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ABSTRACT 

 

 
 In this thesis, the electron transport that occurs within two wide energy gap 

semiconductors, gallium nitride and zinc oxide, is considered. Electron transport within 

gallium arsenide is also examined, albeit primarily for benchmarking purposes. The over-

arching goal of this thesis is to provide the materials community with tools for analysis 

and optimization to be used when evaluating the consequences of transient electron 

transport within these compound semiconductors. Providing fresh insights into the 

character of the electron transport within zinc oxide, with particular focus on the device 

implications, is another aim of this analysis.  

 Initially, Monte Carlo electron transport simulation results are used for a 

comparative analysis of the transient electron transport that occurs within bulk zinc-

blende gallium arsenide and bulk wurtzite gallium nitride. It is found that for both 

materials the electron drift velocity and the average electron energy field-dependent 

“settling timesˮ are strongly correlated and that the electric field resulting in the shortest 

electron transit-time is a function of channel length. Then, the applicability of the semi-

analytical approach of Shur [M. S. Shur, “Influence of non-uniform field distribution on 

frequency limits of GaAs field-effect transistors,ˮ Electronics Letters, vol. 12, no. 23,   

pp. 615-616, 1976] in evaluating the transient electron transport response within gallium 

arsenide, gallium nitride, and zinc oxide is critically examined. In particular, a 
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comparison with Monte Carlo results is performed in order to establish the utility of this 

approach as a tool in studying the transient electron transport response. Next, a Monte 

Carlo analysis of the electron transport within bulk wurtzite zinc oxide is performed. The 

applied electric field strength that ensures the minimum electron time-to-transit across a 

given channel length is determined. These results are then used in order to provide an 

upper bound on the potential performance of zinc oxide based devices. 

 Finally, the utility of the semi-analytical approach of Shur, for the purposes of 

device design optimization, is considered for the specific case of bulk wurtzite ZnO. It is 

found that the results produced through the semi-analytical approach of Shur are, in many 

cases, imperceptibly different from those of the Monte Carlo simulations. This adds to 

the allure of the semi-analytical approach as a versatile tool for transient electron 

transport analyzes and device design. 
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CHAPTER 1 

 

Introduction 

 

 The development of the transistor in 1947 prompted a revolution in technology 

that continues to shape the course of human development today [1, 2]. The transistor lies 

at the heart of modern electronics. It allows for the amplification of analog signals and for 

the processing of digital signals with efficiencies that could not otherwise be achieved. In 

modern industrial societies, such as Canada’s, transistors are ubiquitous. They are found 

in telephones, radios, televisions, automobiles, and many other commodities. They are 

being used for an ever broadening range of applications, including applications in 

sensing, processing, and data archiving. Given their hold on modern technology, 

transistors seem destined to continue to play a crucial role in technological development 

for at least this century, and perhaps beyond.  

 In 1965, Gordon Moore, the future chairman and a future founder of Intel 

Corporation, prophesized that the number of transistors on a silicon chip would double 

every 18 months for the next decade [3]. Moore’s law, as this prophecy is now often 

referred to as today, has held for almost 5 decades now and the expectation is that it will 

continue to hold for at least another decade [4]; see Figure 1.1. In order to achieve this 

rate of technological progress, transistors have needed to become smaller, faster, cheaper, 
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Figure 1.1: The number of transistors on an Intel microprocessor, from 1970 to 2010. A 
least-squares linear fit to this data is depicted with the dashed line. The data in this figure 
from Schwierz [4]. The online version is depicted in color. 
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and more reliable. This has required a detailed understanding of the material properties of 

the materials found within transistors [5]. Transistors are fabricated from insulators, 

conductors, and semiconductors. While the material properties of insulators and 

conductors were reasonably well known prior to development of the transistor, the 

material properties of semiconductors remained largely unknown at that time. Indeed, in 

1947, semiconductors were considered more of a laboratory curiosity [6].  

 Since that time, however, there has been a tremendous amount of effort invested 

into the determination of the material characteristics of semiconductors. Experimental 

and theoretical studies have been performed on the structural, electronic, and optical 

characteristics of these materials. The scientific literature now burgeons with reports from 

such studies. As a consequence, a detailed and quantitative understanding of the material 

properties of a number of semiconductor materials has been achieved [7]. This 

understanding has allowed for the realization of many novel device designs, and thus, has 

played an indispensible role in the evolution of the field. Further innovations in device 

design will undoubtedly require an even greater understanding of the properties of these 

materials.  

 Thus far, most such semiconductor material studies have focused upon the 

material properties of either bulk silicon (Si) or bulk gallium arsenide (GaAs). Si is the 

workhorse upon which conventional microelectronics has been built. Unfortunately, as Si 

is an indirect energy-gap semiconductor, its utility for optoelectronic device applications 

is limited. GaAs, however, is a direct-gap III-V compound semiconductor with great 

optical properties. As a consequence, it is often used for optoelectronic device 

applications.  Beyond Si and GaAs, there are many other semiconductor materials, some 
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offering a unique constellation of material characteristics, making them ideal for certain 

niche device applications. In Figure 1.2, the energy gaps, corresponding to some of the 

more common elemental and compound semiconductors, are tabulated, the nature of 

these energy gaps, i.e., whether they are direct or indirect, being clearly indicated. 

Unfortunately, at the present moment at least, the understanding of the material properties 

of many of the non-traditional semiconductors, i.e, neither Si nor GaAs, remains 

rudimentary, at best. The understanding of the material properties of these non-traditional 

semiconductors, and the novel device designs engendered through this understanding, 

will undoubtedly remain a focus of semiconductor researchers for many years to come.  

 Wide energy gap semiconductors, i.e., semiconductors with energy gaps wider 

than those associated with the more conventional semiconductors [8], crystalline silicon 

(c-Si) and crystalline gallium arsenide (c-GaAs), offer considerable promise for novel 

electronic and optoelectronic device applications. Owing to the fact that wider energy gap 

semiconductors tend to possess higher polar optical phonon energies, the saturation 

electron drift velocities exhibited by these materials tend to be higher. In addition, the 

dielectric constants, both static and high-frequency, associated with the wider energy gap 

semiconductors tend to be smaller than those associated with the more conventional 

semiconductors. Both of these factors favor improved electron device performance [9]. 

An additional benefit of the wide energy gap semiconductors is their great tolerance to 

high applied electric field strengths, making them ideal for high-power device 

applications [10], the  breakdown field of a semiconductor increasing with the magnitude 

of its energy gap [11,12]. Finally, the high thermal conductivities associated with these 

materials further adds to their allure. 
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 Two wide energy gap compound semiconductors currently attracting attention are 

gallium nitride (GaN) and zinc oxide (ZnO) [13-18]. The wurtzite phase of GaN has a 

wide and direct energy gap; at room temperature, this energy gap is around 3.39 eV. 

Wurtzite GaN also exhibits a high breakdown field, elevated thermal conductivity, and 

superb electron transport characteristics [17-18]. These attributes make GaN ideally 

suited for both electronic and optoelectronic device applications. ZnO, while currently 

finding applications as a material for low-field thin-film transistor electron devices [19] 

and as a potential material for transparent conducting electrodes [20], also possesses a 

direct energy gap with a magnitude that is very similar to that exhibited by GaN. Thus, it 

might be expected that, with some further improvements in its material quality, ZnO may 

also be employed for some of the device roles currently implemented or envisaged for 

GaN. 

 It is widely recognized that improvements in the design of semiconductor based 

devices may be achieved through a greater understanding of the underlying electron 

transport mechanisms. The electrons within a semiconductor drift under the action of an 

applied electric field. The transport of electrons within such a semiconductor maybe 

quantified in terms of a distribution function, in which the distribution of electrons may 

be characterized in terms of their momentum and position at a particular instant in time. 

The evolution of this distribution function with respect to time is the fundamental issue at 

stake when one studies electron transport. For bulk semiconductors in thermal 

equilibrium, this evolution may be characterized through the solution of the Boltzmann 

transport equation [21]. Monte Carlo simulations of the electron transport are usually 

employed in order to solve for this equation [22, 23].  
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 While the distribution function provides for a complete specification of the nature 

of the electron transport within a semiconductor, it is difficult to visualize and interpret. 

Moments of this distribution function are often used instead [23]. The electron drift 

velocity, i.e., the average electron velocity over the ensemble of electrons, provides an 

intuitive quantitative measure of the electron transport response within a semiconductor. 

It may be determined by averaging over the distribution function, i.e., it is a first-order 

moment of the distribution function. The average electron energy is another electron 

transport property that can be used in order to characterize the electron transport within a 

semiconductor. It may be determined through a second-order moment of the 

corresponding distribution function. These two measures of the electron transport, i.e., 

the electron drift velocity and the average electron energy, will be used throughout the 

analysis presented in this thesis.  

 There are two-types of electron transport that are considered in this analysis;       

(1) steady-state electron transport, and (2) transient electron transport. In steady-state 

electron transport, one considers what happens to the electron transport after all transients 

have expired. This form of electron transport is usually characterized in terms of the 

dependence of the electron drift velocity on the applied electric field strength, i.e., 

through the specification of the velocity-field characteristic. The velocity-field 

characteristic associated with GaAs, for the crystal temperature set to 300 K and the 

doping concentration set to 1017 cm-3, is depicted in Figure 1.3. Transient electron 

transport, however, provides insight into how steady-state conditions are acquired. In 

Figure 1.4, the dependence of the electron drift velocity on the time elapsed since the 

application of a constant electric field is depicted for the case of GaAs, for the crystal 
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Figure 1.3: A plot of the steady-state velocity-field characteristic, i.e., the dependence of 
the steady-state electron drift velocity on the applied electric field strength, associated 
with GaAs, for the crystal temperature set to 300 K and the doping concentration           
set to 1017 cm-3. These results are obtained from the simulations performed by        
O'Leary et al. [24]. The online version is depicted in color. 
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temperature set to 300 K and the doping concentration set to 1017 cm-3
. Three electric 

field strengths are considered for the case of this analysis, i.e., 2, 4, and 8 kV/cm. It is 

noted that as the time elapsed since the onset of the applied electric field becomes greater, 

the transients start to expire, and steady-state conditions are eventually achieved.  

 It is noted that the transient electron drift velocities may substantially exceed the 

corresponding steady-state electron drift velocities, i.e., velocity overshoots occur. These 

overshoots occur over brief periods of time immediately following the application of the 

electric field. For large device lengths, most of the transport will be steady-state in nature, 

i.e., the transients will quickly expire and the electrons will transit primarily with steady-

state velocities. For shorter device lengths, however, transient electron transport effects 

may play a decisive role in determining the nature of the transport. Device feature scales 

are reducing as time progresses, and thus, while transient electron transport effects may 

not have been important in the past,  they are starting to play a fundamental role in 

shaping the resultant device performance: the progress in device feature lengths, for Si-

based electron devices, as a function of the year, is depicted in Figure 1.5, the feature 

scale of GaAs based devices exhibiting a similar contraction as the years have 

progressed. As device features become ever smaller, it is clear that transient electron 

transport effects will become an increasingly important consideration to take into account 

when evaluating device performance. Transient electron transport within compound 

semiconductors is the primary focus of the analysis presented in this thesis.  

 In this thesis, the electron transport that occurs within two particular wide energy 

gap semiconductors of current interest, GaN and ZnO, is considered. Electron transport 

within GaAs is also examined, albeit primarily for benchmarking purposes. The over-
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Figure 1.5: The gate length of Si-based electron devices as a function of year, from 1970 
to 2010. A least-squares linear fit to this data is depicted with the dashed line. The data in 
this figure is from Schwierz [4]. The online version is depicted in color. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1

11



arching goal of this thesis is to provide the materials community with tools for analysis 

and optimization to be used when evaluating the consequences of transient electron 

transport within these compound semiconductors. Providing fresh insights into the 

character of the electron transport within ZnO, with particular focus on the device 

implications, is another central aim of this analysis. Device performance is assessed 

through the evaluation of the electron time-to-transit, τ, the cut-off frequency of a device 

being inversely proportional to this time, i.e.,  

 

 
.

2

1

πτ
=Tf  (1.1) 

 

 In the initial phase of this analysis, a comparative critical analysis of the nature of 

the transient electron transport that occurs within bulk zinc-blende GaAs and bulk 

wurtzite GaN is performed. Monte Carlo electron transport simulation results are 

employed for the purposes of this analysis. The dependence of the electron drift velocity 

and the average electron energy on the time elapsed since the onset of a constant applied 

electric field is the primary means through which this analysis is performed. The 

relationship between the electron drift velocity and the average electron energy “settling-

times” is a critical aim of this analysis. Developing a novel means of visualizing the 

advantages offered by transient electron transport, as compared with steady-state electron 

transport, and the potential of using this visualization technique for the purposes of 

optimizing the performance of short-channel devices, will arise as a consequence of this 

phase of the analysis. GaN is selected as a material as it is a wide energy gap 

semiconductor whose material properties are now relatively well understood. GaAs is 
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used as a benchmark. The primary intellectual contribution from this study is the 

development of novel means of visualizing the impact of transient electron transport and 

in exploring its implications for short-channel device optimization.  

 In the next phase of the analysis, a critical examination of the utility of the semi-

analytical approach of Shur [25] in evaluating the transient electron transport response 

within zinc-blende GaAs, wurtzite GaN, and wurtzite ZnO is provided. In particular, 

results obtained from the semi-analytical approach of Shur [25] are contrasted with those 

obtained using Monte Carlo simulations of the electron transport. Three aspects of the 

transient electron transport are considered: (1) the dependence of the electron drift 

velocity on the time elapsed since the onset of the applied electric field, (2) the 

dependence of the average electron energy on the time elapsed since the onset of the 

applied electric field, and (3) the dependence of the average electron displacement on the 

time elapsed since the onset of the applied electric field. The semi-analytical approach of 

Shur [25] offers a computational efficient means of resolving the transient electron 

transport response, and thus, if its results faithfully reproduce those of the corresponding 

Monte Carlo electron transport simulation, a substantial benefit may be accrued in terms 

of the scale of the computations required, especially in cases for which potentially 

thousands of simulation runs may be required. In addition, the semi-analytical approach 

may be employed for cases of non-uniform and time-varying fields, these situations being 

beyond the capability of the bulk Monte Carlo simulation approach that has been 

employed for the purposes of this analysis. In addition to GaAs and GaN, ZnO is 

considered in this analysis, as it is a material for which the understanding of its material 

properties is still relatively rudimentary. The primary intellectual contribution of this 
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component of the analysis is the critical evaluation of the suitability of this semi-

analytical approach in the characterization of the transient electron transport response.  

 In the next phase of this analysis, the electron transport that occurs within bulk 

wurtzite ZnO is critically examined. In particular, how electrons, initially in thermal 

equilibrium, drift under the action of an applied electric field, is considered. From Monte 

Carlo simulations of the electron transport within this material, for a variety of applied 

electric field strength selections, the dependence of the time-to-transit on the applied 

electric field strength is evaluated. For a given fixed electron displacement, the applied 

electric field strength that ensures the minimum time-to-transit, is determined. This 

analysis is performed over a wide range of fixed electron displacements. The results are 

then used in order to form an upper bound on the device performance of a ZnO-based 

device. The primary intellectual contribution of this component of the analysis is the 

application of a device optimization procedure to the specific case of wurtzite ZnO and 

the acquisition of an upper bound on the performance of ZnO based devices, that can be 

used by subsequent generations of device designers.  

 In the final phase of this analysis, the utility of the semi-analytical approach of 

Shur [25], for the purposes of device design optimization, is considered for the specific 

case of bulk wurtzite ZnO. In particular, the device optimization performed in the 

previous phase of this thesis is now performed within the framework of the semi-

analytical approach of Shur [25]. How the results obtained through the Monte Carlo 

simulations compare with those produced through the semi-analytical approach is then 

critically examined, for each step of the analysis. The primary intellectual contribution of 

this component of the analysis is the assessment as to whether or not the semi-analytical 
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approach of Shur [25] may be employed for device optimization purposes for the case of 

bulk wurtzite ZnO.  

 While results from Monte Carlo simulations of the electron transport are 

employed throughout this thesis, the author did not perform these simulations. The Monte 

Carlo simulation approach for characterizing the electron transport within 

semiconductors has been in use since 1966 when it was employed by Kurosawa [26] in 

the study of hot electron transport. It is a well-known approach and its results, 

particularly for the more common elemental and compound semiconductors, are well 

established. In this thesis, the objective is to add value to these Monte Carlo simulation 

results. In particular, novel means of visualization, optimization, and characterization are 

proposed, which can be applied to a much broader range of materials than those 

considered within this thesis, i.e., Monte Carlo results provide the input data for this 

analysis. In addition, Monte Carlo results corresponding to bulk wurtzite ZnO, a material 

whose electron transport characteristics were poorly understood prior to this 

investigation, are processed and interpreted. These contributions will aid in the 

development of this rapidly emerging field. Details, as to how these Monte Carlo 

simulations of electron transport were performed, are provided in Appendix A. 

 The results presented in this thesis are merely a sampling of the collection of 

results that were obtained throughout the investigations performed by the author and his 

collaborators [27-37]. The results presented touch on all aspects of the analysis, ranging 

from visualization to optimization. Further details, regarding the breadth of the analysis 

that was performed during this study, may be obtained through a reading of the relevant 

scientific literature.  
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 This thesis is organized in the following manner. In Chapter 2, a new means of 

rendering transparent the benefits offered through transient electron transport is  

presented and applied to the specific case of GaAs and GaN. Then, in Chapter 3, the 

applicability of the semi-analytical approach of Shur [25] is examined for the cases of 

GaAs, GaN, and ZnO. Means of minimizing the time-to-transit across ZnO-based 

devices, for various electron device lengths, are then provided in Chapter 4, Monte Carlo 

results being employed. The applicability of the semi-analytical approach to the 

optimization analysis performed in Chapter 4 is then considered in Chapter 5. Finally, the 

conclusions of this thesis are drawn in Chapter 6, recommendations for further study also 

being provided in this chapter.  
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2.1  Introduction 

 GaN is a useful material for a number of important electronic and optoelectronic 

device applications. In terms of electronics, its wide energy gap [1, 2], large breakdown 

field [3-5], high thermal conductivity [6], and favorable electron transport characteristics 

[7, 8], make GaN ideally suited for high-power and high-frequency electron device 

applications [9-12]. On the optoelectronics front, the direct nature of the energy gap 

associated with GaN, and the location of this energy gap, make it possible to use this 

material, and alloys of this material with other III–V nitride semiconductors, for a variety 

of novel optoelectronic device applications in the near-ultraviolet to visible frequency 

range [13-16]. While initial efforts to study this material were hindered by growth 

difficulties [17-20], improvements in the material quality have made possible the 

realization of a number of GaN-based electronic and optoelectronic devices. 

