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 Introduction 

 Several volatile organic compounds (VOCs), includ-
ing isoprene, 1,2-pentadiene, acetone, ethanol, pentane 
and ethane, have been identified in the exhaled breath of 
healthy subjects and patients with respiratory diseases by 
gas chromatography/mass spectrometry (GC/MS)  [1, 2] . 
Identification of selective VOC patterns in exhaled 
breath could be used as a biomarker of lung diseases  [3–
8] . An electronic nose (e-nose) is an artificial sensor sys-
tem which enables a qualitative and/or quantitative de-
scription of volatile mixtures  [9–11] . The e-nose working 
principle, which is based on the human olfactory system, 
involves three steps: (1) binding of volatile substances to 
a sensor array; (2) generation of sensor changes which 
result in unique patterns of signals, and (3) integration of 
signal patterns for classification purposes  [10] . However, 
there are important differences between the human ol-
factory system and artificial noses. These differences are 
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 Abstract 

 Several volatile organic compounds have been identified in 
exhaled breath in healthy subjects and patients with respira-
tory diseases by gas chromatography/mass spectrometry. 
Identification of selective patterns of volatile organic com-
pounds in exhaled breath could be used as a biomarker of 
inflammatory lung diseases. An electronic nose (e-nose) is an 
artificial sensor system that generally consists of an array of 
chemical sensors for detection of volatile organic compound 
profiles (breathprints) and an algorithm for pattern recogni-
tion. E-noses are handheld, portable devices that provide 
immediate results. E-noses discriminate between patients 
with respiratory disease, including asthma, COPD and lung 
cancer, and healthy control subjects, and also among pa-
tients with different respiratory diseases. E-nose breath-
prints are associated with airway inflammation activity. In 
combination with other ‘omics’ platforms, e-nose technolo-
gy might contribute to the identification of new surrogate 
markers of pulmonary inflammation and subphenotypes of 
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mainly related to sensor system complexity, sensitivity, 
specificity, types of sensor (receptors vs. chemical sen-
sors), characteristics of volatiles detected and effects of 
ambient factors (e.g., humidity) on volatile identifica-
tion. The human olfactory system is much more complex 
than artificial noses as nasal epithelium contains be-
tween 10 and 100 million receptors which bind odorant 
volatile molecules even at the parts per trillion (ppt) lev-
el with high specificity  [12, 13] . E-noses are able to detect 
non-odorant gases (e.g., carbon monoxide), but are not 
sensitive to several substances recognized by the human 
nose, can be affected by background substances such as 
water vapour, and are currently much less specific and 
sensitive  [9–14] . E-noses generally consist of an array of 
chemical sensors  [9–14] . However, technologies, includ-
ing optical sensor systems, MS, ion mobility spectrom-
etry, selected ion flow tube mass spectrometry (SIFT-
MS), GC and infrared spectroscopy are also referred to 
as e-noses  [9–14] . The classical e-nose, based on chemical 
sensor technology, is sensitive to the totality of the com-
pounds rather than to a specific one  [9, 10, 14] . Individ-
ual chemical sensors are globally selective as each sensor 
detects more chemicals and each chemical is detected by 
more than one sensor. Due to poor specificity to indi-
vidual volatiles, chemical sensor arrays are not generally 
suitable for identifying single gases/volatiles in complex 
mixtures such as human breath, for which different e-
nose techniques including SIFT-MS, thermal desorption 
GC/MS and GC/MS coupled with solid phase extraction 
or micro-extraction are required  [15] . The steady-state 
frequency, resistance, potential or current shifts of the 
e-nose sensors produce a pattern (‘breathprint’), and a 
collection of measurements produces a set of breath-
prints that are analysed by a pattern recognition algo-
rithm for classification purposes  [16] . Acoustic e-noses 
detect changes in the propagation (velocity and/or am-
plitude) of acoustic waves through or on the surface of 
the sensor coating material due to sorption of volatile 
compounds  [16] . In the optical sensor systems, changes 
in light properties or characteristics including absor-
bance, fluorescence, optical layer thickness and polar-
ization are measured  [9, 16] . Calorimetric e-noses are 
made from pellistors (‘pelletised sensors’) and detect 
temperature or heat change derived from chemical reac-
tions between catalytic beads and ambient gases. This 
leads to an increase in the sensor resistance that gener-
ates a signal  [16] .

  The e-nose is potentially useful for discriminating be-
tween asthmatic patients and healthy subjects  [3, 17] , be-
tween patients with asthma of different severity  [17] , be-

tween patients with lung cancer and healthy subjects and/
or patients with non-cancer lung disease  [5, 6, 18–21] , be-
tween patients with lung cancer and COPD  [18]  and be-
tween patients with asthma and COPD  [4, 22] . Once 
chemical sensor arrays have shown between-group dif-
ferences based upon breath VOC profiles, GC/MS can be 
used for identifying those VOCs responsible for discrim-
inating and quantifying their concentrations. This ap-
proach might provide new pathophysiological insights, 
identify novel biomarkers of pulmonary disease, and 
have implications for diagnosis and therapeutic monitor-
ing of patients with respiratory disease. In this review, the 
methodology of e-nose and its potential applications to 
respiratory medicine are discussed.

  E-Nose Methodology 

 The e-nose methodology is relatively new. Different 
internal laboratory standardized procedures for collec-
tion of exhaled breath and e-nose analysis are available, 
but none is globally accepted.

  Collection of Exhaled Breath 
 Issues related to exhaled breath sampling regard the 

type of sampling (total vs. alveolar breath), the effect of 
ambient substances, the duration of sampling (single 
breath vs. fixed-time breathing)  [15] , the effect of expira-
tory flow  [17] , type of collecting bags, effect of humidity 
and VOC recovery.

