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ABSTRACT

This thesis is written in two parts,

In Part One, we develop a new method for evaluating three dimen-
sional lattice summations and apply it to the evaluation of the electro-
static potential of a finite ionic crystal, We then compare our
expression with those obtained using infinite crystals, Some of the
effects which are not obtainable using an infinite crystal are:

1. the electrostatic poteatial depends on the shape of the sample
when a dipole or quadrupole moment is present, and

2, the electrostatic potential at the surface of a crvstal changes
rapidly near the surface,

In Part Two, we use the method developed in Part One to evaluate
the electrostatic potential in a deformed crystal and use the resulting
expression to define the macroscopic electric field and the electric

displacement field, For the case of uniform fields, the expressions

for these fields reduce to those in common use,.
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CHAPTER I

INTRODUCTION

A, Intvoduction

The electrostatic potential is a quantity which appears in most
calculations related to ionic crystals. Unfortunately, it is a quantity
which is difficult to evaluate, The difficulty arises from the long
range nature of the coulomb potential of a point charge. 1If a crystal
is assumed to be éomposed of point charges, then all the ions in the |
crystal contribute significantly to the electrostatic potential at any
point, not just the ions in the vicinity of the point,

23 jons in a finite crystal, in

Since there are of the order 10
practice, direct summation of the contribution of cach ioa is impoussi-
ble, What has been done in the past is to consider the case of the
infinite crystal. The electrostatic potential of an infinite crystal
is a periodic function of position with the periodicity of the lattice,
This property aids in manipulating the expression for the electrostatic
potential into more manageable forms, However, the nature of the con-
nection between the finite crystal results and the infinite crystal
results has never been made clear in the literature, at least in our
opinion,

What we propcse to do in this thesis is to evaluate the electro-
static potential for a finite crystal and ccmpare the result with the
expressions {or the electrostatic potential of an infinite crystal

obtained by other authors. The comparison of the potentials of the



infinite and finite crystals has not been done previously to our
knowledge,

In Chapter II, we discuss some of the prominent methods used in
the past to evaluate the electrostatic potential of an infinite crystal.
In Chapter III, we evaluate the electrostatic potential due to a finite
crystal, It is found convenient to consider this potential as the sum
of two parts - an intrinéic and an extrinsic part, The intrinsic part
is discussed in Chapter IV, We show that' this quantity is related to
the electrostatic potential of the infinite crystal, Chapter V is
devoted to a discussion of the extrinsic part., This quantity is non-
periodic and has no counter-part in the infinite crystal,

In the remainder of this clapter, we will introduce the notation

and terminology that will be used throughout the thesis,



B, Notation

Before proceeding, we will introduce the notation which will be
used throughout the thesis, Whenever possible, the notation of Born
and Huang1 (B&1) will be used,

The position vector of a Bravais lattice point will be denoted
by ;Z(T)*lwhere

=D = lia,8) + Laye, + lgageq + X ) L5380 ¢

1 is the triplet of integers (11,12,13) (which will be referred to as
lattice site indices); al'él, 3232, 3333 are the primitive translation
vectors of the Bravais lattice; and 81, 62, 33 are unit vectors. 1i.e.
e f=1 i=123 1.2.2
ayj, a5, a4 will be referred to as lattice parameters, % is a vector,
independent of T, which is zero if we have chosen the origin of i.?(-i’)
to be a Bravais lattice site and non-zero otherwise,
We will denote vectors in the yeciprocal lattice (reciprocal to

the Bravais lattice defined by (1,2.1)) by k and reciprocal lattice

vectors by S?(T-T). i.e,

A Al 2 :
K= kg, +kpgy * kay 1.2,3

and

*#1 We will be using the symbol 1 in three forms - T which represents
the triplet (11,12,13), 1i which is a component of -f, and 1 which is

the symbol for one,




Y@ =hbé +hb& +hbd ' 1.2.4
Y(R) = hPyg) + BpPp%y * P3bsts |
h denotes the triplet of integers (h_,h .h k_/ k /o, k. /b
P ng(123)’1122'3/3
are re:1 numbers; b & , b e . b & are the primitive translation
171 272 373
vectors of the reciprocal lattice; e é € are unit vectors; and
~1’ =27 ~3
b b are reciprocal lattice parameters, The unit vectors §

b1’ 2’
in addition to satisfying (1.2.2), also satisfy
e & = § . 1,j = 1,2,3 1.2.5
where § . is the Kronecker delta,
1)
§ =1 ' ' 1f i =]
ij 1.,2.6
The §i are givea in terns of the e by the relatioa

§i - ‘e‘jx’e‘kf‘éi.(éjxé‘k) 1.2.7

whexe i, 3, k are tyclic permutations of 1, 2, 3,



C., The Electrostatic Potential

Before giving the expression for the electrostatic potential of a
crystal, we will first have to define what we mean by a finite or by an
infinite crystal, For the purposes of this thesis the following
definitions will apply,

'A finite crystal is one which is constructed by associating

1 with each lattice

*2

a unique charge repetition unit (c,r,u,)*

point within a finite region of a Bravais lattice,’
The c,r,u, is the simplest group of charges (or ions) with which we
may build up the finite crystal, In practice, the c.r,u, will be
chosen to be electrically neutral, though many of our results hold for
the case of c.r.u.'s with non-vanishing net charge,

'An infinite crystal is one which is constructed by associating

a neutral charge basis unit (c,b,u,) with every lattice point

of a Bravais lattice.'

*1  There are finite crystals in which it is convenient to consider

the crystals as being bqilt up from two c,r,u,'s, This is usually done
if the total number of ions in the two c,r,u.'s is leés than the number
of ions in the single necessary c,r.u.

*2 A more realistic definition of a finite crystal should include
statements about the equilibrium conditions satisfied by the ions, We
have chosen the present definition because the electrostatic potential
associated with this charge array may be evaluated exactly, ¥quilibrium

conditions are beyond the scope of this part of the thesis,




Again the c,b,u, is some group of point charges (or iomns) with
which the infinite crystal can be constructed. We have chosen to use
c.r.u, for the finite crystal and c,b,u, for the infinite crystal to
emphasis that the charge repetition group for a finite crystal is
unique (for a given Bravais lattice) and that the charge repetition
group for an infinite crystal is not unique.*3 (See figs, 1.1 and 1.2,)
The criteria the c,b,u, must satisfy are charge neutrality and that it
correctly builds up the crystal lattice, The neutrality condition is
necessary if the electrostatic potential is to be finite, Some con-
venient c,b,u.'s are the primitive cell and other unit cells. The ions
in the c.b,u, are allowed to have charges which are fractions of the
im.ic charge, The only criterion {but more stringent) which
the c,r,u. must satisfy is that it correctly builds up the finite
sample which is being considered., For a given region V in a Bravais
lattice there is a different finite crystal for each c.r,u, Whereas,
for the case of an infinite crystal, a number of different c.b,u.'s
plus one Bravais lattice may generate the same system,

To give an example of why we wish to stress the difference between

a c,b,u, and a c.r,u,, we will consider the charge arrays given in figs.