 In order to understand and improve the design of GaN based devices, an 

understanding of the nature of the electron transport that occurs within this material is 

useful. Accordingly, the electron transport that occurs within GaN has been extensively 

examined over the years [7, 8, 21-34]. While most such studies have focused upon the 

steady-state electron transport that occurs within this material, primarily the dependence 

of the electron drift velocity on the applied electric field strength, transient electron 

transport is also important, particularly for shorter-channel devices. While the steady-

state electron drift velocity saturates for higher electric fields, as a consequence of the 

emission of polar optical phonons and intervalley transitions, the transient electron drift 

velocity that occurs may be much larger than the corresponding steady-state electron drift 

velocity. This occurs as there is a finite time required to emit polar optical phonons or 
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engage in intervalley transitions. If the transit-time across a device is less than that 

required for either of these processes to occur, then dramatic enhancements in the 

exhibited electron drift velocity, beyond that expected for the case of steady-state, may 

occur. As was demonstrated by Foutz et al. [29, 31], transient electron transport can 

dramatically enhance the performance of GaN based devices. 

 In this paper, we will perform a detailed examination of the transient electron 

transport response of GaN. While most analyzes of the transient electron response within 

GaN, such as that of Foutz et al. [29, 31], have focused solely on the dependence of the 

electron drift velocity on the distance displaced since the onset of the applied electric 

field, in this paper we examine the dependence of the electron drift velocity on the time 

elapsed since the onset of the applied electric field. This will allow us to explicitly 

examine the electron drift velocity "settling time", i.e., how long it takes in order to 

achieve the corresponding steady-state electron drift velocity [35, 36]. Another unique 

feature of this analysis is that we will probe the dependence of the average electron 

energy on the time elapsed since the onset of the applied electric field, i.e., how long it 

takes in order to achieve the corresponding steady-state average electron energy [35, 36]. 

Exploring the relationship between the "settling time" associated with the electron drift 

velocity and that corresponding to the average electron energy, a heretofore unexplored 

aspect of the transient electron transport response of GaN, will also be a focus of our 

examination. Finally, by examining the dependence of the transient electron drift velocity 

on the applied electric field strength selection for a fixed selection of the time elapsed 

since the onset of the applied electric field, a new quantitative means of rendering 

transparent the electron drift velocity enhancement provided through transient electron 
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transport is devised. In the interests of providing a comparison with another popular III-V 

compound semiconductor, a parallel analysis is provided for the case of GaAs. The 

device implications of these results are then commented upon. 

 This paper is organized in the following manner. In Section 2.2, we discuss the 

Monte Carlo simulations of the electron transport that we use for the purposes of this 

analysis. Then, in Section 2.3, we present a detailed analysis of the steady-state and 

transient electron transport that occurs within GaAs and GaN, with a focus on the 

determination of the velocity-field characteristics. How the electron drift velocity and the 

average electron energy respond to the sudden application of a constant applied electric 

field, and the development of a new quantitative means of rendering transparent the 

electron drift velocity enhancement provided through transient electron transport, is the 

focus of this analysis. The device implications of these results are then discussed in 

Section 2.4. Finally, the conclusions of our analysis are presented in Section 2.5. 
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2.2  Analysis 

 For the purposes of this analysis of the transient electron transport within GaAs 

and GaN, we assume the zinc blende phase of GaAs and the wurtzite phase of GaN. We 

employ an ensemble semi-classical three-valley Monte Carlo simulation approach. The 

scattering mechanisms considered are: (1) ionized impurity, (2) polar optical phonon,    

(3) piezoelectric, and (4) acoustic deformation potential. Intervalley scattering is also 

considered. The non-parabolicity of each valley is treated through the application of the 

Kane model [37]1. We assume that all donors are ionized and that the free electron 

concentration is equal to the dopant concentration. For our steady-state electron transport 

simulations, the motion of 3,000 electrons is examined, while for our transient electron 

transport simulations, the motion of 10,000 electrons is considered. For our simulations, 

the crystal temperature is set to 300 K and the doping concentration is set to 1017 cm-3 for 

all cases. Electron degeneracy effects are accounted for by means of the rejection 

technique of Lugli and Ferry [38]. Electron screening is also accounted for following the 

Brooks-Herring method [39]. Further details of our Monte Carlo simulation approach are 

presented in the literature [7, 8, 31, 40-46]. 

                                                           
1 In the Kane model, the energy band of the lowest energy Γ valley is assumed to be non-parabolic, 
spherical,  and of the form  
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where me and Eg denote the free electron mass and the energy gap, respectively [37]. 
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2.3  Results 

 We start our analysis with a review of some steady-state electron transport results. 

In Figure 2.1, the dependence of the electron drift velocity on the applied electric field 

strength corresponding to the case of bulk zinc blende GaAs is depicted. For low applied 

electric field strengths, the electron drift velocity monotonically increases with the 

applied electric field strength, ultimately achieving a peak of about 1.6 x 107 cm/s at an 

applied electric field strength of around 4 kV/cm; we henceforth will refer to the applied 

electric field strength at which the peak in the velocity-field characteristic occurs as the 

peak field. After this peak, the electron drift velocity monotonically decreases in response 

to further increases in the applied electric field strength, saturating at a value of about 1.0 

x 107 cm/s. In Figure 2.2, the corresponding velocity-field characteristic associated with 

bulk wurtzite GaN is depicted. For this case, the peak electron drift velocity is found to 

be about 2.9 x 107 cm/s, the corresponding peak field being around 140 kV/cm. 

Following this peak, the electron drift velocity monotonically decreases in response to 

further increases in the applied electric field strength, as with the case of GaAs, saturating 

at a value of about 1.4 x 107 cm/s for high applied electric fields. 

 Alongside these velocity-field characteristics, we also plot the corresponding 

average electron energy as a function of the applied electric field strength, these results 

being obtained from the same Monte Carlo simulations as those used to obtain the 

corresponding velocity-field characteristics. Starting from the thermal equilibrium result 

of  (3/2) kb T, corresponding to the specific case of the applied electric field being set to 

nil, it is seen that this average electron energy monotonically increases as the applied 

electric field strength is increased, achieving a value of around 0.35 eV when the applied 
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Figure 2.1: The dependence of the electron drift velocity on the applied electric field 
strength for the case of bulk zinc blende GaAs. The dependence of the average electron 
energy on the applied electric field strength is also depicted. These results were 
determined from a Monte Carlo simulation of the electron transport within this material. 
For the purposes of this particular simulation, the crystal temperature is set to 300 K and 
the doping concentration is set to 1017 cm-3. The peak field is indicated with the arrow.  
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Figure 2.2: The dependence of the electron drift velocity on the applied electric field 
strength for the case of bulk wurtzite GaN. The dependence of the average electron 
energy on the applied electric field strength is also depicted. These results were 
determined from a Monte Carlo simulation of the electron transport within this material. 
For the purposes of this particular simulation, the crystal temperature is set to 300 K and 
the doping concentration is set to 1017 cm-3. The peak field is indicated with the arrow. 
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electric field strength is set to 20 kV/cm for the case of bulk zinc blende GaAs and a 

value of about 2.4 eV when the applied electric field strength is set to 1,000 kV/cm for 

the case of bulk wurtzite GaN; these values do not represent saturated values, however, as 

these average electron energies appear to be continuing to increase in response to further 

increases in the applied electric field strength. It is noted that for both materials that the 

onset of the increases in the average electron energy roughly corresponds with that at 

which the peak in the velocity-field characteristic is achieved. Intervalley transitions, 

from the lower energy conduction band valley, where the electrons have a lighter 

effective mass, to higher energy conduction band valleys, where the electrons have 

heavier effective masses, are responsible for both the peak in the velocity-field 

characteristics and partially responsible for the increases in the average electron energy 

corresponding to these materials. 

 We now examine the transient electron transport that occurs within bulk          

zinc blende GaAs and bulk wurtzite GaN. In particular, following the approach of    

Foutz et al. [29, 31], we study how electrons, initially in thermal equilibrium, respond to 

the sudden application of a constant applied electric field. In Figure 2.3, we plot the 

electron drift velocity for bulk zinc blende GaAs as a function of the time elapsed since 

the electric field was initially applied, for a number of applied electric field strength 

selections. We note that for the applied electric field strength selections 2 and 4 kV/cm 

that the electron drift velocity reaches steady-state very quickly, with little or no velocity 

overshoot. In contrast, for applied electric field strength selections in excess of 4 kV/cm, 

significant velocity overshoot occurs. This result suggests that for bulk zinc blende GaAs 

that around 4 kV/cm is a critical applied electric field strength for the onset of velocity 
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Figure 2.3: The dependence of the electron drift velocity on the time elapsed since the 
onset of the applied electric field for the case of bulk zinc blende GaAs. The various 
selections of the applied electric field strength are indicated. These results were 
determined from Monte Carlo simulations of the electron transport within this material. 
For the purposes of these simulations, the crystal temperature is set to 300 K and the 
doping concentration is set to 1017 cm-3.  
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overshoot effects. As was mentioned earlier, around 4 kV/cm also corresponds to the 

peak field in the velocity-field characteristic associated with bulk zinc blende GaAs; 

recall Figure 2.1. 

 Similar results are found for the case of bulk wurtzite GaN. In Figure 2.4, we plot 

the electron drift velocity as a function of the time elapsed since the electric field was 

initially applied, for a number of applied electric field strength selections. We note that 

for the applied electric field strength selections 70 kV/cm and 140 kV/cm that the 

electron drift velocity reaches steady-state very quickly, with little or no velocity 

overshoot. In contrast, for applied electric field strength selections in excess of 140 

kV/cm, significant velocity overshoot occurs. This result suggests that for bulk wurtzite 

GaN that around 140 kV/cm is a critical applied electric field strength for the onset of 

velocity overshoot effects. As with the case of GaAs, it is noted that around 140 kV/cm 

also corresponds to the peak field in the velocity-field characteristic associated with bulk 

wurtzite GaN; recall Figure 2.2. Similar results were found for the other III–V 

semiconductors considered by Foutz et al. [29, 31]. 

 We now examine how the average electron energy evolves with time following 

the application of a constant applied electric field. In Figure 2.5, we plot the average 

electron energy within GaAs as a function of the time elapsed since the electric field was 

initially applied, for the same applied electric field strength selections made in Figure 2.3; 

the same Monte Carlo simulations of the electron transport within GaAs are employed for 

the purposes of this analysis. It is noted that in all cases the average electron energy 

monotonically increases with the time elapsed since the application of the constant 

electric field; for zero-time, all the results coincide at the thermal equilibrium result, i.e., 
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Figure 2.4: The dependence of the electron drift velocity on the time elapsed since the 
onset of the applied electric field for the case of bulk wurtzite GaN. The various 
selections of the applied electric field strength are indicated. These results were 
determined from Monte Carlo simulations of the electron transport within this material. 
For the purposes of these simulations, the crystal temperature is set to 300 K and the 
doping concentration is set to 1017 cm-3. 
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Figure 2.5: The dependence of the average electron energy on the time elapsed since the 
onset of the applied electric field for the case of bulk zinc blende GaAs. The various 
selections of the applied electric field strength are indicated. These results were 
determined from Monte Carlo simulations of the electron transport within this material; 
the same simulations as those employed to determine Figure 2.3. For the purposes of 
these simulations, the crystal temperature is set to 300 K and the doping concentration is 
set to 1017 cm-3. 
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(3/2) kb T. It is also noted that for applied electric field strength selections in excess of the 

peak field, the time required in order for the steady-state value to be achieved seems to 

decrease as the magnitude of the applied electric field strength is increased. It is 

interesting to note that the average electron energy ‘‘settling time’’ seems to be strongly 

correlated with the ‘‘settling time’’ required for the transient electron drift velocity to 

approach steady-state. It is noted that the ‘‘settling times’’ associated with bulk zinc 

blende GaAs, observed in Figures 2.3 and 2.5, range between 0.5 and 3 ps.  

 In Figure 2.6, we plot the average electron energy within GaN as a function of the 

the time elapsed since the electric field was initially applied, for the same applied electric 

field strength selections made in Figure 2.4; the same Monte Carlo simulations of the 

electron transport within GaN are employed for the purposes of this analysis. As with the 

case of GaAs, for zero-time, all the results coincide at the thermal equilibrium result, i.e., 

(3/2) kb T. Unlike the case of GaAs, however, a peak average electron energy is found for 

the particular case of the applied electric field strength being set to 560 kV/cm; all the 

other average electron energy dependencies appear to exhibit a monotonic dependence on 

the applied electric field strength, as was the case for bulk zinc blende GaAs. It is seen 

that the same apparent strong correlation in ‘‘settling times’’ found for the case of GaAs 

is also found for the case of GaN. All of the ‘‘settling times’’ associated with bulk 

wurtzite GaN, observed in Figures. 2.4 and 2.6, range between 0.1 and 0.3 ps. 

 Finally, we plot the dependence of the transient electron drift velocity on the 

applied electric field strength for a fixed selection of the time elapsed since the onset of 

the applied electric field. In Figure 2.7, we plot this dependence for the case of bulk zinc 

blende GaAs. The time elapsed since the onset of the applied electric field is set to 1 ps 
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Figure 2.6: The dependence of the average electron energy on the time elapsed since the 
onset of the applied electric field for the case of bulk wurtzite GaN. The various 
selections of the applied electric field strength are indicated. These results were 
determined from Monte Carlo simulations of the electron transport within this material; 
the same simulations as those employed to determine Figure 2.4. For the purposes of 
these simulations, the crystal temperature is set to 300 K and the doping concentration is 
set to 1017 cm-3. 
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Figure 2.7: The dependence of the electron drift velocity on the applied electric field 
strength for the case of bulk zinc blende GaAs. Steady-state results are depicted with the 
solid line. The transient electron transport results are indicated with the solid points. 
These transient electron transport results are determined for 1 ps following the onset of 
the applied electric field. For the purposes of these simulations, the crystal temperature is 
set to 300 K and the doping concentration is set to 1017 cm-3. 
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for all cases, this being the time over which transient electron transport effects occur for 

the case of bulk zinc blende GaAs; recall Figures 2.3 and 2.5. The corresponding steady-

state electron drift velocity dependence on the applied electric field strength is also 

depicted in this figure. As was noted previously, transient electron transport effects are 

particularly evident for applied electric field strength selections beyond the peak field. 

Indeed, for the time elapsed since the onset of the applied electric field being set to 1 ps, 

transient electron drift velocities as high as 2.9 x 107 cm/s (for an applied electric field 

strength selection of around 7 kV/cm) may be achieved while the corresponding steady-

state electron drift velocity is found to be only around 1.3 x 107 cm/s. For the case of bulk 

wurtzite GaN, shown in Figure 2.8, the enhancement is even greater, i.e., transient 

electron drift velocities as high as 6.8 x 107 cm/s (for an applied electric field selection of 

around 300 kV/cm) may be achieved while the corresponding steady-state electron drift 

velocity is found to be only around 1.7 x 107 cm/s; the time elapsed since the onset of the 

applied electric field is set to 0.1 ps for this particular case, this being the time over which  

transient electron transport effects occur for the case of bulk wurtzite GaN; recall Figures 

2.4 and 2.6. 
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Figure 2.8: The dependence of the electron drift velocity on the applied electric field 
strength for the case of bulk wurtzite GaN. Steady-state results are depicted with the solid 
line. The transient electron transport results are indicated with the solid points. These 
transient electron transport results are determined for 0.1 ps following the onset of the 
applied electric field. For the purposes of these simulations, the crystal temperature is set 
to 300 K and the doping concentration is set to 1017 cm-3. 
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2.4  Device implications 

 These results have important implications in terms of the performance of electron 

devices. Noting that the cut-off frequency for a device 

 

 
,

2

1

πτ
=Tf  (2.1) 

 

where τ represents the transit-time across the device, we can use our results to suggest the 

device length required in order to satisfy a desired cut-off frequency requirement. Figure 

2.7, for example, suggests that for the case of zinc-blende GaAs that cut-off frequencies 

of around 160 GHz may be achieved for device lengths of at most 290 nm; for a set 

transit-time of 1 ps, i.e., fT ∼160 GHz, a rough estimate for the maximum electron range, 

i.e., the maximum device length, may be obtained by multiplying the peak transient 

electron drift velocity by this transit-time. Figure 2.8 suggests that for the case of wurtzite 

GaN cut-off frequencies of around 1.6 THz may be achieved with device lengths of at 

most 70 nm. Focussing on the specific case of wurtzite GaN, it is seen that for a set 

device length of 70 nm, assuming a uniform field distribution within the device, the 

application of 2 V across the device, i.e., an applied electric field of 300 kV/cm, this 

being the applied electric field at which the peak transient electron drift velocity is 

achieved for the case of wurtzite GaN (recall Figure 2.8), will ensure that the transit-time 

is around 0.1 ps, i.e., fT ∼1.6 THz. The non-idealities of an actual device, such as non-

uniformities in the electric field distribution, must be considered when evaluating the 

performance of any particular device configuration, of course. 
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2.5  Conclusions 

 In conclusion, we have presented a detailed comparative analysis of the transient 

electron transport that occurs within bulk zinc-blende GaAs and bulk wurtzite GaN. A 

three-valley Monte Carlo simulation approach was used for the purposes of this analysis. 

We found that in both cases that the electron drift velocity and the average electron 

energy ‘‘settling times’’ are strongly correlated. We also devised a new means of 

rendering transparent the electron drift velocity enhancement offered by transient electron 

transport. Finally, the device implications of these results were commented upon. 
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3.1  Introduction 

 The wide energy gap semiconductors, GaN and ZnO, are a focus of considerable 

current interest [1-7]. This interest has been fuelled, in large measure, by the considerable 

promise that these materials offer for novel electronic and optoelectronic device 

applications [8, 9]. GaN, with its wide and direct energy gap, i.e., 3.39 eV at room 

temperature [10], offers a high breakdown field [11, 12], high thermal conductivity [13, 

14], and favorable electron transport characteristics [15-18], making it ideally suited for 

high-power and high-frequency electron device applications. On the optoelectronics 

front, the direct nature of the energy gap associated with GaN also make it well suited for 

optoelectronic device applications in the ultraviolet frequency range [19]. ZnO,         

while currently finding applications as a material for low-field thin-film transistor 

electron device structures [20] and as a potential material for transparent conducting 

electrodes [21], also possesses a direct energy gap [22, 23] with a magnitude that is very 

similar to that of GaN [24]. Thus, it might be expected that, with some further 

improvements in its material quality, ZnO may also be employed for some of the device 

roles currently implemented or envisaged for GaN.  

