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Abstract

We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star
merger detected through gravitational-wave emission, GW170817. Our observations commenced 10.5 hr post-merger,
as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the i and z bands, covering
93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts
(e.g., a kilonova). At 11.4 hr post-merger we detected a bright optical transient located 10. 6 from the nucleus of
NGC 4993 at redshift z=0.0098, consistent (for =H 700 km s−1 Mpc−1) with the distance of 40±8 Mpc reported
by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes
of =i 17.3 and =z 17.4, and thus an absolute magnitude of = -M 15.7i , in the luminosity range expected for a
kilonova. We identified 1500 potential transient candidates. Applying simple selection criteria aimed at rejecting
background events such as supernovae, we find the transient associated with NGC 4993 as the only remaining
plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the
optical counterpart we have identified near NGC 4993 is associated with GW170817. This discovery ushers in the era
of multi-messenger astronomy with gravitational waves and demonstrates the power of DECam to identify the optical
counterparts of gravitational-wave sources.

Key words: binaries: close – catalogs – gravitational waves – stars: neutron – surveys

Supporting material: machine-readable table

1. Introduction

The joint detection of electromagnetic (EM) and gravita-
tional-wave (GW) emission from astrophysical sources is one
of the holy grails of present-day astronomy. The primary
targets for such joint detections are the mergers of compact
object binaries composed of neutron stars (NS) and/or black
holes. In such systems, the GW emission provides insight into
the bulk motions, masses, binary properties, and potentially the
composition of neutron stars. Electromagnetic observations
provide critical insights into the astrophysics of the event, such
as the progenitor environment, the formation of relativistic and
non-relativistic outflows, and in some cases the nature of

merger products (e.g., Metzger & Berger 2012; Rosswog
et al. 2013; Baiotti & Rezzolla 2017). Combining EM and GW
observations would lead to deeper scientific insights into some
of the most cataclysmic events in the universe. These multi-
messenger observations also allow for novel measurements,
such as standard siren measurements of the Hubble constant
(Schutz 1986; Holz & Hughes 2005; Dalal et al. 2006;
Nissanke et al. 2010, 2013), and studies of gamma-ray bursts
(GRBs; Berger 2014).
A wide range of EM emission mechanisms for GW sources

has been proposed over the years (Metzger & Berger 2012),
including short-duration GRBs (Eichler et al. 1989; Nakar 2007;
Berger 2014), on- or off-axis afterglow emission from radio to
X-rays (van Eerten & MacFadyen 2011; Coward et al. 2014;
Fong et al. 2015; Lamb & Kobayashi 2016), optical/near-IR
emission due to radioactive decay of r-process nuclei

71 Hubble and Carnegie-Dunlap Fellow.
72 Hubble Fellow.
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synthesized in the merger ejecta (so-called kilonova; Li &
Paczyński 1998; Rosswog et al. 1999; Metzger et al. 2010;
Barnes & Kasen 2013), and radio emission produced by
interaction of the kilonova ejecta with the circumbinary medium
(Nakar & Piran 2011; Metzger & Berger 2012).

The search for optical counterparts is particularly attractive
due to the combination of emission that, unlike GRB emission,
is not highly beamed and wide-field optical telescope facilities;
a detection can then be followed up at other wavelengths with
narrow-field instruments. Over the last two years, we have used
the Dark Energy Camera (DECam; Flaugher et al. 2015), a 3
deg2 wide-field imager on the Blanco 4 m telescope at the
Cerro Tololo Inter-American Observatory (CTIO), to follow up
GW sources from the advanced Laser Interferometer Gravita-
tional-wave Observatory (aLIGO; Abbott et al. 2009) and
Virgo (Acernese et al. 2015) detectors (see, e.g., Abbott et al.
2016b; Dark Energy Survey Collaboration 2016). In particular,
we conducted rapid follow-up observations of the black hole
binary merger events GW150914 (Abbott et al. 2016c) and
GW151226 (Abbott et al. 2016a), using DECam (Annis et al.
2016; Cowperthwaite et al. 2016; Soares-Santos et al. 2016).
No optical counterpart was discovered in either case.