L
1.1 and 1,2, 1In fig. 1.1 we show part of an infinite charge array., We
see that, for each Bravais lattice we may choose, there are many

different c.b.u's which may be used to build up the infinite crystal,

A few of them are given in"fig. 1.1, Ve note that these c,b,u./s have

*3  We note that a single charge repetition unit may be either a c.r.u,.

or a c,b,u, depending on the type of crystal it is used to construct,
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The Infinite Crystal

A Diatomic Crystal of Point Charges with Charges q and -q
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the finite region V.

Figuye 1,2

A Finite Diatomic Ionic Crystal



varying dipole moments and different symmetry properties, Directing
outr attention to fig, 1,2, we have an example of a finite crystal,

The region V is a rectangle of sides 4a by S5a, 1In contrast to the
infinite crystal case, we see that once the Bravais lattice is chosen,
there is only one charge repetition unit with which we may build this
finite crystal,

In summary, we use c,r,u, because a finite crystal uniquely defines
the c,r,u, whereas the infinite crystal does not uniquely define the
c,b.u, Also when the term c,r,u, is being used, it is immediately
obvious that a finite crystal is being considered,

The following discussion, up to eq (1,3.5), holds for both finite
a.d infinite crystals, For simplicity we will refer only to the c,r,u,
of the finite crystal explicitly,

If the c,r.u, is neutral, then the whole crystal is also neutral,

1abelling each of the ions in the c,r,u., with the symbol k*A, we have
5
éqk= 0 1.3.1
K

where qk is the charge of the k«th type ion and k is summed over all

the ions in the c,r.u, which is denoted by the r on the sum, If k is

sumred over 2 c!b,u,, then we use a b instead of the r, We find it

k

convenient to introduce a dimensionless parameter s,

related to qk as

follows:

-
%4  There should be no confusion between k denoting a vector in the
reciprocal lattice and k denoting the type cf ion in the c.,r.u, or

c.b,u, since k will always carry the vector symbol,




10

e . . 1.3,2
where e is the magnitude of the electronic charge,

If we let one of the ions (with k = 0) .in the c,r.ﬁ. occupy the
Bravais lattice sites, then we can define the positions of the other
ions in the c,r,u, with respect to this ion, Letting the position

k

vector of the k-th type ion be X* relative to the k = 0 ion, then

2k _ ks ka ka
R + X8, + x3e3 1.3.3

where x?/al, xglaz, x§733 are real numbers whose magnitudes are less
than one, By definition
20 -0 1.3.4

Thus the position vector, H(T,k), of the k-th ion in the c,r.u,

associated with the 1-th lattice site is

#(Ix) = 7D +7E 1.3.5
whezxe §k is independent of T, The choice of which ion we choose to

have k = 0 is arbitrary,
The electrostatic potential, V(Z), at a point P (with position
vector Z) which is not an ion site, in a finite crystal of point

‘charges is defined by

T
vV (Z) = e "f f sk : 1,3,6
k5 -~
4“60 1€'V lx(l’k) . zI

-
where k is summed over all the ions in the c,r.,u, and 1 is summed over

all the Bravais lattice sites within . V (T€V), (See fig, 1.,3,) The

boundary condition that the electrostatic potential due to each ion

*5 We will be using M,K,S, units throughout this thesis,
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f(f,k) - a lattice vector
z

¢) - the origin

- position vector of an arbitrary point P

_“Figure 1.3

Position Vectors in a Finite Crystal of Volume V
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must satisfy is that it vanishes far from the ion, If the point P
happens to be an ion site, say Q(T“,k'), then the electrostatic

! -ty
potential at this point (called the self-potential) Vk (1') is

defined by
' defn . r
vk'(dy = e & % sk 1.3.7
4ute 1€V k  __ - e =
o | €(1,k) - x(l',k')l
where the ' on the sum indicates that the term associated with 1 = 1'

is to be omitted when k = k',i,e, the lattice site ?(T',k') is con-
sidered to be vacant,
In the past it has been common practice to write the electrostatic

potential of an infinite crystal as

VD) = e o< sk 1,3.8
4TE L ko, L, o
o Ix(l,k) -'3)
where the sum over 1 is over the infinite lattice and the sum over k

is over some charge repetition unit (usually the unit cell), Due tc
the conditional convergence of the R.H.S., of (1.3.8), this is not a
good representation to use,
What we will mean by the electrostatic potential of an infinite
crystal is
b
V9Z) = e lim 2 S sk 1.3.9

4TE Vs lev kK _ o -
) {R(L,k) - =
First k is summed over all the ions in the c¢c.b.u

., then 1 is summed
over all the lattice points within the finite region V which tends to
infinity., V*(Z) is a periodic function of Z with the periodicity of
the lattice,

The self-potential, V”(k'), at an ion site with position vector

(1", k") is
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Sk 1.3,10
[}
K - %

Vo(k') = e  lim b

LTV o iev

= N\e*

-
13

| %
where the ' on the sum over -1' indicates that T =0 is to be omitted
when k = k', TFor the infinite crystal, the electrostatic self-potential
does not depend on the lattice site indices (i.e., on _:]’:') due to the
periodic nature of V™(Z).