 In order to analyze the performance and further improve on the design of 

compound semiconductor electron devices, an understanding of the electron transport 

that occurs within the underlying electronic materials is necessary. With its wide energy 

gap, large polar optical phonon energy, and wide intervalley energy separation, GaN is 

expected to exhibit favorable electron transport characteristics [25]. ZnO, with a similar 

energy gap to that possessed by GaN, a slightly lower polar optical phonon energy, and a 

much wider intervalley energy separation, is also expected to exhibit favorable electron 
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transport characteristics. Studies of both the steady-state and transient electron transport 

that occurs within bulk wurtzite GaN [16-18, 25-37] and bulk wurtzite ZnO [23, 38-44] 

have been pursued through the years. From these studies, key conclusions, regarding the 

nature of the electron transport within these materials, have been drawn. In addition, 

insights into means of properly designing electron devices fabricated with these materials 

have been gleaned. 

 Steady-state electron transport is the dominant electron transport mechanism       

in devices with larger dimensions. For devices with smaller dimensions, however, 

transient electron transport must also be considered when evaluating device performance. 

Ruch [45] demonstrated, for both silicon and GaAs, that the transient electron drift 

velocity may exceed the corresponding steady-state electron drift velocity, by a 

considerable margin, for appropriate selections of the applied electric field strength. This 

overshoot has been observed for many compound semiconductors, including GaN [15] 

and ZnO [42]. Shur and Eastman [46] explored the device implications of transient 

electron transport, and demonstrated that substantial improvements in the device 

performance can be achieved as a consequence of the transient electron transport. The 

benefits of transient electron transport were further extolled by Foutz et al. [15] in 1999 

and O’Leary et al. [47] in 2006.  

 Fundamentally, the transient electron transport response of a semiconductor may 

be characterized through the solution of the Boltzmann transport equation. The ensemble 

Monte Carlo simulation technique offers an effective means of solving this equation. 

Unfortunately, transient Monte Carlo solutions to the Boltzmann equation have a number 

of drawbacks. First, and perhaps most significantly, the computations demanded of the 
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Monte Carlo technique are quite intensive, with individual runs taking a long time to 

execute, even on powerful machines. Secondly, many Monte Carlo simulators only 

consider the electron transport within the bulk. The results obtained, thus, can not be 

applied directly to actual electron device structures, where the fields may be highly non-

uniform and time-varying. Accordingly, the development of an alternate means of 

characterizing the transient electron transport within a compound semiconductor, that 

allows for the rapid evaluation of the transient electron transport response, and allows for 

the treatment of non-uniform and time-varying electric fields, is a priority.  

 In 1976, Shur [48] developed a semi-analytical technique for determining the 

transient electron transport response within compound semiconductors, and applied it to 

the specific case of GaAs, the most significant compound semiconductor at the time. 

Stemming from the application of momentum conservation and energy conservation 

principles, the semi-analytical approach of Shur [48] cast its analysis of the transient 

electron transport within compound semiconductors in terms of the momentum and 

energy relaxation times. These relaxation times were determined from Monte Carlo 

generated steady-state results for the electron drift velocity as a function of the applied 

electric field strength, the average electron energy as a function of the applied electric 

field strength, and the occupancy of the valleys as a function of the applied electric field 

strength, coupled with knowledge of the electron effective mass associated with each 

valley at the respective valley energy minimum.  

 In this paper, we aim to critically evaluate the validity of this semi-analytical 

technique of Shur [48]. In particular, we will solve the semi-analytical equations of    

Shur [48] and contrast the obtained results for the transient electron transport with results 
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obtained using Monte Carlo simulations of the electron transport. Our approach will be to 

examine the response of an ensemble of electrons to the application of a constant and 

uniform applied electric field. For the purposes of this analysis, three aspects of the 

transient electron transport will be considered: (1) the dependence of the electron drift 

velocity on the time elapsed since the onset of the applied electric field, (2) the 

dependence of the average electron energy on the time elapsed since the onset of the 

applied electric field, and (3) the dependence of the average electron displacement on the 

time elapsed since the onset of the applied electric field. The materials considered in this 

analysis include zinc-blende GaAs, albeit primarily for benchmarking purposes, wurtzite 

GaN, and wurtzite ZnO. In order to simplify matters, we will focus solely on the bulk 

response for the purposes of this analysis.  

 This paper is organized in the following manner. In Section 3.2, we describe the 

Monte Carlo simulations of the electron transport that we employ for the purposes of this 

analysis. Then, in Section 3.3, the semi-analytical approach of Shur [48] is briefly 

described. The results of this analysis are then presented in Section 3.4, results 

determined using this semi-analytical approach being contrasted with those obtained 

through Monte Carlo simulations. A possible explanation for the closeness of the semi-

analytical results and the Monte Carlo simulation results, for the specific case of wurtzite 

ZnO, is then provided in Section 3.5. The device implications of these results are briefly 

discussed in Section 3.6. Finally, the conclusions of this analysis are summarized in 

Section 3.7. 
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3.2  Monte Carlo electron transport simulations 

 For this analysis of the transient electron transport within bulk zinc-blende   

GaAs, bulk wurtzite GaN, and bulk wurtzite ZnO, we employ ensemble semi-classical 

three-valley Monte Carlo simulations. The scattering mechanisms considered are:         

(1) ionized impurity, (2) polar optical phonon, (3) piezoelectric, and (4) acoustic 

deformation potential. Intervalley scattering is also considered, each valley being treated 

through the application of the Kane model [49]1. We assume that all donors are ionized 

and that the free electron concentration is equal to the dopant concentration. For these 

transient electron transport simulations, thermal equilibrium is assumed prior to the 

application of the electric field. Our approach will be to examine the response of an 

ensemble of electrons to the application of a constant and uniform applied electric field. 

The motion of 10,000 electrons is considered during the course of each simulation. 

Electron degeneracy effects are accounted for by means of the rejection technique of 

Lugli and Ferry [50]. Electron screening is also accounted for following the Brooks-

Herring method [51]. Further details of our Monte Carlo simulation approach are 

presented in the literature [15-18, 33, 42, 44, 52-57].  

 Most of the material and band structural parameter selections, used for our 

simulations of the transient electron transport within bulk wurtzite ZnO, are from 

Albrecht et al. [23]; we adopt the same material and band structural parameter selections 

as O’Leary et al. [42] and Hadi et al. [43, 44]. Unfortunately, as Albrecht et al. [23] did 

not provide an exhaustive list of all of the material parameters needed for our Monte 

                                                           
1
 In the Kane model, the energy bands are assumed to be non-parabolic, spherical, and of the form 

*2
)1(

22

m

k
EE


=+α  , where k  denotes the crystal momentum, E represents the energy, m* is the effective 

mass of the electrons within this valley, and α is the non-parabolicity coefficient [49]. 
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Carlo simulations, some of the material parameters employed by us are drawn from other 

sources in the literature [58], or through a direct fit with the results of Albrecht et al. [23], 

i.e., we tweaked the material parameters until the resultant velocity-field characteristic 

corresponded with that found by Albrecht et al. [23]. With the exception of the second 

order non-parabolicity factor, which we neglect for the purposes of our analysis [49], we 

employ the same three-valley band model for the conduction band as that employed by 

Albrecht et al. [23]. The lowest energy conduction band valley electron effective mass 

selection, 0.17 me, where me denotes the free electron mass, while smaller than the 

selections of Adachi et al. [58] (0.234 me), Guo et al. [39] (0.54 me), and Furno et al. [41] 

(0.21 me perpendicular and 0.23 me parallel), is in keeping with the relation between the 

electron effective mass and the direct energy gap found for other III–V and II–VI 

semiconductors, as was shown in Figure 1 of O’Leary et al. [42]; given the considerable 

overlap in authorship between Bertazzi et al. [40] and Furno et al. [41], it will be 

assumed that the choice of electron effective mass is similar. As with Albrecht et al. [23], 

anisotropy in the bands is neglected, the simulations of Bertazzi et al. [40] and Furno et 

al. [41] demonstrating that the anisotropy that is present only leads to a slight correction 

in the results. The material and band structural parameter selections, employed for the 

purposes this analysis of the transient electron transport within bulk wurtzite ZnO, are 

tabulated in Tables 3.1 and 3.2, respectively. The material and band structural 

parameters, corresponding to bulk wurtzite GaN and bulk zinc-blende GaAs, are as 

specified by O’Leary et al. [18] and Foutz et al. [33]. 
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Table 3.1: The material parameter selections corresponding to bulk wurtzite ZnO that are 
employed for the purposes of this analysis. The source of each parameter is identified.  
Parameter ZnO Reference 

Mass density (g/cm3 ) 5.68 [58] 

Longitudinal sound velocity(cm/s) 4.00 x 105 determined through fit 

Transverse sound velocity (cm/s) 2.7 x 105 [39] 

Acoustic deformation potential (eV) 3.83 [23] 

Static dielectric constant 8.2 [23] 

High frequency dielectric constant 3.7 [23] 

Effective mass (Γ1 valley) 0.17 me [23] 

Piezoelectric constant, e14 (C/cm2) 3.75 x 10-5 determined through fit 

Direct energy gap (eV) 3.4 [23] 

Polar optical phonon energy (meV) 72 [23] 

Intervalley deformation potentials (eV/cm) 109 [23] 

Intervalley phonon energies (meV) 72 [23] 

 

Table 3.2: The band structure parameter selections corresponding to bulk wurtzite ZnO. 
These band structure parameter selections are mostly from Albrecht et al. [23]. 
 Valley number 1 2 3 

ZnO Valley location Γ1 [23] Γ1 [23] L-M [23] 

 Valley degeneracy 1 1 6 

 Effective mass 0.17 me [23] 0.42 me [23] 0.7 me [23] 

 Intervalley energy separation (eV) _ 4.4 [23] 4.6 [23] 

 Energy gap (eV) 3.4 [23] 7.8 [23]  8.0 [23]  

 Non-parabolicity (eV-1) 0.66 [23] 0.15 [23] 0.0 [23] 
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3.3  The semi-analytical approach 

 Fundamentally, the semi-analytical approach of Shur et al. [48] draws upon the 

principles of momentum and energy conservation. The approach involves the solution of 

two coupled one-dimensional differential equations, one for the electron momentum, the 

other for the electron energy. For the case of momentum, under the action of an applied 

electric field, for the one-dimensional case, it can be shown that, 

 

 ,
)(

)(])([ **

ετ
εξε

m

vm
q

dt

vmd
−=  (3.1)   

 

where q denotes the charge of an electron, ν represents the average electron drift velocity, 

ɛ is the electron energy, )(ετ m  is the momentum relaxation time, ξ is the strength of the 

electric field, and )(* εm  is the energy dependent effective mass, the effective mass being 

dependent upon the particular valleys that the electrons occupy; Eq. (3.1) corresponds to 

a one-dimensional projection of electron transport in the direction of the applied electric 

field. For the case of energy, it can be shown that 
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where )(ετε  denotes the energy relaxation time and oε  represents the thermal 

equilibrium energy, i.e., Tkbo 





=

2

3ε , where kb is Boltzmann’s constant and T is the 

temperature. The entire analysis is cast with respect to the electron energy, ε . 
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 Expressions for the momentum and energy relaxation times, i.e., )(ετm  and 

)(ετε , may be obtained from steady-state Monte Carlo results. Setting the derivatives of 

Eqs. (3.1) and (3.2) to zero, the momentum relaxation time, 
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(3.3) 

 

while the energy relaxation time, 
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(3.4) 

 

where νss (ɛ) is the steady-state electron drift velocity as a function of the electron energy 

and ξss(ɛ) is the electric field strength as a function of the electron energy. The electron 

energy dependent electron drift velocity, νss (ɛ), is found through a substitution of ξss(ɛ) 

into the corresponding steady-state velocity-field characteristic. 
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3.4  Results 

 In Figure 3.1, we plot the electron drift velocity associated with bulk zinc-blende 

GaAs as a function of the time elapsed since the onset of the applied electric field. For all 

cases considered, the crystal temperature is set to 300 K and the doping concentration is 

set to 1017 cm-3. Electric field strength selections of 2, 4, 6, and 8 kV/cm are chosen, these 

corresponding to half-multiples of the peak field associated with zinc-blende GaAs; the 

peak field, i.e., the applied electric field at which point the steady-state velocity-field 

characteristic achieves its peak, is found to be 4 kV/cm for the case of zinc-blende GaAs. 

The results corresponding to the Monte Carlo simulations are depicted with the solid 

lines while the results of the semi-analytical technique are depicted with the dashed lines. 

We first note that for the electric field strength selections 2 and 4 kV/cm, that very little 

velocity overshoot occurs. In contrast, for electric field strength selections in excess of 4 

kV/cm, considerable velocity overshoot occurs. As was observed before, 4 kV/cm 

corresponds to the peak in the velocity-field characteristic associated with zinc-blende 

GaAs. This suggests that the velocity overshoot is related to the peak in the velocity-field 

characteristic associated with this material. In terms of how the Monte Carlo results 

contrast with their semi-analytical counterparts, we note that, in all cases, the Monte 

Carlo results form an upper bound on the corresponding semi-analytical results. This 

bound, however, is noted to be quite tight for the lower applied electric field strength 

selections, i.e., for the cases of 2 and 4 kV/cm. For the higher applied electric field 

strength selections, the deviations noted were found to be more substantive, although not 

such as to invalidate the utility of the semi-analytical approach. 
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Figure 3.1: The electron drift velocity associated with bulk zinc-blende GaAs as a 
function of the time elapsed since the onset of the applied electric field. For all cases, we 
have assumed an initial zero-field electron distribution, a crystal temperature of 300 K, 
and a doping concentration of 1017 cm-3. The Monte Carlo results are depicted with the 
solid lines and the semi-analytical results are represented with the dashed lines. The 
online version is depicted in color. 
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 In Figure 3.2, we plot the electron drift velocity associated with bulk wurtzite 

GaN as a function of the time elapsed since the onset of the applied electric field. For all 

cases considered, the crystal temperature is set to 300 K and the doping concentration is 

set to 1017 cm-3. Electric field strength selections of 70, 140, 210, and 280 kV/cm are 

chosen, these corresponding to half-multiples of the peak field associated with wurtzite 

GaN; the peak field associated with wurtzite GaN is 140 kV/cm. The results 

corresponding to the Monte Carlo simulations are depicted with the solid lines while the 

results of the semi-analytical technique are depicted with the dashed lines. We first note 

that, as before, for the lower electric field strength selections, i.e., 70 and 140 kV/cm, that 

very little velocity overshoot occurs. In contrast, for electric field strength selections in 

excess of 140 kV/cm, considerable velocity overshoot occurs. As was mentioned earlier, 

140 kV/cm corresponds to the peak in the velocity-field characteristic associated with 

wurtzite GaN. Thus, as with the case of zinc-blende GaAs, this suggests that the velocity 

overshoot associated with wurtzite GaN is related to the peak in the velocity-field 

characteristic associated with this material. In terms of how the Monte Carlo results 

contrast with their semi-analytical counterparts, we note that, for many cases, the Monte 

Carlo results form an upper bound on the corresponding semi-analytical results; unlike 

the case of zinc-blende GaAs, however, this bound is not exact, as there are cases for 

which the semi-analytical results exceed the corresponding Monte Carlo results. This 

bound is noted to be quite tight for the lower applied electric field strength selections, i.e., 

the cases of 70 and 140 kV/cm. For the higher applied electric field strength selections, 

however, the deviations noted were found to be more substantive, although, as with the 
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Figure 3.2: The electron drift velocity associated with bulk wurtzite GaN as a function of 
the time elapsed since the onset of the applied electric field. For all cases, we have 
assumed an initial zero-field electron distribution, a crystal temperature of 300 K, and a 
doping concentration of 1017 cm-3. The Monte Carlo results are depicted with the solid 
lines and the semi-analytical results are represented with the dashed lines. The online 
version is depicted in color. 
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case of zinc-blende GaAs, not such as to invalidate the utility of the semi-analytical 

approach. 

 In Figure 3.3, we plot the electron drift velocity associated with bulk wurtzite 

ZnO as a function of the time elapsed since the onset of the applied electric field. For all 

cases considered, the crystal temperature is set to 300 K and the doping concentration is 

set to 1017 cm-3. Electric field strength selections of 135, 270, 405, and 540 kV/cm are 

chosen, these corresponding to half-multiples of the peak field associated with wurtzite 

ZnO; the peak field associated with wurtzite ZnO is 270 kV/cm. The results 

corresponding to the Monte Carlo simulations are depicted with the solid lines while the 

results of the semi-analytical technique are depicted with the dashed lines. We first note 

that, as before, for the lower electric field strength selections, i.e., 135 and 270 kV/cm, 

that very little velocity overshoot occurs. In contrast, for electric field strength selections 

in excess of 270 kV/cm, considerable velocity overshoot occurs. As was mentioned 

earlier, 270 kV/cm corresponds to the peak in the velocity-field characteristic associated 

with wurtzite ZnO. Thus, as with the cases of zinc-blende GaAs and wurtzite GaN, this 

suggests that the velocity overshoot associated with wurtzite ZnO is related to the peak in 

the velocity-field characteristic associated with this material. In terms of how the Monte 

Carlo results contrast with their semi-analytical counterparts, we note that, for most 

cases, the semi-analytical results form an upper bound on the corresponding Monte Carlo 

results; this bound is not exact, however, as there are cases for which the Monte Carlo 

results exceed the corresponding semi-analytical results. This bound is noted to be     

quite tight for the lower applied electric field strength selections, i.e., the cases of 135 and 

270 kV/cm. For the higher applied electric field strength selections, however, the 
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Figure 3.3: The electron drift velocity associated with bulk wurtzite ZnO as a function of 
the time elapsed since the onset of the applied electric field. For all cases, we have 
assumed an initial zero-field electron distribution, a crystal temperature of 300 K, and a 
doping concentration of 1017 cm-3. The Monte Carlo results are depicted with the solid 
lines and the semi-analytical results are represented with the dashed lines. The online 
version is depicted in color. 
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deviations noted were found to be more substantive, although, as with the cases of zinc-

blende GaAs and wurtzite GaN, not such as to invalidate the utility of the semi-analytical 

approach. We speculate that the uniqueness of the wurtzite ZnO case, i.e., the closeness 

of the semi-analytical results to the results of our Monte Carlo simulations, arises as a 

consequence of the fact that very few upper valley transitions occur for the case of this 

material, primarily on account of its large non-parabolicity coefficient [43]. Further 

analysis in support of this supposition is provided in Section 3.5. 

