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Flexural ultrasonic transducers are capable of high electro-mechanical coupling efficiencies for the

generation or detection of ultrasound in fluids. They are the most common type of ultrasonic sensor,

commonly used in parking sensors, because the devices are efficient, robust, and inexpensive. The

simplest design consists of a piezoelectric disc, bonded to the inner surface of a metal cap, the face

of which provides a vibrating membrane for the generation or detection of ultrasonic waves in fluids.

Experimental measurements demonstrate that during the excitation of the piezoelectric element by an

electrical voltage, there are three characteristic regions, where the frequency of the emitted ultrasonic

wave changes during the excitation, steady-state, and the final decay process. A simple mechanical

analogue model is capable of describing this behaviour. VC 2017 Author(s). All article content,

except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4984239]

Flexural ultrasonic transducers (FUTs) are ideally suited

to generate or detect ultrasonic waves in fluids. They operate

by a bending or flexing action of a metal membrane on

which a piezoelectric element is bonded. The coupled system

of the membrane and piezoelectric element vibrates at one

or more resonant frequencies, and the piezoelectric used is

usually so thin that the response of the total system is domi-

nated by the resonant properties of the membrane alone.

Commercial FUTs consist of an aluminium cap, in which the

piezoelectric material is bonded to the inner surface of the

cap as shown in Fig. 1. The cap forms both the vibrating

membrane for the device and provides a protective enclosure

for the piezoelectric element.

In medical ultrasound or non-destructive testing, piezo-

electric sensors are typically used in a through thickness

resonance mode of vibration, where the thickness of the pie-

zoelectric defines the dominant frequency of the ultrasonic

transducer.1

Using this type of thickness resonant mode transducer

to generate ultrasonic waves in a fluid is straightforward,

despite the significant acoustic impedance mismatch. It is

more difficult to obtain high detection sensitivity, due to the

large mismatch between the acoustic impedance of the

transducer and the fluid. The standard strategy to reduce

this impedance mismatch is to use a quarter wave matching

layer,2 but even then, the improvement in coupling effi-

ciency is limited. Some transducers also operate via a radial

mode resonant frequency.3 This can have the advantage

that a lower frequency of operation can be achieved using a

thinner piezoelectric element, which requires a lower volt-

age to achieve a suitably high electric field within the

material.

FUTs operate on a different principle to through thick-

ness or radial mode, piezoelectric resonance mode based sen-

sors. A circular flexural transducer operates through the

bending of a compliant membrane, whose compliance can be

increased by increasing the diameter of the membrane or

decreasing the thickness of the membrane, or by changing

the membrane material. The membrane is also the housing

of the sensor and so usually a suitably robust material would

be used for the application, such as titanium or coated alu-

minium. Flexural transducers have a number of resonant

modes that can be usefully exploited, some of which are axi-

symmetric, which are generally more useful.4–6

Despite the widespread use of FUTs in parking sensors,

ultrasonic alarms, and a range of other applications, there is

relatively little published research on their design and opera-

tion. In this paper, we describe the general response of these

ultrasonic sensors, focusing on readily available sensors

operating at 40 kHz, although the findings also apply to sen-

sors operating at higher frequencies. We describe an efficient

and simple way to accurately measure the resonant frequen-

cies of flexural sensors, and explain the effects of driving

these sensors at frequencies away from their resonant fre-

quency. These findings are essential considerations when

looking at applications of the sensors.