We will denote the quantity defined by the introduction of the

vanishing exponential Wy V'(Z) (this is the quantity which Ewald

evaluated), 1i.e,

b BI7(T,K)-Z
vVi(2) = e lim 1lim WZ 2 s" e ’ I 1.3.11
4?6‘23 ,€+O Vo 1€V k ]?(itk) ] ~Z9|

The electrostatic self.potential associated with thies definition of

the electrostatic potential is

[ = ;(’(?sk)-Qk"

V'k = e 1lim lim E' l{ Sk e Bl 1.3.12
— T
42150 ,8-*90 V-~ 1€V k l.-z(ik) ) :zk |

The limit V -3 and the 1imitﬁ—; 0, in general, do not commute (see
discussion following eq (2.4.4)). Thus the quantities V'(Z) and V%Z)

are, in general, different,

%6 We will use V = V®k'=0) for the electrostatic self-potential of

the k=0 ion in the infinite crystal,




D, Conditional Convergence
The electrostatic potential at a point P with position vector 2:

due to a infinite, point charge crystal is usually written as

b
V(Z) = e gf sk (see (1.3.8)) 1.4.1
YIS OT R Rt - 3

As (1.4.1) is written, we first sum over all the ions in the charge
basis unit (c.b,u.) (the sum over k), then sum over all the Bravais
lattice sites (a c.b,u, is associated wiéh each lattice site), By
choosing a particular c,b,u,, we are implicitly choosing one type of
order of summation, The choice of c,b,u, is not unique in a crystal,
For a given Bravais lattice, there are many ways in which the same
crystal styucture may be built up (see fig, 1,1), If the suz (1,4,1)
depends on the choice of c.b,u,, then the sum is said to be c,b,u,
conditionally convergent,

There is a second way in which (1.4.3) may be conditionally-cen-
vergent, To obtain a better understanding of this type of conditional

 convergence, we write V®(2) as given by eq (1.3.9).

V(D = e lim S & 1.4.2

4?(60 V ~w 1€V ’?(T,k) _ _za!

AN

where 1€V indicates that the sum is over all lattice points in the
region V, If V?E) depends on how we let the region V go to infinity, then
v®(3) is said to be shape conditionally convergent, For a three

dimensional lattice we could sum over linss and planes as Madelung, or

14



15

. . . . . . . Line-wise Summation

. . P . v . . First sum over all the points in
. .o, . . a line @rL»), then sum over all
P i . P F " . Iz the lines (1 2),

a
. . . . . : % Expanding Square
. + P ' : : : First sum over all the points within
. . . . " ’ . the square of side 2a, then all the
- A - . . . . points on the surface of the square
© s 4 e e & e of side 4a, 6a, etc,
“«—po . F v i .

a
. . * . . . . Expanding Circle
% . . ‘ " ‘ First sum over all the point§ within
a . . . Y i . the circle of radius a, then add the
. . ¢ 4 . i i points lying of the circle of radius
. . . . . . . fia, f§a, etc.
——p . . . . .

a

Figure 1.4

Several possible ways one may sum over all the lattice sites in an infinite
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over an expanding cube as Evjen, or over all the points within an ex-
panding sphere (see fig, 1.4 for the case of a two dimensional array),

Previous authors have not distinguished between the two types of
conditional convergence, We shall see later that the sum, eq (1.4.2),
representing the electrostatic potential of an infinite crystal is
always c,b,u, conditionally convergent, For some of the c.,b,u/s it
will aiso be shape conditionally convergent. There may be c.b.u.'s such
that eq (1,4,2) is not shape conditionally convergent but, in general,.
this is not true for all the possible c.b.u.'s of a crystal,

In Chapter IV we will show how these two kinds of conditional
convergence arise when eq (1,4,2) is used te define the electrostatic
rutential of an infinite crystal, This conditional convergence is the
principal drawback of the infinite crystal methods since the value of
eq (1.4,2) is not solely a property of the crystal structure,

Since the electyrostatic potential of an infinite crystal is
represented by a conditionally convergent sum, the question of accepted
value for this conditionally convergent sum arises, It has been our
experience that previous authors have assumwed that if the c.,b.u, is
choosen such that the infinite sum is no longer shape conditionally
convergent, then this gives the accepted value for the electrostatic
potential of the infinite crystal. Unfortunately, there are q;ystals
where such a c.b,u, does not exist. We will show later that the quantity
defined by the introduction of the vanishing exponential, eq (1,3.11),
gives the accepted value when it exists, Thus) foxr the cases where
there is no suitable c.b,u,, the accepted value has been chosen to be

the quantity which results from the introduction of the vanishing
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exponential, However, given this accepted value, the problem still
remains as to the meaning of this accepted value,

In Chapter IV, we will show how this accepted value is related to
the actual value of the electrostatic potential for the finite crystal,
In general, they are not the same,

In the discussion of the infinite crystal methods, we will refer
to the methods as valid or correct if the methods give the accepted
value for the infinite crystal (as defined on the previous page). We
do not mean they are valid ox correct for the case of finite crystals,
For finite systems, the electrostatic potential is a well defined
quantity for each sample, although it may vary from sample to sample

of the same crystal,



CHAPTER 1X

HISTORICAL SUMMARY

A, Introtuction

There have been many methods developed for evaluating the sums
associated with the electrostatic potential of a point charge, ionic
crystal, They all considered the mathematically simple case of the
infinite crystal.

The first metﬁod was developed by Nadelung2 in 1918*1, He first
obtained the fourier series solution of two electrostatic potential
problems (a) lines of periodic neutral charge groups, and (b) planes
of periodic neutral charge groups. He then considered the infinite
crystal as ccmposed of (001) planes each composed of (100) lines, He
was then able to evaluate the total electrostatic potential at an icn
site by using his solutions to the linear and planar problems to
evaluate the contribution of each plane cf charge,

Another method, which relies on special ordering of the terms
(with charge neutrality as the criterion), was developed by Evjen3,

Other methods have been developed by Ewalda, Born*1

, and Harris
and Monkhorst5 (H&M). All threc methods are based on the introduction

of a vanishing exponential term to remove the conditional convergence

inherent in the original sum., Ewald was the only one who discussed

*1 The discussions of the methods of Madelung and Born are based on

the review article by J, Sherman6,

18
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this point but it is implicit in the other two methods. Ewald intrxo-
duced the theta-function transformation to simplify the resulting
expression whereas H&Y introduced fourier transforms, Born used
Ewald's results in his method. The methods of Ewald and H&M have been
successfully applied to a variety of problems,

In yet another approach, Tosi considered the problem of an infinite
array of similar point charges embedded in a uniform background of
charge of opposite sign, In this way he was able to associate a finite
electrostatic potential with a Bravais lattice whose lattice sites are
occupied by similar point charges, The electrostatic potential of the
ions without the background charge is infinite,

