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Abstract 

This paper introduces an alternative to intra-route recharging of Electric Commercial Vehicles (ECVs) used for 

freight distribution by exploiting new pertinent technological developments that make mobile battery swapping 

possible. The Electric Vehicle Routing Problem with Time Windows and Synchronised Mobile Battery Swapping 

(EVRPTW-SMBS) is introduced in which route planning is carried out in two interdependent levels: (i) for the 

ECVs to deliver customers’ demands, and (ii) for the Battery Swapping Vans (BSVs) to swap the depleted 

battery on an ECV with a fully charged one at a designated time and space. Each BSV can provide the battery 

swapping service to multiple ECVs in one route, and each ECV can extend its autonomy by requesting the 

battery swapping service for as many times as required with no need to divert its original delivery route. The 

EVRPTW-SMBS opens up multiple opportunities to facilitate eco-friendly goods distribution using ECVs and 

brings in extra flexibility and cost savings. At the same time, it is a challenging problem to tackle mainly due 

to the interdependence problem that stems from the spatio-temporal synchronisation requirement between the 

vehicles in the two levels (i.e. ECVs and BSVs). To tackle these complications, the paper proposes a methodology 

for exact evaluation of an EVRPTW-SMBS solution based on a two stage hybridisation of a dynamic 

programming and an integer programming algorithm, and places the resulting procedure at the heart of an 

intensified large neighbourhood search algorithm to solve instances of the EVRPTW-SMBS efficiently. A library 

of EVRPTW-SMBS test instances is developed and used to demonstrate the added value of the proposed 

problem variant and the efficiency of the proposed algorithms. Our results demonstrate the benefits of using 

BSVs in the design of the delivery routes for ECVs, and indicate that a particular variant of the proposed 

algorithms which is based on a specific lexicographical decomposition routine can efficiently approximate the 

optimal solution to the EVRPTW-SMBS. 

Keywords: Electric vehicle, routing and scheduling, recharging, battery swapping, spatio-temporal 

synchronisation 
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1. Introduction 1 

Urban Freight Distribution (UFD) plays a pivotal role in the transportation and delivery of the goods required 2 
to sustain more than half of the world’s population that now live in urban areas (Ritchie and Roser, 2018). 3 
However, it is generating significant externalities such as traffic congestion and environmental pollution. Freight 4 
vehicles typically represent 8% to 15% of total traffic flow in urban areas (MDS Transmodal, 2012) and are 5 
responsible for 25% of urban transport related CO2 emissions and 30% to 50% of other transport related 6 
pollutants (e.g. Particulate Matter and Nitrogen Oxide) (Alice/Ertrac, 2015). This large and ever-increasing 7 
level of emissions from urban freight transport activities has attracted the attention of policy makers and national 8 
governments. The European Commission has, for instance, set a target for “essentially CO2-free city logistics in 9 
urban centres by 2030” (European Commission, 2011). Meeting such target would inevitably entail facilitating 10 
the conversion of conventionally fuelled UFD fleets into Electric Commercial Vehicles (ECVs) with zero local 11 
emissions. This conversion of the fleet, however, is constrained by ECVs’ reduced driving range, long recharging 12 
time, and unevenly scattered Charging Stations (CSs). While reports (Committee on Climate Change, 2010) 13 
suggest electric light goods vehicles will be cost-saving compared to conventionally fuelled vehicles by 2030 (Allen 14 
et al., 2017), for a smooth transition phase, short term operational solutions are crucial.  15 

The Electric Vehicle Routing Problem with Time-Windows (EVRPTW) (Schneider et al., 2014) is a variant 16 

of the VRP that aims at aiding companies operating ECVs to overcome “range anxiety” by developing solutions 17 

that comprise detours to available CSs for intra-route recharging. The primary challenge in addressing the 18 

EVRPTWs, that distinguishes them from their Green VRP (G-VRP) (Erdogan & Miller-Hooks, 2012) 19 

counterpart, is in the significantly larger recharging time required to refill ECVs’ batteries as compared to other 20 

alternative fuel vehicles. This limitation has implications mainly with regards to meeting customers’ time-21 

windows, and thus in the presence of realistic time windows the solution yielded could be too expensive in terms 22 

of the number of ECVs required and the total distance travelled.  23 

Despite the ongoing expansion of the electric vehicles CSs network and the advancement of rapid recharging 24 

technologies, there are still several practical questions regarding intra-route refuelling as a way to address the 25 

limited autonomy of ECVs for freight distribution. In particular, one key question that often arises in this area 26 

is related to the “CS ownership” (Montoya et al. 2017). On the one hand, public CSs are not always allowed to 27 

be used by logistics companies (Worley et al. 2012). For example, Tesla’s Supercharger Fair Use Policy1 dictates 28 

that vehicles used for commercial purposes are expected not to use the public Supercharger network (a network 29 

of 1,317 Supercharger stations) to keep it available for non-commercial users. Even if this is not an issue and 30 

public CSs are open to commercial users, a major concern is the uncertainty tied to the availability of a CS 31 

upon the arrival of the ECV (Sweda et al. 2017, Kullman et al. 2018, Montoya et al. 2017, Froger et al. 2019). 32 

A public CS occupied by another public or commercial vehicle upon the arrival of the ECV may imply a 33 

considerably large queuing time for the service point to become available again, and can thus disrupt the pre-34 

determined routing plan and jeopardise the fulfilment of delivery tasks. Therefore, the use of public CSs to 35 

charge ECVs in a routing context has received little attention (Sweda et al. 2015, Kullman et al. 2016) and the 36 

majority of the EVRP literature assumes implicitly that the charging infrastructure is privately owned by the 37 

ECV operator (Froger et al. 2019). 38 

On the other hand, what has been largely ignored thus far in EVRPs with privately owned CSs corresponds 39 

to the large set-up cost of CSs and the location allocation aspects of the problem. Opening and maintaining a 40 

CS can be significantly costly (cost of required land and infrastructure, energy supply, operating and 41 

maintenance cost) and the trade-off between acquiring more ECVs to operate shorter routes, and establishing a 42 

CS is yet unknown and very much problem dependent. These arguments regarding the ownership of CSs apply 43 

                                        
1 https://www.tesla.com/en_GB/about/legal?#supercharger-fair-use 
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also to the case of Battery Swapping Stations (BSSs); while battery swapping at a BSS takes a much shorter 1 

time than recharging the battery, the use of BSSs in the routing of ECVs with intra-route swapping (instead of 2 

recharging), as proposed in Yang and Sun (2015) and Hof et al. (2017), brings about the same complications as 3 

the EVRPs with CSs do, and ignoring these real life considerations can hinder companies from adopting these 4 

solutions.   5 

To address the aforementioned limitations, in this study we introduce a paradigm shift in goods distribution 6 

using electric vehicles by exploiting new relevant technological developments that make mobile battery swapping 7 

possible. The development of a new fast battery swapping device installed on a Battery Swapping Van (BSV), 8 

documented in patents (Gao et al., 2012) and (Lu and Zhou, 2013), and justified and corroborated by the study 9 

of Shao et al. (2017), opens up new possibilities to logistics by providing a ‘non-stationary’ battery swapping 10 

mode, as opposed to the ‘stationary’ battery swapping mode as in BSS-LRP. Hence, in this study we introduce 11 

and formulate a new class of the EVRPTWs called the Electric Vehicle Routing Problem with Time Windows 12 

and Synchronised Mobile Battery Swapping (EVRPTW-SMBS) that is motivated by the aforementioned 13 

technological development. The underlying idea in the EVRPTW-SMBS is to swap the depleted battery on an 14 

ECV with a fully-charged one using a BSV at a designated time and space, without the need to divert the 15 

delivery route of the ECV. Therefore, in the proposed problem variant routing must be carried out in two 16 

synchronised levels for the ECVs which carry out the delivery tasks and for the BSVs which are responsible for 17 

extending the autonomy of the running ECVs on-the-fly. The logistic model proposed in the EVRPTW-SMBS 18 

brings about extra flexibility in goods distribution using ECVs, and has a potential to significantly reduce costs 19 

corresponding to the assignment of BSVs and ECVs to delivery routes when compared with costs incurred by 20 

privately owning CSs and diverting the route of ECVs to them for intra-route recharging.  21 

The EVRPTW-SMBS is a very difficult problem to solve due to the spatio-temporal synchronisation 22 

requirements and the existence of the ‘interdependence’ between the routes of the two levels. As the proposed 23 

mathematical formulation for the problem is only able to address instances of a limited size, the paper proposes 24 

also different variants of a heuristic solution algorithm corresponding to a Dynamic Programming based 25 

Intensified Large Neighbourhood Search (DP-ILNS) algorithm to find near optimal solutions to practically sized 26 

instances of the problem within a reasonable computational time.  27 

The contribution of this paper is multi-fold: (i) the use of mobile battery swapping in electric vehicle routing 28 

problems is proposed for the first time as an alternative to solutions based on intra-route recharging, (ii) the 29 

EVRPTW-SMBS is introduced and formulated as a Mixed Integer Linear Programming (MILP) model with 30 

spatio-temporal synchronisation constraints that ensure a BSV and an ECV will be present at a designated time 31 

and space to perform a planned battery swap, (iii) a two-stage procedure based on the combination of a dynamic 32 

programming algorithm and a label-selecting integer programming model is proposed for exact evaluation of an 33 

EVRPTW-SMBS solution and to tackle the interdependence problem, and (iv) three variants of a tailored 34 

heuristic solution algorithm based on different lexicographic decomposition strategies are proposed for the 35 

problem. 36 

In the remainder of the paper, in section 2, a survey on the most pertinent literature is presented. Section 37 

3 of the paper describes the EVRPTW-SMBS. Section 4 develops the solution algorithm for the problem. Section 38 

5 presents the computational results; and finally, section 6 is the discussion and concluding remarks section. 39 

2. Previous related work 40 

The significant share of road freight distribution in the global emissions of Greenhouse Gases (GHGs) and other 41 

environmental pollutants has motivated a surge of interest in the study of Vehicle Routing and Scheduling 42 

Problems (VRSPs) with environmental considerations in recent years. Research work in this area might be 43 
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broadly categorised into two streams: (i) the Emissions minimising VRPs (EM-VRPs) comprising the pollution-1 

routing problem (Bektas & Laporte, 2011) and its variants ( Franceschetti et al., 2013; Demir et al., 2014; Koc 2 

et al., 2014; Androutsopoulos & Zografos, 2017; Raeesi & Zografos, 2019), that aim at minimising the fuel 3 

consumption incurred by the delivery routes as a proxy for emissions, and (ii) the Green VRPs (G-VRPs) that 4 

are concerned with routing a fleet of vehicles that run on a cleaner alternative fuel (Erdogan & Miller-Hooks, 5 

2012; Raeesi & O'Sullivan, 2014; Salimifard & Raeesi, 2014) or electric batteries (Conrad & Figliozzi, 2011; 6 

Bruglieri et al., 2015; Schneider et al., 2014; Desaulniers et al., 2016; Hiermann et al., 2016). There is also recent 7 

research that bridges these two categories by routing a mixed fleet of electric and conventional vehicles (Goeke 8 

& Schneider, 2015; Macrina et al., 2019). The interested reader is referred to Bektas et al. (2019) for a recent 9 

review of the key papers in the field. We also refer the reader to the paper by Pelletier et al. (2016) on goods 10 

distribution with ECVs that serves as a good starting point to discover the fundamentals of the ECV technology 11 

and its relevant economic and operational aspects. While the use of mobile battery swapping in designing delivery 12 

routes for ECVs and the problem proposed in this paper has not been previously studied, in what follows, we 13 

present a concise review of the papers in the area of EVRPTW, and a brief discussion on two classes of routing 14 

problems that may not be explicitly related to this study but share some key features with the problem 15 

considered in this paper.    16 

The EVRPTW (Schneider et al., 2014) can be viewed as a special case of the G-VRP (Erdogan & Miller-17 

Hooks, 2012) where capacity constraints and time-windows are added to the problem, and significantly larger 18 

refuelling (recharging) time is assumed. In the variant considered by Schneider et al. (2014) a minimum number 19 

of ECVs must be assigned to energy-feasible delivery routes (potentially visiting one or several CSs) that visit 20 

each customer exactly once during their pre-defined time-windows, such that the total capacity constraint of 21 

the ECVs is not violated and the total distance travelled is minimised. Due to the limited driving range of ECVs, 22 

the core complication in the EVRPTW is related to the introduction of minimal detours in the vehicle routes to 23 

visit available CSs on the working graph to fully recharge their battery and carry out the delivery task. Schneider 24 

et al. (2014) develop an algorithm based on the hybridisation of a Variable Neighbourhood Search (VNS) 25 

algorithm with a Tabu Search (TS) heuristic to address the proposed variant.  26 

To allow more flexibility in the design of the ECV delivery routes, Keskin and Çatay (2016) relax the full 27 

recharging restriction and allow partial recharging at a CS. An Adaptive Large Neighbourhood Search (ALNS) 28 

algorithm that comprises new heuristics for station removal and station insertion is employed to solve the 29 

proposed problem. Their computational results demonstrate that with partial recharging instead of full 30 

recharging, the solution to a few test instances can be improved.  31 

The use of different charging technologies has also been considered in several studies; Felipe et al. (2014) 32 

propose a heuristic to solve a variant in which in addition to the decision on the charging level at a CS, the 33 

technology used for recharging e.g. regular or fast recharging is considered. Montoya et al. (2017) discuss several 34 

real-life considerations in EVRPs in relation to ECVs energy consumption, the charging infrastructure ownership, 35 

the capacity of the CSs and the battery charging process. In particular, they argue that the recharging level of 36 

the battery is a non-linear function of the recharging time and study the EVRP with a nonlinear recharging 37 

function. They propose a hybrid metaheuristic for the problem and show that neglecting nonlinear charging may 38 

lead to infeasible or overly expensive solutions.  39 

Hiermann et al. (2016) consider the fleet size and mix in the EVRPTWs where the available vehicle types 40 

in the fleet differ in terms of their capacity, battery size and acquisition cost. Goeke and Schneider (2015) study 41 

the EVRPTW with a mixed fleet of ECVs and conventional internal combustion commercial vehicles. A 42 

distinctive feature of their study is that instead of simply assuming energy consumption is a linear function of 43 

the distance travelled, they utilise an energy consumption model that takes speed, road slope and vehicle payload 44 
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into account. In the same vein, Basso et al. (2019) incorporate into the routing decision an improved and more 1 

accurate energy consumption estimation model comprising detailed topography and speed profiles. 2 

As was discussed earlier, and as it is argued in Forger et al. (2019), the majority of the EVRP literature 3 

assumes implicitly that the charging infrastructure is privately owned by the ECV operator. However, in none 4 

of the studies discussed above is the cost of CSs taken into account explicitly. There is, however, a separate 5 

stream of research that focuses on location-routing models where vehicle routing and the siting of CSs (or battery 6 

swapping stations) is simultaneously considered (Worley et al. 2012, Yang & Sun, 2015, Schiffer & Walther, 7 

2017, Hof et al. 2017). Schiffer and Walther (2017) study the electric location routing problem with time windows 8 

and partial recharging and consider simultaneously the routing of electric vehicles and the siting decisions for 9 

CSs with different recharging technologies. Yang and Sun (2015) consider the use of BSSs in EVRPs and propose 10 

the electric vehicles battery swap stations location routing problem, which aims to determine the location of 11 

BSSs and the routes of ECVs simultaneously. 12 

In this paper, we employ a completely different approach from the literature that has thus far only 13 

considered ‘stationary’ recharging or battery swapping technologies in the design of delivery routes for ECVs. 14 

We propose to use mobile battery swapping vans to service ECVs on-the-fly without any need to divert their 15 

routes. While this has not been previously studied, due to the existence of the spatio-temporal synchronisation 16 

requirement of an ECV with a BSV in the proposed model, there are some similarities with two classes of routing 17 

problems corresponding to: (i) the two-Echelon VRP with Satellite Synchronisation (2E-VRP-SS) and (ii) the 18 

Coordinated Truck-Drone Routing Problem (CTDRP).  19 

In 2E-VRPSSs (Anderluh et al., 2017; Crainic et al., 2009; Grangier et al., 2016) two distinct fleets of 20 

vehicles are used to make deliveries. First-level vehicles pick up requests at a distribution centre and bring them 21 

to intermediate sites (called satellites) where the requests are transferred to second-level vehicles for ultimate 22 

delivery. The required temporal synchronisation of the vehicles in the first echelon with the vehicles of the second 23 

echelon at a satellite, therefore, resembles to some extent the kind of synchronisation one must establish for a 24 

planned battery swap in EVRPTW-SMBS. In CTDRPs (Murray and Chu, 2015; Poikonen et al., 2017; Carlsson 25 

and Song, 2018; Karak and Abdelghany, 2019; Schermer et al., 2019; González-Rodríguez et al., 2020; 26 