  Total versus Alveolar Breath Sampling 
 There are two main techniques for collecting exhaled 

breath: mixed expiratory sampling in which total breath 
including dead space air is collected, and alveolar sam-
pling in which alveolar breath is collected  [3, 15, 23]  
( fig. 1 ). Mixed expiratory sampling is easy to perform, but 
is affected by dead space air dilution  [15] . Alveolar breath 
sampling requires additional equipment, but reduces 
contaminant concentrations  [15, 23] .

  In one protocol  [4, 17, 18, 22] , an equilibration phase 
(wash-in) with VOC-filtered room air is performed be-
fore breath sampling to reduce the interference of ambi-
ent VOCs  [17] . Subjects, while wearing a nose-clip, are 
asked to breathe tidally VOC-filtered air for 5 min into a 
2-way T-shape non-rebreathing valve with an inspiratory 
VOC filter and an expiratory silica reservoir to reduce 
sample water vapour, which can affect sensor response  [9, 
16] . Then, subjects are asked to inhale to total lung capac-
ity and perform a forced vital capacity manoeuvre into a 



 Montuschi   /Mores   /Trové   /Mondino   /
Barnes    

Respiration 2013;85:72–8474

Tedlar bag against an expiratory resistance of 20 cm H 2 O 
to close the soft palate and obtain an expiratory flow of 
0.1–0.2 litres/s  [4, 17, 18, 22] . This breath sampling proce-
dure minimizes the effect of ambient VOCs on e-nose 
analysis, but does not enable comparison of breath VOC 
profiles from different lung compartments as total ex-
haled breath is collected.

  Another protocol includes two procedures for collect-
ing exhaled breath for studying the differences between 
total exhaled breath and alveolar breath ( fig. 1 )  [3] . In the 
first sampling procedure, subjects are asked to inhale to 
total lung capacity and to fully exhale into a mouthpiece 
connected to a Tedlar bag through a 2-way T-shape non-
rebreathing valve ( fig. 1 a) and total exhaled breath is col-
lected. In the second sampling procedure, subjects are 
asked to repeat the manoeuvre. The first 150 ml, consid-
ered as dead space volume, are collected into a separate 
Tedlar bag and discarded, and the remaining breath vol-
ume, principally derived from the alveolar compartment, 
is analysed ( fig. 1 b)  [3] . This approach enables differential 
breath sampling, but requires adjustment for ambient 
VOCs. A protocol combining a wash-in phase with VOC-
filtered air and differential breath sampling has been pro-
posed  [21] . In another study, subjects performed tidal 
breathing of room air for 12 min while exhaling into a 
device designed to draw their breath across a colorimetric 
sensor array  [19] .

  The possibility of breath sampling directly into sorbent 
traps (e.g., Tenax TA and Tenax GR) is under investiga-
tion. This approach has the advantage of increasing sam-

ple breath VOC concentrations and stability, but is cur-
rently limited by technical issues (e.g., high resistance 
during breath sampling).

  Effect of Ambient Substances 
 To correct for the effect of ambient volatiles on exhaled 

breath two approaches are possible: calculating alveolar 
gradients  [1, 15]  or having subjects breathe gas/volatile-
free air for a certain time before measurement (wash-in) 
 [17] . Alveolar gradients are obtained by subtracting inspi-
ratory from expiratory volatile concentrations  [2, 15] . 
Wash-in with volatile-free air can be more effective but 
less feasible in the clinical setting  [1, 15] . However, calcu-
lating alveolar gradients is affected by the complexity of 
pulmonary kinetics of volatiles that, in turn, depend on 
breathing patterns, ventilation perfusion ratio in the lung 
and alveolar concentration gradients of volatile com-
pounds  [15] . Moreover, it should be considered that pul-
monary kinetics is affected by lung disease and that dif-
ferent respiratory diseases can have different effects on 
pulmonary kinetics.

  Single Breath versus Fixed-Time Breathing 
 Some authors consider breath analysis in samples col-

lected during a certain time preferable over single-breath 
analysis, as breath-to-breath volatile concentrations may 
vary considerably and averaging is often necessary  [15] . 
However, other groups have obtained good classification 
rates using the single-breath method  [3–6, 17] .

Breath

2-way valve
Oropharynx

Airways
Alveolar breath

Volume: 2.15 litres

Analysed with
e-nose

a

Breath

2-way valve

Oropharynx
Airways

Volume: 150 ml

Alveolar breath
Volume: 2 litres

Not considered for analysis

Analysed with
e-nose

b
  Fig. 1.  Breath sampling including two pro-
cedures for collecting total exhaled breath 
( a ) and alveolar breath ( b ). 
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  Effect of Expiratory Flow 
 Expiratory flow rate and ambient temperature for 

breath sampling have to be standardized  [9] . In single-
breath analysis, the possible effect of expiratory flow dur-
ing vital capacity sampling was studied in healthy non-
smokers by using 100–200 ml/s and 300–500 ml/s in a 
random order with a 30-min interval  [17] . Different expi-
ratory flow rates were achieved by changing expiratory 
resistance (20 cm H 2 O to obtain an expiratory flow be-
tween 100 and 200 ml/s) during the vital capacity ma-
noeuvre  [17] . Within this flow range, expiratory flow has 
a limited effect on e-nose measurements  [17] . For this rea-
son, some authors perform single-breath sampling at an 
expiratory flow between 100 and 200 ml/s  [17] . However, 
further studies are required to formally address this is-
sue. The effect of expiratory flow on e-nose measure-
ments should particularly be studied at different expira-
tory flow ranges, after breathing for a certain time (as 
opposed to single-breath sampling), and in patients with 
respiratory disease.

