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The Electromagnetic Basis for Nondestructive
Testing of Cylindrical Conductors
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Abstract Using an idealized model, we deduce the impedance per
unit length of long solenoid of many turns that contains a cylindrical
sample. The sample with a specified conductivity and magnetic
permeability need not be centrally located within the solenoid
provided all transverse dimensions are small compared with the
free-space wavelength. The derivation is relatively straightforward
and it provides a justification for earlier use of the impedance
formula. The dual problem ,where the solenoid is replaced by a
toroidal coil is also considered. It is shown that both excitation
methods have merit in nondestructive testing procedures.

INTRODUCTION
ACOMMON METHOD [1] of nondestructive testing

(NDT) of metal rods and tubes is to induce eddy
currents by means of an encircling solenoid carrying an
alternating current. The impedance ofthe solenoid is related
to the cross-sectional area and the electrical properties ofthe
sample. A formula for this impedance was obtained by
Forster and Stambke [2] on the assumption that end effects
could be ignored. Also, they assumed that the cylindrical
sample was centrally located within the solenoid. The same
derivation was essentially repeated by Hochschild [3] and
Libby [1].
A feature of the Forster-Stambke derivation is that the

effect of the air gap is introduced in a somewhat heuristic
fashion wherein the field in this concentric region is assumed
to be the same as the one for the empty solenoid. We feel it is
worthwhile to provide a more general derivation of the
impedance formula. We also show it applies to the case of a
nonconcentric air gap. Finally, we mention the relevance of
the current analysis to the dual problem where the cylindri-
cal sample is excited by a toroidal coil.

FORMULATION

To simplify the discussion, we consider first the concentric
air gap model with a homogeneous cylindrical sample of
radius a with conductivity ar and magnetic permeability ji.
The situation is indicated in Fig. 1 where the solenoid of
radius b encloses the sample, both of which are assumed to
be infinite in length. Our objective is to find an expression for
the impedance of the solenoid per unit length since this is the
basis of the NDT eddy current methods that are commonly
used.

In terms of cylindrical coordinates (p, 0, z), the only
component of the magnetic field is Hz since the exciting
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SAMPLE "- SOLENOID
Fig. 1. Cross-sectional view of cylindrical sample located centrally

within a solenoid of many turns.

current in the solenoid is uniform in both the axial and in the
azimuthal direction. Within the sample, H. satisfies the
Helmholtz equation

(V2 -y2)H =O (1)

where y2 = ialuw and where we have adopted a time factor
exp (iwt). Here w is the angular frequency that is sufficiently
low that displacement currents in the sample can be neg-
lected. If not, we merely replace ar by a + i&w where E is the
permittivity. Also, it goes without saying that the field
amplitude is sufficiently small that nonlinear effects can be
ignored.

SOLUTION FOR CONCENTRIC SAMPLE
For the highly idealized situation described, we can

immediately write [4]

Hz= AIo(7p) (2)

for p < a where Io is a modified Bessel function ofargument
yp and where A is a constant. From Maxwell's equations the
azimuthal component of the electric field is

E = -(1/vr) aH,/ap = -A (y/a) 1(7p) (3)

also for p < a. Now we can immediately form an expression
for the "impedance" Z, of the cylinder:

Zc= [-E1,Hj]p=0 = Iil1(7a)/IO(7a) (4)
where ?I = y/u = (i,uw/u)112 is the intrinsic or wave im-
pedance of the sample material.
Now, for the air gap region a < p < b, we write corre-

sponding field expressions

Hoz = BIo(yop) + CKo(yop) (5)
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and
Eo = -B1oI(yop) + CqoK1(yop) (6)

where B and C are constants and where ql0 = yo/(ihow) =
('o/IO)112 120x in terms of the permittivity so and per-
meability go of the air region. Here and in the above, the
Bessel function identities aIo(x)/ax = I1(x) and
aKo(x)/ax = - K1(x) have been employed.
Compatible with the requirement that tangential fields

must be continuous at p = a we can write

[Eo,O + ZcHoz]p=a = 0. (7)
This immediately tells us that

C OI1(yoa) - ZcIo(7oa) .8
B qoIiK1(yoa) + ZcKo(7o a) (

In the external region p > b, the field expressions must
clearly have the form

HOZ= DKo(7op)
Eoo = DiqoK1(7op)

(9)
(10)

where D is another constant.
Now the solenoid current is idealized as a continuous

current distribution jo A/m in the azimuthal direction
defined such that

lim Hoz(p= b + A)-HOZ(p= b-A)= -Jo (11)
A-0o Eo41(p= b + A) - Eo0(p = b-A)=0 (12)

Application of these conditions immediately leads to

D = C - I(Iyob)B/K1(yob) (13)
and

B =joyobK1(yob). (14)

Among other things, this tells us that the magnetic field
external to the solenoid (i.e., p > b) has the form

Hoz= {-B[1(yob)/K1(yob)] + C}Ko(yop). (15)
The quantity of immediate interest is the impedance Z of

the solenoid itself. Clearly, within the limits of our basic
assumptions,

Z = constant x Eo0(p = b)!]o. (16)
The corresponding impedance of the empty solenoid is
denoted Z0. Thus it follows that

Z I
C KI(yob) (17)

zo B Il(yob)
which is explicit since C/B is given by (8).