 In Figure 3.4, we plot the average electron energy associated with bulk zinc-

blende GaAs as a function of the time elapsed since the onset of the applied electric field. 

For all cases considered, the crystal temperature is set to 300 K and the doping 

concentration is set to 1017 cm-3. Electric field strength selections of 2, 4, 6, and 8 kV/cm 

are chosen, these corresponding to half-multiples of the peak field associated with zinc-

blende GaAs. The results corresponding to the Monte Carlo simulations are depicted with 

the solid lines while the results of the semi-analytical technique are depicted with the 

dashed lines. The same Monte Carlo simulations and semi-analytical computations, 

employed in the determination of Figure 3.1, are used in order to determine these plots. 

We note that for all the applied electric field strength selections considered, the semi-

analytical results form an upper bound on the Monte Carlo results. This bound is 

observed to be quite tight for most cases, the deviation between these results being 

greatest for the applied electric field strength being set to 4 kV/cm, i.e., the peak field.

 In Figure 3.5, we plot the average electron energy associated with bulk wurtzite 

GaN as a function of the time elapsed since the onset of the applied electric field. For all 

cases considered, the crystal temperature is set to 300 K and the doping concentration is 
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Figure 3.4: The average electron energy associated with bulk zinc-blende GaAs as a 
function of the time elapsed since the onset of the applied electric field. For all cases, we 
have assumed an initial zero-field electron distribution, a crystal temperature of 300 K, 
and a doping concentration of 1017 cm-3. The Monte Carlo results are depicted with the 
solid lines and the semi-analytical results are represented with the dashed lines. The 
online version is depicted in color. 
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Figure 3.5: The average electron energy associated with bulk wurtzite GaN as a function 
of the time elapsed since the onset of the applied electric field. For all cases, we have 
assumed an initial zero-field electron distribution, a crystal temperature of 300 K, and a 
doping concentration of 1017 cm-3. The Monte Carlo results are depicted with the solid 
lines and the semi-analytical results are represented with the dashed lines. The online 
version is depicted in color. 
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set to 1017 cm-3. Electric field strength selections of 70, 140, 210, and 280 kV/cm are 

chosen, these corresponding to half-multiples of the peak field associated with wurtzite 

GaN. The results corresponding to the Monte Carlo simulations are depicted with the 

solid lines while the results of the semi-analytical technique are depicted with the dashed 

lines. The same Monte Carlo simulations and semi-analytical computations, employed in 

the determination of Figure 3.2, are used in order to determine these plots. We note that 

for the applied electric field strength selections 70, 140, and 210 kV/cm, the semi-

analytical results form an upper bound on the Monte Carlo simulation results; this bound 

is not exact, as the 210 kV/cm case shows ranges of time for which the semi-analytical 

result is less than that obtained for the Monte Carlo simulation result, albeit slightly. This 

bound is observed to be quite tight for most cases, the deviation between these results 

being greatest for the applied electric field strength being set to 140 kV/cm, i.e., the peak 

field. The opposite effect is observed when the applied electric field strength is set to 280 

kV/cm, however. For this case, the Monte Carlo result forms an upper bound on the semi-

analytical result, except for times long after the onset of the applied electric field, i.e., 

beyond 0.25 ps following the onset of the applied electric field; this bound is not exact, 

however, as is seen for times less than 0.07 ps. It is noted that the deviation between the 

Monte Carlo results and that of the semi-analytical approach appears to become greatest 

at about 0.15 ps following the onset of the applied electric field. The exact reasons for 

this behaviour are unknown at the present time. 

 In Figure 3.6, we plot the average electron energy associated with bulk wurtzite 

ZnO as a function of the time elapsed since the onset of the applied electric field. For all 

cases considered, the crystal temperature is set to 300 K and the doping concentration is 
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Figure 3.6: The average electron energy associated with bulk wurtzite ZnO as a function 
of the time elapsed since the onset of the applied electric field. For all cases, we have 
assumed an initial zero-field electron distribution, a crystal temperature of 300 K, and a 
doping concentration of 1017 cm-3. The Monte Carlo results are depicted with the solid 
lines and the semi-analytical results are represented with the dashed lines. The online 
version is depicted in color. 
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set to 1017 cm-3. Electric field strength selections of 135, 270, 405, and 540 kV/cm are 

chosen, these corresponding to half-multiples of the peak field associated with wurtzite 

ZnO. The results corresponding to the Monte Carlo simulations are depicted with the 

solid lines while the results of the semi-analytical technique are depicted with the dashed 

lines. The same Monte Carlo simulations and semi-analytical computations, employed in 

the determination of Figure 3.3, are used in order to determine these plots. We note that 

for all the applied electric field strength selections considered, the semi-analytical results 

form an upper bound on the Monte Carlo results. It is noted, however, that this bound is 

not exact for the case of the applied electric field strength set to 540 kV/cm, for times in 

excess of 0.2 ps following the onset of the applied electric field. Nevertheless, the 

deviations between the Monte Carlo results and those of the semi-analytical approach are 

found to be relatively small. 

 Integrating the electron drift velocity with respect to time one obtains the   

average electron displacement as a function of time; for the purposes of brevity, we 

henceforth refer to the average electron displacement as simply the electron 

displacement. In Figure 3.7, we plot the electron displacement associated with bulk zinc-

blende GaAs as a function of the time elapsed since the onset of the applied electric field. 

For all cases considered, the crystal temperature is set to 300 K and the doping 

concentration is set to 1017 cm-3. Electric field strength selections of 2, 4, 6, and 8 kV/cm 

are chosen, these corresponding to half-multiples of the peak field associated with zinc-

blende GaAs. The results corresponding to the Monte Carlo simulations are depicted with 

the solid lines while the results of the semi-analytical technique are depicted with the 

dashed lines. The same Monte Carlo simulations and semi-analytical computations, 
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Figure 3.7: The electron displacement associated with bulk zinc-blende GaAs as a 
function of the time elapsed since the onset of the applied electric field. For all cases, we 
have assumed an initial zero-field electron distribution, a crystal temperature of 300 K, 
and a doping concentration of 1017 cm-3. The Monte Carlo results are depicted with the 
solid lines and the semi-analytical results are represented with the dashed lines. The 
online version is depicted in color. 
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employed in the determination of Figures 3.1 and 3.4, are used in order to determine 

these plots. We note that for all the applied electric field strength selections considered, 

the Monte Carlo results form an upper bound on the semi-analytical results. The 

difference between the Monte Carlo results and those of the semi-analytical approach 

become larger as the applied electric field strength is increased. 

 In Figure 3.8, we plot the electron displacement associated with bulk wurtzite 

GaN as a function of the time elapsed since the onset of the applied electric field. For all 

cases considered, the crystal temperature is set to 300 K and the doping concentration is 

set to 1017 cm-3. Electric field strength selections of 70, 140, 210, and 280 kV/cm are 

chosen, these corresponding to half-multiples of the peak field associated with zinc-

blende GaN. The results corresponding to the Monte Carlo simulations are depicted with 

the solid lines while the results of the semi-analytical technique are depicted with the 

dashed lines. The same Monte Carlo simulations and semi-analytical computations, 

employed in the determination of Figures 3.2 and 3.5, are used in order to determine 

these plots. We note that for all the applied electric field strength selections considered, 

the Monte Carlo results form an upper bound on the semi-analytical results; this bound is 

not exact, as is seen for the case of the electric field set to 140 kV/cm. The difference 

between the Monte Carlo results and those of the semi-analytical approach become larger 

as the applied electric field strength is increased. 

 Finally, in Figure 3.9, we plot the electron displacement associated with bulk 

wurtzite ZnO as a function of the time elapsed since the onset of the applied electric field. 

For all cases considered, the crystal temperature is set to 300 K and the doping 

concentration is set to 1017 cm-3. Electric field strength selections of 135, 270, 405, and 
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Figure 3.8: The electron displacement associated with bulk wurtzite GaN as a function of 
the time elapsed since the onset of the applied electric field. For all cases, we have 
assumed an initial zero-field electron distribution, a crystal temperature of 300 K, and a 
doping concentration of 1017 cm-3. The Monte Carlo results are depicted with the solid 
lines and the semi-analytical results are represented with the dashed lines. The online 
version is depicted in color. 
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Figure 3.9: The electron displacement associated with bulk wurtzite ZnO as a function of 
the time elapsed since the onset of the applied electric field. For all cases, we have 
assumed an initial zero-field electron distribution, a crystal temperature of 300 K, and a 
doping concentration of 1017 cm-3. The Monte Carlo results are depicted with the solid 
lines and the semi-analytical results are represented with the dashed lines. The online 
version is depicted in color. 
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540 kV/cm are chosen, these corresponding to half-multiples of the peak field associated 

with wurtzite ZnO. The results corresponding to the Monte Carlo simulations are 

depicted with the solid lines while the results of the semi-analytical technique are 

depicted with the dashed lines. The same Monte Carlo simulations and semi-analytical 

computations, employed in the determination of Figures 3.3 and 3.6, are used in order to 

determine these plots. We note that for most of the applied electric field strength 

selections considered, the semi-analytical results form an upper bound on the Monte 

Carlo results, although the case of 540 kV/cm seems to counter this trend for times 

beyond 0.2 ps. The differences between the Monte Carlo results and those of the semi-

analytical approach are noted to be quite small for the case of this material. We speculate 

that the closeness of the semi-analytical results to those of our Monte Carlo simulations is 

probably related to the limited upper valley occupancy that occurs for the case of wurtzite 

ZnO, as opposed to the cases of zinc-blende GaAs and wurtzite GaN. Further work will 

be performed in Section 3.5 in order to buttress this supposition. 
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3.5  Upper valley occupancy and the agreement between the 

 semi-analytical approach and that of our Monte Carlo 

 simulations 

 
 One could speculate that the lack of upper valley occupancy that occurs for the 

specific case of wurtzite ZnO is what might be responsible for the closeness of the Monte 

Carlo simulation results with those of our semi-analytical approach. In order to put this 

conjecture to the test, in this section, with all other material parameters being set to their 

nominal bulk wurtzite ZnO values, i.e., those values set in Table 3.1 and 3.2, we examine 

the impact that variations in the non-parabolicity coefficient, α, have on the closeness 

between the semi-analytical results and those of our Monte Carlo simulations; the non-

parabolicity coefficient, α, is nominally set to 0.66 eV-1 for the case of wurtzite ZnO, as is 

seen in Table 3.2. In Figure 3.10, we plot the electron drift velocity associated with bulk 

wurtzite ZnO as a function of the time elapsed since the onset of the applied electric field 

for a number of non-parabolicity coefficient selections. For all cases considered, the 

crystal temperature is set to 300 K and the doping concentration is set to 1017 cm-3. The 

electric field strength selections are set to twice the peak field of the corresponding 

steady-state velocity-field characteristic for each case; the peak fields are found to be 

160, 200, and 270 kV/cm, for the cases of the non-parabolicity coefficient, α, set to 0.0, 

0.2, and 0.66 eV-1, respectively. It is noted that the closeness between the semi-analytical 

results and that of our Monte Carlo simulations seems to improve as the non-parabolicity 

coefficient increases. As was mentioned by Hadi et al. [43], greater non-parabolicity 

inhibits upper energy conduction band valley occupancy. This may be seen in          

Figure 3.11, in which we plot the occupancy of the lowest energy conduction band 

valley, Γ1, within wurtzite ZnO, as a function of time for the same non-parabolicity 
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Figure  3.10: The electron drift velocity associated with bulk wurtzite ZnO as a function 
of the time elapsed since the onset of the applied electric field for a number of selections 
of the non-parabolicity coefficient, α. The other bulk wurtzite ZnO material values are set 
to their nominal values, i.e., those set in Tables 3.1 and 3.2. The applied electric field 
strength is set to twice the peak field for each case. For all cases, we have assumed an 
initial zero-field electron distribution, a crystal temperature of 300 K, and a doping 
concentration of 1017 cm-3. The Monte Carlo results are depicted with the solid lines and 
the semi-analytical results are represented with the dashed lines. The online version is 
depicted in color. 
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Figure 3.11: The number of electrons in the lowest energy conduction band valley, Γ1, as 
a function of the time elapsed since the onset of the applied electric field for a number of 
selections of the non-parabolicity coefficient, α, for the case of bulk wurtzite ZnO. The 
other bulk wurtzite ZnO material values are set to their nominal values, i.e., those set in 
Tables 3.1 and 3.2. The applied electric field strength is set to twice the peak field for 
each case. For all cases, we have assumed an initial zero-field electron distribution, a 
crystal temperature of 300 K, and a doping concentration of 1017 cm-3. These results 
correspond to Monte Carlo simulations of the electron transport; the same simulations 
used to determine the results presented in Figure 3.10. The motion of 10,000 electrons is 
considered during each simulation. The online version is depicted in color. 
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coefficient selections as those considered in Figure 3.10; these results were obtained 

using the same electron transport simulations as those used to determine the results 

presented in Figure 3.10. Thus, less upper energy conduction band valley occupancy 

seems to be correlated with a greater closeness between the semi-analytical results and 

those of our Monte Carlo simulations. 

 

3.6  Device Implications 

 The transient electron transport response of a material plays an important role in 

defining the limits on the device performance of electron devices fabricated from such 

materials. Noting that the cut-off frequency for an electron device 

 

 
,

2

1

πτ
=Tf  (3.5) 

 

where τ represents the transit-time across the device, a rough estimate for the dependence 

of the cut-off frequency on the device length may be obtained using the previously 

determined relationship between the electron displacement on the time elapsed since the 

onset of the applied electric field. This relationship, instead cast in terms of the cut-off 

frequency as a function of the device length, i.e., electron displacement, is depicted in 

Figure 3.12 for the cases of zinc-blende GaAs, wurtzite GaN, and wurtzite ZnO. In all 

cases, the electric field strength is set twice the peak field, i.e., 8 kV/cm for the case of 

zinc-blende GaAs, 280 kV/cm for the case of wurtzite GaN, and 540 kV/cm for the case 

of wurtzite ZnO; it should be noted, however, that optimal applied electric field strengths, 
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Figure 3.12: The cut-off frequency, fT, determined from Eq. (3.5), as a function of        
the electron device length, L, for the cases of zinc-blende GaAs, wurtzite GaN, and 
wurtzite ZnO. For all cases, the applied electric field strength is set to twice the peak 
field, i.e., 8 kV/cm for the case of zinc-blende GaAs, 280 kV/cm for the case of wurtzite 
GaN, and 540 kV/cm for the case of wurtzite ZnO. The Monte Carlo results are depicted 
with the solid lines and the semi-analytical results are represented with the dashed lines. 
The online version is depicted in color. 
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i.e., those required in order to achieve the minimal transit-time for a given device length, 

may be greatly in excess of these field strengths. In all cases, results obtained through the 

use of Monte Carlo simulations are depicted with the solid curves while those obtained 

using the semi-analytical approach are shown with the dashed lines. It is seen that the 

results obtained from our Monte Carlo simulations are very close to those produced 

through the semi-analytical approach of Shur [48]. This suggests that this semi-analytical 

approach of Shur [48] may be used in order to assess the performance of electron device 

structures, offering a distinct advantage over Monte Carlo simulation, especially in cases 

where the fields are highly non-uniform or potentially time-varying. 

 

3.7  Conclusions 

 We critically examined the applicability of the semi-analytical approach of     

Shur [48] in evaluating the transient electron transport response of zinc-blende GaAs, 

wurtzite GaN, and wurtzite ZnO. In particular, we contrasted results obtained from 

Monte Carlo simulations of the electron transport with those obtained using the semi-

analytical approach of Shur [48]. Our approach was to examine the response of an 

ensemble of electrons to the application of a constant and uniform applied electric field. 

For the purposes of this analysis, three aspects of the transient electron transport were 

considered: (1) the dependence of the electron drift velocity on the time elapsed since the 

onset of the applied electric field, (2) the dependence of the average electron energy on 

the time elapsed since the onset of the applied electric field, and (3) the dependence of 

the average electron displacement on the time elapsed since the onset of the applied 

electric field. The results obtained showed that this semi-analytical approach of Shur [48] 
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produces results that are very similar to those produced using Monte Carlo simulations. 

Thus, this semi-analytical approach of Shur [48] should be applicable for the treatment of 

non-uniform and time-varying electric fields, making it a useful tool for the treatment of 

the transient electron transport response within electron device configurations. 
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4.1  Introduction 

 ZnO is a II-VI semiconductor that has attracted a considerable amount of attention 

in recent years [1-4]. With its small effective mass, large intervalley energy separation, 

and large polar optical phonon energy, ZnO is expected to exhibit favourable electron 

transport characteristics [5]. A number of studies of the electron transport that occurs 

within this material have been reported over the years. Experimental measurements of the 

low-field mobility associated with ZnO were reported by Hutson [6] in 1957 and Look et 

al. [7] in 1998. Then, in 1999, Albrecht et al. [8] reported on Monte Carlo simulations of 

the steady-state electron transport that occurs within bulk wurtzite ZnO. Their analysis 

was pursued within the framework of a three-valley model for the conduction band. The 

primary goal of their analysis was the determination of the velocity-field characteristics 

associated with this material, i.e., how the electron drift velocity varies as a function of 

the applied electric field strength. An evaluation of the steady-state distribution of 

electron energies within an ensemble of electrons associated with bulk wurtzite ZnO, for 

different applied electric field strength selections, was also pursued. 