FIG. 1. Schematic diagram, not to scale, of the FUT, and the real device

(inset). The piezoelectric ceramic disc is usually thinner than the membrane.a)Email: s.m.dixon@warwick.ac.uk

0003-6951/2017/110(22)/223502/4 VC Author(s) 2017.110, 223502-1

APPLIED PHYSICS LETTERS 110, 223502 (2017)

http://dx.doi.org/10.1063/1.4984239
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1063/1.4984239
mailto:s.m.dixon@warwick.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4984239&domain=pdf&date_stamp=2017-05-30


Approaches to accurately measuring the resonant fre-

quency of flexural ultrasonic sensors include the use of imped-

ance analysers, measuring a frequency swept response of a

sensor using secondary calibrated ultrasonic generators or

detectors, or using wideband excitation of a FUT and per-

forming Fourier analysis of its response.5 Consider the simple

experimental set-up shown in Fig. 2. A function generator

is used to drive a FUT using a few cycles of a particular

frequency and voltage level. An oscilloscope attached to the

function generator will measure the output of the function

generator and simultaneously the response of the piezoelectric

element within the FUT. A laser Doppler vibrometer can be

easily included in the set-up as shown to enable the measure-

ment of the vibration velocity.

The signals shown in Fig. 3 are clearly dominated by the

relatively large amplitude of the driving voltage. If we look

carefully at the displacement or electrical signal from the FUT

after the drive signal has been switched off, the transducer

vibrates at its resonant frequency almost immediately, decay-

ing exponentially. This is displayed in the inset of Fig. 3. This

measurement of the ring-down frequency can be used to tune

the drive voltage frequency to the FUT resonance if desired.

There is a discontinuity in the phase of the signal mea-

sured on the oscilloscope when the drive voltage is switched

off. The point at which this phase discontinuity in the voltage

signal occurs will become stable when the system reaches a

steady-state condition, but it is dependent on both the ampli-

tude and frequency of the drive voltage. The reason for this

is that there is a phase difference between the drive voltage

and the displacement of the FUT’s vibrating membrane,

which is dependent on both the amplitude and frequency of

the driving voltage.

When a FUT is driven at a frequency close to resonance,

it will give a high output level of ultrasonic pressure waves.

It does however take a number of cycles of the driving volt-

age to reach a steady-state condition, where the amplitude of

vibration of the FUT membrane does not change and it oscil-

lates at the driving voltage frequency, with a phase differ-

ence between the drive voltage and transducer displacement.

A plot of FUT membrane vibration amplitude is shown in

Fig. 4, for a range of frequencies around the FUT’s nominal

40 kHz resonance mode, using a fixed amplitude voltage

drive of 20V peak-peak. In this paper, the FUT membrane

displacement is always measured using a Polytec point mea-

surement vibrometer, directed at the centre of the membrane.

When the FUT is initially activated by the driving volt-

age, the frequency of the vibration is in fact ill-defined, as

the displacement of the membrane is not sinusoidal. By mea-

suring the change in the peak and trough positions of the

membrane displacement signal or the zero crossing points,

we are able to obtain an effective instantaneous frequency

of vibration measurement and measure when the system

reaches steady-state. Driving the FUT at the same frequen-

cies as shown in Fig. 4, and plotting an effective frequency

from zero crossing points of the displacement response of

the sensor, yields the result shown in Fig. 5.

At values close to the resonant frequency of the FUT,

the effective instantaneous frequency of vibration of the

membrane smoothly converges towards the drive voltage fre-

quency. At drive voltage frequencies further from the reso-

nant frequency, the effective frequency of vibration appears

to oscillate around and then converge to the drive frequency.

In all cases, where there has been some vibration of the

membrane, when the drive voltage is switched off, the

FIG. 2. Experimental set-up using a function generator to drive a flexural

ultrasonic transducer and an oscilloscope to measure the voltage across the

FUT’s piezoelectric contacts. The laser Doppler vibrometer is shown to

demonstrate how velocity measurement can be incorporated into the set-up.

FIG. 3. Voltage signal measured by the oscilloscope for a 45 kHz drive fre-

quency (main), and the FUT ringing down at its resonant frequency after the

drive signal is switched off (inset).

FIG. 4. Amplitude response of the centre of the FUT membrane for a con-

stant amplitude drive voltage over a range of frequencies close to resonance.
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vibration frequency instantly becomes the resonant fre-

quency of the membrane, and its amplitude of vibration

decays exponentially.

