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THE ELECTRONIC ENERGY LEVELS 
OF THE HEAVY ACTINIDES 

Bk+3(5f«), Cf+̂ (5f'), 
Es+̂ (5fi°), AND Fm+̂ (5f̂ )̂* 

by 

P. R. F ie lds , B. G. Wybourne, 
and W. T. Carnal l 

Extensive exper imenta l data have been gathered and numerous theo­
re t i ca l t r ea tmen t s have been developed to explain lanthanide spectra , but 
much less is known about act inide spec t ra . Exper imenta l ly , one must 
normal ly contend with r a the r high levels of radioact ivi ty in the 5f se r i e s of 
e lements and with cor responding prob lems of handling, shielding, and r a d i ­
ation decomposit ion. These fac tors , together with the ex t remely small 
stocks of t r a n s c u r i u m e lements present ly avai lable, help to explain why 
more work involving the ac t in ides has not appeared in the l i t e r a tu re . F r o m 
a theore t ica l standpoint, t he re has been some question as to the relat ive 
magnitude of sp in-orb i t and ligand field in terac t ions in the act inides, whereas 
with the lanthanides, ligand field effects a r e considerably l e s s than those 
assoc ia ted with sp in-orb i t coupling. 

The absorpt ion spec t rum of a given lanthanide or actinide ion in a 
c rys ta l l ine mat r ix , r a the r than in solution, is of p r i m a r y in t e re s t in t e r m s 
of cor re la t ion with theore t i ca l calculat ions since, in pr inciple , one can 
identify individual t r ans i t ions from polar izat ion and Zeeman effect data 
taken with c rys t a l s at low t e m p e r a t u r e s . However, very few analyses of 
actinide spec t ra in c ry s t a l s have been a t tempted. It is c l ea r that the 
density and complexity of s ta tes a r e very grea t , so p r o g r e s s will necessa r i ly 
be slow. Thus, a t p resen t , it is useful to employ solution spec t ra data, at 
leas t to es tabl i sh the gene ra l c h a r a c t e r i s t i c s of the energy level schemes . 

A recent invest igat ion! 1) showed that a good cor re la t ion can be ob­
tained between the calcula ted f ield-free energy levels of the light t r iva lent 
act inides and the solution absorpt ion spec t ra of these spec ies . Such a c o r ­
re la t ion emphas izes the fact that , although the t r iva lent act inides might have 
been expected to be more suscept ible to ligand field effects than the lantha­
nides (because of the g r e a t e r spat ial extension of the 5f wave functions), one 
actually finds that ligand field effects a r e re la t ively smal l compared to 
Coulomb and sp in-orb i t in te rac t ion energ ies in both s e r i e s . In the inves t i ­
gation r e f e r r e d to, the combined m a t r i c e s of e lec t ros ta t i c and spin-orbi t 
in terac t ion were diagonalized, giving a complete in te rmedia te coupling ca l ­
culation. The e lec t ros ta t i c in terac t ion was expres sed in t e r m s of l inear 

* Based on work pe r fo rmed under the ausp ices of the U. S. Atomic 
Energy Commiss ion . 
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combinations of the Slater radia l in tegra ls , F2, F4, and F^; the spin-orbi t 
m a t r i c e s were calculated in t e r m s of a spin-orbi t coupling constant, ^. In 
p rac t i ce , these radia l in tegra ls a r e t rea ted as empir ica l p a r a m e t e r s to be 
var ied to obtain the best fit to exper imenta l data. To simplify the calcula­
tions, it is des i rab le to reduce the number of var iab les . If the nf-radial 
wave functions a r e assumed to be hydrogenic, values for the ra t ios of the 
Slater in tegra ls F4/F2 and Ff^/Ti can be calculated, leaving only F2 and C, 
to be ass igned values consis tent with the experimental data. Experience 
has shown that these hydrogenic ra t ios a r e more rea l i s t i c than might have 
been supposed. Attempts were made to fit the energy levels of the nf con­
figuration with severa l different Slater Fi^ ra t ios , including those based on 
H a r t r e e - F o c k calculations.(^) These a t tempts , along with pre l iminary r e ­
sults of a study in which a computer was programed to maxinnize the fit of 
al l four p a r a m e t e r s to the exper imenta l resu l t s for Ami"'"^(5f^),(^) all indicate 
that the best co r re la t ion is obtained with Slater Fj^ ra t ios close to those of 
the hydrogenic approximation. 