On 2017 August 17 at 12:41:06 UT the advanced LIGO/Virgo
(ALV) observatories detected a binary neutron star merger,
GW170817 (LIGO Scientific Collaboration & Virgo Collaboration
2017b, 2017d, 2017a). At 23:12:59 UT (10.53 hr after the GW
detection) we began to image a 70.4 deg2 region that covered 93%
of the localization probability in the map provided by the LVC at
the time (LIGO Scientific Collaboration & Virgo Collaboration
2017c). Immediately following the identification by one of us
(R. Chornock), we received a private communication from another
DECam team member (R. Foley) indicating that the source was
also discovered in an image taken 0.5 hr ahead of ours by the
Swope Telescope. We issued a circular to the Gamma-ray
Coordination Network (GCN) reporting the discovery at

01:15:01UT (Allam et al. 2017), including a reference to a GCN
from the 1M2H Collaboration at 01:05:23 UT (SSS17a; Coulter
et al. 2017), and subsequent to our GCN the DLT40 team also
announced an independent detection (DLT17ck; Yang et al. 2017
reported at 01:41:13 UT); see LIGO Scientific Collaboration &
Virgo Collaboration et al. (2017a) for an overview of the
observations carried out by the community. This transient has
received an IAU name of AT2017gfo.
Subsequent to our discovery of the optical transient, we

obtained follow-up observations with a wide range of telescopes,
spanning radio to X-rays, which are detailed in the associated
papers of this series: Cowperthwaite et al. (2017), Nicholl et al.
(2017), Chornock et al. (2017), Margutti et al. (2017), Alexander
et al. (2017), Blanchard et al. (2017), and Fong et al. (2017).
Here, in the first paper of the series, we present our DECam

observations, the discovery of the optical transient, and a search
for other potential counterparts across the 70.4 deg2 region. We
find no other potential optical counterpart within the GW
localization region, thus helping to significantly establish the
association between the detected optical transient and
GW170817. A measurement of the Hubble constant, the first
utilizing a gravitational-wave event as a standard siren
measurement of distance (Schutz 1986; Dalal et al. 2006), is
enabled by this work and is described in LIGO Scientific
Collaboration & Virgo Collaboration et al. (2017b).

2. DECam Counterpart Search

The alert for GW170817 was issued 40 minutes after the
trigger, on 2017 August 17 at 13:21 UT (Abbott et al. 2017;
LIGO Scientific Collaboration & Virgo Collaboration 2017b),
and was promptly received by our automated GCN listener
system. Two subsequent GCN circulars indicated that the high-
significance candidate was consistent with a binary neutron star
merger at »d 40 Mpc and coincident within 2 s with a short

Figure 1. NGC4993 grz color composites (1 5×1 5). Left: composite of detection images, including the discovery z image taken on 2017 August 18 00:05:23 UT
and the g and r images taken 1 day later; the optical counterpart of GW170817 is at R.A., decl. = -197.450374, 23.381495. Right: the same area two weeks later.
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burst of gamma-rays detected by Fermi-GBM (LIGO Scientific
Collaboration & Virgo Collaboration 2017b, 2017d). Four
hours later a sky localization map obtained from the three-
detector ALV network was provided (LIGO Scientific
Collaboration & Virgo Collaboration 2017c).

The entire GW localization region was visible from Chile at the
beginning of the night, setting within the first ∼1.5 hr. Our
DECam observations commenced at 23:13 UT (10.53 hr post-
merger) with 30 s exposures in the i and z bands. The resulting s5
limiting magnitudes are »i 22.0 and »z 21.3 for point sources.
The predetermined sequence of observations consisted of 18
pointings (hexes), each with a 3 deg2 coverage, with a second
offset sequence to mitigate loss of area (e.g., due to gaps between
detectors in the focal plane). The resulting areal coverage was 70.4
deg2, corresponding to an integrated probability of 93.4% of the
initial GW skymap. Additional details of the pointing and
sequencing determination algorithm are available in Herner et al.
(2017). While our sequence of observations was ongoing, a new
localization map was released at 23:54 UT (LIGO Scientific
Collaboration & Virgo Collaboration 2017e). While the overall
shape of the two maps are similar, the probability peak was shifted
significantly. In the revised map, the integrated probability of our
observations is 80.7%.

2.1. Discovery and Observations

We performed a visual inspection of raw, unprocessed
DECam images to find new point sources near relatively bright
galaxies in comparison to archival Pan-STARRS1 3π survey
images (Chambers et al. 2016). This process resulted in the
discovery of a new source near the galaxy NGC 4993 (see
Figure 1). The galaxy is located at z=0.0098, which is, for a
value of H0 of 70 km s−1Mpc−1, consistent with the 40±8
Mpc reported by the LVC in their GCN for GW170817. The
transient is located at coordinates R.A., decl. =197.450374,
-23.381495 (13h09m48 09 −23d22m53 38) between the 50%
and 90% contours in both the initial and shifted maps (see
Figure 2).
At the time when the galaxy was imaged (11.40 hr post-

merger) the optical transient had magnitudes of = i 17.30 0.01
and = z 17.43 0.01. We continued to observe the optical
counterpart with DECam nightly in the ugrizY filters until it
became undetectable (at limiting magnitude ∼22.5 mag) in each
band and the source location became inaccessible to the telescope.
Our last deep image of the source is on 2017 August 31, 14.5
days post-merger. These follow-up observations are discussed in
detail in Cowperthwaite et al. (2017).
We process all images with the DES single-epoch processing