This system can be modelled as a mechanical analogue

system, using a spring in parallel with a dashpot that is

attached to a mass as shown in Fig. 6. The mass represents

the effective mass of the vibrating membrane, the spring rep-

resents the effective elasticity of the vibrating membrane,

and the dashpot represents the damping of the system, which

will be due to loading from the fluid surrounding the mem-

brane and other mechanical losses in the membrane system.

Note that this approach does not give an accurate physical

model of the FUT itself, as this would require something

similar to finite element modelling.4 It can however provide

valuable insights, descriptions, and predictions into the

mechanical response of the transducer.

There are three distinct regions in the experimental data

that also arise in the mechanical analogue. The first stage is

when the drive voltage is initially applied to the piezoelectric

element when the membrane starts at rest, up until a point in

time where the system reaches steady-state. In this first region,

the equation of motion can be solved by treating the driving

force as a Heaviside function convolved with a sinusoidal wave.

The resultant equation of motion for this region is given as

M€x þ C _x þ Kx ¼ F sin xtð Þ � H t0 � tð Þ: (1)

In this equation, t is the time, x is the driving frequency, F is

the time-dependent force acting on the effective mass, M is

the mass, x is the displacement, C is the damper coefficient,

and K is the effective spring stiffness.

The equation for the second region describes the

mechanical analogue at steady-state, where the forcing func-

tion is a sine wave. In the final stage, the driving force to the

mass is switched off (F¼ 0), and the system oscillates at its

resonance frequency, with decaying amplitude. The results

for both these two final stages are standard results available

in most undergraduate text books and are not reproduced

here.7 The vibrometer measured membrane amplitude from

each of these regions is plotted in Fig. 7.

An alternative view of the system response is to con-

sider the start of the drive voltage as a wideband source

that excites the FUT at its resonant frequency, which will

subsequently decay exponentially, whilst simultaneously

the FUT is forced to vibrate at the driving voltage fre-

quency. Fitting a model of a sum of an exponentially

decaying sinusoidal wave at the resonant frequency and

adding to it a sinusoidal wave at the drive voltage fre-

quency yields an excellent fit to the experimental data for

the range of conditions tested. In this fit, the initial ampli-

tude and decay rate of the resonant frequency vibration,

the amplitude of the driving voltage frequency, and the rel-

ative phase of the two signals are allowed to vary. The fre-

quencies of each sinusoid are fixed for each measurement.

The results for driving a FUT with a resonant frequency of

41 kHz at frequencies of 30, 40, and 45 kHz are shown in

Fig. 8, together with fits to the data, in accordance with Eq.

(2), where h is the drive signal phase, xn is the FUT reso-

nance frequency, U is the resonance phase, and A and B

FIG. 5. Effective frequency response of the FUT for different excitation

frequencies.

FIG. 6. Simple mechanical analogue of the FUT that is used to gain insights

into the response of the transducer.

FIG. 7. Experimentally measured response of a FUT for a 40 kHz drive fre-

quency, showing the three response regions.

FIG. 8. Experimental data (black solid) for the initial stage response of the

FUT with fitted simulation data (grey dash), assuming that the response con-

sists of one decaying sinusoidal signal at resonance and a second sinusoidal

signal at the drive frequency.
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are the amplitudes of the drive and resonance signals,

respectively.

x tð Þ ¼ A sin 2pxt� hð Þ þ Be�
C
2M
t sin 2pxnt� Uð Þ: (2)

The results show that the response of the transducer is

consistent with the assumed response and the parameters

obtained from the fits are all reasonable. The response of

flexural ultrasonic transducers has been rigorously quantified

in experimental measurements, modelled, and explained, and

a straightforward method to directly measure the resonant

frequency of the transducers has also been demonstrated.

These findings will help tremendously in application designs

for sensors of this type.

This research was funded by EPSRC Grant No. EP/

N025393/1. The data from the results reported in these

experiments are available at http://www2.warwick.ac.uk/fac/

sci/physics/research/ultra/research/APL_AF1.zip.
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