 More recent Monte Carlo analyzes of the steady-state electron transport that 

occurs within bulk wurtzite ZnO have also been reported. In 2006, Guo et al. [9] reported 

on a full-band Monte Carlo simulation of the electrons within bulk wurtzite ZnO. They 

focused on how the velocity-field characteristics associated with this material vary with 

the crystal temperature. The dependence of the average electron energy on the applied 

electric field strength was also examined. Then, in 2007, Bertazzi et al. [10] employed a 

full-band Monte Carlo simulation approach in order to characterize the steady-state 

electron and hole transport that occurs within this material. The velocity field 
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characteristics associated with both the electrons and the holes associated with bulk 

wurtzite ZnO were determined. In 2008, Furno et al. [11] employed Monte Carlo 

simulations in order to critically compare the steady-state results obtained using a full-

band treatment of the conduction band with that obtained using a single analytical valley, 

Furno et al. [11] asserting that the upper energy valleys are so high above the conduction 

band minimum that their neglect is reasonable even for higher applied electric field 

strength selections. As with the other Monte Carlo analyzes, the velocity-field and 

energy-field characteristics associated with this material were the primary focus of this 

analysis. Key aspects of these steady-state analyzes were reviewed by Morkoç and  

Özgür [12].  

 Then, in 2010, O'Leary et al. [13] analyzed the transient electron transport that 

occurs within bulk wurtzite ZnO. Following Foutz et al. [14, 15], within the framework 

of a three-valley model for the conduction band, O'Leary et al. [13] studied how 

electrons, initially in thermal equilibrium, respond to the sudden application of a constant 

applied electric field. They found that ZnO exhibits a pronounced transient electron 

transport response for applied electric field strengths in excess of the peak applied 

electric field. In particular, it was found that the peak transient electron drift velocities 

exhibited by bulk wurtzite ZnO are higher than the corresponding steady-state electron 

drift velocities and that the accompanying velocity overshoot effects occur over distances 

of the order of 100 nm. These results of O'Leary et al. [13] suggest that ZnO holds great 

promise for high-speed electron device applications. 

 Another recent study on the transient electron transport that occurs within bulk 

wurtzite ZnO was that reported by Arabshahi et al. [16], also in 2010; in fact, Arabshahi 
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et al. [16] reports on the steady-state and transient electron transport that occurs within 

bulk wurtzite ZnO, as well as that that occurs in a number of other wide energy gap 

semiconductors. For the purposes of their analysis of the transient electron transport 

within this material, a similar approach to that employed by O'Leary et al. [13] was 

employed. They find similar results to those found by O'Leary et al. [13], although 

differences between the results are noted. Differences in the material parameter 

selections, made by O'Leary et al. [13] and Arabshahi et al. [16], probably account for 

most of the differences between these results. Further studies into the nature of the 

electron transport within bulk wurtzite ZnO were performed by Hadi et al. [17-21].  

 In this paper, we determine the applied electric field strength required in order to 

minimize the transit-time, τ, for a given electron transit displacement, L, for the case of 

bulk wurtzite ZnO. We perform this analysis within the context of a transient analysis of 

the electron transport that occurs within this material. Our approach to modeling the 

transient electron transport of the electrons will follow the approach of Foutz et al. [14, 

15] and O'Leary et al. [22, 23], i.e., we study how an ensemble of electrons, initially in 

thermal equilibrium, respond to the sudden application of a constant applied electric field 

strength, the point at which this field is applied corresponding to the moment when the 

electrons start their transit. A three-valley Monte Carlo simulation approach is employed 

for the purposes of this analysis. From this analysis, we aim to quantitatively estimate an 

upper bound on the ideal performance of a ZnO-based device, noting that the non-

idealities found in real device structures will detract from these ideal estimates. A similar 

analysis was performed for the case of bulk wurtzite indium nitride (InN) by O'Leary et 

al. [23]. The present analysis parallels that of O'Leary et al. [23]. 
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 This paper is organized in the following manner. In Section 4.2, we present our 

view of wurtzite ZnO, as a potential future material for high-field electron device 

applications. Then, in Section 4.3, our three-valley Monte Carlo electron transport 

simulations are described. In Section 4.4, the results of our analysis are presented. 

Finally, in Section 4.5, the conclusions of this analysis are drawn. 

 

4.2  ZnO for high-field electron device applications 

 At the outset, we would like to point out that the future electron devices that we 

are considering are ones that have yet to be realized, both in terms of the quality of       

the materials employed and in terms of the scale of the device features envisaged. At 

present, ZnO is predominantly being considered for use in thin-film transistor device 

applications [12]. Typically, the device applications contemplated for such transistors 

involve low-fields and materials that are deposited in thin-film form. Moreover, the scale 

of the device features considered are quite large by modern electron device standards, 

i.e., of the order of a micron. For the purposes of this analysis, however, we are instead 

interested in looking at the potential of this material for high-speed and high-frequency 

electron device applications where the ZnO material considered is of a high-quality 

crystalline form and the device features could potentially scale down to the tens of 

nanometres. Essentially, we view ZnO as a potential competitor to gallium nitride (GaN) 

for such device applications, and we are looking to critically assess the potential of ZnO 

in such device applications.  

 It should be pointed out that some have suggested a low breakdown field for the 

case of this material. Sasa et al. [24], for example, has suggested a breakdown field of 
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below 100 kV/cm for the case of ZnO. If this were the case, transient electron transport 

effects would not be in evidence, as O'Leary et al. [13] demonstrated that transient 

electron transport effects only occur for applied electric field strengths in excess of      

270 kV/cm for the case of bulk wurtzite ZnO. We would like to point out, however, that 

while breakdown is indeed in evidence in the experimental results of Sasa et al. [24], 

non-uniformities in the electric field distribution preclude the determination of its exact 

value; the particular structures employed by Sasa et al. [24] are known to exhibit large 

non-uniformities in their electric field distributions. Breakdown will initiate when the 

highest electric field in a given device structure exceeds the breakdown field. Thus, the 

determination of an average electric field strength corresponding to the onset of 

breakdown, determined simply by dividing the voltage difference between two points by 

the distance separating these points, provides a poor measure of the breakdown field. Li 

et al. [25] suggest breakdown fields that are even smaller, i.e., of the order of 1 kV/cm, 

albeit for ZnO that is polycrystalline in form. Clearly, the non-uniform nature of this 

particular form of ZnO is leading to this much lower breakdown field.  

 We assert that these values for the breakdown field are unrepresentative of pure 

intrinsic crystalline ZnO. A compelling argument in favour of a much higher breakdown 

field for this material may be achieved when one examines the breakdown fields 

exhibited by other semiconductors. In Figure 4.1, we plot the dependence of the 

breakdown field on the energy gap for a number of compound and elemental 

semiconductors, the values employed in this plot being drawn from a variety of 

references from the literature. While this dependence of the breakdown field on the 

energy gap is not without statistical scatter, the results presented compel one to conclude 
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Figure 4.1: The breakdown electric field strength plotted as a function of the energy gap 
for selected elemental and compound semiconductors. This plot is depicted on a 
logarithmic scale. 
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that the breakdown field associated with crystalline ZnO, whose energy gap is around  

3.4 eV, is at least 1 MV/cm, and most likely between 2 and 5 MV/cm. Adachi [26], for 

example, project a breakdown field of 3.5 MV/cm for the case of this material. Thus, 

transient electron transport is expected to make a significant impact upon the 

performance of ZnO-based electron devices when they are operated at high electric 

fields. 

 

4.3  Monte Carlo simulations 

 We cast the entire analysis within the framework of a transient electron transport 

analysis. In particular, we employ ensemble semiclassical three-valley Monte Carlo 

simulations of the electron transport within bulk wurtzite ZnO. For all of these 

simulations, the motion of 10,000 electrons is examined. The scattering mechanisms 

considered are: (1) ionized impurity, (2) polar optical phonon, (3) piezoelectric, and (4) 

acoustic deformation potential. Intervalley scattering is also considered. The crystal 

temperature is set to 300 K and the doping concentration is set to 1017 cm-3 for all cases. 

Electron degeneracy effects are accounted for by means of the rejection technique of 

Lugli and Ferry [27]. Electron screening is also accounted for following the Brooks-

Herring method [28]. The material and band structural parameter selections, employed 

for our simulations of the electron transport within bulk wurtzite ZnO, are from O'Leary 

et al. [13] and Hadi et al. [29, 30]; these material and band structural parameter selections 

are tabulated in Tables 4.1 and 4.2, respectively. Further details of our Monte Carlo 

simulation approach are presented in the literature [14, 15, 22, 23, 29, 31-36]. 

 

Chapter 4

93



Table 4.1: The material parameter selections corresponding to bulk wurtzite ZnO that are 
employed for the purposes of this analysis. The source of each parameter is identified.  
Parameter ZnO Reference 

Mass density (g/cm3 ) 5.68 [26] 

Longitudinal sound velocity(cm/s) 4.00 x 105 determined through fit 

Transverse sound velocity (cm/s) 2.7 x 105 [9] 

Acoustic deformation potential (eV) 3.83 [8] 

Static dielectric constant 8.2 [8] 

High frequency dielectric constant 3.7 [8] 

Effective mass (Γ1 valley) 0.17 me [8] 

Piezoelectric constant, e14 (C/cm2) 3.75 x 10-5 determined through fit 

Direct energy gap (eV) 3.4 [8] 

Polar optical phonon energy (meV) 72 [8] 

Intervalley deformation potentials (eV/cm) 109 [8] 

Intervalley phonon energies (meV) 72 [8] 

 

Table 4.2: The band structure parameter selections corresponding to bulk wurtzite ZnO. 
These band structure parameter selections are mostly from Albrecht et al. [8]. 

 Valley number 1 2 3 

ZnO Valley location Γ1 [8] Γ1 [8] L-M [8] 

 Valley degeneracy 1 1 6 

 Effective mass 0.17 me [8] 0.42 me [8] 0.7 me [8] 

 Intervalley energy separation (eV) _ 4.4 [8] 4.6 [8] 

 Energy gap (eV) 3.4 [8] 7.8 [8] 8.0 [8] 

 Non-parabolicity (eV-1) 0.66 [8] 0.15 [8] 0.0 [8] 
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4.4  Results 

 In Figure 4.2, we plot the electron drift velocity as a function of the time elapsed 

since the application of the electric field, for a number of different applied electric field 

strength selections, for the case of bulk wurtzite ZnO. For all cases, we assume an initial 

zero-field electron distribution, a crystal temperature of 300 K, and a doping 

concentration of 1017 cm-3 .We note that for the applied electric field strength selections 

135 and 270 kV/cm, that the electron drift velocity reaches steady state very quickly, with 

little or no velocity overshoot. In contrast, for applied electric field strength selections in 

excess of 270 kV/cm, significant velocity overshoot occurs. This result suggests that in 

ZnO, for this particular selection of parameters and conditions, that 270 kV/cm is a 

critical applied electric field strength for the onset of velocity overshoot effects. O'Leary 

et al. [13] showed that 270 kV/cm also corresponds to the applied electric field strength 

at which point the peak in the steady-state velocity-field characteristic occurs for the case 

of bulk wurtzite ZnO for this particular selection of parameters and conditions (recall 

Figure 2a of O'Leary et al. [13]); we henceforth refer to this applied electric field strength 

as the peak field. This suggests that the velocity overshoot that occurs within bulk 

wurtzite ZnO is related to the presence of the peak in the steady-state velocity-field 

characteristic. 

 It is interesting to note that for all applied electric field strengths beyond           

270 kV/cm, that a clear peak in the transient electron drift velocity is observed. In 

particular, peak transient electron drift velocities of around 4.7 x 107 cm/s at 0.062 ps,  

5.6 x 107 cm/s at 0.045 ps, and 7.1 x 107 cm/s at 0.025 ps, are observed corresponding to 

the applied electric field strength selections 405, 540, and 1080 kV/cm, respectively. In 
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Figure 4.2: The electron drift velocity as a function of the time elapsed since the 
application of the electric field for the case of bulk wurtzite ZnO. We consider the 
applied electric field strength selections 135, 270, 405, 540, and 1080 kV/cm. For all 
cases, we have assumed an initial zero-field electron distribution, a crystal temperature  
of 300 K, and a doping concentration of 1017cm-3. A similar result was presented in 
Figure 4a of Hadi et al. [19] and Figure 1c of Hadi et al. [21]. 
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Figure 4.3, we plot the peak transient electron drift velocity as a function of the applied 

electric field strength for a large number of applied field strengths, the peak transient 

electron drift velocity corresponding to each applied electric field strength relating to an 

individual Monte Carlo electron transport simulation; each Monte Carlo simulation is 

performed assuming an initial zero-field electron distribution, a crystal temperature of 

300 K, and a doping concentration of 1017 cm-3, as was assumed for the simulations used 

to determine the results depicted in Figure 4.2. For the cases in which a clear peak 

transient electron drift velocity was not easily discernible, we took the peak transient 

electron drift velocity to be the highest electron drift velocity between 0 and 0.4 ps. It is 

noted that the peak transient electron drift velocity monotonically increases with the 

applied electric field strength. The corresponding steady-state velocity-field characteristic 

associated with bulk wurtzite ZnO is also depicted in Figure 4.3. It is noted that the peak 

transient electron drift velocity appears to be essentially coincident with the steady-state 

velocity-field characteristic for applied electric field strengths less than the peak field, 

i.e., 270 kV/cm for the case of bulk wurtzite ZnO. Beyond this peak field, however, the 

transient electron drift velocity forms a loose upper bound on the steady-state velocity-

field characteristic.  

 In Figure 4.4, we plot the distance displaced (electron transit displacement) since 

the application of the electric field as a function of the time elapsed, for a number of 

different applied electric field strength selections, for the case of bulk wurtzite ZnO. 

These plots are obtained through a numerical integration of the plots depicted in      

Figure 4.2. We note that the velocity overshoot that occurs substantially contributes to the 

initial rate of increase in the distance displaced. Eventually, however, steady-state 
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Figure 4.3: The peak transient electron drift velocity as a function of the applied electric 
field strength for the case of bulk wurtzite ZnO. These results are determined from Monte 
Carlo simulations of the electron transport, assuming an initial zero-field electron 
distribution, a crystal temperature of 300 K, and a doping concentration of 1017 cm-3. The 
solid and open points depict results determined through the use of Monte Carlo 
simulations of the electron transport. The open points correspond to results depicted in 
Figure 4.2. The dependence of the steady-state electron drift velocity on the applied 
electric field strength, i.e., the velocity-field characteristic associated with bulk wurtzite 
ZnO, is also depicted with a solid line. 
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Figure 4.4: The distance displaced since the onset of the applied electric field as a 
function of the time elapsed for the case of bulk wurtzite ZnO. We consider the applied 
electric field strength selections 135, 270, 405, 540, and 1080 kV/cm. For all cases, we 
have assumed an initial zero-field electron distribution, a crystal temperature of 300 K, 
and a doping concentration of 1017cm-3. A similar result was presented in Figure 4b of 
Hadi et al. [19] and Figure 3c of Hadi et al. [21]. 
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conditions are achieved, and the electron drift velocity settles to its corresponding steady-

state value. It is noted that for a given displacement, L, that there exists an optimal 

applied electric field strength that will minimize the corresponding time-to-transit, τ . For 

L set to 100 nm, from Figure 4.4 it is seen that for the cases of the applied electric field 

strength selections set to 270, 405, 540, and 1080 kV/cm, that the corresponding times-

to-transit, τ, are 0.302, 0.246, 0.239, and 0.338 ps, respectively; for the case of the 

applied electric field strength selection set to 135 kV/cm, the corresponding time-to-

transit 100 nm is found to be 0.468 ps,  beyond the range depicted in Figure 4.4. A 

detailed analysis, the results of which are presented in Figure 4.5, suggests that the time-

to-transit across 100 nm, τ, is minimized when the applied electric field strength is 

between 450 and 500 kV/cm, τ being about 0.24 ps for this range of applied electric field 

strengths. We henceforth refer to the applied electric field strength that provides for the 

minimal time-to-transit as the optimal applied electric field strength. 

 We now determine the minimal time-to-transit, τmin, corresponding to selections 

of L ranging between 10 and 1000 nm. For each selection of L, the optimal applied 

electric field strength is determined using the procedure illustrated in Figure 4.5. In 

Figure 4.6, we plot the optimal applied electric field strength as a function of L,       

noting that as L is increased that this optimal applied electric field strength  

monotonically decreases, eventually settling at the peak field; recall from Figure 2a of 

O'Leary et al. [13] that this peak field is about 270 kV/cm. This makes sense as the 

minimum time-to-transit across a long displacement will be achieved by the highest 

steady-state electron drift velocity, and this occurs at the peak field, 270 kV/cm, i.e., 

across a long distance, following an initial transient response, most of the electron transit 
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Figure 4.5: The time-to-transit as a function of the applied electric field strength for L set 
to 100 nm for the case of bulk wurtzite ZnO. The solid and open points depict results 
determined through the use of our Monte Carlo simulations of electron transport. The 
open points correspond to the results depicted in Figure 4.4. For all cases, we have 
assumed an initial zero-field electron distribution, a crystal temperature of 300 K, and a 
doping concentration of 1017 cm-3. 
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Figure 4.6: The optimal applied electric field strength plotted as a function of               
the electron displacement, L, for the case of bulk wurtzite ZnO. These results were 
obtained using the optimization procedure illustrated in Figure 4.5 for various 
displacement selections. As a point of reference, the peak field is depicted with the arrow. 
For all cases, we have assumed an initial zero-field electron distribution, a crystal 
temperature of 300 K, and a doping concentration of 1017 cm-3. 
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will be steady-state in nature, the minimum time-to-transit in steady-state being achieved 

at the peak electron drift velocity.  

 We now employ these results in order to provide an upper bound on the 

performance of ZnO-based electron devices. Noting that the cut-off frequency for a 

device, 

 

 
,

2

1

πτ
=Tf

 
(4.1) 

 
 
it is seen that by setting τ to τmin that the optimal cut-off frequency for such a device may 

be obtained.  In Figure 4.7, we plot the optimal cut-off frequency for an ideal ZnO-based 

device as a function of the device length, L, where we have assumed that the electron 

transport within such a device occurs only across its length, i.e., the device length 

corresponds to the displacement, L; our determination of the optimal cut-off frequency 

may be viewed as that corresponding to an ideal ZnO-based device operating at the 

optimal applied electric field strength, the non-idealities found in real device structures 

detracting from this estimate. We find that the optimal cut-off frequency of an ideal ZnO-

based device ranges from around 50.3 GHz when the device length is set to 1000 nm to 

about 11.5 THz when the device length is set to 10 nm.  