This chapter will be devoted to giving a brief description of

these various methods,



B, Madelung's Method

One of the problems Madelung considered was the electrostatic
potential of an infinite row of periodic neutral charge groups with
period a, The electrostatic potential VL(E) of such a line of point
charges is periodic in one dimension, Thus he assumed a fourier séries
representation for the solution at a point P, of the form

i2emx/a
v'(x,1,0) = q_ S A(r,me 2.2.1
, Z?ﬁo'-m _ :

where (x,6,r) are the cylindrical coordinates of the point P relative
to the origin chosen to be at ion k (see fig. 2,1 for the special case
of a line of alternating point charges), m is to be summed over all
integers, The R,H,S, of (2,2.,1) is independent of the angulzx
coordinate 6 due to the symmetry of the problem; The conditions
Madelung imposed on the electrostatic potential of this system were
that it must be a solution of Poisson's equation and must vanish as
T =00,

The solution.he found, for an electrically neutral line of alter-
nating point charges (q',-q') (see fig, 2.1), was

¥

VL(x,r) = 8q' é‘ K(2amr/a)cos(2amx/a) 2.2.2
4?(€0a m=1
odd
where 5
kz) = yimnl® (iz) 2.2.3

0

and Hél)(z) is a Hankel function of the first kind. However, this

20
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)3
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0
o . o s o 3
%a x
. = fon of charge q' 0 - origin of coordinate system
o - ion of charge -q' P - point of interest

r, X =~ cylindrical coordinates of point P

Figure 2,1
A Oue Dimensional System
An infinite line of alternating point charges with period a, The

coordinates of a2n arbitrary point P are shown,
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. o . o . o
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_/m
. o 0 o . o
%1
o - 0 - o .
‘ o J o . o
. = 1ion of charge q' 0 =~ origin of coordinate system
o - ion of charge - q' P - point of interest
2, 23, 29 - cartesian coordinates of the point P
Figure 2,2

A Two Dimensional System
An infinite plane of alternating point charges with periods ap,a,
in the 31 and 32 directions respectively, The cocrdinates of an arbitrary

point P are shown,



23

solution is not valid for r -» 0 since it includes the contribution of

the ion at x = 0. For r = 0,
Vi ™
2q' é (-1) 2,2,4

\}“(X;O) ~
4”%3 w=1 o - x/al

f

where we have excluded the contribution due to the ion at x = 0, This
may also be represented by a fourier series for -3ag xg<%a but the
coefficients are numbers which are not readily available,

"The other problem Madelung considered was the potential at a point
P due to a plane array of neutral charge groups (see fig. 2.2 for the
special case of a plane of alﬁernating ekarges), Extending the fourier

method, the electrostatic potential for a plzne of charges, VP(E), is

. o may((miap mfaphE 2,25
V(Z) = __16q" Z e cos(ZTrmlzl)cos(Qn'mz'zz)
TR MMl ((ay/apPHmylaD® 3 %
odd
where
Z = zle1+22€2+23@3 2.2.6

In terms of reciprocal lattice notation (2,2,5) may be rewritten

as
S0 >, -
-z, [T 17 () .2 «
VP('E) = 419’ 2 e 3 e 2.2.7 1
4r€aqa, hyhy gyl
odd
where

*1 This function is of the same form as the potential calculated in

Chapter V (see eq (5.4.11)).




FM) =h b & +hb8 (see eq (1,2.4))  2.2.8

1 1 2 272

and b1 = Z?Val, b2 = 2ﬂ7a2. This expression is not valid for z, = 0

since i{ includes the contribution of the point charge a z, = z =0,

1 2

As a sample calculation, we will describe the evaluation of the
electrostatic potential at a Na ion site in NaCl, We will consider
the ion as occupying a lattice site in a (00l) plane, This plane will.

be referred to as the zero plane. The other planes are at a distance

na (n integral) frcm the zero plane, The contribution, V3,

to the

total electrostatic potential from the planes at a distance na from

the zero plane, may be found from (2.2,5) with zy =na, z; =z, = 0,
= (-l)nq (where q is the charge of the Na ion), and al = a2 = a,

Thus

v, = SV(0,0,na)

3 1] 3

n
o -2~zm(m2-+m2 %
- 16q 2 2 c1me 12 2.2.9
4?{Da n=1 m,,m,= =1 . (m2+m2)%
172
odd

The contribution of the zero plane to the total potential consists
of two parts: V1 and V2. V1 is the contribution of the charges which
lie on the line in the (100) direction which passes through the ion
site and V2 is the contribution of the remaining lines of charge in the
(001) plane, To evaluate V2 we use (2,2,2) with x = 0, r = nd, and

= (-1)"q. Thus__
vV, = 169 2 E (-1) MK (2-mm) 2.2.10

2 47T a n=1 m=1
0 odd
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and setting x = 0 in (2,2,4) to obtain V1 we get

vl(0;0)

<
1

@

29§ (D7
Qir%a m=1 m

=-21n2 q
ATN%a

Therefore the self-potential at an Na ion site in NaCl may be
written as

V=V, +V, +V,

1
2 < 2 _2m(nitul)
= q (-21n2 4 16 Z (-1) 22 [K(Ztmml) + 2 e
Qttéoa n=1 m1=1 m2=1 (mimi) 3
odd odd

2.2.12

This method is restricted to those crystals which can be broken
up loto neutral lines and neutral planes of charge as described above,
This can be easily done for m3m crystals such as NaCl or CsCl but is
more difficult to do in the case of more complex crystals such as
BaT:LO3 or cubic ZnS,

This method is principally of historical interest since without
modification it is restricted to a small class of crystals, However,
in the class of crystals in which it may be applied, thé Madelung
method is still useful in evaluating lattice sums arising in surface
problems,

We stated earlier that the electrostatic potential of an infinite

crystal is, in general, conditionally convergent, This means that the

infinite sum associated with the electrostatic potential gives different

15)
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values depending on the order of summation. There is no guarantee

that the order of summation Madelung used gives the correct physical

potential other than for thin slabs where Madelung's ordering is

justifiable,



C. Evjen's Method

The self-potential at a k' = 0 ion site is

b
]
V.1 lio 42 s q'k (see eq (1.3.10))

b

'