Kitjacharoenchai et al., 2020) trucks and drones work in tandem to deliver customers’ demands. Trucks serve 27 

as a mobile platform for battery swapping, reloading packages for delivery and launching drones to make the 28 

deliveries. Thus, the role of a truck in the CTDRPs resembles the role of a BSV in the EVRPTW-SMBS, and 29 

similar to the EMVRPTW-SMBS, there is a need to determine rendezvous points where batteries used by the 30 

drones are replaced by fully-charged ones. 31 

The main complication that arises in establishing such synchronisations is due to the fact that unlike in 32 

the standard VRPs where vehicles are independent of one another, in VRPs with synchronisation constraints a 33 

change in one route may have effects on other routes, and in the worst case, a change in one route may render 34 

all other routes infeasible. This problem is known as the ‘interdependence problem’ (Drexl, 2012) and is the key 35 

challenge in solution development for 2E-VRPSSs and CTDRPs. Grangier et al. (2016) propose to represent the 36 

time constraints in the 2E-VRPSS as a directed acyclic graph called a ‘precedence graph’. They use this graph 37 

in their route scheduling and feasibility algorithm which is placed at the centre of their proposed ALNS algorithm 38 

for the problem. Anderluh et al. (2017) consider synchronisation between cargo bikes and vans, and propose a 39 

heuristic based on a greedy randomized adaptive search procedure with path relinking for the problem. González-40 

Rodríguez et al. (2020) consider the truck-drone team logistics problem and propose an iterated greedy heuristic 41 

based on the iterative process of destruction and reconstruction of solutions. Each solution in their algorithm is 42 

coded as a resource-type vector to track if a node is visited by the drone, by the truck or by both the drone and 43 

the truck. Karak and Abdelghany (2019) use an extension of the classic Clarke and Wright algorithm to address 44 
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the hybrid vehicle-drone routing problem for pick-up and delivery services. Kitjacharoenchai et al. (2020) propose 1 

a drone truck route construction heuristic and a LNS for a synchronised truck-drone operation in which multiple 2 

drones are allowed to fly from a truck, serve one or multiple customers, and return to the same truck for a 3 

battery swap and package retrieval. 4 

Despite the aforementioned similarity, there are also key differences between the EVRPTW-SMBS and the 5 

two variants discussed above. Compared with the 2E-VRP-SS, the EVTPTW-SMBS is a harder problem to 6 

address because, in addition to the temporal synchronisation requirement in the 2E-VRP-SS, there is also a need 7 

to establish spatial synchronisation between the vehicles in the two levels in EVRPTW-SMBS. That is, unlike 8 

in the 2E-VRP-SS where the location of the satellites are known in advance, in the context of the EVRPTW-9 

SMBS the designated location of battery swapping is only an outcome of optimisation and is not known a priori. 10 

Hence, the interdependence problem is much more strongly present in EVRPTW-SMBS and the routes in each 11 

of the two levels might be significantly affected by any slight change in the routes of the other level. As regards 12 

the CTDRPs, spatio-temporal synchronisation requirements are involved as they are in the case of the 13 

EVRPTW-SMBS, but they are usually easier to handle as in the dominant variant of the CTDRP only one 14 

truck is considered. There is a more similar variant of the CTDRP in which multiple trucks and multiple drones 15 

are considered (Poikonen et al., 2017; Schermer et al., 2019), but in this variant it is usually assumed that a 16 

drone returns to the same truck from which it is launched, and it can visit one customer only on each route. 17 

Moreover, no time-windows on customers are usually considered in this variant and drones and trucks can wait 18 

indefinitely for one another at the rendezvous points. In the EVRPTW-SMBS, however, ECVs can request 19 

service from different BSVs, and ECVs services cannot be delayed. Therefore, solution algorithms proposed for 20 

these problem variants are not directly applicable to the EVRPTW-SMBS and there is a need to develop a 21 

dedicated solution methodology for the problem. In this paper, we propose a DP-ILNS algorithm which is tailored 22 

for the EVRPTW-SMBS.  23 

3. The EVRPTW-SMBS: formal description and formulation  24 

In this section, a formal description of the EVRPTW-SMBS is first provided and the notation and key 25 

assumptions adopted by the paper are discussed. Next, a small illustrative example of the problem is presented 26 

to establish a case for it, and following that, the mathematical formulation of the problem is given. A list of all 27 

key notation used in the paper is provided in appendix A. 28 

3.1. Formal description of the problem  29 

The EVRPTW-SMBS is defined on a complete, directed graph ᵃ� = (ᵃ�, ᵃ�), where ᵃ�  is the set of network nodes 30 

and ᵃ� is the set of directed arcs. The set ᵃ� = {ᵃ� ∪ ᵃ�} is comprised of the depot ᵃ� = {0, ᵰ�}, with {ᵰ�} being a 31 

dummy copy of {0} (referred to as the final depot) and customer nodes ᵃ� = {1,2,… , ᵅ�}. Each customer ᵅ� ∈ ᵃ� 32 

is associated with a certain demand ᵅ�� to be delivered within its pre-determined hard time window, denoted 33 

by [ᵃ��, ᵅ��], with service time ᵅ��. The depot working hours, which is considered as the planning horizon, is denoted 34 

by ᵃ� = [ᵃ��, ᵅ��]. The set of directed arcs is defined as ᵃ� = {(ᵅ�, ᵅ�)|ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ�}, where ᵃ�� = {0} ∪ ᵃ� and 35 ᵃ�� = ᵃ� ∪ {ᵰ�}. To each arc (ᵅ�, ᵅ�) ∈ ᵃ�, a distance ᵃ���, and a travel time ᵅ��� is attributed. There is a fleet of 36 

homogeneous ECVs and a fleet of homogenous electric BSVs that are all fully charged and located in the central 37 

depot. To each ECV a fixed acquisition cost ᵉ��, a maximum payload ᵃ��, a battery capacity ᵃ��, and an energy 38 

consumption rate per unit distance travelled ᵅ�� is attributed. Each BSV, on the other hand, is an electric van 39 

that has a fixed acquisition cost of ᵉ��, can carry a maximum number of batteries ᵃ��, has a battery capacity 40 ᵃ��, and an energy consumption rate ᵅ��. The operational cost of each unit distance travelled by an ECV and a 41 
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BSV is denoted by ᵉ��� and ᵉ��� , resepectively. Moreover, the following key assumptions are made in the proposed 1 

EVRPTW-SMBS: 2 

 The tasks of ECVs and BSVs are not interchangeable. That is, ECVs are only employed to deliver the 3 

requests of customers, and BSVs are only used when battery swapping is required by an ECV, and they 4 

cannot be used for delivery. 5 

 Battery swapping must be carried out at a customer location and realistically it cannot be done 6 

simultaneous with the ECV providing service at the customer. Hence, battery swapping can only take 7 

place either before (e.g. while the ECV is waiting for customer service to start, if “possible”) or right after 8 

the ECV service at the customer is over. More precisely, let ᵅ�� be the arrival time of the ECV at customer 9 ᵅ� ∈ ᵃ�, ᵃ�� the service start time, ᵃ�� the ECV departure time after service and battery swapping completion, 10 ᵅ�� the start time of battery swapping service and � the time units required for swapping the battery on 11 

the ECV; then ᵅ�� is determined as follows:  12 ᵅ�� = �ᵕ� ∈ [ᵅ��, ᵃ�� − �], ᵅ�ᵃ� ᵅ�� ≤ ᵃ�� − �ᵃ�� + ᵅ��,                ᵅ�ᵅ�ℎᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ�  (1) 

That is, if the ECV arrives early “enough” (before ᵃ�� − �) at the customer location, the BSV must start 13 

the battery swapping service at a time over the interval [ᵃ��, ᵃ�� − �]; otherwise the battery swapping service 14 

begins immediately upon completion of the customer service. This synchronisation strategy follows the 15 

key principle that the customer service must not be delayed due to a battery swapping service; in other 16 

words, customer service has priority over the battery swapping service. In Figure 1, different possible 17 

scenarios for the arrival time of the ECV at a customer location and the resulting battery swapping start 18 

times are illustrated over a timeline. In Figure 1.a battery swapping must take place at any time over the 19 

shaded box; however, in all other case, swapping takes place right after the completion of ECV service at 20 

the customer. Note that while in the particular case of Figure 1.b it looks possible to start swapping before 21 

servicing the customer for an earlier departure time, in a general case when the customer’s time window 22 

is tight and swapping time is larger than the width of customer’s time window, the result of delaying the 23 

customer service would be the violation of the later boundary of its time window. Note also that a BSV 24 

can arrive at a designated point of swapping before the swapping service can actually start, but it has to 25 

wait.   26 

 

a.  

b.  

c.  

d.  
Figure 1 Possible scenarios for the synchronisation of the arrival of the ECV and the BSV 
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It may be worth noting that confining the allowable battery swapping locations to customer locations is 1 

not a restrictive assumption , and it is possible to introduce other separate designated points of swapping 2 

to ᵃ�. 3 

 BSVs are not allowed to require a battery swap from other BSVs during their trip. 4 

 An ECV can ask for the battery swapping service for as many times as required during its trip, and there 5 

is no restriction for a BSV to serve the same ECV several times. 6 

 The fixed vehicle acquisition costs for ECVs and BSVs comprise the initial purchasing investments, all 7 

subsequent operational and maintenance costs, and the inflationary and depreciation factors over a certain 8 

lifetime (e.g. a 5-year period). The calculation of the corresponding cost coefficients (i.e. ᵉ�� and ᵉ��) for 9 

each time-period (e.g. a day) can be done through the methodologies discussed in relevant studies focusing 10 

on the Total Cost of Ownership (TCO) calculations for ECVs in routing contexts (Davis and Figliozzi, 11 

2013; Lee et al., 2013; Feng and Figliozzi, 2013; Schiffer et al., 2017). TCO calculations consider costs over 12 

time as well as time-dependent discounts and depreciations and comprise the one-time investments and 13 

the periodically arising costs. The operational cost of each unit distance travelled by an ECV and a BSV 14 

(i.e. ᵉ���  and ᵉ��� ), on the other hand, is calculated through an estimation of distance-dependent 15 

maintenance costs, energy cost and driver wage. Also note that since multiple trips are not considered in 16 

our model, to execute each route a vehicle must be acquired and therefore the cost of serving an ECV or 17 

a BSV route corresponds to the acquisition cost of an ECV or a BSV, respectively. 18 

The aim of the EVRPTW-SMBS is to determine an optimal composition of ECVs and BSVs in the fleet 19 

to operate routes that start and finish at the depot, such that every customer is visited exactly once by an ECV 20 

within its pre-defined time-window, and the payload and battery capacity of the ECVs and BSVs and the 21 

working day limits are not violated. The objective of the EVRPTW-SMBS is to minimise a composite function 22 

comprising the cost of the ECVs and BSVs assigned to the routes and the total distance travelled by them.   23 

3.2. A business case for the use of mobile battery swapping and an 24 
illustrative example 25 

Just like solutions based on intra-route recharging for increasing ECVs autonomy, the competitiveness of 26 

solutions based on mobile battery swapping relies on the relation between operational costs and acquisition costs 27 

(Davis and Figliozzi, 2013). In this section, we compare the EMVRPTW-SMBS against solutions based on intra-28 

route recharging by considering operational costs, vehicle costs and costs for siting CSs to document the business 29 

case for mobile battery swapping. 30 

Operators of electric logistics fleets that tend to use solutions based on intra-route recharging currently 31 

decide on both station siting and vehicle routing (possibly simultaneously); therefore, it will not be sufficient to 32 

only focus on the minimisation of the total distance/driving time, and the minimisation of the number and cost 33 

of CSs sited and the total number of ECVs used must be also taken into account (Schiffer and Walther, 2017). 34 

This situation applies also to the case of mobile battery swapping in terms of the acquisition cost of ECVs and 35 

BSVs along with the total distance or travelling time incurred by them in the operational level. This paper is 36 

developed around the argument that there are multiple benefits in using BSVs in the design of delivery routes 37 

for ECVs which make this option an attractive line of research and practice:  38 

 The cost for setting up a battery charging/swapping station can be significantly larger than the 39 

acquisition cost of a battery swapping van; Shao et al. (2017) compare the cost of a CS and a BSV 40 

across a same time-period, and claim that CSs can be over 10 times more expensive than battery 41 

swapping vans, when the cost of the required land and infrastructure, the cost of energy distribution 42 

and the cost of maintenance (employees and devices) are taken into account. 43 
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 A BSV can serve multiple ECVs in one BSV trip without any need to divert the route of the moving 1 

ECVs; consequently, a small number of BSVs may be required to serve multiple ECVs, and the total 2 

distance travelled by the ECVs can be expected to be significantly shorter than when ECVs must detour 3 

to visit CSs.  4 

 The battery swapping service is carried out in a small fraction of the time required for recharging the 5 

ECV at a CS and hence the overall number and travel time of ECVs (and hence drivers’ cost) is 6 

expected to be much smaller, compared to that from using CSs. 7 

 Unlike CSs which once located cannot be moved, the use of BSVs provides a higher degree of flexibility 8 

for the logistic operator. 9 

 ECVs must detour to visit CSs, but BSVs drive to ECVs. This may imply that a single BSV can 10 

potentially do the job of several CSs. Unlike a BSV, an opened CS may be accessible to only a few ECV 11 

routes, and it would be infeasible or too costly for other ECVs to divert their routes towards the opened 12 

CS for recharging. Therefore, comparatively more (potentially under-utilised) CSs must be opened in 13 

solutions based on intra-route recharging. 14 

In support of these claims we have carried out several numerical experiments in section 5 of the paper; 15 

however, for illustration one instance of the problem is presented and discussed here. The chosen instance is 16 

instance C104-10 from the ‘computational results’ section of the paper, which is an instance with 10 customers 17 

and 4 potential CS sites (refer to section 5 for the details of the instance).  18 

We solve the problem instance in two different settings; firstly, the problem is treated as an Electric 19 

Location Routing Problem with Time Windows and Partial Recharging (ELRPTW-PR) with a generalised cost 20 

function involving the opening cost of CSs, the acquisition cost of ECVs and the operational cost of the total 21 

distance travelled by the ECVs. In order to solve the problem in this setting, we have adapted the formulation 22 

proposed in Keskin and Çatay (2016) for the EVRPTW with partial recharging, and modified it to incorporate 23 

simultaneously the location aspects by assuming the available CS sites are potential sites to open. The resulting 24 

routes are shown in Figure 2.a, where one CS is opened and 4 ECVs are required to travel a total distance of 25 

359.46. Secondly, the problem is treated as an EVRPTW-SMBS instance and is solved for the minimisation of 26 

a generalised cost function comprising the total acquisition cost of ECVs and BSVs and the cost of the total 27 

distance travelled by them using the mathematical formulation discussed in the next section. The resulting 28 

routes are presented in Figure 2.b. The solution yields one ECV and one BSV route in total, where the BSV 29 

meets the ECV at customer locations 7, 1, and 5, respectively, to swap the ECVs depleted battery with a fully 30 

charged one. As a result of this, the ECV travels a distance of 234.22 and the BSV travels a distance of 98.65; 31 

hence, a total distance of 332.87 by both the ECV and the BSV.   32 

a.  
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b.  
Figure 2 Optimal routes returned by (a) ELRPTW-PR and (b) EVRPTW-SMBS 

Alongside these potential immediate benefits of a logistic design based on BSVs, in longer run the flexibility 1 

of the possible solution and the agility brought about in the accomplishment of delivery tasks suggests that the 2 

EVRPTW-SMBS is worth consideration. 3 

It may be also worth discussing here an alternative technology to mobile battery swapping which 4 

corresponds to the ‘mobile fast recharging’. This recent technological option developed by companies such as 5 

NIO® and FREEWIRE TECHNOLOGIES® (Figure 3) presents similar logistics opportunities as do the BSVs. 6 

For example, NIO® Power Mobile can serve as a mobile power bank that can travel anywhere to any EV in 7 

need of battery recharging and provide an extra 100 km with 10 min of charging2.  8 

a.  b.  

