 19 43 9 33 12 
G4: 𝑟 =  45 20 38 32 8 1 3 35 37   56  ; 𝑟 =  39 18 24 14 28   54  ; 𝑟 =  34 25 17 2 11 27 30   47  ; 𝑟 =  31 42 44 29 13 6 40 22 41   

53  ; 𝑟 =  23 15 5 16   50 55 51 49 52 ; 𝑟 =  21 26 36 10   46 57 48  ; 𝑟 =  7 4 19 43 9 33 12 
G6: 𝑟 =  36 10 26 21 23 15 5 16   50 55 51 49  ; 𝑟 =  34 45 8 1 32 38 20 2 17 25 11 27 30   47  59 48 57 46 52 54  ; 𝑟 =  31 41 42 

44 29 13 6 40 22 3 35 37   56 53  ; 𝑟 =  28 14 39 24 18 12 33 9 43 19 4 7 
I1: 𝑟 =  39 22 8 32 38   58 89 57 85 61  92  56  ; 𝑟 =  36 45 41 31   74 47 79 90  ; 𝑟 =  34 5 37 35 3   46 75 81 65 64 51  ; 𝑟 =  33   

63  ; 𝑟 =  30 29 24 13 16 7   82 88 67 76  ; 𝑟 =  19 2 20 21 23 15   87 71 53 50 66 69  ; 𝑟 =  10 40 26 17 25   60 55 84 49 59  ; 𝑟 =  9 43   83 73 68 77  ; 𝑟 =  6 44 42 4 11 27   86 70  93  62 72  ; 𝑟 =  1 28 14 18 12   54 52 78 48 80 
J1: 𝑟 =  74 39 32 66 8 49 14 63   93 83  ; 𝑟 =  55 75 72 56 38 36 2   89  ; 𝑟 =  37 12 69 54  ; 𝑟 =  34 60 70 47 43 25 17 16 48   79 

88  ; 𝑟 =  33 46 52 73 64 28 22   90  ; 𝑟 =  31 30 62 40 18 67 35 3 7  ; 𝑟 =  10 23 15 53 45 19 42 6   92  ; 𝑟 =  9 58 65 71 68 
11 27   81 78 80 87 76  ; 𝑟 =  5 61 4 59 51 44 21   77 94 91  ; 𝑟 =  1 24 57 26 41 50 20 29 13    96  85 86 82 84 

J2 𝑟 =  74 34 60 70 47 43 25 17 16 48   79 88  ; 𝑟 =  55 75 72 56 38 36 2   89  ; 𝑟 =  37 54 69 39 32 66 8 49 14 63   93 83  ; 𝑟 =  
33 9 58 51 44 65 71 68 11 27   81 78 80 87 76  ; 𝑟 =  12 22 6 42 19 45 53 15 23 10    ; 𝑟 =  7 31 30 40 3 35 67 18 62 21   77 94 
91  ; 𝑟 =  5 61 4 59 46 52 73 64 28   90 92  ; 𝑟 =  1 24 57 26 41 50 20 13 29   85 86 82 84 

J4 𝑟 =  72 56 38 36 3 35 67 18 40 62 21   77 94 91  ; 𝑟 =  60 16 17 25 48 43 47 70 63 14 49 8 32 66   83 93 79 88  ; 𝑟 =  55 74 
34 75 2   89  ; 𝑟 =  37 54 69 39 26 41 50 20 13 29   85 86 82 84  ; 𝑟 =  10 1 24 57 23 15 53 45 19 42 6 22   90 92  ; 𝑟 =  7 31 
30 59 58 51 44 65 71 68 11 27   81 78 80 87 76  ; 𝑟 =  5 61 4 9 46 52 73 64 28 33 12      

K1 𝑟 =  70 53 45 71 14   88 101  ; 𝑟 =  60 13 29 19 64 62 20 42   83 93 102  115  99 97 79 111  ; 𝑟 =  58 69 63 2 73 74 34   84 92 
90 108  ; 𝑟 =  49 23 16 48 68 57 1   110 77  ; 𝑟 =  44 55 7 31 38 43   106 82 86 81 78  ; 𝑟 =  39 6 47 37    ; 𝑟 =  35 67 50 30 
72 56 10 26   105  ; 𝑟 =  24 25 17 66 46 21   85 112 80 104 107  ; 𝑟 =  15 54 28 59 18 51 52 41   103 94 113 91 109  ; 𝑟 =  12 
65 75 9 40 33   100 95 96 98 89  ; 𝑟 =  11 27 36 61 5 22 32 8   76 87  ; 𝑟 =  3 4 