  Type of Collecting Bags 
 Plastics bags coated with inert materials including 

polyvinyl fluoride (Tedlar � )  [3, 4, 17, 18, 22, 24] , fluori-
nated ethylene propylene copolymer (Teflon � )  [25]  or 
polyethylene terephthalate (Mylar � , Nalophan � )  [5, 26] , 
or electropolished stainless steel canisters can be used for 
collecting breath samples  [15] . Tedlar bags, which are rec-
ommended by the US Environmental Protection Agency 
for ambient gas sampling  [27] , are widely used for breath 
sampling from patients with respiratory disease  [3, 4, 17, 
18, 22, 24] . They are manufactured from a polyvinyl 
 fluoride film which is chemically inert and does not react 
with or alter the composition of a wide range of breath 
volatiles. However, polar and reactive compounds like 
methyl ethyl ketone, formaldehyde, methanol, 1-butene 
and acetone can adhere to Tedlar film, making their col-
lection less efficient  [27] . Particularly, if bags are exposed 
to direct sunlight, Tedlar materials can release hydrocar-
bons  [27] , N,N-dimethylacetamide and phenol  [24, 28] . 
To reduce hydrocarbon concentrations, Tedlar bags 
should be purged with ultrapure nitrogen and direct ex-
posure to sunlight should be avoided  [27] . GC/MS analy-
sis after thermal desorption of volatiles from fibres ex-
posed to empty Tedlar bags should be undertaken to 
 establish that contaminant levels are acceptable  [27] . 
 Although N,N-dimethylacetamide and phenol can pol-
lute the Tedlar bag content, these compounds are unlike-
ly to interfere with the analysis of breath VOCs  [24] . 
 Stability of a selected panel of standard VOCs (benzene, 

toluene, p-xylene, styrene, methyl ethyl ketone, methyl 
isobutyl ketone, butyl acetate and isobutyl alcohol) in 
Tedlar bags is acceptable up to 2 days from air sample col-
lection  [29] . Similar results were reported when human 
breath samples were analysed  [24] . Decreases from VOCs 
in breath samples during storage are time dependent, but 
limited to less than 10% up to 52 h  [24] . To increase re-
producibility, a fixed point in time after sample collection 
should be chosen for breath analysis  [24] . Variations in 
decreases in breath VOCs over time are generally smaller 
than inter-individual differences for most breath VOCs 
 [24] .

  Effect of Humidity 
 Sample humidity seems to have no effect of VOC sta-

bility in the Tedlar bags  [24] , whereas it can affect the be-
haviour of some types of chemical sensor arrays includ-
ing those based on conduction polymer sensors or metal 
oxide sensors  [9, 16, 30] . Likewise, ambient water vapour 
concentrations, ranging from  ! 300 ppm to  1 73,000 ppm, 
and particularly their changes on a daily basis, make the 
accurate detection of volatiles at sub-ppm concentrations 
very difficult  [31] . Possible solutions to this problem in-
clude the use of silica gel to reduce breath humidity dur-
ing sampling  [4] , heating of samples, maintaining the 
sensor chamber at a fixed temperature  [16]  and the choice 
of types of sensors less sensitive to water vapour (e.g., 
 colorimetric sensor arrays)  [31] .

  VOC Recovery 
 Relative recoveries of VOCs depend on the physical-

chemical properties of the single VOC and the bag mate-
rials  [29] . For Tedlar bags, recovery was greater for the 
lower molecular weight aromatic VOCs than for the high 
molecular weight aromatics, whereas non-aromatic 
VOCs show the opposite behaviour  [29] . The use of poly-
ester aluminium bags as a replacement for Tedlar bags is 
likely to yield more reliable data in the analysis of VOCs 
in terms of greater stability and sensitivities, at least over 
periods of less than 3 days  [29] . The suitability of different 
polymer bags (Nalophan, Tedlar, Teflon and FlexFoil) for 
storage of breath volatile sulphur compounds has been 
formally addressed  [32] . FlexFoil bags seem to have the 
best performance for volatile sulphur compound storage 
up to 24 h in terms of recovery, background, light sensi-
tivity, reusability and matrix effects  [32] . Alternatively, 
Tedlar bags can be used for storing times up to 6–8 h  [32] . 
In analogy to the volatile sulphur compound study, com-
parative studies aiming at assessing the performance of 
different types of collecting materials for breath VOC 
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with different physical-chemical characteristics should 
be undertaken. Teflon-coated bags, which are inert to 
virtually all chemicals and have been reported to have the 
lowest amounts of chemical impurities  [28] , and Mylar-
coated bags have been used for breath sampling in pa-
tients with respiratory disease  [5, 25]  and for headspace 
sampling from microbiological cultures  [33] . For volatile 
fatty acids, solid-phase micro-extraction fibres have the 
highest mean recovery followed by sorbent 2,6-diphenyl-
ene-oxide polymer resin (Tenax TA) sorbent tubes, poly-
ethylene bags, Teflon bags and Tedlar bags  [28] . A critical 
review of the different types of sampling devices for e-
nose analysis is difficult due to the lack of head-to-head 
studies aiming at comparing the behaviour of the differ-
ent collecting bag materials exposed to human breath. 
These studies are required for optimization and stan-
dardization of the e-nose technique. Likewise, formal 
GC/MS studies aimed at identifying and quantifying vol-
atiles possibly released from the different coating materi-
als and their potential effects on breath analysis per-
formed with chemical sensor arrays are warranted. As 
many breath VOC concentrations are in the nano- to pi-
comolar (ppbv to pptv) range  [34] , preconcentration of 
breath samples obtained with adsorption onto sorbent 
traps or coated fibres (solid phase micro-extraction) can 
be required  [15] . Different adsorbent materials, including 
organic polymers (e.g., Tenax), activated charcoal, carbon 
molecular sieves and graphitized carbon, are used in sor-
bent traps  [15] . Different adsorbents can also be com-
bined in a single sorbent trap  [15]  to improve the quality 
of preconcentration. The use of sorbent traps has also the 
advantage of improving breath sample stability.