Figure 3 (a) NIO Power Mobile and (b) MOBI GEN TWS 

While a logistic model similar to the one proposed in this paper for BSVs may be applicable for the case 9 

of Battery Recharging Vans (BRVs), we argue that BRVs require a dedicated investigation in future research 10 

due to several distinctive features. In particular, the difference in the servicing capacity and servicing technology 11 

of a BSV and a BRV make the two problems different in terms of their modelling and solution requirements. A 12 

BSV can carry a certain number of fully charged batteries to a certain number of ECVs, and each ECV restarts 13 

its route with a fully charged battery following a swapping service provided by a BSV. However, the servicing 14 

capacity of a BRV is itself dependent on how much recharge it provides to each ECV it visits, and each ECV 15 

may only need partial recharging to complete its delivery route. Also, the service time of a BSV is different from 16 

the service time of a BRV; a BSV requires a fixed amount of time to complete its service, but a BRV’s service 17 

time is not known a priori as it depends on the amount of charging it provides. Therefore, the electric vehicle 18 

routing problem with mobile battery recharging is a different problem variant with different challenges which is 19 

worth exploring in future research. 20 

Next, we propose a mathematical formulation for the EVRPTW-SMBS.  21 

                                        
2 https://www.nio.com/nio-power 
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3.3. Mathematical formulation of the problem  1 

The MILP formulation of the EVRPTW-SMBS works with the following decision variables:  2 

- ᵅ���: Binary variable equal to 1 iff arc (ᵅ�, ᵅ�) ∈ ᵃ� is traversed by an ECV.  3 

- ᵅ���: Binary variable equal to 1 iff arc (ᵅ�, ᵅ�) ∈ ᵃ� is traversed by a BSV. 4 

- ᵯ��: Binary variable equal to 0 iff battery swapping service at node ᵅ� ∈ ᵃ�  starts during [ᵅ��, ᵃ�� − �], and 1 5 

otherwise (refer back to expression (1)). 6 

- ᵅ��: Continuous variable denoting the time of arrival of an ECV at node ᵅ� ∈ ᵃ� . 7 

- ᵃ��: Continuous variable denoting the service start time by an ECV at node ᵅ� ∈ ᵃ� . 8 

- ᵅ��: Continuous variable denoting the time of arrival of a BSV at node ᵅ� ∈ ᵃ� . 9 

- ᵰ��: Continuous variable denoting the battery swapping service start time by a BSV at node ᵅ� ∈ ᵃ� . 10 

- ᵃ��: Continuous variable denoting the remaining load on an ECV upon arrival at node ᵅ� ∈ ᵃ� . 11 

- ℎ�: Integer variable denoting the number of the remaining fully-charged batteries on the BSV upon arrival at 12 

node ᵅ� ∈ ᵃ� . 13 

- ᵅ��: Continuous variable denoting the remaining battery charge level of an ECV on arrival at node ᵅ� ∈ ᵃ� . 14 

- ᵅ��: Continuous variable denoting the remaining battery charge level of a BSV on arrival at node ᵅ� ∈ ᵃ� . 15 

The mathematical formulation of the EVRPTW-SMBS is given by (2)-(21): 16 ᵅ�ᵅ�ᵅ�  ᵉ�� � ᵅ����∈�� + ᵉ�� � ᵅ����∈�� + ᵉ��� � ᵃ���ᵅ���(���)∈� + ᵉ��� � ᵃ���ᵅ���(���)∈�  (2) 

Subject to:  � ᵅ����∈�� = 1,          ∀ᵅ� ∈ ᵃ�  (3) � ᵅ����∈�� − � ᵅ����∈�� = 0,          ∀ᵅ� ∈ ᵃ�  (4) � ᵅ����∈�� − � ᵅ����∈�� = 0,          ∀ᵅ� ∈ ᵃ�  (5) 

ᵃ�� = max {ᵃ��, ᵅ��},          ∀ᵅ� ∈ ᵃ� (6) 

ᵃ�� + �ᵅ��� + ᵅ���ᵅ��� + ᵯ���− (ᵅ�� + �)�1 − ᵅ���� ≤ ᵅ��,          ∀ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ� (7) 

ᵃ�� ≤ ᵃ�� ≤ ᵅ��,          ∀ᵅ� ∈ ᵃ�  (8) 

ᵃ�� + ᵅ�� − (1 − ᵯ��)(ᵅ�� + ᵅ��) ≤ ᵰ�� ≤ ᵃ�� + ᵅ�� + (1 − ᵯ��)(ᵅ�� + ᵅ��),          ∀ᵅ� ∈ ᵃ� (9) ᵅ�� ≤ ᵰ�� ≤ (1 − ᵯ��)(ᵃ�� − �) + (1 − � ᵅ����∈�� + ᵯ��)(ᵅ�� + ᵅ��),          ∀ᵅ� ∈ ᵃ� (10) 

ᵅ�� ≤ ᵰ��,          ∀ᵅ� ∈ ᵃ� (11) 
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ᵰ�� + �ᵅ��� + ��ᵅ��� − ᵅ���1 − ᵅ���� ≤ ᵅ��,          ∀ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ� (12) 

0 ≤ ᵃ�� ≤ ᵃ�� − (ᵅ��ᵅ���) + ᵃ���1 − ᵅ����,          ∀ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ� (13) 

0 ≤ ᵃ�� ≤ ᵃ�� (14) 

0 ≤ ℎ� ≤ ℎ� − ᵅ��� + ᵃ���1 − ᵅ����,          ∀ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ� (15) 

0 ≤ ℎ� ≤ ᵃ�� (16) 0 ≤ ᵅ�� ≤ ᵅ�� − (ᵅ��ᵃ���ᵅ���) + (ᵃ�� � ᵅ����∈����∈� ) + ᵃ���1 − ᵅ����,          ∀ᵅ� ∈ ᵃ�, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ� (17) 

0 ≤ ᵅ�� ≤ ᵃ��,          ∀ᵅ� ∈ ᵃ� (18) ᵅ�� ≥ � ᵅ��ᵃ���ᵅ����∈�� ,          ∀ᵅ� ∈ ᵃ�  (19) 

0 ≤ ᵅ�� ≤ ᵅ�� − (ᵅ��ᵃ���ᵅ���) + ᵃ���1 − ᵅ����,          ∀ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ� (20) 

0 ≤ ᵅ�� ≤ ᵃ��,          ∀ᵅ� ∈ ᵃ�  (21) 

Expressions (2) is the objective function that seeks to minimise the total cost consisting of the acquisition 1 

cost of ECVs and BSVs and the operational cost of the total distance travelled by them. Constraints (3) to (5) 2 

are routing constraints, constraints (6) to (12) are scheduling and synchronisation constraints, constraints (13) 3 

to (16) are capacity constraints, and finally, constraints (17) to (21) are battery level control and swapping 4 

determination constraints. These constraints are further detailed below. 5 

Constraints (3) indicate that each customer must be visited exactly once by an ECV for delivery. 6 

Constraints (4) and (5) together guarantee that if a vehicle (i.e. an ECV or a BSV) enters a customer node, it 7 

also exits.  8 

Constraints (6) denote the service start time at each customer. Constraints (7) determine the arrival time 9 

of an ECV at each node by accounting for the service start time at the upstream node, its service time, and 10 

possibly its required time for a requested swap by a BSV. Constraints (8) ensure that customers’ service starts 11 

during their time windows. Constraints (9) and (10) determine if the battery swapping service begins before or 12 

after the customer service (refer back to expression (1)). Constraints (11) present the possible arrival time of 13 

the BSV at the designated point of swapping; i.e. on or before the decided swapping service start time. 14 

Constraints (12) determine the arrival time of a BSV at each node by accounting for the swapping service start 15 

time at the upstream node plus the service time.  16 

Constraints (13) and (14) ensure demand fulfilment while guaranteeing that the capacity of the ECVs is 17 

not violated, and constraints (15) and (16) do the same for BSVs. Constraints (17) to (19) determine the battery 18 

charge level of ECVs after visiting a customer and in case a battery swapping service is carried out. Note that 19 

both constraints (17) and (18) are needed to accurately determine the battery level of an ECV in case a battery 20 

swapping by a BSV is scheduled. The use of constraints (17) alone is not sufficient, as in the case of non-zero 21 
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ᵅ��, by battery swapping the battery capacity will be violated without (18). Finally, constraints (20) and (21) 1 

ensure that the battery charge of a BSV never falls below 0. 2 

We use this formulation to solve exactly small sized instances of the EVRPTW-SMBS with up to 25 3 

customer nodes. The cost of these solutions is compared with the cost of solutions based on intra-route 4 

recharging. We also use the solution to these instances as a benchmark for the evaluation of the performance of 5 

the proposed solution algorithm presented in the next section. 6 

4. The algorithm 7 

The EVRPTW-SMBS is very difficult to solve to optimality in case of realistically sized problem instances and 8 

hence the development of tailored heuristic solution algorithms to tackle practical problem sizes is important. 9 

Solving the EVRPTW-SMBS heuristically, however, is also a significant challenge due to the spatio-temporal 10 

synchronisation requirement and the existence of the compound interdependence problem discussed earlier. In 11 

the EVRPTW-SMBS, routing must be carried out in two levels for the ECVs and BSVs such that BSVs are 12 

present at a designated time and location to swap the depleted battery on an ECV with a fully charged one. 13 

Any slight change in the routes of one level can change the routes of the other level and therefore complicate 14 

solution evaluation in the course of the local search.  15 

In this section, we propose a methodology for exact evaluation of each given solution in the context of the 16 

EVRPTW-SMBS. This is a two-stage routine based on the integration of a Dynamic Programming (DP) 17 

algorithm in the first stage with an Integer Program (IP) for label selection in the second stage, referred to as 18 

the “DPIP”.  Placing the DPIP ‘wisely’ at the heart of the local search as the routine for solution evaluation, it 19 

is possible to tackle EVRPTW-SMBS efficiently. We develop and use an ILNS algorithm as the higher level 20 

heuristic and put forth three versions of the algorithm that use different solution evaluation routines at their 21 

core. In the following, a high-level exposition of the proposed ILNS is first provided, and then the DPIP and the 22 

three extensions of the DP-ILNS are described. 23 

Prior to discussing the proposed algorithms, however, we need to establish that in the rest of this section 24 

whenever we refer to a ‘Solution’, it is meant to be a set ᵊ� = {ℛ�, ℛ�, … . , ℛ�}, which is composed of ᵅ� capacity 25 

feasible ECV routes ℛ�, ∀� ∈ {1, . . , ᵅ�}  visting all customers in ᵃ�  exactly once. Each route ℛ� =26 {��, ��,… , ��, ��}, on the other hand, is a sequence of customer visits for a given ECV that starts at the depot 27 {��}, visits a set of customers {��, … , ��} and terminates at the final depot {��}. Therefore, a solution only 28 

contains information about a set of ECV routes denoting the sequence of customer visits and does not imply 29 

any other information regarding the need for the battery swapping services. Correspondingly, by ‘(Optimal) 30 

Evaluation of a Solution’, we mean to determine (optimally) the schedules for the required battery swapping 31 

services.  32 

4.1. The higher-level heuristic 33 

To tackle the EVRPTW-SMBS, we develop and use an ILNS algorithm as the higher-level heuristic. The LNS 34 

(Shaw, 1998) is a conceptually simple metaheuristic which has proven successful in solving different variants of 35 

routing problems, particularly the VRPTW. It is based on large rearrangements in a current solution by applying 36 

several removal and re-insertion heuristics, and hence moving from one area within the feasible region to another 37 

using rather large steps. For brevity, we avoid elaborating on the details of the LNS and its well-known adaptive 38 

extension, i.e. ALNS (Ropke and Pisinger, 2006) here and refer the reader to the original studies of Shaw (1998) 39 

and Ropke and Pisinger (2006) for that purpose.  40 

In order to achieve a better exploitation capability, the LNS can be further equipped with an auxiliary 41 

intensification procedure. In this study, we propose to use a Simulated Annealing (SA) metaheuristic with a new 42 
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neighbourhood exploration strategy as the solution intensifier, which is only invoked upon finding local optima 1 

to seek the possibility of finding a better solution. An overview of the proposed ILNS algorithm is given in 2 

Algorithm 1.  3 

In the first step of the proposed algorithm (line 1) a solution ᵊ�� is generated using a simple heuristic. This 4 

heuristic puts all customers into a “non-routed” set and initiates an empty ECV route in the beginning. Then, 5 

in each iteration the algorithm extracts a customer from the non-routed set and assuming an unlimited battery 6 

capacity tries to insert it at its best location in the current route(s) with respect to the total ECV distance 7 

travelled. If the customer cannot be put into any of the existing routes due to vehicle capacity or time windows 8 

constraints, a new route is initiated to accommodate the customer. This procedure is iterated until the non-9 

routed set is empty.  10 

Algorithm 1 ILNS 

1 Generate an initial solution and denote it by ᵊ��; 
2 ᵊ������� ← Evaluate ᵊ�� using the DPIP; 
3 ᵊ����� ← ᵊ�������; 
4 ᵅ�ᵃ�ᵅ�ᵅ���� ← ᵅ�ᵅ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵃ�ᵅ�ᵅ����; 
5 for ᵅ�ᵅ�ᵃ�ᵅ� = 1 to ᵅ�ᵃ�ᵅ�ᵃ�ᵅ�ᵃ�ᵅ���� do 
6  ᵊ����� ← ᵊ�������; 
7  ᵊ���� ← Select a removal heuristic and apply it on ᵊ�����; 
8  ᵊ����� ← Select an insertion heuristic (accompanied by DPIP) and apply it on ᵊ����; 
9  if ᵃ�ᵅ�ᵅ�ᵅ�(ᵊ�����) < ᵃ�ᵅ�ᵅ�ᵅ�(ᵊ�����) then 
10   ᵊ����� ← ᵊ�����;  
11   while ᵅ�ᵅ�ᵅ�ᵃ� do 
12    ᵊ���� ← Apply the intensification procedure (accompanied by DPIP) on ᵊ�����; 
13    if ᵃ�ᵅ�ᵅ�ᵅ�(ᵊ����) < ᵃ�ᵅ�ᵅ�ᵅ�(ᵊ�����) then ᵊ����� ← ᵊ���� and ᵊ����� ← ᵊ���� else break end if 
14   end while 
15  end if 
16  if ᵃ�ᵅ�ᵅ�ᵅ�(ᵊ�����) < ᵃ�ᵅ�ᵅ�ᵅ�(ᵊ�������) then 
17   ᵊ������� ← ᵊ�����; 
18  else if ᵅ�ᵃ�ᵅ�ᵃ� < ᵃ�ᵅ�ᵅ�(− (ᵃ�ᵅ�ᵅ�ᵅ�(ᵊ�����) − ᵃ�ᵅ�ᵅ�ᵅ�(ᵊ�������)) ᵅ�ᵃ�ᵅ�ᵅ����⁄ ) then 
19   ᵊ������� ← ᵊ�����; 
20  end if 
21  ᵅ�ᵃ�ᵅ�ᵅ���� ← ᵅ�ᵃ�ᵅ�ᵅ���� × ᵉ���� 
22 end for 
23 return ᵊ����� 

Following the generation of the initial solution ᵊ��, it is optimally evaluated using the DPIP (discussed in 11 

the next subsection) and the optimal evaluation is called ᵊ������� (line 2). Henceforth, the proposed ILNS takes a 12 

fixed number of iterations (ᵅ�ᵃ�ᵅ�ᵃ�ᵅ�ᵃ�ᵅ����) to seek a better solution ᵊ�����. In each iteration, a removal heuristic is 13 

selected from a set of available removal heuristics and is applied on the current solution ᵊ����� to remove a 14 

certain number of customers from the routes in the solution (line 7). We are using three removal heuristics: (i) 15 

Shaw removal (Shaw, 1998), (ii) random removal (Ropke & Pisinger, 2006), and (iii) worst removal (Ropke & 16 

Pisinger, 2006), all with equal probability to be selected. For all these removal heuristics, the number of 17 

customers to remove is determined by selecting a random integer in the interval [4, ᵅ�ᵰ����], where ᵰ���� ∈ [0,1] 18 

is a user defined parameter. In addition to this parameter, there is a ᵰ����� ∈ ℝ+ parameter for the Shaw removal 19 

which controls determinism in the relatedness function (see Shaw, 1998), and there is a ᵰ������ ∈ ℝ+ parameter 20 

for the worst removal that controls the degree of randomisation (see Ropke and Pisinger, 2006).  21 
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The destroyed solution ᵊ���� after applying the selected removal heuristic, and the set containing removed 1 

customers are then submitted to a selected re-insertion algorithm to repair ᵊ���� and retrieve a possibly new 2 ᵊ����� (line 8). We use two insertion heuristics adopted from Ropke and Pisinger (2006) for this purpose: (i) 3 

regret-2 heuristic, and (ii) regret-2 heuristic with noise (see Ropke and Pisinger, 2006 for details). There is only 4 

one parameter here (i.e. ᵰ�) associated with the second heuristic to control the amount of noise.  5 

It is very important to note that unlike other VRPs, in the context of the EVRPTW-SMBS routes are not 6 

independent from one another and insertion of a customer in a route affects the entire solution (i.e. the set of 7 

ECV and BSV routes) and its evaluation. Therefore, a key in the design of the algorithm is to decide how the 8 

value of re-insertions here in the repair step of the proposed ILNS and in the intensification step (line 12) is 9 

determined. For now, suppose that each time an insertion occurs the new solution is submitted to DPIP for 10 

optimal evaluation. It is clear that this is a computationally intensive and prohibitive requirement, but we later 11 

discuss how in the extensions of the algorithm this is relaxed using lexicographic decomposition techniques. 12 

Following the application of the destroy and repair mechanisms in lines 7 and 8 of the algorithm, the 13 

intensification procedure is invoked if the new resulting solution ᵊ����� is lower cost than the existing best solution 14 ᵊ����� (line 8). After updating ᵊ����� (line 10), as long as ᵊ����� can be improved, the intensification procedure is 15 

repeatedly applied on ᵊ����� . The structure of the intensification procedure is similar to the successful SA 16 

algorithm proposed by Bent and Van Hentenryck (2004) for VRPTW, and mainly differs in its neighbourhood 17 

exploration strategy, which is indeed the special feature of their SA (and hence ours). In each iteration of their 18 