One resu l t of the study of the light actinide spect ra was that values 
of F2 and ^ that gave a good fit to the exper imenta l data, to a f irs t approxi­
mation, inc reased l inearly with a tomic number Z (see F igs . 1 and 2). This 
suggested that it would be useful to extrapolate direct ly the p a r a m e t e r s F2 
and C into the second half of the actinide s e r i e s . Then the 5f-hydrogenic 
ra t ios of F4/F2 and F6/F2 could be used to c a r r y out a complete intermediate 
coupling calculation for the configurations 5f̂  to 5f̂ .̂ It was not p rac t ica l 
to use this type of approach previously, since pat terns in the behavior of 
the light act inides had not been establ ished. In addition, experimental data 
on the t r anscu r ium elements a r e not sufficient to establ ish c lear ly the 
p a r a m e t e r s for such calculat ions. Only with Cf+^ have any absorption bands 
actually been o b s e r v e d . \ ' ' 

Fig. 1 

Extrapolation of Values of 
l̂ 5f Versus Z Based on 
Best Fi ts to Exper imenta l 
Data for U"*"̂  through Cm"*"̂  
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250 

Fig. 2 

Extrapolation of Values of F2 
Versus Z Based on Best F i t s 
to Exper imenta l Data for U 
through Cm''"^ 

Exper imenta l observat ion of the absorption spectra of elements be­
yond fermium will probably not be feasible since radioact ive half-l ives a r e 
too short to make it p rac t i ca l to produce even mic rogram amounts of these 
e lements . It is expected, on the bas i s of projected transplutonium produc­
tion p r o g r a m s , that 100-mg quantities of berkel ium and californium, 10-mg 
quantit ies of Es^^^, and 100-jUgm quantit ies of Fm^ "̂* can eventually be made 
from 300 gm of Pu^^^ during a 1.5-year i r radiat ion, w) The problem assoc i ­
ated with radiat ion decomposit ion of the solvent in the p resence of macro 
amounts of shor t - l ived isotopes was exemplified by early a t tempts to ob­
serve the spect rum of cur ium using Cm^"* .̂! / This type of problem, and 
the necess i ty for remote handling of many of the isotopes in this region 
due to the neutron hazard (short, spontaneous-fission half-l ives), suggest 
that much of the work will continue to be done with essent ia l ly micro tech­
niques. Thus it seems useful to obtain, on the basis of p resen t information, 
some es t imates as to the spec t ra l regions in which absorpt ion bands of the 
t r ivalent t r anscu r ium elements might be expected to occur. 

One obstacle to ea r l i e r a t tempts to extrapolate values of F2 and t^ 
into the heavy actinide region resu l ted from apparent difficulties in achiev­
ing a good fit to the exper imenta l data for Cm . Such problems were 
largely resolved when Wybourne^') proposed that a weak absorption band, 
seen in solution spect ra near 0.590/i(8) but not in the f luorescence spect rum 
of CmCl3 in LaCl3,(9) constituted the f i rs t excited multiplet level in the sys ­
tem. The new p a r a m e t e r s for Cm"""̂  proved to be consistent with those for 
the l ighter act inides . The re su l t s of the di rect extrapolation of values of 
F2 and (̂  from the f i rs t half of the 5f s e r i e s into the second half a re shown 
in F igs . 1 and 2. 
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To calculate the energy levels for Bk through Fm"*"̂ , the extrapolated 
values of C,^f and F2, collected in Table 1, were used, together with the follow­
ing 5f-hydrogenic ra t ios of the Slater integrals : (•'•*-') 

F4/F2 = 23255/163559 = 0.1422; 

F6/F2 = 102725/6378801 = 0.0161. 