 It is instructive to contrast the results obtained through our Monte Carlo 

simulations of the electron transport within bulk wurtzite ZnO, these taking into account 

the transient electron transport response of this material, with those obtained solely 

through steady-state considerations. We note that for steady-state electron transport, 

across a device of length L, 
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Figure 4.7: The optimal cut-off frequency plotted as a function of the device length for 
the case of an ideal ZnO-based electron device. The solid points depict results determined 
through the use of our Monte Carlo simulations of electron transport within bulk wurtzite 
ZnO; we employed the optimization procedure illustrated in Figure 4.5 for all the device 
length selections considered. For all cases, we have assumed an initial zero-field electron 
distribution, a crystal temperature of 300 K, and a doping concentration of 1017 cm-3. The 
steady-state result, obtained through the use of Eqs. (4.1) and (4.2), is shown with the 
solid line. Results corresponding to the cases of bulk wurtzite GaN and bulk wurtzite 
InN, for the specific case of L set to 100 nm, are indicated with the open points. These 
results were also determined through similarly performed Monte Carlo electron transport 
simulations. 
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,

ν
τ L
=  (4.2) 

 
 
where v denotes the corresponding steady-state electron drift velocity. By substituting the 

τ of Eq. (4.2) into Eq. (4.1), we can estimate the corresponding steady-state cut-off 

frequency. In Figure 4.7, we plot this steady-state cutoff frequency as a function of the 

device length, L, for v being set to the steady-state peak electron drift velocity, vpeak, for 

bulk wurtzite ZnO; Figure 2a of O'Leary et al. [13] suggests that vpeak, achieved at the 

peak field of about 270 kV/cm, is around 3.1 x 107 cm/s. We note that the optimized 

transient results asymptotically approach the peak electron drift velocity steady-state 

results in the long device limit. This arises as a consequence of the fact that in longer 

devices more of the transport is steady-state in character. This trend towards steady-state 

results as the device length is increased also explains why the optimal applied electric 

field strength asymptotically approaches the peak field in the long device limit; recall 

Figure 4.6. 

 

4.5  Conclusions 

 In conclusion, we have studied how electrons, initially in thermal equilibrium, 

drift under the action of an applied electric field within bulk wurtzite ZnO. In particular, 

within the framework of a transient Monte Carlo analysis of the electron transport within 

this material, we determined the applied electric field strength that ensures the minimum 

time-to-transit for a given displacement. This analysis was performed for a range of 

displacements, and the optimal applied electric field strength was plotted as a function of 

the displacement. We then used these results in order to provide an upper bound on the 
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potential performance of ZnO-based devices, assuming that the transit across a ZnO-

based device occurs solely across the device length. We found that the optimal cut-off 

frequency ranges from around 50.3 GHz when the device length is set to 1000 nm to 

about 11.5 THz when the device length is set to 10 nm. This suggests that ZnO can be 

used as a potential material for terahertz radiation detection purposes, where the 

electromagnetic radiation and the electron drift are strongly coupled and parasitic reactive 

elements play an important role. 
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5.1  Introduction 

 In recent years, the material properties of ZnO have become the focus of great 

interest. This interest is being fueled, in large measure, by the extraordinary potential of 

this material for device applications. A II-VI compound semiconductor, ZnO possesses 

material properties that makes it particularly suitable for a number of important electronic 

and optoelectronic device applications [1]. These properties include its wide and direct 

energy gap [2], wide inter-valley energy separation, and large polar optical phonon 

energy. These material properties suggest that bulk wurtzite ZnO will exhibit favorable 

electron transport characteristics, i.e., elevated steady-state electron drift velocities and a 

pronounced transient electron transport response [3].  

While steady-state electron transport remains the primary focus of studies into the 

nature of the electron transport within compound semiconductors, with the trend towards 

smaller device dimensions, the transient component to the overall electron transport 

response is increasingly being considered as well. The benefits of transient electron 

transport, and how device performance may be enhanced as a consequence, has been 

studied, at length, by a number of researchers, and is well documented in the scientific 

literature [4-6]. In recent years, both the steady-state and the transient electron transport 

within ZnO have been examined through the use of Monte Carlo simulations of the 

electron transport [7-15]. These studies point to high steady-state electron drift velocities 

as well as substantial overshoot transient electron drift velocities within this material. 

This suggests that ZnO offers great potential as a material for possible future high-field 

electron device applications.  
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While Monte Carlo simulations offer a means of solving the Boltzmann transport 

equation, and thereby characterizing the nature of the electron transport that occurs 

within a given material, the intensive nature of the computations demanded of this 

technique are a drawback. In addition, it is often difficult to consider time-varying and 

non-uniform electric fields within the framework of a Monte Carlo simulation of the 

electron transport. The need for greater computational efficiency becomes particularly 

acute when one is aiming to optimize the performance of such a device, as a large 

number of simulations are demanded of such an optimization. An alternative approach to 

determining the transient electron transport response within a semiconductor material is 

that suggested by Shur in 1976 [5]. Drawing upon steady-state Monte Carlo electron 

transport results, this model uses a semi-analytical approach to determine the character of 

the transient electron transport response, based on the application of momentum and 

energy balance equations that analyzes transient electron transport in terms of the 

momentum and energy relaxation times [5]. This semi-analytical approach draws upon 

Monte Carlo steady-state data, comprising of the electron drift velocity, average electron 

energy, and the electron valley occupancy as functions of a range of electric fields 

considered. Only one set of steady-state Monte Carlo data is needed to run as many 

transient electron transport responses as needed. Given that each semi-analytical 

evaluation of the transient electron transport response takes only a fraction of the time 

required for a corresponding Monte Carlo simulation, the practicality and speed of the 

method becomes evident. This is particularly true when one wishes to examine how the 

performance of such a material can be optimized.  
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 We have previously studied the applicability of the semi-analytical approach in 

determining the transient electron transport response of an ensemble of electrons within 

GaAs, GaN, and ZnO [16]. We compared the semi-analytical results with those obtained 

using the Monte Carlo method in order to probe the efficacy of the semi-analytical 

approach. In this paper, we apply the semi-analytical method further, critically  

examining its applicability in terms of determining the optimal performance of a ZnO-

based high-field electron device. To accomplish our goal, we will solve the 

momentum/energy balance equations using the semi-analytical method of Shur [5], and 

then compare our results with those obtained using the Monte Carlo method. In both the 

Monte Carlo and the semi-analytical methods, we apply constant electric fields to an 

ensemble of electrons, and study its response. We shall look at the following aspects of 

the transient electron transport response: (1) the transient electron drift velocity as a 

function of the time elapsed since the application of the electric field, (2) the average 

electron displacement as a function of the time elapsed since the application of the 

electric field, (3) the optimal electric field strength required in order to minimize the 

electron transit-time as a function of the channel length, and (4) the upper bound optimal 

cut-off frequency as a function of the channel length. The principal focus of this 

particular analysis is the differences between the two methods.  

 This paper is organized in the following manner. In Section 5.2, we describe the 

Monte Carlo simulations of the electron transport that are used for the purposes of this 

analysis. Then, in Section 5.3, we describe the semi-analytical approach of Shur [5]. In 

Section 5.4, we present the results obtained  using  this semi-analytical approach, and we 

contrast these results with those obtained using the Monte Carlo method. The device 
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implications of the semi-analytical approach, and a critical comparison with results 

obtained using the Monte Carlo simulations, are then presented in Section 5.5. The 

limitations of the semi-analytical method, for the case of very high electric field 

strengths, are then presented in Section 5.6. Finally, the conclusions of this analysis are 

presented in Section 5.7. 

 

5.2  Monte Carlo electron transport simulations   

 For the purposes of this analysis, results from Monte Carlo simulations of the 

electron transport are required. They will be used both as an input to our semi-analytical 

computations and in order to facilitate a comparison between the results obtained from 

these computations and those obtained through Monte Carlo simulations. Accordingly, 

both steady-state and transient electron transport results are required; the steady-state 

Monte Carlo electron transport results will be used as an input to our semi-analytical 

computations, while the transient Monte Carlo electron transport results will be used for 

the purposes of comparison with the corresponding results produced using the semi-

analytical approach. We employ an ensemble semi-classical three-valley Monte Carlo 

electron transport simulation approach and study the motion of an ensemble of electrons 

under the action of an applied electric field within bulk wurtzite ZnO. For the purposes of 

our steady-state electron transport simulations, the motion of 3,000 electrons is 

considered, while for our transient electron transport simulations, the motion of 10,000 

electrons, in a constant applied electric field, is considered. For our transient electron 

transport simulations, the time interval of interest is the one elapsed since the onset of the 

electric field up to the point where the electron ensemble reaches steady-state conditions. 
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The scattering mechanisms considered in this analysis are: (1) ionized impurity, (2) polar 

optical phonon, (3) piezoelectric, and (4) acoustic deformation potential. Intervalley 

scattering is also considered. The crystal temperature is set to 300 K and the doping 

concentration is set to 1017 cm-3 for all cases. We assume that all donors are ionized and 

that the free electron concentration is equal to the dopant concentration. We use the Kane 

model in order to account for the non-parablicity of each valley1 [17,18]. In order to 

account for electron degeneracy effects, we use the rejection technique of Lugli and Ferry 

[19]. Electron screening is also accounted for following the Brooks-Herring method [20]. 

The material and band structural parameter selections are tabulated in Tables 5.1 and 5.2, 

respectively. Further details of our Monte Carlo electron transport simulation approach 

are presented in the literature [21-31].  

 

 

 

 

 

                                                 
1 In the Kane model, the energy bands are assumed to be non-parabolic, spherical, and of the form  
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where me and Eg denote the free electron mass and the energy gap, respectively [18]. 
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Table 5.1: The material parameter selections corresponding to bulk wurtzite ZnO that are 
employed for the purposes of this analysis. The source of each parameter is identified.  
Parameter ZnO Reference 

Mass density (g/cm3 ) 5.68 [32] 

Longitudinal sound velocity(cm/s) 4.00 x 105 determined through fit 

Transverse sound velocity (cm/s) 2.7 x 105 [9] 

Acoustic deformation potential (eV) 3.83 [8] 

Static dielectric constant 8.2 [8] 

High frequency dielectric constant 3.7 [8] 

Effective mass (Γ1 valley) 0.17 me [8] 

Piezoelectric constant, e14 (C/cm2) 3.75 x 10-5 determined through fit 

Direct energy gap (eV) 3.4 [8] 

Polar optical phonon energy (meV) 72 [8] 

Intervalley deformation potentials (eV/cm) 109 [8] 

Intervalley phonon energies(meV) 72 [8] 

 

 

Table 5.2: The band structure parameter selections corresponding to bulk wurtzite ZnO. 
These band structure parameter selections are mostly from Albrecht et al. [8]. 
 Valley number 1 2 3 

ZnO Valley location Γ1 [8] Γ1 [8] L-M [8] 

 Valley degeneracy 1 1 6 

 Effective mass 0.17me [8] 0.42me [8] 0.7me [8] 

 Intervalley energy separation (eV) _ 4.4 [8] 4.6 [8] 

 Energy gap (eV) 3.4 [8] 7.8 [8] 8.0 [8] 

 Non-parabolicity (eV-1) 0.66 [8] 0.15 [8] 0.0 [8] 
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5.3   The semi-analytical approach 

 The semi-analytical approach, originally conceived  by Shur [5] in 1976, and later 

employed by others, allows for the rapid evaluation of the transient electron transport 

response [4, 31]. In this approach, steady-state Monte Carlo data, comprising of the 

dependence of the electron drift velocity on the applied electric field strength (the 

velocity-field characteristic), the dependence of the average electron energy on the 

applied electric field strength, and the dependence of the conduction valley occupancy on 

the applied electric field strength, are used to determine the corresponding transient 

electron transport response through applying the principles of momentum and energy 

conservation. In particular, we solve for the following coupled differential equations  
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where the first equation represents the conservation of momentum and the second 

equation represents the conservation of energy. In these equations, q represents the 

charge of an electron, ν  is the average electron drift velocity, ε  is the electron energy, 

)(ετm  is the momentum relaxation time, )(ετε  is the energy relaxation time, ξ is the 

strength of the electric field, )(* εm  is the effective mass, and oε  represents the thermal 

equilibrium energy, i.e., oε = (3/2) kbT, where kb is Boltzmann’s constant, and T is the 

temperature. 
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 The momentum relaxation time is determined under steady-state conditions, 

where the derivative of the momentum with respect to time in Eq. (5.1) is set to zero. The 

energy relaxation time is also determined at steady-state conditions, by setting the 

derivative of the energy with respect to time in Eq. (5.2) to zero. We thus have  
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where νss(ɛ) and ξss(ɛ) denote the steady-state velocity and steady-state electric field 

strength at a given electron energy, respectively. The effective mass is measured by 

mapping the energy to the steady-state electron occupancy in the different valleys and 

then calculating the average mass. For the purposes of simplification, the electron 

effective mass in a given valley is considered to be the electron effective mass at the 

bottom of the valley. This particular point becomes important when we discuss the 

limitations of the semi-analytical model in studying transient transport within ZnO at 

very high electric field strengths, as we shall see later. In 2013, the applicability of this 

approach was critically assessed by Hadi et al. [16] in an examination of the transient 

electron transport within GaAs, GaN, and ZnO. 
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5.4   Results 

 In Figure 5.1, we plot the electron drift velocity as a function of the time elapsed 

since the application of the constant electric field, for a number of different applied 

electric field strength selections. Results obtained, from both Monte Carlo simulations of 

the electron transport and the corresponding semi-analytical approach, are depicted. We 

note that these results are almost identical for the applied electric field strength selections 

200 and 400 kV/cm. For applied electric field strength selections in excess of 400 kV/cm, 

however, a significant difference between the results becomes apparent, this difference 

between results becoming greater as the applied electric field strength is increased. A 

particularly pronounced difference between the results is noted for the electric field 

strength selection 800 kV/cm. 

We now consider how the electrons displace in response to the application of an 

electric field. We do this by integrating, with respect to time, the transient electron drift 

velocity. The electron displacement is plotted as a function of the time elapsed since the 

application of the constant electric field strength in Figure 5.2, these results 

corresponding to the results depicted in Figure 5.1. As with Figure 5.1, results obtained, 

from both Monte Carlo simulations of the electron transport and the corresponding semi-

analytical approach, are depicted. We find satisfactory agreement between the two 

methods for the 200 and 400 kV/cm electric field selections. For the case of the           

800 kV/cm applied electric field strength selection, however, we note a clear upper bound 

formed by the semi-analytical result over that obtained through Monte Carlo simulation 

for times less than 0.08 ps, and a convergence in the results thereafter. This is the time 

interval during which the velocity overshoot occurs and the semi-analytical upper bound 
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Figure 5.1: The electron drift velocity associated with bulk wurtzite ZnO as a function of 
the time elapsed since the onset of the applied electric field. We consider the applied 
electric field strength selections 200, 400, and 800 kV/cm. For all cases, we have 
assumed an initial zero-field electron distribution, a crystal temperature of 300 K, and a 
doping concentration of 1017 cm-3. The Monte Carlo results are depicted with the solid 
lines and the semi-analytical results are represented with the dashed lines. The online 
version is depicted in color. 
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Figure 5.2: The electron displacement associated with bulk wurtzite ZnO as a function of 
the time elapsed since the onset of the applied electric field. We consider the applied 
electric field strength selections 200, 400, and 800 kV/cm. For all cases, we have 
assumed an initial zero-field electron distribution, a crystal temperature of 300 K, and a 
doping concentration of 1017 cm-3. The Monte Carlo results are depicted with the solid 
lines and the semi-analytical results are represented with the dashed lines. The online 
version is depicted in color. 
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is due to its higher overshoot velocity as compared with that arising from Monte Carlo 

simulation; recall Figure 5.1.  

With the electron displacement as a function of the time elapsed known, we can 

now determine how to minimize the transit-time, τ, across a given electron displacement. 

If we take this minimum transit-time across a certain displacement as a proxy for the 

minimum time it will take for an electron to transit a device of the same dimension, this 

will allow us to estimate the corresponding device performance. In order to optimize the 

device performance, i.e., minimize the transit-time for a given device length, this analysis 

must be performed repeatedly, over a wide range of electric field strength selections, 

thereby allowing us to determine which applied electric field strength selection provides 

for the shortest time for a given fixed electron displacement. In Figure 5.3, we plot the 

electron transit-time across a 100 nm channel length for a range of electric field strength 

selections. The objective of this exercise is to find the electric field strength in order to 

obtain the minimal electron transit time across a channel, τmin. A similar analysis was 

done with the Monte Carlo approach, and we plot the results from this Monte Carlo 

analysis for the purposes of critical comparison. Despite the differences in the underlying 

transient electron drift velocity results, we find that the results of the semi-analytical 

method are very similar to those produced from Monte Carlo simulations for this set of 

conditions, both approaches predicting 465 kV/cm as the optimal applied electric field 

strength for this particular channel length selection. This should not be surprising, as 

there is little divergence between the results of both methods in terms of the transient 

electron drift velocity response around this electric field level strength; recall  Figure 5.1. 

As such, we would expect a different outcome if the channel length chosen is much 
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Figure 5.3: The time-to-transit as a function of the applied electric field strength for L set 
to 100 nm for the case of bulk wurtzite ZnO. For all cases, we have assumed an initial 
zero-field electron distribution, a crystal temperature of 300 K, and a doping 
concentration of 1017 cm-3. The Monte Carlo results are depicted with blue solid circles 
and the semi-analytical results are represented with the red solid circles. The minimum 
time-to-transit, 0.237 ps, and the corresponding optimal electric field strength,             
460 kV/cm, are depicted with the dashed green cross. For this selection of L, the 
minimum time-to-transit Monte Carlo results and the semi-analytical results are 
essentially coincident. The online version is depicted in color. 
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smaller than the 100 nm considered in Figure 5.3. We would expect a lower optimal 

electric field strength prediction in the semi-analytical method in that scenario, due to the 

higher velocity overshoot that it allows as opposed to its Monte Carlo counterpart.  