SA algorithm, Bent and Van Hentenryck (2004) choose randomly a move operator and a customer, and then 19 

consider all the possible moves for this customer using the selected operator to see if any improvement could be 20 

found. While we use the same 5 well- known local search operators that Bent and Van Hentenryck (2004) use 21 

in their study; i.e. 2-opt, Or-opt, Relocation, Swap, and Crossover, we explore a wider sub-neighbourhood by 22 

selecting ᵰ�ᵅ� customers instead of only one customer, where the rate ᵰ� ∈ [0,1] is a user defined parameter. The 23 

closer is the selected ᵰ� to 1, the wider will be the explored sub-neighbourhood, and thus the better might be the 24 

ultimate solution, but also the slower would be the overall algorithm. Note that the SA algorithm used in the 25 

intensification procedure requires 5 other input parameters corresponding to ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ���� , ᵉ���� , 26 ᵅ�ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ���� , ᵅ�ᵅ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵃ�ᵅ�ᵅ���� , and ᵅ�ᵃ�ᵅ�ᵃ�ᵅ�ᵃ�ᵅ����  (see Appendix A. and Bent and Van Hentenryck, 2004 for 27 

details). 28 

In lines 16 to 20 of the algorithm,  ᵊ����� is compared with ᵊ�������, and if ᵊ����� is not an improvement over 29 ᵊ������� , an SA-wise acceptance criterion is used to examine if  ᵊ�������  could be updated. Note that the 30 

temperature ᵅ�ᵃ�ᵅ�ᵅ���� in the algorithm starts out at ᵅ�ᵅ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵃ�ᵅ�ᵅ����  (line 4) and is decreased at the end of 31 

every iteration using the expression ᵅ�ᵃ�ᵅ�ᵅ���� ← ᵅ�ᵃ�ᵅ�ᵅ���� × ᵉ����  (line 21), where 0 < ᵉ���� < 1 is the cooling 32 

rate. 33 

We next describe the DPIP procedure used for the exact evaluation of a given solution in the context of 34 

the EVRPTW-SMBS. 35 

4.2. Optimal evaluation of an ECV route in EVRPTW-SMBS 36 

As was defined earlier, optimal evaluation of a given solution ᵊ� (a set of capacity feasible ECV routes each 37 

representing the sequence of customer visits) in the context of the EVRPTW-SMBS corresponds to the optimal 38 

determination of the required battery swapping services such that ᵊ� is turned into a feasible EVRPTW-SMBS 39 

solution and objective function (2) is minimised. Due to the interdependence between ECV and BSV routes, 40 

this is a complicated task and, unlike in typical VRPs, following any change in a given route ℛ� ∈ ᵊ� in the 41 

course of the local search, the entire ᵊ� must be re-evaluated, and not just ℛ�.  42 
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We propose an exact two-stage evaluation function to carry out this task: in the first stage we use a DP 1 

to generate a set of non-dominated labels at the endpoint of each energy infeasible route; these non-dominated 2 

labels correspond to ‘incomparable’ ways for requesting battery swapping at different locations and times along 3 

the route, using any of which the corresponding energy infeasible route can be turned into an energy feasible 4 

one. The generated labels for all routes are then submitted to an IP to combine and generate an optimal 5 

EVRPTW-SMBS evaluation of the given solution. These two stages are detailed in the following.  6 

The proposed DP for the first stage is presented in Algorithm 2. This algorithm takes the graph ᵃ�, an 7 

ECV route ℛ = {��, ��, … , ��} (where �� and �� are the depot), and the time-windows and service times of the 8 

customers on the route in its input (line 1), and returns a set of non-dominated labels ℒ� at the destination 9 

node of the given route (i.e. at the final depot). Along with ℒ�, and associated with each label in ℒ�, the 10 

algorithm returns also information about the customers that require a swapping service in ᵊ��, and the time (or 11 

time interval) at/during which these customers need the service to be available in ℱ� (line 27). This information 12 

must be passed to the second stage IP solver of the algorithm for combination of labels.  13 

Algorithm 2 The stage-I DP 
1 Input ᵃ�, ℛ, ᵃ��, ᵅ��, and ᵃ��, ᵅ��, ᵅ��∀�� ∈ ℛ   
2 Initialise ℒ� = {0,0,ᵃ��} = {},ℱ� = {}, and ᵊ�� = {};  
3 for ᵅ� = 0 to ᵰ� − 1 do 
4  foreach: label ℓ ∈ ℒ� do 
5   if ℓ� + ᵅ����+� ≤ ᵅ��+� and ℓ� ≥ ᵅ��ᵃ����+� then 
6    dominated := false; 
7    ᵕ� = ℓ� + ᵃ����+�;  ᵕ� = ᵅ�ᵃ�ᵅ��ℓ� + ᵅ����+�, ᵃ��+�� + ᵅ��+�;  ᵕ� = ℓ� − ᵅ��ᵃ����+�; 
8    ℓ� = {ᵕ�,ᵕ�, ᵕ�}; �� ={�}; ℊ� ={ℊ}; // � and ℊ are the ℓth lablels in ℱ� and ᵊ��, respectively 
9    foreach: label ℓ′′ ∈ ℒ�+� do  
10     if ℓ�� ≤ ℓ���, ℓ�� ≤ ℓ���, ℓ�� ≥ ℓ��� and ℊ� ⊆ ℊ�� then //if ᵅ� = ᵰ� − 1: ℓ�� ≥ ℓ��� is redundent 
11      ℒ�+� ≔ ℒ�+�\{ℓ′′}; ℱ�+� ≔ ℱ�+�\{�′′}; ᵊ��+� ≔ ᵊ��+�\{ℊ′′};  
12     elseif ℓ��� ≤ ℓ�� , ℓ��� ≤ ℓ�� , ℓ��� ≥ ℓ��  and ℊ�� ⊆ ℊ� then //if ᵅ� = ᵰ� − 1: ℓ��� ≥ ℓ��  is redundent 
13      dominated := true; break; 
14     end if 
15    end for 
16    if dominated = false then   
17     ℒ�+� ≔ ℒ�+� ∪ {ℓ′}; ℱ�+� ≔ ℱ�+� ∪ {��}; ᵊ��+� ≔ ᵊ��+� ∪ {ℊ�}; 
18    end if 
19   end if 
20   if ᵅ� ≠ 0 and ᵃ�� ≥ ᵅ��ᵃ����+� then 
21    Repeat lines 6 to 18 with following modifications: 

22    
In line 7: (1) if ℓ� + ᵅ����+� ≤ ᵃ���+� − � then ᵕ� = ᵅ�ᵃ�ᵅ��ℓ� + ᵅ����+�, ᵃ��+�� + ᵅ��+�, else ᵕ� = ᵅ�ᵃ�ᵅ��ℓ� +ᵅ����+�, ᵃ��+�� + ᵅ��+� + �; (2) ᵕ� = ᵃ�� − ᵅ��ᵃ����+�  

23    
In line 8: (1) if ℓ� + ᵅ����+� ≤ ᵃ���+� − � then �� = � ∪ {�ℓ� + ᵅ����+�, ᵃ��+� − ��} else �� = � ∪ {ᵅ�ᵃ�ᵅ��ℓ� +ᵅ����+�, ᵃ��+�� + ᵅ��+�}; (2) ℊ� =  ℊ ∪ {��}; 

24   end if 
25  end for 
26 end for 
27 return ℒᵰ�,ℱᵰ�, and ᵊ�ᵰ�. 

The algorithm retains and extends a set of labels ℒ�, ℱ�, and ᵊ�� at each node �� along ℛ. Each label ℓ ∈14 ℒ� is a tuple of length 3, where ℓ� stores the accumulated distance, ℓ� stores the accumulated travel time (this 15 
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includes the travel time of the ECV, the potential waiting time for time windows opening and the accumulated 1 

overhead time for swapping services), and ℓ� stores the available battery charge level up to the current node 2 

in ℛ. Each monitoring label ℊ ∈ ᵊ�ᵅ� and � ∈ ℱᵅ�, on the other hand, is an open-ended list of customers requiring 3 

swaps and their requested service time/time intervals, respectively. The first set of labels at �� is initiated in 4 

line 2 of the algorithm and it is extended in lines 3 to 26 of the algorithm. If no battery swapping is taking place 5 

at node ��+�, the extension of the travel time from node �� to ��+� via label ℓ follows the expression below (line 6 

7 of the algorithm): 7 ℓ�� = ᵅ�ᵃ�ᵅ��ℓ� + ᵅ����+�, ᵃ��+�� + ᵅ��+� (22) 

where ℓ��  is the travel time (ready time) at node ��+� and ℓ� is the ready time at node ��. 8 

However, if battery swapping is taking place at node ��+�, two situations are possible: if the arrival of the 9 

ECV is ‘well’ before the customer’s time window, i.e. ℓ� + ᵅ����+� ≤ ᵃ��+� − �, then the same expression (22) is 10 

used; otherwise, the extension follows expression (23) below (line 22 of the algorithm): 11 ℓ�� = ᵅ�ᵃ�ᵅ��ℓ� + ᵅ����+�, ᵃ��+�� + ᵅ��+� + � (23) 

In the former case, the algorithm passes the time interval [ℓ� + ᵅ����+�, ᵃ��+� − �] as a potential time window 12 

for the BSV arrival time that must be decided at the next stage of the algorithm, and in the latter case no time 13 

interval flexibility is granted and the BSV must be available for the battery swapping service at time 14 ᵅ�ᵃ�ᵅ��ℓ� + ᵅ����+�, ᵃ��+�� + ᵅ��+� (line 23). 15 

 Clearly, the distinctive feature of the proposed DP that particularly leads to extra information regarding 16 

the need for swapping services corresponds to lines 20 to 25 of the algorithm, where the restriction on the 17 

available battery charge level is lifted and it is assumed that the ECV is ready to depart the node using a fully 18 

charged battery as a result of a potential battery swapping service by a BSV. Comparison of two labels in the 19 

context of this algorithm and the development of efficient domination rules, however, is not straightforward. A 20 

label with shorter distance and travel time and larger battery charge level does not necessarily dominate another 21 

label with a larger travel time and smaller battery charge level. This is because the total distance travelled by 22 

the BSVs also contributes to the objective function and the length of the routes travelled by BSVs is determined 23 

by the customers they must visit. Therefore, the associated battery swapping requesting customers to each label 24 

make them incomparable. It is not even possible to say a label with fewer battery swapping requesting customers 25 

is better, because it might be a shorter route for the BSV to visit 3 customers which are close to each other and 26 

to the depot, rather than a single customer too far from the depot, for example.  27 

We handle this situation by engaging labels ℊ ∈ ᵊ�ᵅ� in the development of the domination rule (lines 10 and 28 

12):  29 

Remark 1 If for two labels ℓ′ and ℓ�� in ℒ�, and their corresponding monitoring labels ℊ′ and ℊ�� in ᵊ��, we have 30 ℓ�� ≤ ℓ���, ℓ�� ≤ ℓ���, ℓ�� ≥ ℓ���, and ℊ� ⊆ ℊ��, then ℓ′ ≼ ℓ′′ (i.e. label ℓ′ dominates label ℓ′′). 31 

Based on remark 1, if for example we have three partial paths A, B, and C, with exactly the same distance, 32 

travel time and battery charge level, and with associated swapping location sets of {1,2}, {1}, and {2,3}, 33 

respectively, B dominates A, but B and C, and A and C are incomparable. The clear explanation for this is the 34 

triangular inequality which implies that visiting an additional customer in the second level by a BSV will only 35 

lead to extra distance travelled. 36 

In order to illustrate better the working of the proposed DP in an EVRPTW-SMBS instance, we use here 37 

instance C101-5 from section 5 of the paper as an example. In the context of this instance, suppose that in the 38 
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course of the local search we intend to evaluate optimally a generated solution ᵊ� = {[0,1,2,0], [0,4,3,0], [0,5,0]} 1 

which is a solution with three capacity-feasible ECV routes. Due to the given battery capacity of an ECV in 2 

this instance, routes 1 and 2 (i.e. [0,1,2,0] and [0,4,3,0]) are energy infeasible and the ECVs operating them need 3 

the battery swapping service over their route. The application of the proposed DP in evaluating route [0,1,2,0] 4 

is illustrated in Figure 4. The figure illustrates the extension of the labels along the given ECV route, and shows 5 

that at the final node, we must choose among 2 non-dominated labels only. The path corresponding to the first 6 

label involves a battery swapping at customer 2 which can take place any time in the interval [569.41,649], and 7 

the path corresponding to the second label involves a swapping at customer 1 which can take place any time in 8 

the interval [51.03,446]. The third label is clearly a dominated label based on Remark 1. 9 

 
Figure 4 An illustrative example for the proposed DP 

In order to illustrate later how the second stage IP combines the resulting labels, Figure 5 shows also the 10 

resulting ℒ�s after the application of the first stage DP on routes [0,4,3,0] and [0,5,0] in ᵊ�.  11 

 
Figure 5 The EPIP-based DP endpoint labels of the routes in the example 

Having identified the final set of non-dominated endpoint labels at each route and their corresponding 12 

attributes, the algorithm can proceed to the second stage and select an optimal combination of these labels using 13 

a simple integer linear programming model that is described in the following. Hereafter, we refer to this problem 14 

as the Label Selection Problem (LSP).  15 

To develop the LSP, the following sets and parameters must be defined following the outputs from the 16 

Stage-I DP: 17 

Sets: 18 

 ᵊ� = {��, ��, … , ��}: The unique set of customers requiring battery swaps in all the identified ᵊ��s 19 

of all routes (in the example, we have ᵊ� = {1,2,3,4}). 20 
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 ᵊ� = {ℛ�, ℛ�, … . , ℛ�}: The set of all routes in the solution (in the example, we have ᵊ� = {1,2,3}, 1 

where index 1 refers to route 1, i.e. route [0,1,2,0], index 2 refers to route 2, i.e. route [0,4,3,0], and 2 

index 3 refers to route 3, i.e. route [0,5,0]). 3 

 ℒ = {ℓ�, ℓ� … , ℓ�}: the ordered set containing indices pointing to all identified non-dominated 4 

labels ℒ�s (in the example, we have ℒ = {1,2,3,4,5}, where index 1 and index 2 refer to labels at 5 

the endpoint of route 1, indices 3 and 4 refer to labels at the endpoint of route 2, and index 5 refers 6 

to the label at the endpoint of route 3). 7 

 For ease of reference, assume that ᵊ�� = {0} ∪ ᵊ�, ᵊ�� = ᵊ� ∪ {ᵰ�}, and ᵉ� = {(ᵅ�, ᵅ�)|ᵅ� ∈ ᵊ��, ᵅ� ∈8 ᵊ��, ᵅ� ≠ ᵅ�}.  9 

Parameters:  10 

 ᵊ���: A parameter equal to 1 if label ℓ ∈ ℒ belongs to route � ∈ ᵊ�, and 0 otherwise. 11 

 ᵊ���: A parameter equal to 1 if label ℓ ∈ ℒ contains customer ᵅ� ∈ ᵊ�, and 0 otherwise. 12 

 ᵊ���: The earliest time a BSV can start service at customer ᵅ� ∈ ᵊ� on label ℓ ∈ ℒ. Note that if ᵊ��� =13 0, then ᵊ��� = 0.   14 

 ᵊ���: The latest time a BSV can start service at customer ᵅ� ∈ ᵊ� on label ℓ ∈ ℒ. Note that if ᵊ��� =15 0, then ᵊ��� = 0. Also note that if swapping must take place after ECV serves the customer (i.e. a 16 

time instant and not a range in the corresponding ℱ label), then ᵊ��� = ᵊ���.  17 

 ᵉ��: the total distance associated with label ℓ ∈ ℒ.  18 

For illustration, the defined parameters in the case of the example are given below: 19 

ᵊ� = ⎣⎢⎢
⎡1 0 01 0 0000 110 001⎦⎥⎥

⎤ , ᵊ� = ⎣⎢⎢⎢
⎡0 1 0 01 0 0 0000 000 1 00 10 0⎦⎥⎥⎥

⎤ , ᵊ� = ⎣⎢⎢⎢
⎡ 0 569.41 0 051.03 0 0 00 0 29.73 00 0 0 763.180 0 0 0 ⎦⎥⎥⎥

⎤ , ᵊ� = ⎣⎢⎢⎢
⎡ 0 649 0 0446 0 0 00 0 552 00 0 0 763.180 0 0 0 ⎦⎥⎥⎥

⎤ 20 

ᵉ� = [89.11 89.11 95.99 95.99 43.08] 21 

Finally, the LSP uses the following decision variable, alongside ᵅ���, ᵰ��, ℎ� and ᵅ�� defined earlier in the paper: 22 

 ��: Binary variable equal to 1 iff label ℓ ∈ ℒ is selected.  23 

The LSP is given below: 24 ᵃ�ᵅ�ᵅ� ᵉ�� � ᵅ����∈�� + ᵉ��� � ᵃ���ᵅ���(���)∈� + ᵉ��� � ᵉ�����∈�  (24) 

Subject to:  

� ᵊ������∈� = 1,          ∀� ∈ ᵊ� (25) 

� ᵊ������∈� ≤ 1,          ∀ᵅ� ∈ ᵊ� (26) � ᵅ����∈�� = � ᵊ������∈� ,          ∀ᵅ� ∈ ᵊ� (27) 

� ᵊ������∈� ≤ ᵰ�� ≤ � ᵊ������∈� ,          ∀ᵅ� ∈ ᵊ� (28) 

and (5), (15), (16), (20) and (21) (in these constraints replace ᵃ�, ᵃ�� and ᵃ��, with ᵊ�, ᵊ�� and ᵊ��, respectively).   25 