The resu l t s (up to 30,000 cm"^) a r e tabulated in Tables 2, 3, 4, and 5, and 
shown graphical ly in Fig. 3. In the intermediate coupling calculations r e ­
ported here , the quantum numbers L and S cannot be employed usefully 
to designate a given energy level since each level is connposed of a l inear 
combination of many different LS s ta tes , all having the same J-value . This 
composition, for components which contribute S:10% of the charac te r of the 
level, is recorded in the tables . Exper imenta l and calculated resu l t s for 
Am''"^ and Cm"'"^,'-^'' as well as the data of Conway et al.^'*^ for Cf"*"̂ , a re in­
cluded for comparison in Fig. 3. 

Table 1 

EXTRAPOLATED VALUES OF C.;f AND F, 
FOR Bk+^ THROUGH Fm+^ 

Ionic 
Species 

Bk +3 

Cf 

E s 

+3 

+3 

F m +3 

F2 ( c m - i ) 

299 

318 

338 

358 

Csf (cm-1) 

3260 

3580 

3900 

4220 

Table 2 

J 

6 

4 

5 

3 

2 

1 

0 

6 

4 

10 

4 

7 

5 

2 

Calculated 
Energy 
(cm 1| 

0 

4 588 

4946 

7 775 

8 367 

9 939 

10 241 

15 936 

16 032 

19 981 

20 071 

20 938 

21451 

22117 

ELECTRONIC ENERGY LEVELS OF Bk+3 

% Composition of States^ 

74% ?F 21% 5G 

52% 7F 25% 5D 

82%'F 11% 5G 

71%'F 17% 5 D 

63% 7F 21% 5 D 

7 J % 7 F 21% 5O 

71% ^F 23% 5D 

2 0 % 3 H 1 3 % 3 K 1 » 3 1 13% 7F 

40% 7F 34% 5 D 15% 3F 

67% 5 L 25% 3 M 

22% 5 D 21% 5G 19% 5 H 13% 3 H 

26% 5 H 2 1 % 5 L , 1 7 % 3 K 16% 31 

3 3 % 5 H 2 5 % 5 G 13% 3 H 1 2 % 5 I 

38% 3p 25% 7F 12% 3D 

(0 to30 000cm-l ) 

11% 3G 

11% 5 1 

J 

3 

8 

9 

6 

2 

5 

6 

7 

3 

0 

4 

5 

7 

8 

Calculated 

Energy 

(cm' ' ) 

22 795 

22 813 

23 001 

23 594 

24 693 

26 026 

26 373 

26 584 

27 045 

27 497 

27 866 

28 070 

28 828 

29 257 

% Composition of States^ 

43% 5 G 21% 5 H 15% 3F 12% 3G 

42% 5 L 19% 3K 17% 5 1 13% ^K 

65% 5 L 17% 5K 11% 3 M 

37% 5 L 21% 3K 13% 5 H 12% 5 G 

69% 5 G 21% 3 F 

36% 5 F 26% 5 G 14% 3G 11% 5 H 

26% 5 J 23% 3 H 16% 5 H 13% 5 G 

40% 5 L 32%5H 13% 5 I 

45% 5 D 19% 5 F 14% 7 F 

39% 3p 34% I s 17%'F 10% 5 D 

37% 5 F 20% 5 G 14% 5 D I 2 H 5 H 

24% 3 H 19% 3G 19% 5 G 

27% 3 1 26% 5 1 1 7 % 5 H , 1 3 % 3 K 10%'K 

47% ' I 37% 5 L 13% 3K 

a Only components amounting to 10% or greater are shown 
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Table 3 

ELECTRONIC ENERGY LEVELS OF Cf*3 

(0 to 30,000 cm-l l 

J 

15/2 

11/2 

9/2 

13/2 

11/2 

9/2 

3/2 

7/2 

7/2 

15/2 

5/2 

5/2 

1/2 

17/2 

21/2 

Calculated 
Energy 
Icm-l) 