  E-Nose Analysis: Principles and Devices 
 The setup for e-nose analysis generally consists of an 

e-nose with software for data analysis, a collecting bag 
containing VOC-filtered ambient air for baseline and a 
collecting bag containing the breath sample. However, 
not all techniques require or use sample collecting bags, 
baseline bags and on-board analysis software  [1, 9, 15] .

  A list of commercially available e-noses, not including 
the recent NA-NOSE, is available  [9] . Some e-noses based 
on chemical sensor arrays are currently prototypes, not 
yet available on the market  [3, 6, 20, 21, 35–38] . Sensor ar-
rays are the most common approach to e-nose technology 
due to their large-scale use and similarity to biological 
sensors. Different types of sensors, including metal-oxide 
semiconducting gas sensors, conducting polymer gas sen-
sors, electrochemical gas sensors, catalytic field-effect 
sensors (metal-oxide semiconductor field effect transis-

tors), acoustic sensors (quartz crystal microbalance sen-
sors, surface and bulk acoustic wave gas sensors), optical 
gas sensors, calorimetric sensors, infrared sensors, fluo-
rescence sensors and colorimetric sensors, as well as sens-
ing materials, are available  [16] . Advantages and limita-
tions associated with individual e-nose sensor types in-
clude specificity, response and recovery times, range of 
volatiles detected, sensitivities, operating temperatures, 
physical size, temperature and humidity effect on sensor 
functioning, portability, cost and circuitry complexity 
 [16] . Metal oxides semiconducting sensors have high sen-
sitivity but poor precision, require high operating tem-
peratures and are sensitive to humidity  [16] . Conducting 
polymer sensors are sensitive to many VOC, have a short 
response time and operate at ambient temperature, but 
are sensitive to humidity and temperature, and sensor life 
is limited  [16] . Quartz crystal microbalance sensors have 
good precision and high sensitivity, but have poor signal-
to-noise ratio and are sensitive to humidity and tempera-
ture  [16] . Surface acoustic wave sensors have high sensitiv-
ity, good response times and are sensitive to virtually all 
volatiles, but are temperature sensitive, their electronics is 
complex and specificity to chemical groups is affected by 
sensor coating materials  [16] . In optical sensor systems, 
the most direct method involves measuring the gas/vola-
tile absorbance in a specific frequency range, but they lack 
sufficient sensitivity for compounds in the lower concen-
tration range as is the case of many breath VOCs  [9] . Ca-
lorimetric sensors have a fast response and recovery time 
and high specificity for oxidized compounds, but require 
high temperature operation and are only sensitive to oxy-
gen-containing volatiles  [16] . Using a carbon black poly-
mer-based gas sensor array, limits of detection values, de-
termined for breath volatiles including acetic acid, tolu-
ene, ethanol, acetone,  n -pentane and isoprene, were in the 
range of 80–240 ppb  [39] . Using an array of quartz micro-
balance sensors covered with molecular films of different 
metalloporphyrins, under controlled laboratory condi-
tions, calibration curves for volatiles with different hydro-
philia and polarity such as ethanol, hexane and ethyl ac-
etate have shown experimental limits of detection of 65, 
141 and 171 ppb, respectively [40]. These detection limit 
values can still be too high for some breath VOC which 
are detected in the lower ppb range. Improving the detec-
tion limit of e-noses based on chemical sensor arrays is 
one of the priorities in this research field. Increasing the 
sensor array number does not necessarily improve the e-
nose classification performance as that could amplify the 
noise and/or generate redundancy of information  [9, 11] . 
At present, the ideal sensor array does not exist. Selecting  
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a sensor array based upon its application and chemical 
characteristics of volatiles to be detected might be a ratio-
nale strategy for choosing the ‘right’ e-nose  [9, 11, 16] .

  The Cyranose 320�, an e-nose currently produced by 
Intelligent Optical Systems Inc., Baldwin Park, Calif., 
USA, consists of an array of 32 chemical sensors made 
from composites of an inorganic conductor (carbon 
black) and insulating organic polymers  [41] . The mea-
surement is based on a resistance variation in each chem-
ical sensor when exposed to a VOC mixture ( fig. 2 ). The 
differential responses across the array (resistance shifts) 
are composed in patterns and analysed by pattern recog-
nition algorithms  [42] .

  A prototype of e-nose, LibraNose (University of Tor 
Vergata, Rome, Italy)  [3, 6] , contains an array of eight 
quartz microbalance gas sensors coated by molecular 
films of metalloporphyrins  [43] . Sensors detect the con-
centrations of chemicals absorbed in the sensitive films 
through the changes of resonant frequency that is pro-
portional to the absorbed mass  [3] .

  Another device, the MOSES II eNose� (GSG Mess- 
und Analysengeräte GmbH, Bruchsal, Germany), con-
tains eight metal-oxide sensors and eight quartz micro-
balance sensors, two very different sensor technologies 
that  provide complementary information on the ad-
sorbed volatile compounds  [38] . The Nanoscale Artificial 
Nose (NA-NOSE), at present non-commercially avail-

able, consists of five sensors that are based on spherical 
gold nanoparticles  [21] .

  A colorimetric sensor array consists of 36 spots com-
posed of different chemically sensitive compounds (e.g., 
metalloporphyrins) impregnated on a disposable car-
tridge  [19] . The colour spots change depending on the 
VOCs bound  [19, 44] . Colour changes are converted in 
numerical vectors  [19] .

  Fraction of exhaled nitric oxide (F E NO) analysers, 
which provide immediate results and are used for assess-
ing airway inflammation in patients with asthma  [45] , 
can also be considered as e-noses  [9] . F E NO analysers, 
which have been approved in the clinical setting [ 46, 
 www.aerocrine.com], include a portable, hand-held de-
vice, NIOX MINO� (Aerocrine, Solna, Sweden), based on 
a relatively selective chemical sensor  [47] . F E NO analysers 
will not be discussed further in this article.