-1 1um 2 2 q'k 2.3.1
4E Vo0 1€V k 2(D) + 2K

where we have substituted for i’(_f,k) using eq (1.3.5). We are using

'" to indicate that the charges used in the c.b.u, may be fractions

of the ionic charge qk,

q

In terms of our notation, Evjen chose to write the electrostatic

potential in the form

ve e lim _2' #ch) 2.3.2
112?5 V -?G? 16‘!’
where
- b k
oH=12__ q' 2.3.3
ek )z - 2

is proportional to the electrostatic potential at the origin due to
’ -
the electrically neutral charge group associated with the lattice site 1.
The difference between Evjen's method and other ordering methods
(such as Madelung's) is his choice of unit cells (i.e, of c.b,u's).
Normally one chooses the unit cell to have charges which are integral
. L. k . . .
multiples of the ionic charge q , Evien chose to consider unit cells
. . .. Ko ) k
which contained icnic charges q' wiich mway be fractions of q,

He did this by assuming the charge of each 1ion in the unit cell

should be multiplied by a weighting factor which depends on the position

27
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of the ion in the unit cell., Thus the charges of the unit cell can be
written

= eskwk % 2‘304

]

q
where W is the weighting factor (for a cubic lattice wk is just the
inverse of the number of unit cells which are adjacent to the ion site
- 1/8 for a corner, % for an edge, % for a side, and 1 for inside the
unit cell), s is the dimensionless parameter introduced by eq (1.3.2).

Intrbducing the dimensionless parameter eX defined by

ek = gk 2.3.5
¢(1) may be written as
(1) = é e 2.3.6
120 +%"

Evjen then divided the sum over T in (2.3.2) into two parts - a
sum over all points within a sphere of radius R (Té'VR) and a sum over

the rest (f¢v ).

R
ve e [ S e +un 2 e ] 2.3.7
4 e 1€V Voo 1eV

where VR is the volume of the sphere of radius R. He then set the

‘second sum equal to Q and assumed that it may be approximated by an

integral as follows:

Q = lim 2 ¢ (1)

V- :1:2V
1
R
- 1n offfas 2.3.8
Vwm V'

where V' is the region V from which the region VR has been omitted and

O is the numter of unit cells per unit volume, He gives;i no discussion

28
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of the fact that the volume is made up of a sum of cubes and hence the
spherical surface is not smooth, Also he does not discuss the proper-
ties of Q such as its infinite valueﬁyﬂgn B = 1/1X] or its undefined,
though finite, nature when §(X) = ei ‘xllfl (ﬁ a vector in reciprocal
space (see eq (1,2.3)). The quantity Q@ is not referred to explicitly
in the rest of the paper, He seems to assume that it is vanishingly
small for large R,

. Evjen then proceeded to expand 1/'§(T)+§k| in a series of Legendre
polynomials Pn(cos(e)), as follows

o .
1 = 5 9" (cos8®)/x* 2.3.10
=D + 2 " ) |

where

€= Z, x = 12D | 2,3,11

k _ =k SN S T S W 3
cos6® = [xl(l)xl +x, (Dx 4 xz(l)xz]/xx

= {a + b+ o) /x* 2.3.12
vhere
a=x Dxx%, b=x (Dx¥x, and ¢ = x_(DHxYx 2.3,13
i Y g\ %%, gutixy CEC

Substituting (2,3,10) into (2,3.3), ¢(I) becomes

oD
g(l) = 2 A /x"H 2.3.14
n=0 "
where
b
A = $ XM (coso 2.3.15
n k i3]

This expansion is not valid for the unit cell at X(I) = 0 and

hence P(0) has to be considered seperately,
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The polynomial expansion for P (y) 1is
¢ .nt :
n t
t=
where Lil is the t-th coefficient of the Legendre polynomial of degree

n (which vanishes when t is odd), Consequently

b
a = 5T O atoret 2.3.17
&

A.A 4

Therefore An will depend linearly on terms of the type a where .
/6;, ,6’2, '@3 are a set of integers with the property that

ﬁl +43 +/3 =n -t with t=0, or t=2, or t=4, etc,

At this point Evjen makes the following statement;

"It follows that, if we form the integral over the surface of a

sphere
4t
B = [ dea_ 2,3.18
0
then Byl = 0. It is therefore sufficient to consider terms where n,

/5’, /32,/@ are all even.'

He does not justify this statement and we are unable to give a
rigorous proof of its validity,

Manipulating (2.3,17), it can be written in the form
> 2
AZn = g LZI;.?t 2.3.19
t=0
where

F, = 2 l(.‘zl(n?t)):,' M'(p,q,s,t)[xi(l)/x‘]2p[x2(1)/>§zq[xB(l)/}g] 28
rn (2p).(2q).(2s),

2.3.20

where [7 denotes the summation over the sets of positive integers p, q,
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s such that for each value of n and t

p+q+ts=n-.t ; . 2.3.1
and M(p,q,s,t) is a 2n-th order electric moment of the unit cell
given by

k.2s

b
28 () *P (5) 2 ey 2.3.22

M(p,4,5,¢) = ée“cx“) (x;

To give examples of how his method worked, Evjen evaluated the
Madelung constants (see eq, (4,3, 7)) for three cubic crystals - NaCl,
CsCl, and cubic ZnS, The unit cells he éhcse and the weighting factors
of each ion are given in figs, 2.3, 2.4, and 2,5, His results are given
in Table 4,3,

In the calculation for CsCl, Evjen found that the electrostatic self-
potential at a Cs (or Cl) site approached two different limits
depending on whether the terminating surface was made up of Cs or Cl
ions, Although he did not mention it, implicit in the above result
is the use of two different unit cells (see fig 2.4), We will show in
Section 4,5 thatltge two infinite crystals which are constructed using these
two unit cells will have different electrostatic potentials and that the

average of the two potentials gives the accepted results for CsCl.

To explain his result, Evjen incorrectly assumed that the différenqe
was a result of his theory being valid for a sphere while the calcu-
lation used a cube. He obtained the accepted value for the Madelung
constant by correctly averaging the two limiting values. Several
papers7’8&ﬁgve discussed this inconsistency and used different element-
ary cells other than a unit cell to obtain the accepted values of the

electrostatic potential without the averaging Evjen had to do,
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We will also show that the value for the infinite crystal obtained
for ZnS using Evjen's method is incorrect (in the sense discussed at
the end of Section 1,5). 1In his paper, Evjen gives the accepted value
without giving a clear discussion of how he obtained it. This result
has not received much attention in the literature, probably because
Evjen did not discuss it explicitly in his paper as he did for the

CsCl result,
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Unit Cell for NaCl

The fractions are the weighting factors Evjen assigned to each ion,
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Two Possible Cells for CsCl

{i) A unit cell with the
fons at the surface
having-opposite sign
to the ion at the

center,

A cell with the ions
at the surface having
the~same sign as the

ion at the center.