0 

7,550 

7,629 

7,906 

11,782 

13,417 

13,526 

14,151 

15,299 

16,176 

16,300 

17,254 

17,697 

20,790 

21,691 

% Composition of Statesa 

7 2 % 6 H , 2 » ' ' I 

4 5 % 6 F , 27%^G, 1 7 % 6 H 

39%lF, 3 2 % 6 F , 1 4 % 4 G 

8 4 % 6 H , 12%^I 

4 5 » 6 H , 3 5 % 6 F 11% 4G 

5 1 % 6 H , 2 1 % 6 F 19% 4G 

32%^D, 2 7 % 6 F , 17%2P 

6 0 % * F , 2 2 % 1 F 

5 » ^H, 23% "iG 

25% 2K, 18% 6 H , 17% \ 

3 0 % ' F , 2 6 % 6 H 1 5 % ^ 

37%^F, 2 « . ' H , 13%^G, 

5 6 % 6 F , 37%^D 

48% " K , 26% ^L, 14% 2L, 

76% ^*A, 21% 2 N 

1 » 

12% 

13% 

1 1 , 1 3 % % 

40 

4M 

19/2 

9/2 

11/2 

5/2 

13/2 

3/2 

7/2 

11/2 

9/2 

15/2 

9/2 

15/2 

3/2 

7/2 

5/2 

Calculated 

Energy 

(cm-l) 

22 194 

22,616 

22,990 

23 097 

23,795 

24,174 

24 945 

25 871 

27,186 

28,044 

28,894 

29,202 

29,324 

29,561 

29,978 

% Composition of Statesa 

53% ^L 29% "/W 14% 2 M 

34% *F 28% 6 H , 16% # 11% 2G 

43% "IG 31% 6 H 12% 2 H 

38% I p 32% 6p 13% 2 D , 10% ^H 

33%4l,25%% 17% ^H 

42% 6F 25% 4P 14% 2p, 11% 6p 

34% " D 27% 6P 16% # 14% 6 H 

33%''l 17%2H, 16%^G 13%% 12%2i 

27% 4F, 19% 2 H , 16%'' 1 , 14% ^H 13% ^G 

26% " M , 23% 2L, 22% % 15%'' 1 , 11% 2K 

3 8 % ^ I , 2 4 % 2 H , 1 3 % ^ H , 1 1 % 2 G 

32% 4 1 19% ^L, 15% 2 K , 12% % 11% ''Afl 

32% ^F, 24% 2D, 15% ' P , 14% ' F , 11% ^P 

33% ^G 17% *P, 16% " H 

33% ^0 3 0 % 4 F , l l % t G , 10% 6F 

a Only components amounting to 10% or greater are shown 

Table 4 

ELECTRONIC ENERGY LEVELS OF Es*3 

± 
8 

7 

5 

6 

2 

4 

5 

4 

8 

6 

Calculated 
Energy 
Icm-l) 

0 

10,554 

11,733 

13,975 

14,277 

18,809 

19,332 

19,752 

20,251 

21,837 

10 to 30,000 cm-H 

% Composition of States' 

7 7 % 5 ] , 2 0 % 3 K 

90%5l 

40% 3G 32% 5F, 14% 3 H 

5 5 % 5 I , 2 9 % 3 H 

27% 3D, 25% 3p, 15% 5s 15% lO 

43% 5F, 28% 3F 

5 0 % 5 I , 2 6 % 5 F , 1 8 % 3 H 

32% 5 1 , 24% 3 H 1 9 % 5 F , 1 1 % 3 F 

4 1 % 3 K , 1 9 % 5 l , l 9 % l L , 1 6 % 3 L 

67%'G 23% 51 

J 

2 

3 

4 

1 

5 

9 

7 

2 

4 

Calculated 
Energy 
(cm-ll 

22,603 

23,711 

23 734 

24,6% 

25,353 

27,000 

28 0OO 

28,412 

28,878 

% Composition of States' 

51%5s, 1 5 % 5 F , 1 1 % 3 D 

68% 5F , 17% 3D , 14% 3F 

27% 5G , 27% 3G, 22% 3F 

45% 5F, 44% 3D 11% 3p 

39% 5G , 31% 5F 16% 3G 

84% 3 L 16% 3 M 

55% 3K 21% 31,16% 3L 

4 3 % 3 F , 18%%, 1 8 % 1 D 

26% 3F 24% 51 2 3 % 5 D , 1 7 % 3 G 

a Only components amounting to 10% or greater are shown 

Table 5 

ELECTRONIC ENERGY LEVELS OF Fm-̂ 3 

_J_ 

15/2 

9/2 

11/2 

13/2 

3/2 

9/2 

11/2 

Calculated 
Energy 
(cm-1) 