  Hybrid systems have the advantage of combining
the high sensitivity of classical e-noses based on chemi - 
cal sensor arrays with the high specificity of different
e-nose techniques including GC/MS  [9] . The e-nose 
Prometheus� (Alpha MOS, Toulouse, France) is an ex-
ample of a hybrid system which combines a sensor array 
with a fingerprint mass spectrometer  [9, 16] . The sensor 
array consists of 18 metal oxide sensors arranged in three 
chambers each containing six sensors  [9] . The fingerprint 
mass spectrometer consists of a quadruple mass filter and 
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  Fig. 2.  Typical sensor response (Rmax – 
R0/R0) obtained with an e-nose. Each line 
represents a sensor response in terms of re-
sistance (R) changes over baseline values. 
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an electron impact ionizer. The Z-Nose� (Electronic Sen-
sor Technology, Newbury Park, Calif., USA), which is 
available in a portable version, combines a surface acous-
tic wave detector with GC (www.estcal.com).

  Chemical Sensor Array Data Analysis: Algorithms for 
Pattern Recognition 
 The analysis of breath VOC data obtained with chem-

ical sensor arrays requires multivariate statistical algo-
rithms  [48] . The field of pattern recognition has general 
applications in systems biology which are far beyond e-
nose data including biomedical magnetic resonance  [49]  
and ‘omics’ technologies such as metabolomics, pro-
teomics, transcriptomics, genomics and lipidomics. There 
are two types of pattern recognition: exploratory tech-
niques, which are generally unsupervised, and confirma-
tory techniques, which are supervised  [50] . Pattern recog-
nition analysis of data obtained with an e-nose can be per-
formed on-board or off-line. On-board data analysis can 
include cross-validation, principal component analysis 
(PCA) and canonical discriminant analysis. The inbuilt 
software calculates the cross-validation value, a cross-val-
idation estimate of error. Cross-validation is an internal 
tool to check the training set and the model that has been 
built. The ability to discriminate between groups can be 
quantified by the Mahalanobis distance, which expresses 
the distance between group means in units of standard 
deviations  [51] . PCA, used as a tool in exploratory data 
analysis and for making predictive models, transforms a 
number of possibly correlated variables into a smaller 
number of uncorrelated variables called principal compo-
nents  [48] . Canonical discriminant analysis is a method 
to find a linear combination of features that characterize 
or separate two or more classes  [48] . Off-line data analy - 
sis with different classifiers include partial least squares-
discriminant analysis  [6, 20] , support vector machines 
(SVMs)  [5, 52, 53] , random forest technique  [19]  and 
multi-layer neural networks  [3, 54] . There are many dif-
ferent methods of e-nose data analysis, but at present there 
is no consensus on the best method. The choice of the pat-
tern recognition algorithm should be based on the type of 
data (linear vs. non-linear) and e-nose application. Choos-
ing a classifier which is suitable for the sensor response 
patterns that will be generated is essential for achieving 
the best e-nose classification performance  [50] .

  Repeatability and Reproducibility of E-Nose 
Measurements 
 At present, available data on repeatability and repro-

ducibility of e-nose measurements are derived from one 

study in which Cyranose 320 was used  [4] . Sensor re-
sponses from two consecutive breath samples were as-
sessed for comparing within-day repeatability. Intraclass 
correlation coefficients ranging from 0.65 to 0.91 (mean 
0.80) indicate similar sensor responses  [4] . Data on be-
tween-day repeatability, assessed in 18 healthy subjects, 
indicate that sensor responses, analysed by paired t test-
ing, are similar  [4] . Technical reproducibility, assessed by 
analysing the same breath samples with two identical e-
noses, was similar  [4] . More studies are required to assess 
the repeatability of Cyranose 320 measurements in dif-
ferent centres. Likewise, repeatability studies for other 
types of e-noses are warranted.

  Applications of E-Nose in Respiratory Medicine 

 E-nose technology has been used for analysing the 
breath patterns of patients with asthma  [3, 4, 17, 22] , 
COPD  [4, 18, 55] , lung cancer  [5, 6, 18, 20, 21] , cystic fi-
brosis  [56–58] , healthy smokers  [4]  and healthy non-
smokers  [3–5, 17, 22] .

  Asthma 
 Using a chemical sensor array, breath VOC patterns 

were analysed in 10 steroid-naïve non-smoking atopic pa-
tients with mild asthma, 10 non-smoking atopic patients 
with severe asthma, 10 healthy non-smokers aged 18–45 
years and 10 healthy non-smokers aged 46–70 years  [17] . 
Breath samples were collected after an equilibration 
phase with VOC-filtered room air (wash-in). Data were 
analysed by on-board software and, then, offline confir-
matory analysis was performed by double cross-valida-
tion implementation of linear discriminant analysis of 
principal component reduction  [59] . The e-nose discrim-
inated between patients with mild asthma and healthy 
subjects aged 18–45 years (cross-validation value: 100%; 
Mahalanobis distance: 5.32) and between patients with 
severe asthma and healthy subjects aged 46–70 years 
(cross-validation value: 90%; Mahalanobis distance: 
2.77), whereas the e-nose discrimination ability between 
patients with mild and severe asthma was lower (cross-
validation value: 65%; Mahalanobis distance: 1.23)  [17] . 
No discrimination between healthy control groups was 
observed (cross validation value: 50%; Mahalanobis dis-
tance: 1.56)  [17] .