The weighting factor Evjen assigned to each ion are given,.
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The weighting factors Evjen assigned to each ion are given,



D, Ewald's Method
The most widely used method for evaluating Coulomb sums was
developed by Ewald in 1921, He was interested in potentials of the

form o , - f
b ik, 3(1,k) ik (¥(1,k)-Z

V(é’,fg,l(o) = 1 E qk lim h_é e e °
T - =¥ -
4 é; k Vo leV /x(l Ty - z/ 2,4,1

3

where ’4 is a vector in reciprocal space, Ko =w/c (w is an optical
frequency and c the velocity of light), and 2 is the positfon of the
point of interest P with respect to the origin of the c.b,u, (which
will be chosen to be the unit cell), This type of potential arises in
the optical theory of solids. 2 is assumed to be non-zero and the sum

-
wer 1 is over all lattice sites in the infinite Bravais lattice,

Instead of considering the sum over T given in (2.4.1), which is
-
conditionally convergent when k and Ko are non-zero and is infinite

when ¥ = 0 and Ko = 0, Ewald decided to consider the well defined

quantity - -
. b K. 20,k iK' ¥ ,k)-Z1
V’(g,k,xo) = lim S q lim _“2 e e °2.4.2
0 k 4TE Vo TEV
~ “e V7 Tk -7

where K(') = Ko + ]';.3. The limits /340 and V -»00 do not commu-te, This
new potential is well defined for all ¥ and Ko‘ Ewald gave the
following argument for the introduction of the vanishingly small
exponent,

'This exponent may be very small so that no changes from the
actual state occur within finite distances from the origin, It is

-
sufficient to cause an absolute convergence of the sum over 1, The

-

36
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crystal gets blurred, so to speak, at laxrge distances without, hoﬁever,
being suddenly limited. All properties which we call properties of the
material, (thosé which result from a certain limited environment and
are therefore repeated in all equivalent points of the crystal inde-
pendently of the limitation), should be calculated from the crystal
“"limited but without surface'.

For these properties the physically correcf value of the sum is
that one which occurs in the limit cf the vénishing of the exponential,'

The conclusion of this argument is valid;'l The argument, however,
only strongly indicates that the introduction of the vanishing expo-
nential is valid; it is not an absolute proof. This proof will be
given in Chapter 4.6,

To simplify the discussion, we will givg a description of Ewald's
method for Kb = 0, We will closely follow the description of Ewald's
method given in B&X since this reference is readily available to most
people. We will include the exponential term which B&H ignored,

If we define a quantity G(EZﬁZ%ﬂ by

2y -glR@-7
6(Z,K,0) = lim ﬂf e e'g ; 2.4.3
Voo 1€V 27y 37

then it is easily seen that the quantity V' may be written as

b i 3
v (2,8,0) = 1i Ky e
(Z,k,0) = ,161-130 2 40 (2-%°,K, e 2.4.4
o —0'6

where we have used the relation

2T, = 2D + T (see eq (1.3.5))  2.4.5

*]1  See discussion at the end of Section 1.5 for the meaning we give

valid.
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In order to manipulate (2,4.3) into a more rapidly converging

expression, Ewald introduced the identity

2 2
e'ﬂr =2 ?d/a e-/Ozr 7?2/90
Jiv 0

il 2,4,6
T
Substituting (2.4.6) into (2,4.3), we find
N : ®KID T -AIRD-2PP
bEka = Se ¥ fd/;e
1 Ja 0
o o ik.2(D) _/,2,;,3(1"),;)2732/4/02
= Idf? 2 é e e
0 “J/m@ 1
o B2 g’ 2 K, @D -D) .,02;;‘(5-212:}
= | dp e 2e g e e
v 1 2,4,7
where we have denoted lim é by Zfor convenience in writing.

Voo Tev 1
The term enclosed by the brackets in eq (2,4,7) is a periodic

function of z with the period of the lattice, Thus we may represent

this term by a fourier series, i,e,

2 T e ) 2420, 2,2 P N
=A%/t 1k, (x(1)-2) -po {x(1) -2 L iy(h).z
28,3 /.2§e e/O = Zg(h)e 2.4.,8
VT 1 h
where
2., (< 12
- (BT ()| %]/s
o -2t o 7 2.4.9

3
Ya P
and ?(E;) are reciprocal lattice vectors with indices b (see eq (1.,2,4)),

Y
h is the triplet of integers (hl’h h3) which is summed over.all the

2’
reciprocal lattice sites, v, is the volcunme of the unit cell in real
space. Equation (2.4.8) represents the well known theta function

transformation,

It is evident from the series involved in eq (2,4.,8) that the
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series on the L ,H.S, of the equation is rapidly convergent for large
values of/’ and the series on the R,H.S., of the equation is rapidly
convergent for small values of/o. Thus it is convenient to split the

integral in (2.4.7) into two parts as follows:

2 -, 2 - e =

o @ 0|2 -Z) - £14p° 1K, K(1)
Q(E’R",)=22fdpe/0 ’gz/oe
P TR
2 it 121y 2wy 10
R - [ BT+ ]/170 i¥(h).Z
+2_Zt2 j_d,é? e e
v, B 033
a

where R is chosen such that fast convergence of both terms is obtained,
If we want to find the potential at Z = 0, we must subtract the

teym associated with ?(.f) = 0 which has been included in the sum over

T in eq (2,I4..3), Thus

2,2, 2 2 . 5,7
®, © -OIR()-Z| -3 4pc ik, #(1)
90, ¥, = lim [g_ 2 Id/oe 4 I~ P e

z-30) /g 1T R

R -7 R T+ |2])/42 iF(h) .7

vog S Jage Y ]
i
va h 0/03
522020002 g
+ lim 2 fd/_?e}o /8 l?o —gp J 2.4,11
z->0| /&R z

where the ' on the sum over T‘ denntes the exclusion of the term

associated with f-—. 0 frem the sum and

z = 121, 2.4 712

The lim may be taken in the first term in square brackets since

-
z - 0 _
it is an analytic function of Z. In the second term both parts diverge

and hence have to be considered carefully,

Adding and subtracting the integral over/a from ¢ to R, the last
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term may be written as
2
-z /4 -3
it [-2“_ Td/)e/az' /éloz_gﬂ} = lim [ /d/oe
z=- 0L /auR z z >0