0 

9,848 

11,686 

12,341 

15,262 

20,236 

22,409 

(0 to 30,000 cm- l | 

% Composition of Statesa 

91%''] 

40% 2G 39% I F , 16% 2 H 

5 2 % 2 H , 2 5 % 4 I , 2 1 % 4 G 

97%'•l 

34% 2p 30% I s 27% 2 D 

3 7 % 4 I , 3 1 % 4 F 30%2H 

4 8 % ' ' I , 4 8 % ^ G 

J^ 
5/2 

7/2 

3/2 

15/2 

7/2 

9/2 

Calculated 
Energy 
(cm-l| 

22,582 

23,410 

25,025 

27,680 

27,792 

28,259 

% Composition of Statesa 

48% 4F, 43% 2D 

85% ^F, 12% 2G 

44% 4s 32% " F , 23% 2D 

78% 2K 13% 2L 

36% " G , 35% 2G, 20% 2F 

5 9 % ^ , 18%% 14% 2G 

a Only components amounting to 10% or greater are shown 
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Fig. 3 

Calculated F r e e - i o n Levels of 
Am+^ c m + ^ Bk+^ cf+^ Es+^ 
and Fm''"^. Exper imenta l r e ­
sults for Am"*"̂  and Cm"^^ a r e 
from Ref. 1. Those for Cf+^ 
indicated below the calculated 
values for that element, a re 
from Ref. 4. 

These computations indicate the energies at which absorption bands 
a r e expected, but they give no information with r e spec t to the probable in­
tens i t ies of the t r ans i t ions . Attempts to observe the solution absorption 
spec t rum of Bk"*"̂  in the 4500 to 7500 A region have been unsuccessful; how­
ever , it was concluded that any bands in this region have a molar absorp­
tivity (e ) l e ss than 20.'-^-^z In cont ras t to these resu l t s , severa l absorption 
bands of Cf , p r imar i l y as CfCl3 in LaCl3 c rys ta l s , have been observed in 
the course of exper iments in which m i c r o g r a m amounts of the element 
were used.^ ' Only two absorpt ion bands were observed in aqueous solution. 
On the bas i s of this work, it was concluded that e was less than 20 for any 
Cf+^ bands in the region 4500-7500 A . ( l l ) 

Recent theore t ica l developments'^^'^-^z indicate that in the near 
future it may also be possible to predic t osci l lator s trengths of t ransi t ions 
in the t r anscu r ium e lements . 

Elec t ronic t rans i t ions within an f^-configuration may be classified 
as induced e lec t r ic dipole, magnetic dipole, or e lect r ic quadrupole in nature . 
Of these, e lec t r ic dipole t rans i t ions have been shown to be pr imar i ly r e ­
sponsible for observed intensi t ies in the spect ra of the t r ivalent lanthanide 
and actinide elements.(-^^z However, in a l imited number of cases magnetic 
dipole or e lec t r ic quadrupole contributions can also become important . 
Judd^-^-^z has derived an express ion for the osci l la tor strength of an e lec t r ic 
dipole t rans i t ion ^ j ~ * ^ j ' , in t e r m s of i ts reduced ma t r ix e lements , its 
frequency, and a complicated function, T \, which in par t is dependent upon 
the c rys ta l field experienced by the ion under consideration. In prac t ice , 
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X takes only the values 2, 4, and 6. This means that a set of only three 
p a r a m e t e r s r e l a t e s the osci l la tor s t rengths for al l t ransi t ions in a given 
solution medium to the reduced ma t r ix elements for the t rans i t ions . 

Recently computations of the osci l la tor s trengths for t ransi t ions in 
the f-'̂  configurations up to 40,000 cm"^ were initiated at the Argonne 
National Laboratory . These resu l t s will be related to experimental ly-
determined osci l la tor s t rengths for al l the lanthanides, and for the t r ivalent 
act inides through cur ium. This work will tes t the theory. If, as expected, 
t rends in Tx in a given medium a re revealed, it should be possible to p r e ­
dict intensi t ies of e lec t r ic dipole t rans i t ions in that medium for the t r a n s ­
cur ium e lements . 