  In patients with a physician-based diagnosis of asth-
ma, the diagnostic performance of a prototype of an e-
nose (LibraNose) was compared with pulmonary func-
tion tests and F E NO  [3] . Twenty-seven steroid-naïve non-
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smoking atopic patients with intermittent and mild 
persistent asthma and 24 healthy non-smokers were in-
cluded in this study. Two procedures for collecting ex-
haled breath were followed to study the differences be-
tween total and alveolar air. A subgroup of 7 patients with 
asthma and 7 healthy subjects participated in a study 
with MS fingerprinting  [60]  as an independent technique 
for assessing between group discrimination and short-
term stability of breath samples  [3] . PCA and feed-for-
ward neural network were used to classify e-nose, F E NO 
and spirometry data. To validate the model, the total da-
tasets were divided into training and testing sets. To test 
the presence of any sensor drift, the first data collected 
were used for training and the remaining for testing  [3] . 
The diagnostic performance was determined with the 
test datasets in terms of the number of correct identifica-
tions of asthma diagnosis based on National Asthma Ed-
ucation and Prevention Programme guidelines  [61] . The 
best results were obtained when the e-nose analysis was 
performed on alveolar air in which the highest concen-
trations of endogenous VOCs had been reported  [23] . Di-
agnostic performance for e-nose alone, F E NO alone and 
pulmonary function testing alone was 88%, 79% and 
71%, respectively. The combination of e-nose and F E NO 
had the highest diagnostic performance for asthma (96%; 

 fig. 3 )  [3] . MS fingerprints of VOCs confirmed the valid-
ity of the e-nose-based classification and demonstrated 
that breath samples are stable for at least 48 h  [3] . The 
relatively small number of subjects included in this study 
precludes definitive conclusions on asthma diagnostic 
performance of e-nose alone or in combination with oth-
er methods for which large powered studies are warrant-
ed. The utility of e-nose technology as a diagnostic tool 
for screening of patients with asthma has to be estab-
lished in large prospective studies.

  Twenty-one asthma patients with fixed airway ob-
struction (fixed asthma), 39 asthma patients with revers-
ible airway obstruction (classic asthma) and 40 patients 
with COPD (GOLD stages II–III) were included in a cross-
sectional study  [22] . Breath samples were collected after a 
5-min equilibration phase with VOC-filtered air and ana-
lysed  [22] . External validity in newly recruited patients 
(validation set) was tested with a previous and indepen-
dent training set  [22] . PCA, canonical discriminant anal-
ysis and area under the curve (AUC) of receiver operating 
characteristic curves were used for data analysis  [22] . E-
nose-discriminated patients with fixed asthma from 
COPD patients with an 88% accuracy (AUC 0.95, 95% CI 
0.84–1.00, sensitivity 85%, specificity 90%) and patients 
with classic asthma from COPD patients with an 83% ac-
curacy (AUC 0.93, 95% CI 0.87–1.00, sensitivity 91%, spec-
ificity 90%; both p  !  0.001)  [22] . Patients with fixed asth-
ma and classic asthma could not be discriminated  [22] .

  COPD 
 A cross-sectional study investigated whether an e-nose 

could distinguish between 30 patients with COPD, 20 pa-
tients with mild to severe asthma, 20 healthy smokers and 
20 healthy non-smokers  [4] . Breath sampling was per-
formed after a wash-in with VOC-filtered air. The pri-
mary analysis was done comparing the breathprints ob-
tained from patients with asthma and patients with COPD. 
Data were reduced by PCA, canonical linear discriminant 
analysis was used as a classifier, and cross-validation with 
the leave-one-out method was used to calculate the cross-
validated accuracy value (accuracy) expressed as a per-
centage. E-nose could discriminate patients with mild-to-
severe asthma from patients with COPD (accuracy 96%,
p  !  0.001), healthy smokers (accuracy 93%, p  !  0.001) and 
healthy non-smokers (accuracy 95%, p  !  0.001)  [4] . A par-
tial overlapping between patients with COPD and healthy 
smokers (accuracy 66%, p  = 0.006) was observed. This 
might reflect the presence of asymptomatic smokers with 
normal lung function who are at higher risk for COPD  [4] . 
Longitudinal studies to clarify this are required. Breath-
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  Fig. 3.  Diagnostic performance of an e-nose, F E NO and pulmo-
nary function testing (PFT) in patients with intermittent and 
mild persistent asthma [data from 3]. The diagnostic performance 
was determined in terms of the number of correct identifications 
of asthma diagnosis in the testing dataset and was related to the 
best performances obtained with a neural network classification 
model for each specific case. 
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prints of patients with COPD who were current smokers 
or ex-smokers were similar (p = 0.16)  [4] .

  In one study including 12 patients with mild (GOLD 
stage I) COPD and 16 patients with moderate (GOLD 
stage II) COPD, e-nose breathprints were associated with 
airway inflammation activity as reflected by sputum eo-
sinophil cationic protein (ECP; r = 0.84, p = 0.002) and 
myeloperoxidase (MPO; r = 0.72, p = 0.008) in patients 
with mild COPD  [55] . E-nose had high sensitivity and 
specificity for inflammatory activity in patients with 
mild COPD as shown by ROC curves (ECP: AUC 1.00; 
MPO: AUC 0.96)  [55] . Validation of the e-nose technol-
ogy according to the Standards for Reporting of Diagnos-
tic Accuracy guidelines  [62]  is warranted for establishing 
its utility for the diagnosis of asthma and COPD.