(Drlica-Wagner et al. 2017; E. Morganson et al. 2017, in
preparation, and references therein) and difference imaging
(diffimg) pipelines (Kessler et al. 2015). The diffimg software
works by comparing search images and one or more reference
images (templates) obtained before or after the search images. We
use our own imaging plus publicly available DECam data from the
NOAO Science Archive (portal-nvo.noao.edu) as templates,
requiring exposures of at least 30 s. At the position of the
counterpart, pre-existing templates were available in g r, bands.
For u i z Y, , , images we used exposures taken after the source had
faded (u: 2017 August 25; i z Y, , : 2017 August 31).
The photometric results from diffimg are shown in Figure 3

and Table 1. The diffimg pipeline uses the well-tested DES
calibration module expCalib. The ugrizY photometry
presented in Table 1 has calibration errors relative to DES
photometry of ⪅2%. We implemented a galaxy morphological
fit and subtraction method, making use of a fast multi-
component fitting software (Imfit; Erwin 2015) followed by
point-spread function (PSF) photometry and a Pan-STARRS
PS1 calibration to double check the reduction. Results agree
within uncertainties and calibration differences. The photo-
metry used in the next paper in this series (Cowperthwaite et al.
2017), measured using a difference image reduction using Pan-
STARRS PS1 templates, also agrees within uncertainties.

3. Wide Area Search

Our primary program is to obtain images over the LIGO
probability map to search for counterparts. Within 12 hr of the
event we had obtained DECam i z, images across>80% of the
revised LIGO probability map. We have analyzed this region to
determine how many potential counterparts are present.

3.1. Image Processing

We employ the DES single-epoch processing and diffimg
pipelines to produce a list of transient candidates. The search
images are 72 exposures taken on the night of the trigger
(corresponding to two tilings of 18 hexes in the i and z bands).
Because most of the exposures (∼60%) did not have pre-

Figure 2. Location of the optical counterpart of GW170817 on the probability
maps provided by the LVC (white solid: initial; cyan dashed: revised; inner and
outer contours show 50% and 90% probability, respectively) and relative to our
search area (red: DECam sky footprint).
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existing DECam imaging in those bands, we took images on
the nights of August 31 through September 2 to serve as
templates. We expect any kilonova-like transients to have faded

below detection thresholds by that time (∼2 weeks from the
trigger).
The total area encompassed by the 72 exposures is 70.4 deg2.

The camera fill factor is 80%, which results in 4% area loss
when we consider the two overlapping tilings. Weather on the
nights of template observations was partially clouded and
caused a 3% loss. Processing failures accounted for less than
1% loss. The final area included in this search for other
potential counterparts is 64.6 deg2.
This process results in 1500 transient candidates with

magnitudes between 15.5 and 20.5. A candidate is defined as
a detection meeting diffimg quality requirements (see Table 3
of Kessler et al. 2015) on at least two search exposures. The
magnitude cutoff of this analysis is limited by the depth of the
template images: i=21.2 and z=20.5, to be compared with
the depth of the search images: i=22.0 and z=21.3.

3.2. Candidate Selection

We apply several selection criteria to candidates identified in
diffimg aiming to reject moving objects, background artifacts,
and long-lived transients:

1. Criterion 1: the candidate must have at least one detection
in i and one detection in the z band.

2. Criterion 2: the candidate must pass our automated
scanning program (Goldstein et al. 2015) with a machine-
learning score0.7 in all detections. This criterion rejects
non-astrophysical artifacts. The efficiency of this criterion

Figure 3. Observed light curve for the optical counterpart of GW170817 measured in six filters. The data points and s1 error bars were measured using diffimg. The
gray bands represent the 95% confidence interval about each measurement, or s2 above sky if the measured flux is less than s2 sky. Data taken on days 5.5, 6.5, and
11.5 were obtained in poor weather conditions, hence the broader uncertainty bands. The photometry has been checked against a difference imaging reduction using
Pan-STARRS PS1 templates (Cowperthwaite et al. 2017) and a galaxy fit and subtract PSF source magnitude reduction; these measurements are consistent with our
results. The dashed lines show the initial decay of the source: µ a-m t , where a = ( )2.0, 1.4, 0.7, 0.5, 0.5, 0.4 in u, g, r, i, z, Y bands, respectively. The decay in the
first few days is consistent with a peak luminosity near t=1 day. The table containing light curve information is available as a machine-readable file (Table 1).