R —dzz ,6’2/5)0
1ﬂ)e =13 J

The first term in (2,4,13) vanishes identically and the second term is

F2t 1" ,azj

- lim [
z >0 JQf

an analytic function of z and the limit may be interchanged with the

integration to give

o 22 2 . R & 1up?
1im ['2_'_' /d/oef;Z/GZ/az-Eﬂz]=-_g_ fd e/ézz}p
z>0l /7 R z Ja o
-3 I4R? >
=-2R e - B+ 0(3”)
= (e
2.4.14
Therefore (2.4.11) reduces to
(D) 2 - g2/40% B XD
POk, 0 = z ¢ f fﬂ = i /D B3 2.4,15
Ja T R
=22 12 2
R +Hy(h)+k || /4 -~ /4R
28 5 oo Dﬁz 1y 1] /@2 . A e
va h 0}&3 Jﬁi

Substituting eqs (2.4,10) and (2.4.15) into (2.4.4), we find that

the self-potential at a vacant Bravais lattice site of the k.th ion is

given by
2| »,2, ,=2k'1 2 .-_-o >,
- b A ED RN 2221407 1R.2(T)
vik0,5,0) = 1im 7 o8 [2 $Ta “ /":
B0 K BTE [/:( T R
]
R Z,a +|y (h)+k12}/4,o2 -ig(h) % ik.x®
+ 2w E— jcioe Je
v R 0 75
a P
, |
- q" 2K e/ 168 2.4.16
4oe [T - 0
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The prime on the sum over 1 denotes the exclusion of the 7 =0 term
from the sum when k' = k, The other authors discussed in this chapter
all consider the simpler case of K = 0. Therefore to have a formula
for the same quantity the other authors evaluated, we will set X =

in eq (2.4,16), Thus

Lo AIERDRE 124
Vik = 1lim 2 [2_ i j d/oe/o ﬂz /oz
p+0 k' &CC ) m T R
(R =BT 24P 15 ) FE
+ 27 é f gé e e _
v. & of;a :
K - 2/4R2
- g 2Re - 8 2.4,17
T

The term with ﬁ'= 0 in (2.,4,17) vanishes due to charge seutrality,
We will indicate the exclusion of the term associated with h = 0 by the
use of the ' on the sum over.g. The limit f3-¢0 may now be taken to

obtain

d/) e’ 2,4.,18

b
v* e« 1 S
K



E., Born's Method
Using the vanishing exponential, we may write the Coulomb

potential at a k' = 0 ion site as, eq (1.3,12),

b B2, )l
e

V'0 = e lim  lim z Z sk
lﬂtéo P20V @ 1eVk Ii’(i’,k)}

2,5,1

k' . . ]
where we have set X = 0, For the manipulations performed in Born's

method, the exponential and lim do not enter explicitly, Thus to
: V - :
simplify writing, we will use the simpler expression

co. b
V'o = e é é sk
b L kTl
@, b
= e 2_:2 sk 2,5.2
e 1k Ty L w

where we have substituted for ia(‘la,k) using (1,3.5) and sk is a

dimensionless parameter given by

sk = qk/e (see eq (1,3.2)) 2.5.3

k
The absolute value of each of the components x; (i=1,2,3) is less
than the corresponding lattice parameter a; (see eq (1,3,3)), Suppose
that the crystal structure is such that
k k

nx. =

m. a, i=1,2,3 2.5.4
L 11

are both integers and n is positive, then

PR

for all k, where n and m

=k kA K o -
X = (mlalel +myae, + m3d3e3)/n

= ?(f\’lk)/n 2.5.5

L3 - Cor e -k
where #(®°) is a lattice vector with indices m .
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The self-potential of a k-= 0 ion may now be written as

sk

[%(T) + 2@ /ul

V'()= e gi
#ﬂé} 1

=N\

®, b
= ne éﬁ s s* 2.5.6
SRR 'a?(1) + SE(fﬁk)’

Introducing the generalized Kronecker delta defined by

$a. 2 =0 if I #1
1,1 L. 2.5.7
=1 if1'=1
the potential (2.5.6) becomes
lbl b @,
V'0 = ne é é ié sk‘ gf. nlok
S 7 K = =g Y
47!60 1 k ".‘-g(l')[ 2.5.8

-
where 1' is to be summed over all lattice sites except =0 (which
is indicated by the ' on the sum over 1'), We have used the property
of lattice vectors that

'

D ()

fl

nR(1) 4 #@E)

= F(nl4d¥) 2.5.9
However L =
% S n-1 1[X(1')-X(m )J .Y(h)/n
- = 1 e 2 5 10
-2 k — ede
1 1’ ,nl 3 h=0 s

n

-, -5
where y(h) is a reciprocal lattice vector (see eq (1,2,4)) and.h is

the triplet of integers (hl’hl’hl)'

-y

The term associated with nf;ﬁk =0 is omitted from the sum over 1
-

in eq (2,5.8). We may add this term to the sum over 1l since it con-

tributes

S, _ ¢ " 2.5.11
1',0
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to eq (2,5.8). Interchanging the summations over 1l' and k with the

sum over 1, v'0 becomes

b -
0 ' k T
\Y = ne é 21. f. ‘? Sl‘,nl«'ik
l&T(fo Ii(lu)l
b e, K n-1 i{?&(f‘)-‘i(ﬁk)j @R /n %1
= ne 2 é s . e 2,5.12
4en’ ' gz b

where we have substituted for the sum over 1 using eq (2,5.'10)_
Performing a further interchange of the orders of summation, (2,5.12)

may be rewritten as

-, = 2,7 », ok >,
n-1 % ix(1').y(b)/n b iX(m ).y(k)/n
V'O = e - 2 e ; sk e
- Tr T o -
42t60n2 h=0 1 IX(l')] k 2,5.,13

Therefore the potential may be written in the form

et
2 h=

0 n=1 o -
v & I /n)s (B) 2,5.14
=
‘\\Tféon

where X '*
K i?c(m ),f(h)/n
s e

k

-3
Sn(h) = 2,5,15

is a structure factor and

v 12T IE Mz
II(y(h)/n) = lim lim & e e 2.

p: 5.16
/3-st Vo '€V Ii(f')/ g

%1  All interchanges are valid since we are actually considering the
well-defined expression (2,5,1). All interchanges are made before the

limﬂ <0 is taken,
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where we have reintroduced the limits since they are relevant to the
following discussion,