  Lung Cancer 
 Breath VOC patterns detected by e-nose in patients 

with lung cancer are different from those in healthy sub-
jects  [5, 6, 18–21] . One study with an e-nose included two 
phases  [5] . In a discovery and training phase, breathprints 
from 14 patients with bronchogenic carcinoma and from 
45 individuals who were either healthy subjects or patients 
with non-cancerous lung disease were non-blindly anal-
ysed for investigating possible between-group differences 
 [5] . PCA and canonical discriminant analysis were ap-
plied and between-class discrimination was quantified by 
Mahalanobis distance. GC/MS, performed on breath 
samples from 8 patients with lung cancer, identified sev-
eral VOCs, including isopropanol, acetone, pentane and 
benzene  [5] , which have been linked to lung cancer  [63–
67] . Once it was established that patients with lung cancer 
had different breathprints, the training set was used to 
build an SVM prediction model that was validated in the 
second phase of the study and applied prospectively in a 
group of 14 individuals with lung cancer and 62 individu-
als without lung cancer, either healthy or with non-cancer 
lung disease, who were assessed in a blinded manner  [5] . 
The e-nose discriminated between patients with broncho-
genic carcinoma and healthy control subjects or control 
subjects with non-cancer lung disease with a sensitivity of 
71% (95% CI 42–92), a specificity of 92% (95% CI 82–97) 
for detecting lung cancer, a positive predictive value of 
67% (95% CI 38–88) and a negative predictive value of 93% 
(95% CI 84–98)  [5] . However, the potential utility of the 
e-nose for early diagnosis of lung cancer has to be estab-
lished in population-based screening.

  In another cross-sectional study, the discriminant 
power of e-nose was studied in 10 patients with non-small 
cell lung cancer, 10 patients with COPD and 10 healthy 

subjects  [18] . Breathprints from patients with lung cancer 
clustered distinctly from those of patients with COPD 
(cross validation value: 85%; Mahalanobis distance: 3.73) 
 [18] . The e-nose also discriminated between patients with 
lung cancer and healthy subjects in duplicate measures 
(cross validation value: 90 and 80%; Mahalanobis dis-
tance: 2.96 and 2.26)  [18] .

  The discriminative ability of LibraNose was tested in 
28 patients with lung cancer, 28 patients with non-cancer 
lung disease and 36 healthy non-smokers  [6] . Exhaled 
breath principally derived from the alveolar compart-
ment was analysed. Partial least squares-discriminant 
analysis cross-validated by the leave-one-out technique 
 [68]  was used for classification. The e-nose distinguished 
patients with lung cancer from healthy subjects with a 
sensitivity of 85%, a specificity of 100%, a negative predic-
tive value of 90% and a positive predictive value of 100% 
 [6] . The classification rate in patients with lung cancer 
and with non-cancer lung disease was 86% with a sensi-
tivity of 93% and 79%, respectively. When breathprints 
from the 3 groups were analysed, the classification rate 
was 79% with a sensitivity of 89% for identifying lung 
cancer, whereas the ability of the e-nose to distinguish 
patients with non-cancer lung disease from healthy sub-
jects was lower as 9 patients were false negative  [6] .

  In a cross-sectional study including 49 patients with 
non-small cell lung cancer, 73 patients with non-cancer 
lung disease and 21 healthy control subjects, a colorimet-
ric sensor array was able to predict the presence of lung 
cancer with a sensitivity of 73% and a specificity of 72% 
(p = 0.01)  [19] .

  In a cross-sectional study, alveolar breath obtained 
from 20 patients with lung cancer (12 smokers, 8 non-
smokers), 16 patients with head-and-neck cancer (10 
smokers, 6 non-smokers) and 26 healthy subjects (7 
smokers, 19 non-smokers) was analysed with NA-NOSE 
 [21] . PCA with ANOVA and t test and SVM with cross-
validation were used for data analysis  [21] . NA-NOSE 
discriminates between patients with lung cancer and 
healthy subjects, and patients with head-and-neck can-
cer and lung cancer  [21] . Specificity and sensitivity, de-
termined through cross-validation, for detecting lung 
cancer was 100%. Specificity and sensitivity for discrim-
inating between head-and-neck cancer and lung cancer 
was 100%  [21] . Between-group differences observed with 
chemical sensor arrays were confirmed with GC/MS. A 
proposed set of breath VOCs that discriminate between 
lung cancer and head-and-neck cancer include ammo-
nium acetate, 3-methyl-hexane, 2,4-dimethyl-heptane, 
4-methyl-octane, p-xylene and 2,6,6-trimethyl-octane 
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 [21] . Smoking seems to have no effect on these VOC pat-
terns  [21] . However, studies to formally address this issue 
are required. It is not known whether breath VOCs iden-
tified by GC/MS are the same as those which are respon-
sible for between group discrimination observed with 
NA-NOSE  [21] . Establishing whether this technique can 
be used as a screening test for lung cancer requires large 
studies  [21] .

  Tuberculosis 
 A chemical sensor array consisting of 14 conducting 

polymer sensors based on polyaniline (Bloodhound 114� 
E-Nose; Scensive Technologies Ltd., Normanton, UK) 
was used for detecting mycobacterium tuberculosis in 
human sputum  [69]  and for distinguishing between my-
cobacterium tuberculosis and other pathogens in culture 
and in spiked sputum samples  [70] . A similar e-nose con-
sisting of 16 sensors detects and identifies 12 different 
microorganisms by analysing the volatile compounds 
produced by the plate cultures  [71] .

  Sinusitis 
 E-nose sampling of nasal exhalation from patients 

with suspected sinusitis is able to predict correctly the 
diagnosis of sinusitis in at least 72% of the samples  [72] . 
A colorimetric sensor array can be used to distinguish 
breath samples from patients with chronic bacterial si-
nusitis versus healthy control subjects with 90% accu-
racy  [7] . A chemical sensor array identifies biofilm- ver-
sus non-biofilm-producing  Pseudomonas  and  Staphylo-
coccus  species with accuracy ranging from 72.2% to 
100%  [73] . Specific VOCs have been identified in infect-
ed sinus mucus samples with GC/MS  [74] . Other poten-
tial applications of e-noses include identification of pa-
tients with chronic rhinosinusitis through analysis of 
nasal out-breath samples (classification rate of 80%)  [75] .