Table 1
Light Curve Constructed from u, g, r, i, z, Y Observations

MJD Band Maga sm

57983.00306 i 17.27 0.005
57983.00374 z 17.42 0.007
57983.97395 Y 17.27 0.008

Note. Columns are observation time, band, magnitude, and its errors.
Magnitudes are galactic extinction corrected AB PSF magnitudes.
a E(B–V )SFD98=0.123, and RV=3.963, 3.186, 2.140, 1.569, 1.196, 1.048
for u, g, r, i, z, Y bands, respectively.

(This table is available in its entirety in machine-readable form.)

Table 2
Number of Candidates at Each Selection Stage, Sorted by i-band Magnitude

mag(i) Raw Cut 1 Cut 2 Cut 3

15.5–16.5 4 0 0 0
16.5–17.5 11 7 3 1
17.5–18.5 26 15 7 0
18.5–19.5 296 63 27 0
19.5–20.5 1163 167 44 0

Total 1500 252 81 1
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as measured from point sources injected into our images
is ≈90%–100% for both i and » –z 17 22 mag.

3. Criterion 3: the candidate must have faded significantly
between the search (first) and template (last) observa-
tions. Specifically, we require the change in the candidate
flux to be greater, at 3σ level, than the flux in a circular
aperture of radius=5 pixels on the template image at the
location of the candidate. This criterion eliminates slow-
evolving transients (e.g., supernovae).

Table 2 lists the number of events passing each selection
stage in various bins of magnitude. After all criteria are applied,
one optical counterpart candidate remains: the source dis-
covered by visual inspection. Slow moving solar system
objects, which could potentially have met the selection criteria
above, are very rare in the magnitude range of this search. The
flares of M dwarf flare stars have T≈10,000 K and therefore
are very blue; they are rejected by our selection criterion 3 in
the z band.

4. Uniqueness of the Candidate

This analysis shows that the source we discovered is the only
one plausibly associated with the GW event within the region
searched. To estimate its significance we compute the chance
probability of a transient to occur within the volume and
timescale of interest. Because SNe are by far the most likely
transient contaminant, we use their rate and timescale to make a
conservative estimate. We use a combined rate of ´ -1 10 4

Mpc−3 yr−1, for core-collapse (Strolger et al. 2015) and Type
Ia (Dilday et al. 2008) SNe at z 0.1. The characteristic
timescale of SNe is t ~ 1 month. The volume (V ) we observed
is estimated as a shell at ~z 0.01 (∼40 Mpc) spanning a 64
deg2 area and 16 Mpc width corresponding to the effective
search area and the distance uncertainty, respectively: V=558
Mpc3. Under these assumptions, we find that the probability of
a chance coincidence is ∼0.5%, and we conclude that our
optical transient is associated with GW170817.

5. Conclusion

We report the DECam discovery of the optical counterpart to
the BNS merger GW170817, an object with i=17.30 mag and
z=17.43 mag at 11.40 hr post-merger. The source was
discovered through visual inspection of nearby galaxies in
our raw data stream. Our analysis identifies this source as the
only credible optical counterpart within a large fraction of the
GW170817 skymap. The observed peak absolute magnitude of

= -M 15.7i is about 1000 times brighter than a nova, which is
typically close to Eddington luminosity ( = -M 9V ). Thus, we
have indeed discovered a kilonova as the name defines it and
was predicted in Metzger et al. (2010).

At = -M 15.7i , the optical transient is bright enough for us
to detect it out to 425 Mpc. Its properties, 1.5 days after the
event include: - =( )i z 0.2, and a magnitude decline versus
time in µ -i z Y t, ,

1
2 , and faster decline in the g band (µ -t

3
2 ).

Future searches for counterparts of GW events may be
improved by this information.

This detection has opened a new era of multi-probe, multi-
messenger astronomical observations of the universe that will
bring new measurements of cosmological parameters, starting
with the present rate of expansion(LIGO Scientific Collaboration
& Virgo Collaboration et al. 2017b), and possibly helping

determine the matter/energy content and evolution of the
universe.
This is the first detection of an optical counterpart of a

gravitational-wave source. It will not be the last. As the LIGO
and Virgo Collaborations proceed to their next observing runs
and upgrades, DECam will continue to play an important,
almost unique, role in the identification of gravitational-wave
sources in the Southern Hemisphere.
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