In the proposed LSP, the objective function (24) minimises the acquisition cost of BSVs (first term) and 26 

the cost of the total distance travelled by the BSVs and the ECVs (second and third terms). Constraints (25) 27 
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ensure that exactly one label is selected from the endpoint labels of each route. Constraints (26) guarantee each 1 

customer exists no more than once on the selected labels. Constraints (27) ensure that a BSV will be visiting a 2 

selected customer location. Finally, constraints (28) determine the BSVs service start time at the selected 3 

customer locations. 4 

The LSP is a simple IP to solve explicitly, but calling the full DPIP over every newly generated solution 5 

in the course of the algorithm is computationally expensive. Therefore, in the next subsection, we propose three 6 

different algorithms that decompose the two stages of the DPIP in the course of the algorithm and only call the 7 

complete DPIP after finding certain local optima. It is also worth mentioning that one can derive a heuristic 8 

extension of the proposed DPIP, mainly by: (i) restricting the allowed size of the label sets at each node along 9 

the ECV route in the first stage DP (this is particularly useful in the case of the instances with wide time 10 

windows where routes visit a quite large number of customers), and (ii) by terminating the solver dealing with 11 

LSP prematurely (e.g. restricting the CPU time devoted to solving the LSP) or solving the LSP heuristically.  12 

4.3. Alternative methods for solution evaluation 13 

Due to the interdependence between ECV routes, and between the routes of the two levels, i.e. ECVs and BSVs, 14 

the global impact of a local change in the structure of an individual route cannot be determined by considering 15 

that route only. At the same time, evaluation of each EVRPTW-SMBS solution to optimality following the 16 

application of a move operator in the course of the local search using the proposed DPIP is quite costly. Hence, 17 

the DPIP must be reasonably used at certain points in the course of the solution algorithm only and the general 18 

solution evaluation should be assigned to a faster evaluation procedure. 19 

To handle local alterations in routes in the local level, we propose to lexicographically decompose the two 20 

stages of the DPIP and incorporate an intuitive “look-ahead” element in the evaluation procedure. To do so, in 21 

the first stage, instead of returning the full set of non-dominated labels at the endpoint of each route and then 22 

submitting all these labels to the LSP solver, we apply stronger dominance rules and select only one label based 23 

on some criteria at the endpoint of each route, and hence eliminate the need for solving the LSP. We examine 24 

two different methods:  25 

1) In the first method, we use “ECVs total distance travelled” as the intuitive look-ahead criterion; that is, 26 

we hypothesize that minimising the total distance of ECV routes might ultimately lead to a near optimal 27 

evaluation of the EVRPTW-SMBS. To do so, following each move and hence alteration in one of the 28 

existing ECV routes, we use a modified extension of the proposed DP, referred to as the DistBased-DP, 29 

for the affected route, and at the end-point select the label with minimum distance travelled. If two 30 

labels share exactly the same distance at the endpoint labels of the DistBased-DP, the label with fewer 31 

number of battery swapping services is selected. If this is also the same, one label is selected randomly.  32 

2) In the second method, we use “total number of battery swapping services required” as the intuitive look-33 

ahead criterion; that is, we hypothesize that minimising the total number of battery swapping services 34 

required by an ECV route might lead to fewer BSVs required and smaller total distance travelled by 35 

them, and hence a near optimal evaluation of the EVRPTW-SMBS. To do so, in the proposed DP 36 

(Algorithm 2), each label ℓ ∈ ℒ� is extended to a tuple of length 4, where ℓ� stores the total number of 37 

battery swapping services required up to the current node in ℛ, and the domination rules in lines 10 38 

and 12 of the algorithm are extended to include ℓ�� ≤ ℓ��� and ℓ��� ≤ ℓ�� , respectively (we refer to this new 39 

DP as the BattBased-DP). Then, following each move and hence alteration in one of the existing ECV 40 

routes, we just use the BattBased-DP for the affected route and at the end-point select the label with 41 

minimum number of battery swapping services. If two labels share exactly the same number of battery 42 
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swapping services, the label with a smaller distance is selected. If this is also the same, one label is 1 

selected randomly. 2 

Note that using these evaluation methods, with each move in the course of the algorithm only one (or at 3 

most two) routes must be evaluated and to determine the global impact of the move, unlike the case of the 4 

DPIP, there is no need to evaluate all other routes also. Therefore, one can use only these methods for solution 5 

evaluation and hence drive the search in the proposed DP-ILNS, and postpone the optimal evaluation using the 6 

DPIP until the final best solution is returned. For a much better performance, however, it is possible to 7 

incorporate reasonably several checkpoints into the course of the algorithm, where the DPIP intervenes and 8 

evaluates a current best solution to optimality. Based on this, we develop three algorithms and investigate their 9 

performance in the next section:  10 

I. ALG-I: In this algorithm, evaluation is always carried out using the BattBased-DP throughout the 11 

proposed DP-ILNS. That is, in all heuristics accompanied by DPIP (lines 2, 8 and 12 of Algorithm 1), 12 

DPIP is replaced by the BattBased-DP. Following the identification of the ᵊ����� at the end of the 13 

algorithm (line 23), ᵊ����� is submitted to DPIP for optimal evaluation, and the optimal evaluation is 14 

returned. 15 

II. ALG-II: In this algorithm, general evaluation is carried out using the DistBased-DP, and in all heuristics 16 

accompanied by DPIP (except for line 2 of Algorithm 1), DPIP is replaced by the DistBased-DP. 17 

However, at two main checkpoints, i.e. after that the insertion heuristic returns ᵊ����� (line 8), and after 18 

that the intensification procedure returns ᵊ����, both ᵊ����� and ᵊ���� are evaluated using DPIP. Two 19 

forms of cost, referred to as ᵃ�ᵅ�ᵅ�ᵅ���� and ᵃ�ᵅ�ᵅ�ᵅ����, are therefore maintained for each solution in the course 20 

of this algorithm, where the former denotes the cost realised from the optimal evaluation of the solution 21 

using DPIP, and the latter refers to the cost realised from the alternative method used for evaluation. 22 

While the high level search towards the global optimum is always carried out based on ᵃ�ᵅ�ᵅ�ᵅ���� (i.e. lines 23 

9, 13, 16 and 18 of the algorithm), finding local optima in the insertion and intensification stages is 24 

carried out on the basis of ᵃ�ᵅ�ᵅ�ᵅ����.  25 

III. ALG-III: This algorithm is same as ALG-II with the difference that general evaluation is carried out 26 

using the BattBased-DP here.  27 

We will apply these three algorithms on a library of EVRPTW-SMBS test instances introduced in the next 28 

section, and report on their performance against the optimal solutions and against one another.  29 

5. Computational results 30 

In this section, we present the numerical experiments conducted to gain insights on the newly proposed problem 31 

of the EVRPTW-SMBS and to evaluate the effectiveness of the proposed solution algorithms. The section begins 32 

by introducing the EVRPTW-SMBS test instances, and then applies the proposed mathematical formulation 33 

introduced in section 3 on small test instances with up to 25 customers to gain insights on the benefits of using 34 

the proposed problem variant as opposed to the solutions based on intra-route recharging. Finally, the 35 

performance of the three alternatives of the proposed matheuristic algorithm is evaluated against the optimal 36 

and near optimal solutions found to small-sized instances, and by their application on EVRPTW-SMBS instances 37 

with 100 customers, and several managerial insights are discussed. 38 

All the experiments were performed on a computer with Intel Core™  i5 3.40 GHz processor with 8 GB 39 

RAM. The branch-and-bound solver of CPLEX™ 12.9.0 was used as the exact solver, and all other algorithms 40 

were coded in MATLAB™. Whenever needed, CPLEX™ is called from MATLAB™.  41 
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5.1. Generation of EVRPTW-SMBS test instances 1 

The EVRPTW-SMBS test instances developed in this paper are created by applying a few modifications on the 2 

EVRPTW instances proposed by Schneider et al. (2014). The test problems in Schneider et al. (2014) are 3 

developed based on the well-known benchmark instances for the VRPTW proposed by Solomon (1987) which 4 

comprise six sets of test problems (C1, R1, RC1, C2, R2, and RC2). Instances in the sets C1 and C2 are with 5 

clustered geographical data, instances in R1 and R2 are generated by a random uniform distribution, and 6 

instances in RC1 and RC2 are semi-clustered instances that contain a mix of randomly generated data and 7 

clusters. Problem sets in the first group (i.e. R1, C1, and RC1) have a short scheduling horizon, whereas the 8 

second group instances (i.e. R2, C2, and RC2) have a longer scheduling horizon. To extend these instance to 9 

their EVRPTW test problems, Schneider et al. (2014) introduce to each one the locations of a set of 21 CSs, 10 

one at the depot, and the other 20 ones at randomly selected locations, such that every customer can be reached 11 

from the depot using at most two different CSs.  12 

Since the detours for visits to CSs and the resulting recharging times in solutions based on intra-route 13 

recharging at CSs make it impossible to comply with the customer time windows given in the original Solomon 14 

instances, Schneider et al. (2014) generate new time-windows to obtain feasible EVRPTW instances. This, 15 

however, is not an issue for solutions based on the use of the BSVs, and as an added value of the proposed 16 

variant in this paper, there always exists a feasible solution to the EVRPTW-SMBS if the instance itself is 17 

feasible. Therefore, in the proposed EVRPTW-SMBS instances we use the original time windows in Solomon 18 

instances. Moreover, as recharging in CSs is not considered an option in EMVRPTW-SMBS, we disregard the 19 

location of all CSs; they are, however, retained as potential sites for opening a CS when we are treating the 20 

problem as an Electric Location Routing Problem with Time Windows and Partial Recharging (ELRPTW-PR). 21 

We are using the same ECV characteristics (i.e. maximum payload, battery capacity, and energy consumption 22 

rate per unit distance travelled) used by Schneider et al. (2014) in each instance. BSVs are assumed to have a 23 

capacity to carry 5 batteries, a battery capacity twice that of an ECV, and an energy consumption rate per unit 24 

distance travelled similar to that of an ECV. The battery swapping service is also assumed to take three time 25 

units across all test instances (i.e. � = 3).  26 

As discussed in section 3 of the paper, cost coefficients for the objective function (2) can be calculated using 27 

TCO calculation methodologies presented in previous studies. In our computational experiments, we are not 28 

using explicit values for the associated costs, and instead, for more generality, reasonable ratios between these 29 

cost coefficients are used. Since BSVs are practically ECVs with an on-board facility for battery swapping 30 

operations, they incur a relatively higher initial investment and periodically arising costs in comparison with 31 

ECVs. We, therefore, assume that the acquisition cost of a BSV is 20% higher than the acquisition cost of an 32 

ECV over a given time period (e.g. a day). Further, operational cost of each unit distance travelled by ECVs or 33 

BSVs are calculated to be 2% of the acquisition cost of an ECV when the distance-dependent maintenance costs, 34 

energy cost and driver wage are considered. Finally, following Shao et al, we initially set the cost of a CS (ᵉ��) 35 

at 10 times as much as the acquisition cost of a BSV over the same time period (this is subject to sensitivity 36 

analyses later in this section). Therefore, the following cost ratios are used in the models: ᵉ�� = 50, ᵉ�� = 60,37 ᵉ��� = ᵉ��� = 1, and ᵉ�� = 600. 38 

EVRPTW-SMBS instances of sizes 5, 10, 15, 25, and 100 customers are generated. All the test instances 39 

developed in this paper along with the details of the reported solutions in this section are available at 40 

http://www.lancaster.ac.uk/staff/raeesi/EVRPTW-SMBS-DAT.zip.      41 
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5.2. The added value of the EVRPTW-SMBS 1 

In this section, the added value of mobile battery swapping is investigated by comparing solutions obtained 2 

through the use of BSVs in the design of delivery routes for ECVs with solutions based on intra-route recharging 3 

with privately owned CSs. Therefore, each instance of size 5, 10, and 15 customers is solved to optimality (or 4 

near optimality) in two different settings; in the first setting the EVRPTW-SMBS formulation described in 5 

section 3 of the paper is applied on each instance to find a solution that minimises objective function (2). In the 6 

second setting, the problem is treated as an ELRPTW-PR with a generalised cost function involving the opening 7 

cost of CSs, the acquisition cost of ECVs and the cost of the total distance travelled by the ECVs. In order to 8 

solve the problem in this setting, we have adapted the formulation proposed in Keskin and Çatay (2016) for the 9 

EVRPTW with partial recharging, and modified it to incorporate simultaneously the location decisions by 10 

assuming the available CSs in each instance are potential recharging sites to open.  11 

The results of the experiments on instances with 5, 10 and 15 customers are presented in Table 1. In this 12 

table the headings denote the following: Cost: the cost of each solution, VE: total number of ECVs used in the 13 

solution; DE: total distance travelled by ECVs, C: total number of CSs opened, VB: total number of BSVs used 14 

in the solution; DB: total distance travelled by BSVs, S: total number of battery swaps requested, VT: total 15 

number of vehicles (ECVs and BSVs) used in the solution, and DT: total distance travelled by all vehicles (ECVs 16 

and BSVs). The solver is given a maximum of 7200 seconds for each instance, and an italic entry in the table 17 

under the ‘Cost’ heading implies that the reported solution is not optimal and is a solution returned by CPLEX 18 

after the termination criterion of 7200 seconds is met. 19 

Table 1 Comparison of the EVRPTW-SMBS with the ELRPTW-PR (ᵉ�� = 600) 
 
No. Inst. ELRPTW-PR  EVRPTW-SMBS 

Cost VE DE C  Cost VE DE VB DB S VT DT 
1 C101-5 546.09 5 296.09 0  523.84 3 254.37 1 59.464 1 4 313.84 
2 C103-5 315.67 3 165.67 0  282.66 1 152.66 1 20 1 2 172.66 
3 C206-5 896.10 1 246.10 1  472.31 1 213.78 1 148.524 3 2 362.31 
4 C208-5 1414.34 1 164.34 2  406.45 1 157.72 1 138.738 2 2 296.45 
5 R104-5 911.25 3 161.25 1  397.10 2 157.37 1 79.732 2 3 237.10 
6 R105-5 932.92 3 182.92 1  386.40 2 165.09 1 61.312 2 3 226.40 
7 R202-5 813.45 1 163.45 1  307.50 1 126.52 1 70.98 2 2 197.50 
8 R203-5 1492.71 1 242.71 2  506.42 2 192.89 1 153.53 2 3 346.42 
9 RC105-5 988.05 3 238.05 1  533.72 3 237.69 1 86.023 1 4 323.72 
10 RC108-5 2266.51 3 316.51 3  585.99 2 245.87 1 180.115 3 3 425.99 
11 RC204-5 885.16 2 185.16 1  379.06 1 172.43 1 96.624 2 2 269.06 
12 RC208-5 1417.98 1 167.98 2  386.61 1 170.01 1 106.603 2 2 276.61 
13 C101-10 1873.18 5 423.18 2  719.85 3 336.64 1 173.21 3 4 509.85 
14 C104-10 1159.46 4 359.46 1  442.87 1 234.22 1 98.649 3 2 332.87 
15 C202-10 1024.09 3 274.09 1  534.76 2 249.17 1 125.589 3 3 374.76 
16 C205-10 1528.28 2 228.28 2  518.49 2 226.01 1 132.473 4 3 358.49 
17 R102-10 1668.16 4 268.16 2  564.57 3 228.42 1 126.149 3 4 354.57 
18 R103-10 498.35 5 248.35 0  379.81 2 170.48 1 49.336 2 3 219.81 
19 R201-10 1080.96 4 280.96 1  462.70 2 234.75 1 67.951 3 3 302.70 
20 R203-10 1654.25 3 304.25 2  475.95 1 234.49 1 131.462 4 2 365.95 
21 RC102-10 1370.29 6 470.29 1  852.75 4 422.11 1 170.641 3 5 592.75 
22 RC108-10 1807.04 4 407.05 2  757.02 3 364.76 1 182.266 3 4 547.02 
23 RC201-10 698.85 6 398.85 0  577.54 2 308.48 1 109.056 4 3 417.54 
24 RC205-10 1772.67 4 372.67 2  723.13 3 395.07 1 118.06 3 4 513.13 
25 C103-15 1381.97 6 481.97 1  652.03 3 347.31 1 94.72 3 4 442.03 
26 C106-15 1099.54 4 299.54 1  603.04 3 285.20 1 107.842 2 4 393.04 
27 C202-15 175l0.27 3 400.27 2  689.64 3 372.68 1 106.956 4 4 479.64 
28 C208-15 1589.94 2 289.94 2  582.12 2 275.89 1 146.224 2 3 422.12 
29 R102-15 1827.49 5 377.49 2  645.18 3 342.39 1 92.794 4 4 435.18 
30 R105-15 2431.24 5  381.243  3  803.36 5 360.82 1 132.54 4 6 493.36 
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31 R202-15 2366.52  3  416.523  3   741.52 3 385.66 1 145.852 4 4 531.52 
32 R209-15 1706.45 3 356.45 2  562.96 2 286.47 1 116.489 4 3 402.96 
33 RC103-15 2523.40 5 473.40 3  975.68 5 491.35 1 174.332 4 6 665.68 
34 RC108-15 1966.19 5 516.19 2  783.27 3 364.69 2 148.577 4 5 513.27 
35 RC202-15 1876.98 3 526.98 2  660.09 2 337.41 1 162.68 4 3 500.09 
36 RC204-15 1803.51 3 453.51 2  602.31 2 304.47 1 137.839 3 3 442.31 