The osci l la tor s t rength of a magnetic dipole t ransi t ion is much 
more readily calculated than that of an e lec t r ic dipole t ransi t ion. Suitable 
express ions for the osci l la tor s trength of magnetic dipole t ransi t ions have 
been given by P a s t e r n a c k . ' ^ z 

A previous publication^-^ z pointed out that a s a resu l t of the g rea t e r 
breakdown of LS coupling in the 5f s e r i e s as contrasted to the 4f se r i e s , 
there should be many more possibi l i t ies for observing magnetic dipole 
t rans i t ions in the act inides . The osci l la tor strengths (P) for the relevant 
magnetic dipole t rans i t ions for Bk"'"̂ , Cf , Es"'"^, and Fm ^ have been cal ­
culated; the resu l t s a r e tabulated in Table 6. Thus if the e lec t r ic dipole 
cha rac te r of the J = 5 level of Bk"*"̂ , which is expected to be found near 
4946 c m " \ were negligible, an absorpt ion band with P = 2.7 x 10"^ would 
be anticipated. For comparison, in the case of Eu ,̂ the band observed 
near 19,000 cm" ^ ' has an exper imenta l value of P = 1.3 x 10"®; thus, an 
equally sharp Bk band at 4,946 cm" might be expected to be twentyfold 
as intense as the observed Eu band. If this Bk"̂  t ransi t ion were also to 
have appreciable e lec t r ic dipole cha rac te r , the observed band would be 
proport ionally more intense. Magnetic dipole t ransi t ions determine only 
the lower l imits of the osci l la tor s t rengths expected for the electronic 
levels concerned. 

Species 

Bk+3 

J_ 
5 
6 
7 
5 
6 
5 
6 
7 
5 
7 

Calculated 
Energy 
(cm-I) 

4,946 
15,937 
20,938 
21,451 
23,594 
26,026 
26,373 
26,584 
28,070 
28,828 

Table 6 

MAGNETIC DIPOLE OSCILLATOR STRENGTHS (PM D H 
FOR Bk+3 THROUGH Fm + 3 

PM D X 10- ' 

267 
210 

14 
25 
34 
71 
26 
53 
03 
04 

Species 

Cf+3 

Es+3 

Fm+3 

J 

13/2 
15/2 
17/2 
13/2 
15/2 
15/2 
7 
8 
9 
7 

13/2 
15/2 

Calculated 
Energy 
(cm-1) 

7,906 
16,176 
20,790 
23,795 
28,044 
29,202 
10,554 
20,251 
27,000 
28,000 
12,341 
27,680 

PM D " 10-9 

460 
250 
20 
36 
38 

26 
565 
216 
12 
16 

560 
115 

^ All magnetic dipole transitions in the energy range 0-30,000 cm-1 
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While it may not be feasible to observe the absorption spect ra of all 
of the heavy actinide e lements , it may be possible to do magnetic m e a s u r e ­
ments on very smal l quanti t ies, as i l lus t ra ted by Cunningham's m e a s u r e ­
ment of the magnet ic susceptibi l i ty of Es^^^ on a submicrogram scale.(•^^) 
Therefore , the g-values of the ground-s ta te eigenvector have been calculated 
for the var ious heavy act inides; the resu l t s a re l isted in Table 7. 

Table 7 

CALCULATED g-VALUES FOR THE GROUND STATES OF 
Bk^^^ Cf+^ E s + \ AND Fm'''^ 

Calculated 
Species J % Composi t ion of Sta tes^ 

74.4% ^F; 20.8% ^G; 3.1% ^H 

71.5% ^H; 23.0% *I; 3.4% ^K; 1.3% *K 

77.3% ^I; 20.2% ^K; 1.3% ^L; 1.0% ^L 

90.7% % 9.0% ^K; 0.3% ^L 

Bk+^ 

Cf+^ 

Es+^ 

Fm+^ 

6 

15/2 

8 

15/2 

% Accounted 

99.79 

100.00 

99.99 

100.00 

g-value 

1.44573 

1.28590 

1.21856 

1.18202 

^Componen t s of 1% or g r e a t e r , rounded to the n e a r e s t l / l O a r e shown. 
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