QUASI-STATIC FORM
We now can simplify the impedance ratio formula if we

invoke the small argument approximations for Bessel func-
tions of order yo a and yo b. That is, we use Io(x) - 1,
I1(x)~ x/2, Ko(x)~ -log x and K1(x) 1/x. This exer-
cise leads to

Z [a2 H a'2 IO(ya)1- R + iX
Zo b2 + gob2 I(a)j - o

(18)
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Fig. 2. Argand plot of the impedance Z = R + iX normalized to the
reactance XO of the empty solenoid, for a = b.

0 0.2 0.4 0.6

R/Xo-1

Values of
fillinrg factor
a /b shown

Fig. 3. Argand plot of the impedance Z= R + iX normalized to the
reactance XO of the empty solenoid, for i = go.

where no restriction has been placed on the magnitude ofya.
Here R and X denote the resistance and reactance,
respectively.
The formula for Z/ZO given by (18) is in agreement with

Forster and Stambke [2] (ifone remembers they used the old
German designations J0 and J1 for modified Bessel func-
tions). Forster and Stambke [2], Hochschild [3] and Libby
[1] present extensive numerical data for this quasi-static
approximation to Z/Z0 in Argand diagrams in the complex
plane for various values of Iya and i/u0. Two examples,
using dimensionless parameters, are shown in Figs. 2 and 3
when the ordinates and abscissas are normalized by X0
which is the reactance of the empty solenoid. That is, we
assume Z0 - iXo corresponding to negligible ohmic losses
in the solenoid itself. The real parameter a is defined by
a = ya exp (- ir/4) = (auw)"/2a. In Fig. 2the sample radius
b is assumed to be the same as the sample radius a (i.e., no air
gap). Different values of the magnetic permeability are
shown. Not surprisingly, when a is small, R vanishes, and
X/XO tends to y/I/U. However, in general, the eddy currents
have the effect of reducing X/X0, which is the effective flux,
and to introduce a resistive portion R/Xo. In Fig. 3, the
relative permeability of the sample y/yo = 1 but the filling
factor a2/b2 assumes different values. The results indicate
that the presence of the air gap reduces the sensitivity of the
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where
E0.L0o 601L0

Olp=a

p b

Fig. 4. Cross-section view of the noncentrally located sample.

device for probing the conductivity but the effect is
predictable.

Actually, if a is sufficiently small (i.e., Iyal .1), (18)
reduces to

Z/ZO X/XO 1 + (a2/b2)[p/po - 1] (18')

which is consistent with the curves in Figs. 2 and 3. In this dc
limit the results only depend on the magnetic permeability of
the sample.

ANALYSIS FOR NONCONCENTRIC SAMPLE

We now consider the formal extension ofthe theory to the
case where the exciting solenoid is no longer concentric with
the cylindrical sample. The situation is indicated in Fig. 4. As
before, cylindrical coordinates (p, 4, z) are chosen coaxial
with the sample. But now, the shifted coordinates (p', 4', z)
are chosen to be coaxial with the exciting solenoid. The shift
is po as indicated in Fig. 4 where we do impose the rather
obvious physical restriction that b > po + a.
The field scattered from the solenoid now is no longer

azimuthally symmetric. But, in analogy to (15), we can write
+ G

Hoz = BIo(7op') + E CmKm(yop)e-i'm (19)
m= - 00

for the region p > a and p' < b, while

Hoz = -B[I(yo b)/K1(yo b)]K0(70p')
+ ao

+ E CmKm(Top)e-i'm4 (20)
m= - 0o

for the region p' > b. As before, B is given by (14)in terms of
the source current jo in the solenoid. Here Cm is to be
determined.
To proceed further, we now note that the field inside the

sample (i.e., p < a) must have the form
+0

Hz = E Hmz (21)
m= -00

where

Hmz = AmIm(yp)e -im4.