Table 1 shows that in all cases a solution based on EVRPTW-SMBS is significantly less expensive than a 1 

solution based on intra-route recharging. An ELRPTW-PR solution can be up to around 3.9 times more 2 

expensive than an EVRPTW-SMBS solution (on average 2.49 times more expensive across all instances). The 3 

large cost of the solutions based on intra-route recharging is mainly due to the large cost of opening a CS and 4 

in some cases it is less costly to use more ECVs to carry out deliveries than opening a CS and hence a CS is not 5 

opened. On the other hand, the table shows that in almost all cases (except instance RC108-15), and regardless 6 

of the increasing size of the instances, only one BSV is required to design energy feasible routes for ECVs in 7 

EVRPTW-SMBS. The total distance travelled by BSVs is on average 43% of the distance travelled by ECVs; 8 

this percentage, however, tends to decrease as the size of instances increases (e.g. 53%, 44% and 38% for 5, 10 9 

and 15 customer instances, respectively). As will be also discussed further in the next section, the capacity 10 

utilisation rate of BSVs is much better in large instances since in smaller instances there are fewer ECVs requiring 11 

battery swapping services (on average 56% utilisation over all instances in Table 1). In Table 1, note also that 12 

the total number of ECVs required and the total distance travelled by them is on average 53% and 19% smaller 13 

in the case of EVRPTW-SMBS. Even the combined number of BSVs and ECVs required in solutions based on 14 

EVRPTW-SMBS is around 5% smaller than the number of ECVs needed in ELRPTW-PR. There are three 15 

cases in Table 1 (instances RC208-5, RC205-10, and RC103-15) where the total distance travelled by ECVs is 16 

marginally larger in the case of the EVRPTW-SMBS. The reason for the larger distance travelled by ECVs in 17 

these instances is the trade-off between the cost of the distance travelled by ECVs with the other cost 18 

components in the objective function (the acquisition cost of BSVs and ECVs, and the cost of the total distance 19 

travelled by BSVs). Pure minimisation of the total distance travelled by ECVs can increase the total cost of the 20 

solution. 21 

In order to see further the impact of CS siting costs on solutions based on intra-route recharging and their 22 

costs against EVRPTW-SMBS solutions, we carry out some sensitivity analysis on ᵉ�� and re-solve all test 23 

instances using much smaller CS opening costs. Therefore, new CS opening costs with 50%, 70% and 80% 24 

discounts in the initial cost assumed for the CSs are considered (i.e. ᵉ�� = 300,ᵉ�� = 180, and ᵉ�� = 120 , 25 

respectively) and all test instances are solved using these new CS opening costs, and the cost of the corresponding 26 

ELRPTW-PR is compared with that of the EVRPTW-SMBS given in Table 1. The results of this comparison 27 

is given in Table 2. In this table, ∆ is the ratio of the cost of the corresponding ELRPTW-PR solution by the 28 

cost of the EVRPTW-SMBS solution.  29 

Table 2 Sensitivity analysis on CS opening cost 

No. Inst. 
Various cost coefficients for opening a CS ᵉ�� = 600  ᵉ�� = 300  ᵉ�� = 180  ᵉ�� = 120 ∆  ∆ VE DE C  ∆ VE DE C  ∆ VE DE C 

1 C101-5 1.04  1.04 5 296.1 0  1.04 5 296.1 0  1.04 5 296.1 0 
2 C103-5 1.12  1.12 3 165.7 0  1.12 3 165.7 0  1.12 3 165.7 0 
3 C206-5 1.90  1.26 1 246.1 1  1.01 1 246.1 1  0.88 1 246.1 1 
4 C208-5 3.48  2.00 1 164.3 2  1.41 1 164.3 2  1.12 1 164.3 2 
5 R104-5 2.29  1.54 3 161.3 1  1.24 3 161.3 1  1.09 3 161.3 1 
6 R105-5 2.41  1.64 3 182.9 1  1.33 3 182.9 1  1.17 3 182.9 1 
7 R202-5 2.65  1.67 1 163.4 1  1.28 1 163.4 1  1.08 1 163.4 1 
8 R203-5 2.95  1.76 1 242.7 2  1.29 1 242.7 2  1.05 1 242.7 2 
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9 RC105-5 1.85  1.29 3 238.1 1  1.06 3 238.1 1  0.95 3 238.1 1 
10 RC108-5 3.87  2.33 3 316.5 3  1.72 3 316.5 3  1.41 3 316.5 3 
11 RC204-5 2.34  1.54 2 185.2 1  1.23 2 185.2 1  1.07 2 185.2 1 
12 RC208-5 3.67  2.12 1 168.0 2  1.50 1 168.0 2  1.18 1 168.0 2 
13 C101-10 2.60  1.77 5 423.2 2  1.44 5 423.2 2  1.27 5 423.2 2 
14 C104-10 2.62  1.94 4 359.5 1  1.67 4 359.5 1  1.53 4 359.5 1 
15 C202-10 1.92  1.35 3 274.1 1  1.13 3 274.1 1  1.02 3 274.1 1 
16 C205-10 2.95  1.79 2 228.3 2  1.33 2 228.3 2  1.10 2 228.3 2 
17 R102-10 2.95  1.89 4 268.2 2  1.47 4 268.2 2  1.25 4 268.2 2 
18 R103-10 1.31  1.31 5 248.4 0  1.31 5 248.4 0  1.21 3 191.0 1 
19 R201-10 2.34  1.69 4 281.0 1  1.43 4 281.0 1  1.30 4 281.0 1 
20 R203-10 3.48  2.22 3 304.3 2  1.71 3 304.3 2  1.46 2 232.7 3 
21 RC102-10 1.61  1.26 6 470.3 1  1.11 6 470.3 1  1.04 6 470.3 1 
22 RC108-10 2.39  1.59 4 407.0 2  1.28 4 407.0 2  1.12 4 407.0 2 
23 RC201-10 1.21  1.21 6 398.9 0  1.21 6 398.9 0  1.16 3 398.9 1 
24 RC205-10 2.45  1.62 4 372.7 2  1.29 4 372.7 2  1.12 4 372.7 2 
25 C103-15 2.12  1.66 6 482.0 1  1.48 6 482.0 1  1.37 5 400.9 2 
26 C106-15 1.82  1.33 4 299.5 1  1.13 4 299.5 1  1.03 4 299.5 1 
27 C202-15 2.54  1.67 3 400.3 2  1.32 3 400.3 2  1.15 3 400.3 2 
28 C208-15 2.73  1.70 2 289.9 2  1.29 2 289.9 2  1.08 2 289.9 2 
29 R102-15 2.83  1.90 5 377.5 2  1.53 5 377.5 2  1.34 5 377.5 2 
30 R105-15 3.03  1.91 5 381.2 3  1.46 5 381.2 3  1.23 5 381.2 3 
31 R202-15 3.19  1.98 3 416.5 3  1.49 3 416.5 3  1.25 3 416.5 3 
32 R209-15 3.03  1.97 3 356.4 2  1.54 3 356.4 2  1.33 3 356.4 2 
33 RC103-15 2.59  1.66 5 473.4 3  1.29 5 473.4 3  1.11 5 473.4 3 
34 RC108-15 2.51  1.74 5 516.2 2  1.44 5 516.2 2  1.28 5 516.2 2 
35 RC202-15 2.84  1.93 3 527.0 2  1.57 3 527.0 2  1.39 3 527.0 2 
36 RC204-15 2.99  2.00 3 453.5 2  1.58 1 363.1 3  1.30 2 320.1 3 

Table 2 shows that almost all solutions remain unchanged in terms of the number of ECVs required and 1 

the total distance travelled by ECVs. The table indicates that with the exception of only two cases which 2 

correspond to the scenario where the cost of siting a CS is the smallest (i.e. C206-5 and RC105-5 under ᵉ�� =3 120), in all other cases the solution based on the use of BSVs is substantially less expensive than the solutions 4 

based on intra-route recharging. 5 

We investigate further the benefits of the EVRPTW-SMBS and the performance of the proposed solution 6 

algorithms for the problem in the next section. 7 

5.3. The performance of the proposed algorithms 8 

In this section, we first compare the solutions obtained using the three different variants of the DP-ILNS 9 

discussed in section 4 (i.e. ALG-I, ALG-II and ALG-III) with the optimal (or near optimal) solutions found for 10 

small EVRPTW-SMBS instances discussed in the previous section. To generate a benchmark of a larger size, 11 

we have also put EVRPTW-SMBS instances with 25 customers into CPLEX and found optimal or near optimal 12 

solutions to some of the 56 instances considered within an allowed CPU time of 7200 seconds (see Appendix B, 13 

Table B.1). Finally, the performance of the proposed algorithms in solving instances with 100 customers is 14 

analysed. All algorithms were run 10 times on each instance, and the best result is returned. Moreover, following 15 

a preliminary set of empirical analyses, required parameters for all algorithms were fine-tuned as follows: 16 [ᵅ�ᵃ�ᵅ�ᵃ�ᵅ�ᵃ�ᵅ���� , ᵰ����, ᵰ�����, ᵰ������, ᵰ�, ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ���� , ᵉ���� , ᵅ�ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ���� , ᵅ�ᵅ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵃ�ᵅ�ᵅ���� , ᵅ�ᵃ�ᵅ�ᵃ�ᵅ�ᵃ�ᵅ���� ] =17 [30ᵅ�, 0.8,6,3, ᵅ� 75⁄ , 5,0.92,300, 500,4ᵅ�] (where ᵅ� is the number of routes in ᵊ�����).  18 

Furthermore, in DPIP a maximum labels set size of 1000 is considered and a maximum CPU time of 3 19 

seconds is allocated to the solver for LSP. While the chosen settings generally work well on the considered test 20 

problems, no claim is made that our choice of parameter values is the best possible. 21 

Table 3 presents the aggregated results for instance groups with 5, 10, 15 and 25 customers. The table 22 

headings have the same meaning as in Table 1, but the entries for each algorithm under each heading are based 23 



 

26 
 

on the average over all instances in the corresponding group. In this table and all other tables, t (s) is the 1 

average computing time (CPU) in seconds over ten runs. Also, the ‘Gap’ column reports the average gap with 2 

the solution returned by CPLEX. Table 3 clearly shows that, ALG-I which relies only on the use of the DPIP 3 

in the post-optimisation stage, provides a less favourable performance compared to the other two algorithms, 4 

i.e. ALG-II and ALG-III. On the other hand, ALG-II and ALG-III which are calling DPIP at a higher frequency 5 

over the course of the algorithm (at the cost of a higher computational cost), have generated results that are 6 

very closely comparable. 7 

Table 3 Aggregate results of solving small instances using the proposed algorithms 
Inst. group Alg. Cost VE DE VB DB S VT DT Gap t (s) 

5-cust.  
ALG-I 448.66 1.67 184.19 1.17 111.13 2.08 2.83 295.32 0.04 0.02 
ALG-II 430.97 1.67 187.50 1.00 100.14 1.92 2.67 287.64 0.00 0.05 
ALG-III 430.97 1.67 187.50 1.00 100.14 1.92 2.67 287.64 0.00 0.04 

            

10-cust. 
ALG-I 617.99 2.17 273.74 1.50 145.92 3.50 3.67 419.65 0.05 0.06 
ALG-II 590.76 2.33 283.71 1.08 125.38 3.17 3.42 409.09 0.01 0.27 
ALG-III 585.64 2.25 280.38 1.08 127.76 3.33 3.33 408.14 0.00 0.17 

            

15-cust. 
ALG-I 706.96 2.58 331.27 1.50 156.52 4.08 4.08 487.79 0.02 1.08 
ALG-II 690.90 2.67 335.88 1.33 141.68 4.00 4.00 477.57 0.00 2.45 
ALG-III 692.91 2.67 337.92 1.33 141.66 3.83 4.00 479.58 0.00 2.65 

            

25-cust. 
ALG-I 844.85 3.71 462.33 1.29 119.66 3.46 5.00 581.99 0.02 34.56 
ALG-II 822.84 3.84 467.83 1.07 98.76 3.14 4.91 566.59 0.00 74.49 
ALG-III 828.52 3.82 468.71 1.14 100.17 3.25 4.96 568.88 0.00 67.41 

            

Avg. all 
ALG-I 745.59 3.10 384.36 1.33 126.78 3.37 4.42 511.14 0.03 21.19 
ALG-II 724.25 3.21 390.04 1.10 108.01 3.10 4.30 498.05 0.00 45.71 
ALG-III 727.30 3.18 390.41 1.14 109.18 3.16 4.33 499.58 0.00 41.40 

A more detailed comparison of the results found by these algorithms against the optimal solutions is 8 

presented in Appendix B, in Tables B.2 and B.3 for small sized instances and instances with 25 customers, 9 

respectively. Overall, these tables show that solutions returned by ALG-I can have an optimality gap of as large 10 

as 18%, but ALG-II and ALG-III can very well approximate the optimal solutions to small sized instances and 11 

the available optimal solutions to 25-customer instances. The solutions returned by ALG-II and ALG-III matches 12 

exactly with the optimal solutions in most of the cases. The relatively less favourable performance of ALG-I is 13 

an indication of the strong presence of the interdependence problem in the case of the EVRPTW-SMBS, which 14 

cannot be simply overcome by treating the routes in two completely separate levels. 15 

In order to investigate further the performance of the proposed algorithms in solving more practically sized 16 

problem instances, the three algorithms have been further applied on the proposed test problems with 100 17 

customers and the results are presented in Table 4 and Table 5. In Table 4, the aggregated results for instance 18 

groups of C1, C2, R1, R2, RC1 and RC2 are presented under the same headings as before. The ‘Gap’ column 19 

here reports the average gap with the best solutions found for instances in each group. In line with the previous 20 

results from small test instances, the table clearly shows that ALG-I is outperformed by the other two algorithms 21 

across almost all instance groups. The less favourable performance of ALG-I is particularly highlighted in the 22 

case of RC2 instances which are semi-clustered instances containing a mix of randomly generated data and 23 

clusters with a relatively longer planning horizon. On the other hand, ALG-III demonstrates to be delivering the 24 

best performance, overall. The average gap of the solutions found by ALG-III with the best-found solutions is 25 

zero in the case of most of the instance groups (i.e. C1, C2, R1, and RC1). Finally, algorithm ALG-II delivers a 26 

middle performance, being closer to ALG-I in most cases than to ALG-III. The performance of the algorithm is 27 

particularly worse in case of R1 and RC1 instances, and it is not generally outperforming ALG-III in any of the 28 

instance groups. Furthermore, ALG-III is faster than ALG-II and is therefore a prime choice for the problem. 29 
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Note also in Table 4 the total number of BSVs required and the total distance travelled by them in relation 1 

with the total distance driven by ECVs. The number of the required BSVs is not substantially larger than the 2 

number of BSVs in small sized instances and only a few BSVs are sufficient to support the routes of several 3 

ECVs. The ratio of the BSV distance to ECV distance is also considerably smaller than small sized instances. 4 

These insights are briefly discussed at the end of this section. 5 

Table 4 Aggregate results of solving instances with 100 customers using the proposed algorithms 
Inst. group Alg. Cost. VE DE VB DB S VT DT Gap t (s) 

C1  
ALG-I 1800.90 10.44 883.19 2.11 268.82 5.56 12.56 1152.00 0.04 198.88 
ALG-II 1778.90 10.22 881.47 2.11 259.68 5.78 12.33 1141.10 0.02 519.21 
ALG-III 1742.50 9.89 858.43 2.11 262.93 5.89 12.00 1121.40 0.00 339.84 

            

C2 
ALG-I 1114.50 4.13 695.69 1.13 145.08 4.13 5.25 840.77 0.05 126.81 
ALG-II 1073.60 4.13 670.38 1.00 136.95 3.75 5.13 807.33 0.01 336.54 
ALG-III 1060.00 4.13 653.15 1.00 140.56 3.88 5.13 793.71 0.00 276.68 

            

R1 
ALG-I 2676.20 16.83 1312.20 3.25 327.29 12.50 20.08 1639.50 0.05 276.73 
ALG-II 2691.10 16.67 1335.70 3.33 322.04 12.75 20.00 1657.70 0.06 507.69 
ALG-III 2558.80 15.00 1269.50 3.58 324.29 13.67 18.58 1593.80 0.00 502.42 

            

R2 
ALG-I 1367.13 4.64 1030.39 0.91 50.38 2.36 5.55 1080.77 0.05 122.03 
ALG-II 1319.74 4.64 983.06 0.91 50.32 2.36 5.55 1033.38 0.01 290.48 
ALG-III 1318.82 4.64 982.08 0.91 50.38 2.27 5.55 1032.46 0.01 204.90 

            

RC1 
ALG-I 2864.20 15.50 1499.70 3.50 379.46 12.50 19.00 1879.20 0.06 268.89 
ALG-II 2841.90 15.50 1513.20 3.13 366.19 12.00 18.63 1879.40 0.05 666.93 
ALG-III 2708.90 14.25 1438.00 3.13 370.87 11.88 17.38 1808.90 0.00 595.74 

            
 
RC2 
 

ALG-I 1663.40 4.88 1243.00 1.25 101.68 3.63 6.13 1344.70 0.13 141.57 
ALG-II 1524.30 4.88 1137.30 1.00 83.17 3.13 5.88 1220.50 0.03 381.87 
ALG-III 1490.40 4.88 1104.40 1.00 82.19 2.50 5.88 1186.60 0.01 321.36 