In order to further investigate this point, in Figure 5.4 we plot the optimal applied 

electric field strength as a function of the device length determined from the semi- 

analytical and Monte Carlo approaches for a 10-1000 nm device length range using a 

similar approach to that used in Figure 5.3, i.e., for each device length considered,        

we found the electric field strength that produces the minimum electron transit-time 

across the given device length.  The results obtained by the two methods are virtually 

coincident for channel lengths greater than 40 nm. At the 40 nm channel length, we 

obtain a 850 kV/cm optimal electric field using the semi-analytical approach as compared 

to 1050 kV/cm obtained using the Monte Carlo approach. The results of both methods 

start to diverge for channel lengths shorter than 40 nm. As an example, for a device 

length of 20 nm we get an optimal applied electric field of 2100 kV/cm using the semi-

analytical method compared to 1700 kV/cm from the Monte Carlo method. For a device 

length of 10 nm, however, we get an optimal applied electric field of 3400 kV/cm using 

the semi-analytical approach compared to 4700 kV/cm from the Monte Carlo approach. 

The lower optimal electric field strength predictions using the semi-analytical model for 

short channel lengths is due to its exaggerated predictions of the drift velocity overshoots 

at high electric fields, as we have seen in Figure 5.1.  Those velocity overshoots occur 

over very short periods of time, and therefore, their effect is most visible when examining 

optimization for very short channel lengths. Despite the gap in the results reported 

between the two methods for the shorter device channel lengths, however, the utility and 
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Figure 5.4: The optimal applied electric field strength plotted as a function of the 
electron displacement, L, for the case of bulk wurtzite ZnO. These results were obtained 
using the optimization procedure illustrated in Figure 5.3 for various displacement 
selections. As a point of reference, the peak field is depicted with the arrow. For all cases, 
we have assumed an initial zero-field electron distribution, a crystal temperature of      
300 K, and a doping concentration of 1017 cm-3. The Monte Carlo results are depicted 
with blue solid circles and the semi-analytical results are represented with the red solid 
circles. The online version is depicted in color. 
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value of the semi-analytical approach remains quite evident in the reported field 

optimization results presented in Figure 5.4. 

 

5.5   Device implications 

The device implications of this analysis may now be considered. In particular, we 

will focus upon determining an upper bound for the cut-off frequency within ZnO based 

electron devices. The optimal cut-off frequency is given by 

 

 
.

2

1

min
max πτ

=Tf  (5.5) 

 

We have already used the semi-analytical method to determine the minimum possible 

electron transit-times and their corresponding optimal applied electric field strength 

values; recall Figure 5.4. We therefore substitute the obtained electron minimum transit-

times, τmin, into Eq. (5.5) to obtain the pertinent optimal cut-off frequencies. In Figure 

5.5, we plot the corresponding cut-off frequencies for the 10-1000 nm device length 

range obtained using the semi-analytical approach. We also plot the corresponding Monte 

Carlo results for purposes of critical comparison.  

 We note that for device lengths in excess of 40 nm, the cut-off frequencies 

predicted by both approaches are virtually coincident. For a channel length of 40 nm,    

we obtain a 2.8 THz cut-off frequency using the semi-analytical method as compared to 

2.3 THz obtained using the Monte Carlo approach. For a channel length of 20 nm, 

however, we obtain a cutoff frequency of 8.8 THz using the semi-analytical method 
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Figure 5.5: The optimal cut-off frequency plotted as a function of the device length for 
the case of an ideal ZnO-based electron device. We employed the optimization procedure 
illustrated in Figure 5.3 for all the device length selections considered. For all cases, we 
have assumed an initial zero-field electron distribution, a crystal temperature of 300 K, 
and a doping concentration of 1017 cm-3. The Monte Carlo results are depicted with blue 
solid circles and the semi-analytical results are represented with the red solid circles. The 
online version is depicted in color. 
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compared to the Monte Carlo’s 5.5 THz. For a channel length of 10 nm, a significant gap 

is reported, however, as we see a cut-off frequency of 25.6 THz obtained through the 

semi-analytical method compared to the Monte Carlo’s 11.5 THz. Despite the gap 

between both methods at very short channel lengths, as with the case when discussing the 

field optimization of Figure 5.4, the reported results of Figure 5.5 clearly show the utility 

of the semi-analytical approach in predicting the cut-off frequencies of ZnO based 

devices.    

 

5.6.  High-field limitations  

 We have noticed a high-field limitation on the semi-analytical model, these results 

drifting away from those of their Monte Carlo counterparts. Exaggerated velocity 

overshoot predictions are reported at very high field strengths; recall Figures 5.1. This 

shortcoming of the semi-analytical approach is also in evidence when the device lengths 

considered for electric field strength optimization and device implications are smaller 

than 40 nm; recall Figures 5.4 and 5.5. A possible explanation for this gap in the reported 

results between both methods at very high-field strengths might lie in the way the semi-

analytical model accounts for the electron effective mass in the lower valley. The model 

considers the electron effective mass in each valley to be determined by its value at the 

valley minimum. This assumption works well in materials like GaN and GaAs, that have 

low non-parabolicity in these valleys. Wurtzite ZnO, however, possesses a pronounced 

non-parabolicity coefficient in its central conduction band valley; consider Figure 5.6a. 

As a result, the electron effective mass within such a valley can dramatically change, 

especially as the electrons become highly energized at very high electric field strengths. 
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Figure 5.6a: The electron energy as a function of the electron wave-vector for the cases 
of wurtzite GaN and wurtzite ZnO. The GaN result is depicted with the red line and the 
ZnO result is represented with the blue line. The corresponding upper valley minima, 
corresponding to the 2nd and 3rd valley minima for each material, are also indicated using 
the corresponding colors. The online version is depicted in color. 
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To illustrate this point, in Figure 5.6b we plot the electron effective mass as a function of 

energy within bulk wurtzite ZnO. For the purposes of comparison, we also plot the 

electron effective mass as a function of energy within GaN. Since there is very little inter-

valley transitions happening in ZnO due to its high non-parabolicity coefficient, we limit 

our discussion in Figure 5.6b to the lower energy valley, where the bulk of the electrons 

will reside, even under the application of very high electric field strengths [24]. It is clear 

from Figure 5.6b that the implicit assumption of the semi-analytical result, that the 

effective mass of the electrons within a valley will be solely determined by the effective 

mass of the electrons at the minimum point in the valley, loses its validity as the energies 

of the electrons increase as a result of very high field strengths. Therefore, unlike the 

cases of GaN and GaAs, electrons within bulk wurtzite ZnO can gain significant mass 

when highly energized, due to very high electric field strengths, even if they stay in the 

lower valley and do not perform any inter-valley transitions. This undervalued electron 

effective mass employed when solving the momentum and energy balance equations, i.e., 

Eqs. (5.1) and (5.2), becomes responsible for the exaggerated estimates of the overshoot 

velocities, and consequently, the lower predictions for the optimal electric fields for 

channel lengths less than 40 nm, as observed in Figure 5.4. Similarly the exaggerated 

overshoot velocity accounts for the higher predictions for the cut-off frequencies for 

channel lengths less than 40 nm, as the semi-analytical electron transit-times predictions 

would be lower than their Monte Carlo counterparts; recall Figure 5.5. This puts a 

limitation on the applicability of the semi-analytical approach when studying the transient 

electron transport response of an ensemble of electrons within bulk wurtzite bulk ZnO for 

very high electric field strengths. 
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Figure 5.6b: The electron effective mass as a function of energy for the cases of wurtzite 
GaN and wurtzite ZnO. The GaN result is depicted with the red line and the ZnO result is 
represented with the blue line. The upper valley minima, corresponding to the case of 
wurtzite GaN, is also depicted; the upper valley minima corresponding to the case of 
wurtzite ZnO lies beyond the range of this figure. The online version is depicted in color. 
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5.7   Conclusions 

 We critically examined the applicability of the semi-analytical approach of     

Shur [5] in determining the optimal performance of wurtzite ZnO-based high field 

electron device. In particular, we contrasted results of the semi-analytical approach of 

Shur [5] with those obtained from Monte Carlo simulations of the electron transport that 

we use as a reference. For both methods, we examined the response of an ensemble of 

electrons to the application of a constant and uniform applied electric field. For the 

purposes of this analysis, we examined the following aspects of the transient electron 

transport response: (1) the transient electron drift velocity as a function of the time 

elapsed since the application of the electric field, (2) the average electron displacement as 

a function of the time elapsed since the application of the electric field, (3) the optimal 

electric field strength required in order to obtain the minimum electron transit time as a 

function of channel length, and (4) the upper bound optimal cut-off frequency as a 

function of the channel length. The results obtained showed that this semi-analytical 

approach of Shur [5] is an efficient and valuable method that can be used in the field 

optimization of wurtzite ZnO-based devices. The semi-analytical method results were 

found to be very similar to those of the Monte Carlo simulations for devices with channel 

lengths greater than 40 nm and for electric field strengths less than 800 kV/cm. The 

limitations of the semi-analytical approach of Shur [5] in the field optimization of ZnO-

based devices at very high field strengths were also discussed. Despite those very high 

field limitations, the validity and the practicality of the method as a tool that can be used 

by researchers in studying field optimization in short-channel devices was evident in our 
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results. As such, the approach could potentially be used to study field optimization in 

other  material based devices, such as GaAs and GaN.   
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CHAPTER 6 

 

Conclusions 

 

 In this thesis, the electron transport that occurs within two particular wide energy 

gap semiconductors of current interest, GaN and ZnO, was considered. Electron transport 

within GaAs was also examined, albeit primarily for benchmarking purposes. The over-

arching goal of this thesis was to provide the materials community with tools for device 

performance analysis and optimization, to be used when evaluating the consequences of 

transient electron transport within these compound semiconductors, with the potential 

application for other materials. Providing fresh insights into the character of the electron 

transport within ZnO, a material whose electron transport characteristics were poorly 

understood prior to our investigations, with particular focus on the device implications 

thus engendered, was another central aim of this analysis. Device performance was 

assessed through the evaluation of the electron time-to-transit, the cut-off frequency of a 

device being inversely proportional to this time. Data from Monte Carlo simulations of 

the electron transport within these materials, performed by others, provided the input data 

needed for this analysis. The intellectual contributions provided throughout this thesis 

reside in the novel means of interpreting and processing the Monte Carlo results for the 

different materials considered in this analysis.  
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 Initially, three-valley Monte Carlo simulation electron transport results were used 

for a detailed and quantitative analysis of the transient electron transport that occurs 

within bulk zinc-blende GaAs and bulk wurtzite GaN. We found that, for both cases, the 

electron drift velocity and the average electron energy field-dependent “settling timesˮ 

are strongly correlated, and that the electric field resulting in the shortest electron transit-

time is a function of the channel length. The calculated dependence of the peak transient 

electron drift velocity on the applied electric field strength was then used for the design 

optimization of short-channel high-frequency devices. 

 Then, the applicability of the semi-analytical approach of Shur [1] in evaluating 

the transient electron transport response of bulk zinc-blende GaAs, bulk wurtzite GaN, 

and bulk wurtzite ZnO was critically examined. In particular, results obtained using this 

semi-analytical approach of Shur [1] were contrasted with those obtained using three-

valley Monte Carlo simulations of the electron transport. The approach adopted was to 

examine the response of an ensemble of electrons to the application of a constant and 

uniform applied electric field that is applied at time-zero. For the purposes of this 

analysis, three aspects of the transient electron transport response were considered: (1) 

the dependence of the electron drift velocity on the time elapsed since the onset of the 

applied electric field, (2) the dependence of the average electron energy on the time 

elapsed since the onset of the applied electric field, and (3) the dependence of the average 

electron displacement on the time elapsed since the onset of the applied electric field. The 

results obtained showed that this semi-analytical approach of Shur [1] produces results 

that are very similar to those produced using Monte Carlo simulations. Thus, this semi-

analytical approach of Shur [1] should be applicable for the treatment of non-uniform and 
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time-varying electric fields, making it a useful tool for the treatment of the transient 

electron transport response within general electron device configurations. 

 Then, how electrons, initially in thermal equilibrium, drift under the action of an 

applied electric field within bulk wurtzite ZnO, was considered. In particular, within the 

framework of a transient Monte Carlo analysis of the electron transport within this 

material, the applied electric field strength that ensures the minimum time-to-transit for a 

give electron transit displacement, τmin, was determined. This analysis was performed for 

a range of displacements, and the optimal applied electric field strength was plotted as a 

function of the displacement considered. These results were then used in order to provide 

an upper bound on the potential performance of ZnO-based devices, assuming that the 

transit across a ZnO-based device occurs solely across the device length. The optimal  

cut-off frequency was found to range from around 50.3 GHz when the device length is set 

to 1000 nm to about 11.5 THz when the device length is set to 10 nm. These results 

suggest that ZnO holds great promise for future high-speed electron device applications. 

 Finally, the utility of the semi-analytical approach of Shur [1], for the purposes of 

device design optimization, was considered for the specific case of bulk wurtzite ZnO. In 

particular, the device optimization procedure performed previously through the use of 

Monte Carlo simulations of the electron transport was performed within the framework of 

the semi-analytical approach of Shur [1]. How the results obtained through the Monte 

Carlo simulations compared with those produced through the semi-analytical approach 

was then critically examined, for each step of the analysis. It was found that the results 

produced through the semi-analytical approach of Shur [1] are, in many cases, 

imperceptibly different from those of the Monte Carlo simulations. This suggests that the 
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semi-analytical approach of Shur [1] may be employed for the purposes of device design 

and optimization, offering a substantial computational benefit to the device designer 

community. It is probable that the semi-analytical approach of Shur [1] may also be used 

for other compound semiconductors. It should be noted that further investigation would 

have to be performed in order to confirm this supposition.  

 The intellectual contributions provided by this analysis are numerous and varied. 

They primarily focus on adding value to the results of Monte Carlo simulations of the 

electron transport that occurs within these compound semiconductors and in providing 

tools and fresh insights into the nature of these materials that may be employed by the 

device design community. In the first phase of the analysis, the novelty rests in providing 

a new means of visualizing the impact of transient electron transport and in exploring the 

implications of this visualization technique for short-channel device optimization 

purposes. In the second phase of the analysis, establishing the suitability of the semi-

analytical approach of Shur [1] in the characterization of the transient electron transport 

response is the primary achievement. This provides device designers with a much more 

computationally efficient means of determining the transient electron transport response 

which may be used for device simulation and optimization purposes. In the third phase of 

the analysis, the application of a device optimization procedure to the specific case of 

wurtzite ZnO and the determination of an upper bound on the performance of ZnO-based 

devices, which can be used by subsequent generations of device designers, are the 

primary accomplishments. In the final phase of the analysis, the assessment as to whether 

or not the semi-analytical approach of Shur [1] may be employed for device optimization 

purposes, for the specific case of bulk wurtzite ZnO, is the primary contribution. 
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 Building upon the insights gleaned from this thesis, there are a variety of topics 

that one can further explore. For the visualization technique presented in the first phase of 

the analysis, it would be interesting to explore the consequences of this visualization 

technique for the specific case of bulk wurtzite ZnO, something that was not pursued 

during the course of this thesis. Plotting the transient electron drift velocity as a function 

of the applied electric field strength for a fixed distance displaced since the onset of the 

applied electric field, rather than the time elapsed, would also be interesting. In reference 

to the second phase of the analysis, establishing, in a more rigorous sense, the limits of 

the applicability of the semi-analytical approach, and suggesting possible model 

enhancements that would remedy these limitations, would be of use. The applicability of 

the semi-analytical approach of Shur [1] to other compound semiconductors would also 

be worthy of further investigation. In reference to the third phase of the analysis, i.e., the 

device optimization analysis based upon Monte Carlo results, the application of this 

approach to other materials of interest would be of value. Finally, for the final phase of 

this analysis, the use of this device optimization procedure to cases with non-uniform and 

time-varying electric fields should also be considered. These topics will have to be 

pursued in the future.  
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Appendix A 

 

The Monte Carlo method 
 
 
 The Monte Carlo electron transport simulation results, used for the purposes of 

this thesis, were acquired using the algorithm shown in Figure A.1 [1]. For all cases, the 

number of electrons in the ensemble is set to 3,000 for steady-state simulations and 

10,000 for transient simulations. Using Fermi-Dirac occupation statistics, distinct 

electron-wave vectors are initially assigned to each electron. During a free-flight, an 

electron does not encounter any scattering events and moves semi-classically in 

accordance with the following equations [1]: 
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where v is the electron velocity, k


 is the electron wave-vector, ξ


 is the electric field, q is 

the electron charge, and ɛ( k


) is the electron energy as a function of the electron wave-

vector. The free-flight time, ts , is chosen according to [2]: 
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Figure A1: A flow chart of the Monte Carlo simulation algorithm used in order to 
 determine the results employed throughout this thesis [1]. 
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where r is a uniformly distributed random number, between 0 and 1, ∑
=

=
n

m

m

1

λλ  is the 

total scattering rate, λm being the scattering rate associated with the m
th

 scattering 

mechanism. 

 At the end of a free-flight, each electron is subjected to random scattering events, 

selected with probabilities proportional to the scattering rate associated with each 

scattering mechanism. The scattering mechanisms considered are: (1) ionized impurity, 

(2) polar optical phonon, (3) piezoelectric, (4) acoustic deformation potential, and         

(5) intervalley scattering. After an electron scatters, a new free-flight time is chosen and 

the process is repeated until that electron reaches the end of the current time-step. After 

all of the electrons go through a time-step, macroscopic quantities, such as the electron 

drift velocity, the average electron energy, and the electron valley occupancy, are 

extracted from the electron distribution.  

 The scattering rates associated with aforementioned scattering mechanisms are 

determined as follows [2]: 
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where ɛ is the electron energy, m
* is the electron effective mass at the bottom of the 

valley, α is the non-parabolicity coefficient, Ko is the relative static dielectric constant, 

and T is the temperature. 

 

2. Polar optical phonon scattering: 
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where K ∞ is the relative high frequency dielectric constant, 
q

wo
o
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=ε  is the polar optical 

phonon energy, 
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where kb is the Boltzmann constant, 
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3. Piezoelectric scattering [3, 4]: 
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where epz is the piezoelectric constant, eo is the permittivity of vacuum, ρ is the material 

density, vs is the sound velocity, 
Tke

Nq

bo

D
2

=β  is the inverse screening length [2], and ND 

is the donor concentration.  

 

148

Appendix A



4. Acoustic deformation potential scattering: 
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where Da is the acoustic deformation potential. 