  Cystic Fibrosis 
 Using e-nose technology based on MS, breath volatile 

compounds have been measured in patients with cystic 
fibrosis and compared with healthy subjects  [56–58] .

  Other Diseases or Pathophysiological Conditions 
 Methodologies based on e-noses are able to detect bac-

terial pathogens of the upper respiratory tract from in 
vitro samples  [76]  and swab samples from patients with 
ear, nose and throat infections with a classification rate 
of 88.2%  [77] . E-nose analysis has been applied to the 
identification of ventilator-associated pneumonia in pa-
tients in surgical intensive care units  [8, 78, 79]. 

  Limitations 

 Standardization and development of a robust method-
ology is the priority in e-nose research. Likewise, im-
provement in sensor specificity, sensitivity and long-term 
stability is essential for the development of this technol-
ogy. At present, chemical sensor arrays, which are com-
monly used as e-noses, are not sufficiently sensitive to 
detect those breath VOCs in the low ppb range, can be 
affected by ambient conditions (e.g., humidity and tem-
perature), and have a limited life time. Being selective for 
patterns of volatiles (breathprints), sensor arrays are not 
suitable for identifying and quantifying the single VOCs 
in exhaled breath, which requires different e-nose tech-
niques such as GC/MS. Studies aiming at identifying the 
complete profile of biomolecules (‘breathome’) in the 
gaseous and liquid phase of the exhaled breath with MS 
techniques and nuclear magnetic resonance spectrosco-
py  [80–82]  are on-going.

  The fact that some well-performing chemical sensor 
arrays (e.g., LibraNose, NA-NOSE) are prototypes cur-
rently limits the development of this technique. Lack of 
studies comparing different devices in the same subjects 
and differences in data analysis make it difficult to com-
pare results from different centres. In one study with an 
e-nose, data were externally validated  [22] . Similar studies 
in larger cohorts of patients with respiratory disease are 
required. Procedures for building a model based on data 
obtained with one e-nose and applied to data collected 
with a different e-nose have been proposed (e-nose data 
mapping)  [83] . Under controlled experimental conditions 
and limited to three selected volatiles (ethanol, hexane 
and ethyl acetate), e-nose data mapping showed similar 
results, indicating that one nose can be used for the train-
ing set and the other for the testing of the model [40]. 
However, future studies to validate this strategy in clinical 
trials when complex breath volatile mixtures are analysed 
should be undertaken. Comparison of different e-noses
is part of a European Union Innovative Medicines Initia-
tive project on severe asthma, called Unbiased Biomark-
ers for the Prediction of Respiratory Disease Outcomes 
(U-BIOPRED). A platform of several e-noses will be used 
for analysing breath samples from asthma patients and 
healthy subjects at the same time. Data will be analysed 
with the same algorithms and integrated with data from 
other ‘omics’ platforms using a systems biology approach
(http://www.fp7-consulting.be/en/ubiopred/).

  The ideal all-purpose e-nose does not exist. The choice 
of the ‘right’ breath sampling protocol and e-nose will 
much depend on the required applications which should 
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take into consideration the physical-chemical properties of 
the breath VOC to be studied (e.g., molecular weight, hy-
drophilia, polarity), the type of respiratory disease (e.g., 
respiratory tract, small airway, interstitial, alveolar dis-
ease) and the characteristics of patients with respiratory 
disease (e.g., pulmonary function testing, breathing pat-
terns).

  The available studies on the applications of the e-nose 
in respiratory medicine are limited to relatively small 
groups of patients with a known diagnosis. The role of the 
e-nose in population-based screening for respiratory dis-
eases has to be established in large prospective studies.

  Complex data analysis requiring trained statisticians 
and cost are other current limitations for large-scale use 
of the e-nose technique. Chemical sensor array data gen-
erally require multivariate statistical analysis for pattern 
recognition, whereas MS techniques are not suitable for 
routine use. Basically, the e-nose technique has to be val-
idated and made simple before it can be considered for 
clinical applications.

  Conclusions 

 The e-nose discriminates between patients with respi-
ratory disease and healthy control subjects and also 
among patients with different respiratory diseases, and is 
emerging as a new, non-invasive diagnostic tool. E-noses 
are handheld, portable devices that may provide immedi-
ate results, but breath VOC pattern recognition often re-
quires off-line analysis with multivariate statistical algo-
rithms. Combined technologies, which exploit the high 
sensitivity of chemical sensor arrays with the high speci-
ficity of GC/MS, can be used for identifying selective 

breath volatile compounds. This non-invasive approach 
to the assessment of pulmonary inflammation might lead 
to a better understanding of the pathophysiology of lung 
disease and have implications for the diagnosis, pharma-
cological treatment and management of patients with re-
spiratory disease. However, e-nose technology has limita-
tions that need to be overcome before its potential as a 
clinical tool can be considered.

  Future work will involve establishing the detection 
limit for breath VOCs, marketing and comparing differ-
ent e-noses, identifying and quantifying breath VOCs re-
sponsible for between-group differences, improving 
breath sample stability and performing between-labora-
tory validation studies of this technique. On the clinical 
side, longitudinal studies to establish the utility of e-nose 
for monitoring disease progression and controlled stud-
ies to ascertain its potential role for assessing pharmaco-
logical response are warranted.

  In combination with other ‘omics’ platforms, e-nose 
technology might contribute to the identification of sub-
phenotypes of patients with respiratory diseases and new 
surrogate markers for respiratory disease, provide a mo-
lecular basis to a personalized pharmacological treat-
ment, and facilitate the development of new drugs. As 
part of a non-invasive integrated approach, e-noses might 
contribute to a better management of individual patients 
with respiratory disease.
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