            

Avg. all 
ALG-I 1937.46 9.70 1116.73 2.05 212.69 6.93 11.75 1329.42 0.06 191.98 
ALG-II 1898.89 9.63 1095.40 1.96 204.38 6.82 11.59 1299.79 0.03 447.20 
ALG-III 1838.72 9.04 1059.42 2.02 206.44 6.93 11.05 1265.86 0.00 373.06 

The details of the performance of the algorithms in case of each of the 56 test instances and with respect 6 

to the generalised cost of the solutions obtained and runtime in seconds are given in Table 5. Solutions in Bold 7 

show the best-found solution for each instance. The table shows that ALG-I, ALG-II and ALG-III contribute to 8 

the identification of 6, 23, and 49 solutions out of the best-found solutions, respectively. Note that the 9 

computational cost of ALG-II is partially larger than ALG-III due to the relatively larger number of endpoint 10 

labels generated by the DistBased-DP used in ALG-II, compared with the BattBased-DP used within ALG-III. 11 

Indeed, in BattBased-DP, due to the extra domination rule used based on the total number of batteries required, 12 

the set of end-point labels is almost always smaller, and hence DPIP is run faster. 13 

Table 5 Cost and runtime of solutions returned by the proposed algorithms for instances with 100 customers 

No. Inst. 
ALG-I  ALG-II  ALG-II 
Cost t (s)  Cost t (s)  Cost t (s) 

1 C101-100 1791.11 189.15   1784.80 565.45   1714.44 532.57 
2 C102-100 1792.55 226.81   1714.44 677.86   1714.44 232.65 
3 C103-100 1713.56 176.06   1713.56 654.76   1720.40 355.44 
4 C104-100 2077.47 212.66   2111.27 232.56   1954.51 353.31 
5 C105-100 1711.92 174.26   1711.92 636.88   1711.92 605.54 
6 C106-100 1714.44 171.35   1774.60 301.92   1714.44 389.16 
7 C107-100 1793.70 232.18   1691.73 219.17   1711.92 197.44 
8 C108-100 1788.88 184.93   1796.03 850.80   1711.92 227.03 
9 C109-100 1824.47 222.54   1711.92 533.49   1728.23 165.44 
10 C201-100 1047.98 95.33   1050.26 399.11   1028.94 435.46 
11 C202-100 1051.66 141.17   1032.37 439.47   1032.37 380.89 
12 C203-100 1096.37 120.95   1089.34 434.16   1085.67 241.80 
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13 C204-100 1237.83 104.98   1095.98 263.58   1095.98 216.48 
14 C205-100 1075.40 183.05   1064.19 280.14   1061.83 281.00 
15 C206-100 1082.32 131.42   1107.55 508.15   1075.81 282.03 
16 C207-100 1105.14 140.03   1085.98 150.19   1064.88 170.66 
17 C208-100 1219.50 97.52   1062.98 217.50   1034.16 205.08 
18 R101-100 3664.11 312.50   3468.73 601.64   3417.16 775.44 
19 R102-100 3253.19 460.26   3253.19 677.06   3291.76 672.83 
20 R103-100 2548.63 370.45   2640.67 477.83   2535.63 456.98 
21 R104-100 2272.69 201.35   2231.69 387.42   2231.69 590.14 
22 R105-100 2916.17 273.22   2937.61 325.54   2842.92 247.02 
23 R106-100 2686.83 202.04   2804.09 553.83   2569.08 607.48 
24 R107-100 2557.16 310.93   2485.65 412.42   2403.36 408.38 
25 R108-100 2148.42 271.55   2296.56 290.46   2066.61 545.31 
26 R109-100 2879.29 189.13   2879.29 604.60   2540.60 257.84 
27 R110-100 2442.14 226.79   2539.78 228.04   2399.10 524.25 
28 R111-100 2521.45 302.72   2521.45 814.99   2280.18 656.40 
29 R112-100 2223.90 199.76   2234.17 718.46   2127.51 286.95 
30 R201-100 1710.68 202.11   1704.93 318.71   1704.93 222.28 
31 R202-100 1479.65 111.43   1441.24 113.63   1441.24 273.36 
32 R203-100 1574.90 113.58   1307.93 159.90   1307.93 340.30 
33 R204-100 1056.81 132.36  1103.85 411.35  1027.33 180.80 
34 R205-100 1529.92 162.71   1467.31 480.39   1383.82 273.17 
35 R206-100 1470.32 91.73   1305.78 342.96   1305.78 151.93 
36 R207-100 1240.21 107.79   1240.21 197.91   1240.21 280.48 
37 R208-100 1047.71 95.22   1025.11 125.37   1025.11 95.55 
38 R209-100 1343.14 87.82   1343.14 251.00   1343.14 138.23 
39 R210-100 1335.03 159.96   1327.62 504.90   1506.07 182.97 
40 R211-100 1250.04 77.65   1250.04 289.18   1221.45 114.79 
41 RC101-100 3370.54 262.23   3385.54 1021.37   3202.73 683.41 
42 RC102-100 3158.49 384.92   3054.29 754.26   2825.85 1123.68 
43 RC103-100 2634.44 211.03   2590.92 372.73   2590.92 591.65 
44 RC104-100 2349.36 195.58   2327.39 486.76   2327.39 429.36 
45 RC105-100 3246.54 243.09   3284.80 1008.46   3143.37 324.06 
46 RC106-100 2929.37 390.41   2823.92 936.73   2682.90 527.03 
47 RC107-100 2538.58 269.02   2581.71 297.36   2492.25 401.76 
48 RC108-100 2686.35 194.81   2686.35 457.78   2405.47 684.97 
49 RC201-100 1904.68 253.45   1862.73 546.27   1787.23 381.47 
50 RC202-100 1797.20 121.02   1533.68 558.50   1533.68 448.34 
51 RC203-100 1566.45 96.04   1393.35 166.47   1396.03 416.45 
52 RC204-100 1512.93 102.28   1205.84 386.05   1329.25 214.07 
53 RC205-100 1975.40 126.75   1826.62 525.44   1754.34 373.93 
54 RC206-100 1713.15 179.53   1713.90 655.17   1496.26 270.06 
55 RC207-100 1456.78 168.48   1451.20 109.72   1419.23 217.39 
56 RC208-100 1380.73 85.02   1206.79 107.34   1206.79 249.13 
Avg.  1953.47 193.07  1913.35 447.85  1853.47 376.56 

For representation, the ECV and BSV routes of two randomly selected instances from groups C and R are 1 

presented in Figure 6. We remind that customers in group C instances are clustered, whereas they are randomly 2 

distributed in group R instances.  3 
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Figure 6 Solution to EVRPTW-SMBS instances with 100 customers 

In Figure 6, the solid lines represent ECV routes and the dotted lines are BSV routes. In instance C109, 1 

10 ECVs drive a total distance of 828.94, and 2 BSVs a distance of 262.98 to deliver 5 battery swapping services 2 

to 5 different ECV routes on-the-fly. In instance R203, on the other hand, 4 ECVs drive a total distance of 3 

957.71, and 1 BSV a distance of 90.22 to deliver 4 battery swapping services to 4 different ECV routes. The 4 

figure clearly shows the complexity and the added value of the EVRPTW-SMBS, where support from BSVs are 5 

relied on to design delivery routes. 6 

Finally, to gain some managerial insights from the experiments carried out in this section, in Figure 7.a, 7 

we are illustrating the average number of BSVs required compared with the average number of ECVs required 8 

for instances grouped based on their sizes, Figure 7.b shows the average distance travelled by BSVs compared 9 

with the average distance travelled by ECVs, and Figure 7.c illustrates the utilisation rate of BSVs. To calculate 10 

the utilisation rate, given that each BSV has a capacity of 5 batteries, the number of battery swaps delivered 11 

in the solution is divided by 5 times the number of BSVs acquired.  12 

C109

ECV route 1
ECV route 2
ECV route 3
ECV route 4
ECV route 5
ECV route 6
ECV route 7
ECV route 8
ECV route 9
ECV route 10
BSV route 1
BSV route 2

R203

ECV route 1
ECV route 2
ECV route 3
ECV route 4
BSV route 1
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a.  

b.  

c.  
Figure 7 (a) average number of BSVs acquired compared with average number of ECVs acquired, (b) average BSV 

distance compared with the average ECV distance travelled, (c) utilisation rate of BSVs  

The main implication of Figure 7.a may be that with the increasing size of the problem, the number of 1 

BSVs required does not increase significantly. As this figure illustrates, for a problem with 100 customers, only 2 

2 BSVs are on average required, and each required BSV can in turn support the route of around 4.5 ECVs. 3 

Figure 7.b and Figure 7.c, on the other hand, are on the utilisation rate of the acquired BSVs. Expectedly, the 4 

utilisation rate of BSVs improves in larger problem instances. This may have some implications regarding the 5 

decision on whether to own a BSV fleet or to hire them from a third-party provider depending on the size of the 6 

logistic network. It can be an interesting analytical task of further research.    7 

6. Discussion and conclusion 8 

To address the issue of “range anxiety” in goods distribution using ECVs, in this paper a paradigm shift in 9 

EVRPTWs was proposed by exploiting relevant technological developments that make mobile battery swapping 10 

possible. The problem class of the EVRPTW-SMBS in which an ECV can request a battery swapping service 11 

from a BSV on-the-fly was introduced and formulated. In the EVRPTW-SMBS, routing is carried out in two 12 
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interdependent levels for the ECVs operating delivery routes and for the BSVs. A BSV is able to serve several 1 

ECVs in one BSV route, and an ECV can benefit from multiple battery swaps along its route. The use of BSVs 2 

as a facilitator in goods distribution using ECVs can bring in substantial flexibility and cost savings and presents 3 

potentials for using ECVs in inter-urban, as well as intra-urban, freight distribution. In addition to their extra 4 

flexibility and reliability, solutions based on the use of BSVs can be cost saving compared to solutions based on 5 

intra-route recharging from fixed charging stations. Our findings suggest that only a small number of BSVs are 6 

required to support the routes of several ECVs delivering to a large number of customers. 7 

The EVRPTW-SMBS, however, is a very difficult problem to tackle due to the interdependence problem 8 

and the spatio-temporal synchronisation requirements between ECV and BSV routes. To address these 9 

complications, the paper developed a methodology for the exact evaluation of an EVRPTW-SMBS solution 10 

using a two stage procedure combining a DP and an IP (the DPIP), and placed the proposed DPIP at the heart 11 

of an ILNS heuristic. New benchmark instances for the EVRPTW-SMBS were derived from existing EVRPTW 12 

test instances and several numerical experiments were conducted to demonstrate the added value of BSVs and 13 

the effectiveness of the developed algorithms. The benefits of the EVRPTW-SMBS were demonstrated in 14 

comparison with solutions based on intra-route recharging and it was shown that due to the significant cost of 15 

opening a CS, a solution based on intra-route recharging can be up to around 3.9 times more expensive than an 16 

EVRPTW-SMBS solution. The efficiency of the proposed matheuristics was demonstrated against the available 17 

optimal (or near optimal) solutions and through their application on large sized EVRPTW-SMBS test instances 18 

with 100 customers. The numerical experiments demonstrated that in particular one of the algorithms which is 19 

based on a specific lexicographical decomposition of the DPIP is able to provide good near-optimal solutions to 20 

the EVRPTW-SMBS. 21 

There are multiple future research opportunities in using BSVs in the design of delivery routes for ECVs. 22 

Future research may investigate the situations when BSVs are hired from a third-party company with a separate 23 

depot, or when BSVs are used as emergency aids in a logistic design based on intra-route recharging. The 24 

consideration of a BSV fleet that is a mix of electric, hybrid and internal combustion engine vehicles is another 25 

interesting aspect to explore further; use of BSVs with a larger driving range can increase significantly the 26 

autonomy of running ECVs by providing support more flexibly and hence allowing the use of ECVs for long-27 

distance deliveries as well as last-mile deliveries. The use of BSVs to deliver small packages along their original 28 

responsibility of providing battery swapping service to other ECVs may be also another interesting idea to 29 

research. To reuse the expensive resources in the fleet, multi-trip planning of ECVs and BSVs can help reduce 30 

vehicle acquisition costs and can be an important future line of research. The results of this paper imply that 31 

there is a significant trade-off between the potential key performance indicators in a logistic system based on 32 

the use of BSVs and multi-objective optimisation of the EVRPTW-SMBS can provide a useful insight into the 33 

trade-offs among the major cost elements of a delivery system that is to exploit the opportunity of mobile battery 34 

swapping. More realistic variants of the proposed problem may incorporate stochastic and uncertain travel times 35 

and service times. These considerations make it yet more difficult to tackle the temporal synchronisation 36 

requirements. As was discussed in section 3.2 of the paper, the consideration of mobile battery recharging vans 37 

is also an interesting and promising line of research. The modelling and solution approach presented in this 38 

paper may also stimulate new research within the growing literature on truck-drone routing systems. Finally, 39 

the development of efficient solution algorithms that can tackle the interdependence problem in the EVRPTW-40 

SMBS is an important future task.  41 
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Appendices 5 

Appendix A. List of the notation 6 

Notation Definition ᵃ� The complete graph on which EVRPTW-SMBS is defined. ᵃ� Set of network nodes in ᵃ�. ᵃ� Set of directed arcs in ᵃ�. ᵰ� A dummy copy of the depot node {0} (referred to as the final depot). ᵃ� Set of the depot {0} and its dummy copy {ᵰ�}. ᵃ� Set of customer nodes. ᵅ� Number of customers in ᵃ�. ᵅ�� Demand requested by customer ᵅ� ∈ ᵃ�. [ᵃ��, ᵅ��] Hard time window of customer ᵅ� ∈ ᵃ�. ᵅ�� Service time at customer ᵅ� ∈ ᵃ�. ᵃ�� Set of the depot node {0} and the customer nodes ᵃ�. ᵃ�� Set of the customer nodes ᵃ� and the final depot {ᵰ�}. ᵃ��� Distance of arc (ᵅ�, ᵅ�) ∈ ᵃ�. ᵅ��� Travel time of arc (ᵅ�, ᵅ�) ∈ ᵃ�. ᵉ�� The fixed acquisition cost of an ECV.  ᵃ�� The maximum payload of an ECV. ᵃ�� The battery capacity of an ECV. ᵅ�� The energy consumption rate per unit distance travelled by an ECV. ᵉ�� The fixed acquisition cost of a BSV.  ᵃ�� The maximum number of batteries a BSV can carry. ᵃ�� The battery capacity of a BSV. ᵅ�� The energy consumption rate per unit distance travelled by a BSV. ᵉ��� The operational cost of each unit distance travelled by an ECV. ᵉ��� The operational cost of each unit distance travelled by a BSV. � The time units required for swapping the battery on an ECV. ᵅ��� Binary variable equal to 1 iff arc (ᵅ�, ᵅ�) ∈ ᵃ� is traversed by an ECV. ᵅ��� Binary variable equal to 1 iff arc (ᵅ�, ᵅ�) ∈ ᵃ� is traversed by a BSV. ᵅ�� Continuous variable denoting the time of arrival of an ECV at node ᵅ� ∈ ᵃ� . ᵯ�� Binary variable equal to 0 iff battery swapping service at node ᵅ� ∈ ᵃ�  starts during [ᵅ��, ᵃ�� − �], and 1 
otherwise. ᵃ�� Continuous variable denoting the service start time by an ECV at node ᵅ� ∈ ᵃ� . ᵅ�� Continuous variable denoting the time of arrival of a BSV at node ᵅ� ∈ ᵃ� . ᵰ�� Continuous variable denoting the battery swapping service start time by a BSV at node ᵅ� ∈ ᵃ� . ᵃ�� Continuous variable denoting the remaining load on an ECV upon arrival at node ᵅ� ∈ ᵃ� . ℎ� Integer variable denoting the number of the remaining fully-charged batteries on the BSV upon 
arrival at node ᵅ� ∈ ᵃ� . ᵅ�� Continuous variable denoting the remaining battery charge level of an ECV on arrival at node ᵅ� ∈ᵃ� . ᵅ�� Continuous variable denoting the remaining battery charge level of a BSV on arrival at node ᵅ� ∈ ᵃ� . ᵊ� An EVRPTW-SMBS solution which corresponds to a set of capacity feasible ECV routes. ᵅ�ᵃ�ᵅ�ᵃ�ᵅ�ᵃ�ᵅ���� The number of iterations in the LNS algorithm. ᵅ�ᵅ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵃ�ᵅ�ᵅ���� The starting temperature for the SA-like acceptance criterion in the LNS algorithm.  ᵉ���� The cooling rate for the SA-like acceptance criterion in the LNS algorithm. ᵰ���� A user-defined parameter in the range [0,1] for the removal heuristics in the LNS algorithm. ᵰ����� A user-defined parameter for the Shaw removal in the LNS algorithm. ᵰ������ A user-defined parameter for the worst removal in the LNS algorithm. 
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ᵰ� A user-defined parameter for the regret-2 heuristic with noise in the LNS algorithm. ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ����  The allowed time limit for the SA-based intensification procedure.  ᵉ����  The cooling rate for the SA-based intensification procedure.  ᵅ�ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ����  The lower bound of temperature for the SA-based intensification procedure. ᵅ�ᵅ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵃ�ᵅ�ᵅ����  The starting temperature for the SA-based intensification procedure. ᵅ�ᵃ�ᵅ�ᵃ�ᵅ�ᵃ�ᵅ����  The number of iterations in the SA-based intensification procedure. ℒ� The set of non-dominated labels at the destination node of a given route in Algorithm 2. ᵊ�� The set of customers that require a swapping service in the path associated with label ℒ�. ℱ� The time (or time interval) at/during which customers in ᵊ�� need the swapping service to be 
available. ᵊ� The unique set of customers requiring battery swaps in all the identified ᵊ��s of all routes. ᵊ�� The depot {0} and the set ᵊ�. ᵊ�� The set ᵊ� and the final depot {ᵰ�}. ℒ the ordered set containing indices pointing to all identified non-dominated labels ℒ�s. ᵊ��� A parameter equal to 1 if label ℓ ∈ ℒ belongs to route � ∈ ᵊ�, and 0 otherwise. ᵊ��� A parameter equal to 1 if label ℓ ∈ ℒ contains customer ᵅ� ∈ ᵊ�, and 0 otherwise. ᵊ��� The earliest time a BSV can start service at customer ᵅ� ∈ ᵊ� on label ℓ ∈ ℒ. ᵊ��� The latest time a BSV can start service at customer ᵅ� ∈ ᵊ� on label ℓ ∈ ℒ. ᵉ�� The total distance associated with label ℓ ∈ ℒ. �� Binary variable equal to 1 iff label ℓ ∈ ℒ is selected 
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Appendix B. Detailed results of experiments  1 