Similarly, for the same region,

+0

E = I Em
M=- 00

(22)

(23)

Em4e, = -(y/j)A.Im(yp)e-im (24)

where the prime indicates differentiation with respect to yp.
Now we define the cylinder impedance parameter Z.c for
harmonic waves of order m by

Zic = [-Emo/Hmz]p=a = IIm(ya)/Im(Ya) (25)

in analogy to (4). In fact, Zoc Zc.
A known addition theorem [5] for modified Bessel func-

tions IO(yo p') allows us to write (19) in the form
+ ao

Ho. = E Homz
m = -0

(26)

where

Homz = {B(- r)mIm(PopO)Im(yO p) + Cm Km(yo p)}e -m.
(27)

Similarly, for the same region,
+0

Eo04 = Z Eomz
m = -00

where

Eomz = -No aHomz/8(yoP).
Application of the condition

[Eom4 + ZmcHOmzlp=a = 0

now leads to the relation

Cm (- lrIm(yo po)[to I' (yo a) - Zmc Im(yo a)]
B -tioKKm(yoa) + ZmcKm((yoa)

(28)

(29)

(30)

(31)

Inserting this result into (19) or (20) yields explicit expres-
sions for the fields external to the sample. However, in order
to deduce the resultant impedance of the solenoid, it is
desirable to reexpress Ho. in terms of the (p', 4', z) coordi-
nates. Here we use a known addition theorem [6] for
Km(yo p) exp (- im4). The rather horrendous result is

Hoz = BIo(yop')
+00 +00

+ E Cm Z Km+,,(yop/)I,,(yopo)(1l)?ei(nm)+t'

(32)
This is valid in the nonconcentric air gap region (i.e., p > a
and po < p' < b). The needed azimuthal component is ob-
tained from

Eo. = -tlo aH0ozl(o P'). (33)
The relevant quantity for the impedance calculation is the

"average" field Eo$ at the solenoid. Clearly, this is given by

E00= j2l [EO4']P'=b dO'
+00

= -tioBI1(yo b) - Eo CmK (y0b)Im(yOPO)(-1r)m -00
(34)
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Thus it follows that the impedance Z per unit length of the
solenoid with the sample divided by the impedance ZO ofthe
empty solenoid is given by

0 JIi(yOb) m=Om B 0

where co = 1 and Em = 2 for m $ 0 and where Cm/B is given
explicitly by (31). Not surprisingly, (35) reduces to (17) for
the centrally located sample, i.e., Im(yopo) = 0 for po 0
when m $ 0.
We again may invoke the small argument approximations

for Bessel functions of order y0 a, y0 b, and y0 pO. That is, for
m= 1, 2, 3, , we use

Im(x) x'm/(m! 2m), I',(x) x- '/[(m -1)! 2m]

Km(X) (m-1)!2m-1/xm and K' (x)z -im! 2m-/xm+l.

Lo and behold, these show that Z/ZO reduces again to the
formula given by (18). This confirms the conjecture of
F6rster and Stambke who seemed to be gifted with keen
physical insight into such problems. Of course, we do not
expect the result to hold in any sense when the dimensions of
the solenoid become comparable with the free-space
wavelength. In that case, many other complications arise
such as the assumed uniformity of the solenoid current.

THE DUAL PROBLEM AND CONCLUDING REMARKS

There is an extremely interesting duality to the problem
we have discussed. That is, rather than exciting the cylindri-
cal sample with an azimuthal electric current, we employ an
azimuthal magnetic current. This is an idealized representa-
tion for a thin toroidal coil but, again, it effectively is of
infinite length in the z or axial direction. The assumed source
discontinuity is now in the electric field at p = b which has
only a z component. The much more complicated case ofthe
toroidal coil of finite axial extent was analyzed recently [7].
Under the present assumption of axial uniformity, the

admittance Y per unit length of the toroid is the dual of the
impedance Z of the solenoid discussed above. Thus all
the earlier equations apply if we make the following trans-
formations: i,w- a o --+ co, q -- 1,,I I H -+ EE,
E4,-+ -Hog H oz Eoz, and Eo4, -+ - Ho<>. Then the dual of
(18) is the ratio of the admittance Y of the toroidal coil with
the sample to the admittance YO without the sample. It is
written explicitly

-- a2 +_ a2 2 II(ya)1
YO L b2 igo o) b2 Ta Io(Ta)|

for the case where Kob 1. That is, the radius of the
toroidal coil should be much smaller than the free-space
wavelength. Also, in full analogy to the earlier discussion,
the quasi-static result holds for any location of the cylindri-
cal sample within the toroid. Furthermore, in the low
frequency limit where Iya = a << 1, we see that

Y Y0[1 + (a2/b2)[(/i ow) - 1]]

which depends only on the conductivity of the sample. Thus
this type of excitation should be preferred with probing the
effective conductivity in the axial direction in the sample.
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