K2 𝑟 =  60 13 29 19 64 62 20 42 33 9 40   96 95 100 83 93 102  115  99 97 79 88 101  ; 𝑟 =  55 7 31 38 43 10 26 72 56 30   77 110 
94  ; 𝑟 =  49 48 16 68 1 57 41   103 113 91 109 98 89  ; 𝑟 =  39 58 69 63 2 73 74 34   84 92 90 108  ; 𝑟 =  24 25 17 66 46 21   
85 112 86 106 82 81 78 80 104 107  ; 𝑟 =  15 54 28 59 18 51 52 23    ; 𝑟 =  12 65 75 14 71 45 53 70   111  ; 𝑟 =  11 27 36 61 
5 22 32 6 37 47 8   76 87  ; 𝑟 =  4 3 35 44 67 50   105 

K3 𝑟 =  60 13 29 19 64 62 20 42 33 9 40   96 95  125  100 83 93 88 101  ; 𝑟 =  55 24 7 17 25 66 46 21   85 112 86 106 82 81 78  
122  107  ; 𝑟 =  49 23 15 54 28 59 18 51 52 41   103 94 113 91 109 98 89  ; 𝑟 =  44 50 26 72 56 10 43 38 31   80 104 87 76 92 
90  119  108  ; 𝑟 =  39 58 69 63 2 73 74 34   84 99  115  102 97 79 111  ; 𝑟 =  37 6 47 8 32 22 5 61 36 27 11    ; 𝑟 =  12 65 75 
14 71 45 53 70    ; 𝑟 =  4 35 67 16 48 30 68 57 1   110 77 105  ; 𝑟 =  3 

K4 𝑟 =  70 53 45 71 14   88 101 79 97 99 102 93 83 100 95 96 98 89  ; 𝑟 =  58 37 6 47 69 63 2 73 74 34   84 92 90 108  ; 𝑟 =  39 
55 7 38 31 17 25 66 46 21   85 112 86 106 82 81 78 80 104 107  ; 𝑟 =  23 15 54 28 59 18 51 52 41 68 57 1   110 94 103 113 91 
109  ; 𝑟 =  12 65 75 9 40 33 42 20 62 64 19 29 13 60   111  ; 𝑟 =  4 35 67 44 24 27 11 36 61 5 22 32 8   76 87  ; 𝑟 =  3 49 48 
16 50 26 43 10 56 72 30   77 105 

EILB10150A: 𝑟 =  48 30 50 47 31   58 100 99 96 98 97  ; 𝑟 =  45 42 3 9 23 10 6 32   95 66 55 81 94 76  ; 𝑟 =  39 2 15 40 17 41   89 67 62 
90 84 56  ; 𝑟 =  28 13 20 34 12 38   61 87 86 78 52 77 63  ; 𝑟 =  27 11 37 21 29 8 22   71 51 70 79  ; 𝑟 =  16 4 24 25   82 68 
73 54 74 91 59  ; 𝑟 =  14 35 1 26 5 18 33 36   83 60 65 85 75 88 64  ; 𝑟 =  7 44 49 19 43 46   72 57 69 93 92 80 53 

EILA7680A: 𝑟 =  55 2 50 23 49 56 29 30 57   72 74 64 63 61 69   𝑟 =  37 7 16 44 11 46 22 42    ; 𝑟 =  28 54    ; 𝑟 =  27 59 1 35 33 34 52 
18    ; 𝑟 =  21 47 58 25 31 53   73 62  ; 𝑟 =  14 3 36 26 8 32 10    ; 𝑟 =  6 43 9 48 12   67  ; 𝑟 =  5 41 13 51 19 45 40 20 15   
71 65 70 68  ; 𝑟 =  4 24 39 38 17 60   66 75 
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