Table B.1 CPLEX results for the EVRPTW-SMBS instances with 25 customers 
No. Inst. Cost VE DE VB DB S VT DT 
1 C101-25 1175.42 5 621.10 2 184.315 5 7 805.42 
2 C102-25 1045.82* 6 532.19 1 153.631 4 7 685.82 
3 C103-25 - - - - - 0 0 0.00 
4 C104-25 859.85 4 445.08 1 154.771 4 5 599.85 
5 C105-25 1032.38 5 543.97 2 118.407 6 7 662.38 
6 C106-25 1090.57 6 535.77 1 194.797 4 7 730.57 
7 C107-25 960.44 4 528.61 2 111.826 7 6 640.44 
8 C108-25 - - - - - - - - 
9 C109-25 875.38 4 475.32 1 140.056 4 5 615.38 
10 C201-25 687.80 3 395.02 1 82.781 2 4 477.80 
11 C202-25 687.39 3 423.57 1 53.815 1 4 477.39 
12 C203-25 738.61 5 488.61 0 0.000 0 5 488.61 
13 C204-25 557.76 2 358.16 1 39.605 2 3 397.76 
14 C205-25 636.22 4 436.22 0 0.000 0 4 436.22 
15 C206-25 680.04 3 388.85 1 81.185 2 4 470.04 
16 C207-25 667.74 3 387.03 1 70.710 1 4 457.74 
17 C208-25 - - - - - - - - 
18 R101-25 1330.84 8 634.91 2 175.935 8 10 810.85 
19 R102-25 1207.84 8 557.11 2 130.736 6 10 687.84 
20 R103-25 - - - - - - - - 
21 R104-25 739.50 4 359.98 1 119.512 3 5 479.50 
22 R105-25 1144.43 5 538.99 2 235.434 7 7 774.43 
23 R106-25 996.51 5 472.53 2 153.981 5 7 626.51 
24 R107-25 892.55 4 398.72 2 173.832 5 6 572.55 
25 R108-25 920.96 4 411.20 2 189.755 6 6 600.96 
26 R109-25 - - - - - - - - 
27 R110-25 - - - - - - - - 
28 R111-25 879.85 4 385.20 2 174.648 7 6 559.85 
29 R112-25 - - - - - 0 0 0.00 
30 R201-25 552.19 3 402.19 0 0.000 0 3 402.19 
31 R202-25 579.94 3 429.94 0 0.000 0 3 429.94 
32 R203-25 - - - - - 0 0 0.00 
33 R204-25 409.38 2 309.38 0 0.000 0 2 309.38 
34 R205-25 553.97 3 403.97 0 0.000 0 3 403.97 
35 R206-25 542.67 3 392.67 0 0.000 0 3 392.67 
36 R207-25 440.55 2 340.55 0 0.000 0 2 340.55 
37 R208-25 406.38 2 306.38 0 0.000 0 2 306.38 
38 R209-25 - - - - - - - - 
39 R210-25 434.43 2 334.43 0 0.000 0 2 334.43 
40 R211-25 468.92 2 368.92 0 0.000 0 2 368.92 
41 RC101-25 - - - - - - - - 
42 RC102-25 1378.11 7 687.71 2 220.408 5 9 908.12 
43 RC103-25 981.52 4 468.77 2 192.752 7 6 661.52 
44 RC104-25 - - - - - - - - 
45 RC105-25 1243.32 6 604.86 2 218.459 6 8 823.32 
46 RC106-25 1135.45 5 584.28 2 181.172 6 7 765.45 
47 RC107-25 - - - - - - - - 
48 RC108-25 979.20 5 493.28 1 175.920 4 6 669.20 
49 RC201-25 789.19 4 589.19 0 0.000 0 4 589.19 
50 RC202-25 678.75 3 528.75 0 0.000 0 3 528.75 
51 RC203-25 612.73 3 462.73 0 0.000 0 3 462.73 
52 RC204-25 591.83 3 441.83 0 0.000 0 3 441.83 
53 RC205-25 774.52 4 574.52 0 0.000 0 4 574.52 
54 RC206-25 720.24 3 570.24 0 0.000 0 3 570.24 
55 RC207-25 623.78 3 473.78 0 0.000 0 3 473.78 
56 RC208-25 604.01 3 454.01 0 0.000 0 3 454.01 
* Values shown in italic imply a sub-optimal solution returned by the solver after 7200 seconds. 
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Table B.2. Comparison of the proposed algorithms with results from CPLEX to small instances 

No. Inst. CPLEX  ALG-I  ALG-II  ALG-III 
Cost  Cost t (s) Gap  Cost t (s) Gap  Cost t (s) Gap 

1 C101-5 523.84   536.7859 0.01 0.02   523.835 0.03 0.00   523.835 0.02 0.00 
2 C103-5 282.66   290.4764 0.01 0.03   282.6619 0.04 0.00   282.6619 0.04 0.00 
3 C206-5 472.31   472.3065 0.01 0.00   472.3065 0.04 0.00   472.3065 0.02 0.00 
4 C208-5 406.45   406.4544 0.01 0.00   406.4544 0.03 0.00   406.4544 0.01 0.00 
5 R104-5 397.10   436.6159 0.02 0.10   400.7444 0.06 0.01   400.7444 0.03 0.01 
6 R105-5 386.40   386.4031 0.01 0.00   386.4031 0.05 0.00   386.4031 0.04 0.00 
7 R202-5 307.50   307.498 0.01 0.00   307.498 0.02 0.00   307.498 0.02 0.00 
8 R203-5 506.42   567.8349 0.02 0.12   506.421 0.04 0.00   506.421 0.03 0.00 
9 RC105-5 533.72   544.0631 0.04 0.02   533.715 0.10 0.00   533.715 0.13 0.00 
10 RC108-5 585.99   648.3052 0.02 0.11   585.988 0.08 0.00   585.988 0.08 0.00 
11 RC204-5 379.06   379.057 0.01 0.00   379.0569 0.04 0.00   379.0569 0.01 0.00 
12 RC208-5 386.61   408.0865 0.02 0.06   386.608 0.12 0.00   386.608 0.07 0.00 
13 C101-10 719.85   785.5532 0.01 0.09   719.848 0.13 0.00   719.848 0.03 0.00 
14 C104-10 442.87   442.8674 0.05 0.00   442.8674 0.40 0.00   442.8674 0.13 0.00 
15 C202-10 534.76   534.755 0.03 0.00   534.755 0.20 0.00   534.755 0.13 0.00 
16 C205-10 518.49   530.1478 0.07 0.02   530.1478 0.32 0.02   530.1478 0.21 0.02 
17 R102-10 564.57   612.6751 0.03 0.09   564.572 0.12 0.00   564.572 0.11 0.00 
18 R103-10 379.81   386.4048 0.03 0.02   379.8145 0.17 0.00   379.8145 0.10 0.00 
19 R201-10 462.70   462.697 0.09 0.00   462.697 0.46 0.00   462.697 0.35 0.00 
20 R203-10 475.95   559.3998 0.16 0.18   475.949 0.47 0.00   475.949 0.35 0.00 
21 RC102-10 852.75   938.0435 0.06 0.10   852.752 0.12 0.00   852.752 0.12 0.00 
22 RC108-10 757.02   763.613 0.06 0.01   825.0483 0.20 0.09   763.613 0.20 0.01 
23 RC201-10 577.54   577.535 0.06 0.00   577.535 0.51 0.00   577.535 0.17 0.00 
24 RC205-10 723.13   822.1292 0.05 0.14   723.125 0.17 0.00   723.125 0.12 0.00 
25 C103-15 652.03   671.3654 0.18 0.03   654.0996 0.48 0.00   656.387 0.50 0.01 
26 C106-15 603.04   603.042 0.12 0.00   603.042 0.22 0.00   603.042 0.32 0.00 
27 C202-15 689.64   689.64 0.10 0.00   689.64 0.53 0.00   689.64 0.49 0.00 
28 C208-15 582.12   582.117 0.36 0.00   582.117 0.94 0.00   582.117 1.35 0.00 
29 R102-15 645.18   728.0406 0.11 0.13   645.181 0.47 0.00   645.181 0.46 0.00 
30 R105-15 803.36   814.2376 0.08 0.01   813.9432 0.52 0.01   814.2376 0.16 0.01 
31 R202-15 741.52   805.9605 0.21 0.09   791.8202 0.76 0.07   795.6354 1.10 0.07 
32 R209-15 562.96   562.958 2.79 0.00   562.958 7.63 0.00   562.958 4.77 0.00 
33 RC103-15 975.68   926.3873 0.17 -0.05*   902.3177 0.33 -0.08   920.0647 0.36 -0.06 
34 RC108-15 783.27   783.27 0.18 0.00   783.27 1.17 0.00   783.27 0.54 0.00 
35 RC202-15 660.09   714.1996 0.61 0.08   660.088 2.77 0.00   660.088 3.61 0.00 
36 RC204-15 602.31   602.309 8.00 0.00   602.309 13.62 0.00   602.309 18.18 0.00 
* Negative gaps are due to the suboptimal solution returned by the solver after 7200 seconds. 
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Table B.3. Comparison of the proposed algorithms with results from CPLEX to instances with 25 customers 

No. Inst. CPLEX  ALG-I  ALG-II  ALG-III 
Cost  Cost t (s) Gap  Cost t (s) Gap  Cost t (s) Gap 

1 C101-25 1175.42  1204.37 23.64 0.02   1175.42 70.68 0.00   1175.42 88.76 0.00 
2 C102-25 1045.82  1091.12 28.35 0.04   1046.11 84.73 0.00   1075.20 33.24 0.03 
3 C103-25 -  754.32 35.21 -   721.61 163.69 -   723.54 44.43 - 
4 C104-25 859.85  902.37 53.16 0.05   834.21 58.14 -0.03   861.42 50.47 0.00 
5 C105-25 1032.38  1079.75 29.04 0.05   1048.01 106.15 0.02   1048.01 151.39 0.02 
6 C106-25 1090.57  1163.31 28.56 0.07   1090.57 50.32 0.00   1090.57 55.59 0.00 
7 C107-25 960.44  1014.13 46.44 0.06   960.44 27.40 0.00   960.44 24.68 0.00 
8 C108-25 -  1009.42 36.99 -   897.02 121.54 -   897.02 37.84 - 
9 C109-25 875.38  918.36 44.51 0.05   875.38 76.21 0.00   875.38 41.36 0.00 
10 C201-25 687.80  687.80 15.89 0.00   687.80 79.82 0.00   687.80 87.09 0.00 
11 C202-25 687.39  687.39 35.29 0.00   687.39 109.87 0.00   687.39 47.61 0.00 
12 C203-25 738.61  713.75 15.12 -0.03   713.75 62.02 -0.03   713.75 30.22 -0.03 
13 C204-25 557.76  524.89 15.00 -0.06   508.88 43.93 -0.09   508.88 54.12 -0.09 
14 C205-25 636.22  680.32 26.15 0.07   636.22 56.03 0.00   636.22 35.13 0.00 
15 C206-25 680.04  680.04 16.43 0.00   680.04 84.69 0.00   680.04 70.51 0.00 
16 C207-25 667.74  708.02 35.01 0.06   667.74 21.46 0.00   667.74 28.44 0.00 
17 C208-25 -  689.97 12.19 -   689.97 27.19 -   689.97 51.27 - 
18 R101-25 1330.84  1330.84 39.06 0.00   1330.84 85.95 0.00   1330.84 155.09 0.00 
19 R102-25 1207.84  1223.45 115.07 0.01   1223.45 135.41 0.01   1207.84 84.10 0.00 
20 R103-25 -  935.72 74.09 -   912.18 79.64 -   929.94 65.28 - 
21 R104-25 739.50  741.15 28.76 0.00   730.15 96.85 -0.01   730.15 84.31 -0.01 
22 R105-25 1144.43  1175.26 34.15 0.03   1175.26 46.51 0.03   1175.26 35.29 0.03 
23 R106-25 996.51  1026.37 28.86 0.03   996.51 110.77 0.00   1006.08 151.87 0.01 
24 R107-25 892.55  936.92 62.19 0.05   892.55 68.74 0.00   895.02 68.06 0.00 
25 R108-25 920.96  923.12 54.31 0.00   929.35 36.31 0.01   961.31 90.89 0.04 
26 R109-25 -  992.51 31.52 -   1003.58 75.58 -   1027.19 36.83 - 
27 R110-25 -  944.93 32.40 -   849.96 32.58 -   914.64 74.89 - 
28 R111-25 879.85  879.85 43.25 0.00   879.85 163.00 0.00   879.85 164.10 0.00 
29 R112-25 -  825.06 28.54 -   825.06 119.74 -   840.81 71.74 - 
30 R201-25 552.19  552.19 25.26 0.00   552.19 53.12 0.00   552.19 37.05 0.00 
31 R202-25 579.94  579.94 18.57 0.00   579.94 14.20 0.00   579.94 45.56 0.00 
32 R203-25 -  673.47 28.39 -   660.19 22.84 -   668.55 56.72 - 
33 R204-25 409.38  443.35 18.91 0.08   409.38 82.27 0.00   409.38 36.16 0.00 
34 R205-25 553.97  594.19 32.54 0.07   594.19 120.10 0.07   553.97 34.15 0.00 
35 R206-25 542.67  542.67 18.35 0.00   542.67 42.87 0.00   542.67 30.39 0.00 
36 R207-25 440.55  440.55 21.56 0.00   440.55 32.99 0.00   440.55 46.75 0.00 
37 R208-25 406.38  406.38 23.81 0.00   406.38 25.07 0.00   406.38 13.65 0.00 
38 R209-25 -  601.28 17.56 -   584.58 35.86 -   589.62 23.04 - 
39 R210-25 434.43  434.43 31.99 0.00   434.43 72.13 0.00   434.43 26.14 0.00 
40 R211-25 468.92  468.92 15.53 0.00   468.92 36.15 0.00   468.92 14.35 0.00 
41 RC101-25 -  1469.57 32.78 -   1415.15 204.27 -   1415.15 170.85 - 
42 RC102-25 1378.11  1378.11 76.98 0.00   1381.01 94.28 0.00   1378.11 140.46 0.00 
43 RC103-25 981.52  1003.49 35.17 0.02   974.43 62.12 -0.01   974.43 118.33 -0.01 
44 RC104-25 -  1131.43 48.90 -   1131.43 69.54 -   1155.67 53.67 - 
45 RC105-25 1243.32  1310.32 60.77 0.05   1243.32 126.06 0.00   1310.32 64.81 0.05 
46 RC106-25 1135.45  1198.74 97.60 0.06   1138.23 133.82 0.00   1138.23 105.41 0.00 
47 RC107-25 -  1111.05 44.84 -   1050.02 59.47 -   1050.02 100.44 - 
48 RC108-25 979.20  966.96 27.83 -0.01   962.40 57.22 -0.02   962.40 136.99 -0.02 
49 RC201-25 789.19  789.19 50.69 0.00   789.19 78.04 0.00   789.19 95.37 0.00 
50 RC202-25 678.75  678.75 30.26 0.00   678.75 139.63 0.00   678.75 89.67 0.00 
51 RC203-25 612.73  612.73 12.00 0.00   612.73 27.75 0.00   612.73 104.11 0.00 
52 RC204-25 591.83  647.63 14.61 0.09   637.32 96.51 0.08   637.32 26.76 0.08 
53 RC205-25 774.52  822.71 21.12 0.06   774.52 65.68 0.00   822.71 62.32 0.06 
54 RC206-25 720.24  781.05 25.65 0.08   720.24 81.90 0.00   720.24 33.76 0.00 
55 RC207-25 623.78  623.78 24.07 0.00   623.78 27.43 0.00   623.78 31.06 0.00 
56 RC208-25 604.01  604.01 10.63 0.00   604.01 15.33 0.00   604.01 62.28 0.00 
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