 

5. Intervalley scattering between the ith
 valley and the jth valley: 
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=ε  is the intervalley scattering phonon energy, Dij, is the intervalley 

deformation potential, Zj is the number of equivalent valleys, 
 

 1)/exp(

1

−
=

Tkw
N

Bij

ij


 ,  (A.16) 

 )21)(21(

)1)(1(
),(

'

'
'

jjii

jjii
jiijF

εαεα

εαεα
εε

++

++
=  ,  (A.17) 

and 

 









−

+
=

(emission)

n)(absorptio
'

iji

iji

j

εε

εε
ε     .    (A.18) 

149

Appendix A



References 

[1] S. K. O’Leary, B. E. Foutz, M. S. Shur, and L. F. Eastman, “Steady-state and 
 transient electron transport within the III–V Nitride semiconductors, GaN, AlN, 
 and InN: A review,ˮ Journal of Electronic Materials, vol. 17, no. 2, pp. 87-126, 
 2006. 
 
[2] M. Shur, GaAs Devices And Circuits, New York, New York: Plenum Press, 1987. 
 
[3] C. Jacoboni, and P. Lugli, The Monte Carlo Method for Semiconductor and Device 

 Simulation, New York, New York: Springer-Verlag, 1989. 
 
[4] C. Moglestue, Monte Carlo Simulation of Semiconductor Devices, New York, New 
 York: Springer, 1993. 
 
 

 

150

Appendix A



 

 

VITA AUCTORIS 

 

 
Name:   Walid Abdul Hadi 
 
Place of birth:  Sidon, Lebanon 
 
Year of birth:  1973 
 
Education:  Ph.D., Electrical and Computer Engineering, 
   University of Windsor, Windsor, ON, Canada, 2014 
    
   M.S., Electrical and Computer Engineering, 
   Oklahoma State University, Stillwater, OK, U.S.A, 1998 
 
   B.E. Electrical Engineering,  
   American University of Beirut, Beirut, Lebanon, 1996 
 
Work Experience: Instructor  
   Electronics Engineering Technologies 
   Saint Clair College, Windsor, ON, 2013-present. 
 
   Instructor 
   Lebanese International University 
   Sidon, Lebanon, 2003-2008 
  
   Transmission Planning Engineer 
   American Electric Power 
   Tulsa, Oklahoma, 1998-2003 
 
Awards  Graduate student society award, winter 2013.  
   A. R. and E .G. Ferriss award, winter 2013.  
   Fredrick Atkins Graduate award, winter 2013. 
   Doctoral tuition scholarship 2008 – 2012.   
   A. R. and E .G. Ferriss award, winter 2012.  
 
 
 

 151



Publications W. A. Hadi, E. Baghani, M. S. Shur, and S. K. O'Leary, “Electron 
 transport within the two-dimensional electron gas formed at a 
 ZnO/ZnMgO heterojunction: Recent progress,ˮ in Materials 

 Research Society Symposium Proceedings, 2013, vol. 1577. 
 
 W. A. Hadi, M. S. Shur, and S. K. O'Leary, “Steady state and 
 transient electron transport within bulk wurtzite zinc oxide  and the 
 resultant electron device performance,” in Materials Research 

 Society Symposium Proceedings, 2013, vol. 1577. 
 
 W. A. Hadi, M. S. Shur, and S. K. O'Leary, “The electron transport 
 within  bulk wurtzite zinc oxide in response to strong applied 
 electric field pulses,” in Materials Research Society Symposium 

 Proceedings, 2013, vol. 1577.  
 
 W. A. Hadi, M. S. Shur, and S. K. O’Leary, “Steady-state and 
 transient electron transport within wurtzite and zinc-blende  indium 
 nitride,ˮ Journal of Applied Physics, vol. 113, no. 11, pp. 113709-
 1-6, 2013. 
 
 W. A. Hadi, M. S. Shur, and S. K. O'Leary, “The sensitivity of the 
 steady-state and transient electron transport within bulk wurtzite 
 zinc oxide to variations in the crystal temperature, the doping 
 concentration, and the non-parabolicity coefficient,ˮ Journal of 

 Materials Science: Materials in Electronics, vol. 24, no. 1, pp. 2-
 12, 2013. 
 
 W. A. Hadi, R. Cheekoori, M. S. Shur, and S. K. O'Leary, 
 “Transient electron transport in the III-V compound 
 semiconductors gallium arsenide and gallium nitride,ˮ Journal of 

 Materials Science: Materials in Electronics, vol. 24, no. 2, pp. 
 807-813, 2013. 
 
 W. A. Hadi, M. S. Shur, and S. K. O’Leary, “On the applicability 
 of a semi-analytical approach to determining the transient electron 
 response of gallium arsenide, gallium nitride and zinc oxide,ˮ 
 Journal of Materials Science: Materials in Electronics, vol. 24,  
 no. 5, pp. 1624-1634, 2013. 
 
 W. A. Hadi, M. S. Shur, and S. K. O’Leary, “A transient electron 
 transport analysis of bulk wurtzite zinc oxide,” Journal of 

 Applied Physics, vol. 112, no. 3, pp. 033720-1-5, 2012. 
 
 W. A. Hadi, S. Chowdhury, M. S. Shur, and S. K. O'Leary, “A 
 detailed characterization of the transient electron transport within 
 zinc oxide, gallium nitride, and gallium arsenide,ˮ Journal of 

 Applied Physics, vol. 112, no. 12, pp. 123722-1-6, 2012. 
  

152



 W. A. Hadi, S. K. O’Leary, M. S. Shur, and L.F. Eastman, “The 
 sensitivity of the steady-state electron transport within bulk 
 wurtzite zinc oxide to variations in the non-parabolicity 
 coefficient,ˮ Solid State Communications, vol. 151, no. 12, pp. 
 874-878, 2011. 
 
 W. A. Hadi, S. K. O'Leary, M. S. Shur, and L. F. Eastman, “Steady 
 state and transient electron transport in Zinc Oxide: recent 
 progress,ˮ in Materials Research Society Spring Meeting, San 
 Francisco, CA, 2011, vol. 1327. 
 
 J. J. Sanchez-Gasca, D. W. Matthews, and W. A. Hadi, “Small-
 signal  stability assessment based on transient events,ˮ in IEEE 

 Power Engineering Society Summmer Meeting., Edmonton, 
 Alberta, 1999, vol. 2,  pp. 1292-1296. 

 

  

153


	University of Windsor
	Scholarship at UWindsor
	2014

	The electron transport within the wide energy gap compound semiconductors gallium nitride and zinc oxide
	Walid Abdul Hadi
	Recommended Citation


	Chapter 1 draft
	CHAPTER 2 draft
	[2]  Y. Li, Y. Lu, H. Shen, M. Wraback, M. G. Brown, M. Schurman,  L. Koszi, and   R. A. Stall, “Temperature dependence of energy gap in GaN thin film studied by  thermo-modulation,ˮ Applied Physics Letters, vol. 70, no. 18, pp. 2458-2460, 1997.
	[4] Z. Dong, J. Wang, C. P. Wen, D. Gong, Y. Li, M. Yu, Y. Hao, F. Xu, B. Shen, and  Y. Wang, “High breakdown AlGaN/GaN MOSHEMT with thermal oxidized Ni/Ti  as gate insulator,ˮ Solid State Electronics, vol. 54, no. 11, pp. 1339-1342,  2010.
	[5] I. B. Rowena, S. L. Selvaraj, and T. Egawa, “Buffer thickness contribution to  suppress vertical leakage current with high breakdown field (2.3 MV/cm) for GaN  on Si,ˮ IEEE Electron Device Letters, vol. 32, no. 11, pp. 1534-1536, 2011.
	[6] M. D. Kamatagi, N. S. Sankeshwar, and B. G. Mulimani, “Thermal conductivity of     GaN,ˮ Diamond and Related Materials, vol. 16, no. 1, pp. 98-106, 2007.
	[7] S. K. O’Leary, B. E. Foutz, M. S. Shur, and L. F. Eastman, “Steady-state electron  transport in the III–V nitride semiconductors: A sensitivity analysis,ˮ Journal of  Electronic Materials, vol. 32, no. 5, pp. 327-334, 2003.
	[8] S. K. O’Leary, B. E. Foutz, M. S. Shur, and L. F. Eastman, “Steady-state and  transient electron transport within the III–V Nitride semiconductors, GaN, AlN,  and InN: A review,ˮ Journal of Electronic Materials, vol. 17, no. 2, pp. 87-126,  2006.
	[11]   J. H. Leach, and H. Morkoç, “Status of reliability of GaN-based hetero-junction  field effect transistors,ˮ Proceedings of the IEEE, vol. 98, no. 7, pp. 1127-1139,  2010.
	[12] W. Dongfang, Y. Tingting, W. Ke, C. Xiaojuan, and L. Xinyu, “Gate-structure  optimization for high frequency power AlGaN/GaN HEMTs,ˮ Journal of  Semiconductors, vol. 31, no. 5,  054003, 2010.
	[13] A. Akselrad, “The optoelectronic technology of gallium nitride: the 2002 Benjamin  Franklin medal in engineering presented to Shuji Nakamura,ˮ Journal of the    Franklin Institute, vol. 340, no. 3, pp. 249-261, 2003.
	[15]  E. Monroy, F. Guillot, S. Leconte, L. Nevou, L. Doyennette, M. Tchernycheva,  F. H. Julien, E. Baumann, F. R. Giorgetta, and D. Hofstetter, “Latest  developments  in GaN-based quantum devices for infrared optoelectronics,ˮ Journal of Materials  ...
	[16] F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, and N. T. Pelekanos,  “Monolitihic integration of nitride-based transistor with light emitting diode for  sensing applications,ˮ Microelectronic Engineering, vol. 90, pp. 33-36, 2012.
	[17] S. Strite, and H. Morkoç, “GaN, AlN, and InN: A review,ˮ Journal of Vacuum  Science and Technology B, vol. 10, no. 4, pp. 1237-1266, 1992.
	[18] H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large- band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device  technologies,ˮ Journal of Applied Physics, vol. 76, no. 3, pp. 1363-1398, 1994.
	[19]  S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and  devices,ˮ Journal of Applied Physics, vol. 86, no. 1, pp. 1-78, 1999.
	[20] D. Zhuang, and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: a review,ˮ  Materials Science and Engineering: R: Reports, vol. 48, no. 1, pp. 1-46, 2005.
	[21] M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, “Monte Carlo calculation of the  velocity‐field relationship for gallium nitride,ˮ Applied Physics Letters, vol. 26,  no. 11, pp. 625-627, 1975.
	[22] D. K. Ferry, “High-field transport in wide-band-gap semiconductors,ˮ Physics  Review B, vol. 12, no. , pp. 2361-2369, 1975.
	[23]  P. Das, and D. K. Ferry, “Hot electron microwave conductivity of wide bandgap  semiconductors,ˮ Solid State Electronics, vol. 19, no. 10, pp. 851-855, 1976.
	[24]  B. Gelmont, K. Kim, and M. Shur, “Monte Carlo simulation of electron transport in  gallium nitride,ˮ Journal of Applied Physics, vol. 74, no. 3, pp. 1818-1821, 1993.
	[28] M. Shur, B. Gelmont, and M. A. Khan, “Electron mobility in two-dimensional  electron gas in AIGaN/GaN heterostructures and in bulk GaN,ˮ Journal of  Electronic  Materials, vol. 25, no. 5, pp. 777-785.
	[34]  F. Bertazzi, M. Moresco, and E. Bellotti, “Theory of high field carrier transport  and impact ionization in wurtzite GaN. Part I: A full band Monte Carlo model,ˮ  Journal of Applied Physics, vol. 106, no. 6, 063718, 2009.
	[37] W. Fawcett, A. D. Boardman, and S. Swain, “Monte Carlo determination of  electron transport properties in gallium arsenide,ˮ Journal of Physics and Chemistry  of Solids, vol. 31, no. 9, pp. 1963-1990, 1970.
	[42] S. K. O’Leary, B. E. Foutz, M. S. Shur, and L. F. Eastman, “Steady-state and  transient electron transport within bulk wurtzite indium nitride: An updated  semiclassical three-valley Monte Carlo simulation analysis,ˮ Applied Physics  Letters, vol...
	[44] S. K. O’Leary, B. E. Foutz, M. S. Shur, and L. F. Eastman, “The sensitivity of the  electron transport within bulk wurtzite indium nitride to variations in the crystal  temperature, the doping concentration, and the non-parabolicity coefficient: ...
	[45] S. K. O’Leary, B. E. Foutz, M. S. Shur, and L. F. Eastman, “Steady-state and  transient electron transport within bulk wurtzite zinc oxide,ˮ Solid State  Communications, vol. 150, no. 43, pp. 2182-2185, 2010.
	[46] W. A. Hadi, S. K. O’Leary, M. S. Shur, and L.F. Eastman, “The sensitivity of the  steady-state electron transport within bulk wurtzite zinc oxide to variations in the  non-parabolicity coefficient,ˮ Solid State Communications, vol. 151, no. 12, p...

	chapter 3 draft
	[7]   R.S. Pengelly, S.M. Wood, J.W. Milligan, S.T. Sheppard, and W.L. Pribble, “A  Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs,ˮ  IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp.  1764-1783, 2012.
	[11]   D. Visalli, M. Van Hove, P. Srivastava, J. Derluyn, J. Das, M. Leys, S. Degroote,  K. Cheng, M. Germain, and G. Borghs, “Experimental and simulation study of  breakdown voltage enhancement of AlGaN/GaN heterostructures by Si substrate  removal,...
	[14]  K. Jagannadham, E.A. Berkman, and N. Elmasry, “Thermal conductivity of semi  insulating, p-type, and n-type GaN films on sapphire,ˮ Journal of Vacuum Science  and Technology A, vol. 26, no. 3, pp. 375-379, 2008.
	[20]  D. H. Levy and S. F. Nelson, “Thin-film electronics by atomic layer deposition,ˮ  Journal of Vacuum Science and Technology A, vol. 30, no. 1, pp. 018501-1-9, 2012.
	[32] M. Shur, B. Gelmont, and M. A. Khan, “Electron mobility in two-dimensional  electron gas in AIGaN/GaN heterostructures and in bulk GaN,ˮ Journal of  Electronic  Materials, vol. 25, no. 5, pp. 777-785, 1996.
	[37]  J. D. Albrecht, R. P. Wang, P. P. Ruden, M. Farahmand, and K. F. Brennan,  “Electron transport characteristics of GaN for high temperature device modeling,ˮ  Journal of Applied Physics, vol. 83, no. 9, pp. 4777-4781, 1998.
	[39]   B. Guo, U. Ravaioli, and M. Staedele, “Full band Monte Carlo calculations of  velocity-field characteristics of wurtzite ZnO,ˮ Computer Physics Communications,  vol. 175, no. 7, pp. 482-486, 2006.
	[40]  F. Bertazzi, M. Goano, and E. Bellotti, “Electron and Hole Transport in Bulk ZnO:  A Full Band Monte Carlo Study,ˮ Journal of Electronic Materials, vol. 36, no. 8,  pp. 857-863, 2007.
	[49]  W. Fawcett, A. D. Boardman, and S. Swain, “Monte Carlo determination of  electron transport properties in gallium arsenide,ˮ Journal of Physics and Chemistry  of Solids, vol. 31, no. 9, pp. 1963-1990, 1970.
	[54] S. K. O’Leary, B. E. Foutz, M. S. Shur, and L. F. Eastman, “Steady-state and  transient electron transport within bulk wurtzite indium nitride: An updated  semiclassical three-valley Monte Carlo simulation analysis,ˮ Applied Physics  Letters, vol...
	[55] S. K. O’Leary, B. E. Foutz, M. S. Shur, and L. F. Eastman, “The sensitivity of the  electron transport within bulk wurtzite indium nitride to variations in the crystal  temperature, the doping concentration, and the non-parabolicity coefficient: ...
	[56] W. A. Hadi, M. S. Shur, and S. K. O'Leary, “The sensitivity of the steady-state and  transient electron transport within bulk wurtzite zinc oxide to variations in the  crystal temperature, the doping concentration, and the non-parabolicity coeffi...
	[57] W. A. Hadi, R. Cheekoori, M. S. Shur, and S. K. O'Leary, “Transient electron  transport in the III-V compound semiconductors gallium arsenide and gallium  nitride,ˮ Journal of Materials Science: Materials in Electronics, vol. 24, no. 2, pp.  807-...

	chapter 4 draft
	[1]   S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in  processing of ZnO,ˮ Journal of Vacuum Science and Technology B, vol. 22, no. 3,  pp. 932-938, 2004.
	[7] D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G.   Cantwell, and W. C. Harsch, “Electrical properties of bulk ZnO,ˮ Solid State  Communications, vol. 105, no. 6, pp. 399-401, 1998.
	[9]   B. Guo, U. Ravaioli, and M. Staedele, “Full band Monte Carlo calculations of  velocity-field characteristics of wurtzite ZnO,ˮ Computer Physics Communications,  vol. 175, no. 7, pp. 482-486, 2006.
	[10] F. Bertazzi, M. Goano, and E. Bellotti, “Electron and Hole Transport in Bulk ZnO:  A Full Band Monte Carlo Study,ˮ Journal of Electronic Materials, vol. 36, no. 8,  pp. 857-863, 2007.
	[11] E. Furno, F. Bertazzi, M. Goano, G. Ghione, and E. Bellotti, “Hydrodynamic  transport parameters of wurtzite ZnO from analytic and full-band Monte Carlo  simulation,ˮ Solid-State Electronics, vol. 52, no. 11, pp. 1796-1801, 2008.
	[19] W. A. Hadi, M. S. Shur, and S. K. O'Leary, “The sensitivity of the steady-state and  transient electron transport within bulk wurtzite zinc oxide to variations in the  crystal temperature, the doping concentration, and the non-parabolicity coeffi...
	[24]   S. Sasa, T. Hayafuji, M. Kawasaki, A. Nakashima, K. Koike, M. Yano, and M.  Inoue, “High-field characteristics of ZnO and ZnO/ZnMgO heterostructures,ˮ  Physica Status Solidi C, vol. 5, no. 1, pp. 115-118, 2008.
	[25]  S. Li, J. Li, F. Liu, M. A. Alim, and G. Chen, “The dimensional effect of  breakdown field in ZnO varistors,ˮ Journal of Physics D: Applied Physics, vol.  35, pp. 1884-1888, 2002.


	chapter 5 draft
	Conclusions
	VITA AUCTORIS