Born called II the 'Grundpotential', This is the self-potential
that would result at a vacant lattice site at the origin if all the
other Bravais lattice sites were occupied by point charges of charge

12 F®) /- TN
e

e .
Born's procedure would not be strictly valid if the vanishing
exponential was not present because the II(ﬁ) would not be well definea
functions due to the conditional convergence of the sum over iﬂ in eq
(2.5.16). However, the sum over iﬂ in eq (2,5.,7) is the same quantity

which Ewald evaluated using the theta function transformation. Thus

Born was ahble to use Ewald's results tc write the Grundpctcntial as

the sum of two terms IIl and IIZ‘ i,e,

1K) = 1L, + II, 2.5.17
where N s 2 9
. 2. -Jkn+y(h=)j /4R
(k) =40 e - 2R 2,5.18
v, h' & a0 2 s
a PREICY JT
and
, . I ECORS
IL() = 5 [1-oxsdnle 2.5.19
12T

where we have set

k = §(H)/n . . 2.5.20
and 9
X -

£(x) =2 fdxe 2,5.21

Ja O

is the error function., These formulae may be derived from (2.4,15) by
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setting #= 0 and manipulating the resulting expressions,

Using these formulae Emerslebem!3 has calculated a table of
Grundpotentials for n = 12 for a cubic Bravais lattice, Oﬁce the
Grundpotentials are known then it is a simple matter to evaluate V'O
due to the small number of terms (n3) involved in eq (2.5.14)., However
the Grundpotentials have not been calculated for genmeral n, Thus this
wmethod is limited at the present time to the cuﬁic case where the ions
satisfy condition (2,5.4) for n = 12,

As with Madelung's method this method is primérily of historical
interest since the numbers of crystals which satisfy (2,5.4) are
limited., We note that since Born's method introduces the vanishing
exponential, this method will give the same values for the electro-

static potential as Ewald's method,



F, Harris and Monkhorst's Method
Harris and Monkhorst have recently developed a new method for
evaluating the electrostatic potential, The basis of their method

%*

is the incorrect fourier transform
. -ik,?
1= 1 ﬁjge 2.6.1
= 2@ k2 '

where
k =Kl and r = 17|
The correct identity that should be used is
-pr -8, 7
el = 1 U/dﬁ’e | 2.6.2
r 9 (k2+%£)

-
We may set B= 0 but only after the integration over k has been per-
y g P

formed, 1In order to use the fourier transform (2,6.2) to evaluate

(]

the electrostatic potential at a lattice site, the exponential term
must be introduced (c.f. method of Ewald), Although H&M do not state

this, it is implicit in their calculations, Therefore we will include

*1 If we take the integral over all space of both sides of (2.6,1)

ik, 7
times e (the result should be the fourier transform of 1/r), we
have -
ik, 7 L, 1(E-k").7
/f;d?e = 1 [( dk' e
3 T WIS
2T k")

Evaluating both sides of the above equation we find that the R.H.S.

equals 1/k2, however the L,H.S, is undefined (though finite),
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the exponential term in our descfiption of their method,
Thus, instead of considering the actual self-potential of a k'=0

ion

b
1
v®(0)= _e  lim S N < 2.6.3
™ - -
GTE Voo TEV K [z K]

1
(see eq (1,3.10) with ':?k =0), we consider the quantity

0 .
v'Y = 1lim V(®Q) 2,6.4
A+0 98
where . | k[
©, -A1Z(1)+%
VSG) = e _f. 2 sk e /3 2.6.,5
42:60 k& Ii’(f) +% |

1 b k
VSg) = e Z 2 s 12 ﬁdk e 2,6,6

As stated in Section D, the introduction of the exponential term
removes any conditional convergence that may have been present, Thus
we may interchange the sums and integration in (2,6.6) without altering

the value of V{3 . Hence
i

3, b ik [R(D K
V@ = e 1 [(fa 2’5 ske 2.6.7
lﬂréo 2’5‘2 (l»:zi-/jz) L ®

Adding and subtracting the term associated with T = 0 which has been

-
excluded from the sum over 1 in eq (2.6.7), the potential bccomes

. GRRID) b -1k RN
vsg)= e 1 ”/dk gie Z ske -soj?
2 T k

LUE 2. 2

0. 2¢  (kH5) 2.6.8
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0

where s~ is the dimensionless parameter associated with the charge of

the ions which occupy the Bravais lattice sites iIT3 (see eq (1,3.2)).
This procedure is valid but since it involves introducing

infinities which cancel, careful track of the terms must be kept,

H&M then introduced the identity (which is valid for cubic systems

with lattice parameter a)

g ARED = Qala)’ 2 SE® F@) 2.6.9
e h 4
T

where $(k - $(0)) is the Dirac delta function, ¥(h) is a reciprocal
lattice vector (see eq (1,2,4)), b is the triplet of integers (hl,h2 h3)
and ﬁ is summed over all integers,

Substituting (2,6,9) into (2,6,8), we obtain

£ __[p @5 A 0]
V) = 426 1 md [8 SEZF () Zse w

2t (k +e) 2.6.10
where va~= 1/a3 is the volume of the unit cell,
S b -iy(h).x¥ . 2.6.11
P B L e
o 20 ( \a O (K +6)

The term associated with K’= 0 may be excluded from the sum since it
vanishes by charge neutrality, Therefore, taking the limit 220 in
eq (2.6,11) (using the prime on the sum over % to indicate the‘ex-
clusion of h=0), v'0 becomes

V'O = 1im V()G) see eq (2,6,4)

= e {solun [ﬁg 2 l jdk ]-i-
% 20 %
‘aéo A {y(h) +,@} 27 1+ 7)

cont,
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B, . . -F®F
+$ 4gs % e f . 2.6.13
£V P @it

where the prime on the sum over k indicates the exclusion of k = 0,

Each of the terms multiplying s0 diverge, This is a result of
the cancelling infinities that were introduced in eq (2,6.8), The
correct method of evaluating this term is to let the regions of
summation and integration be the same, then take the limit as the
region goes to infinity,

11,12
H&M have successfully applied (2,6.13) to a variety of problems ’



G. Tosi's Method

Tosi considered the problem of finding the potential associated
with a neutralized cubic Bravais lattice, 1i,e, a‘cubic Brévais
lattice whose lattice sites are occupied by point charges of charge q
witﬂ a uniform background charge of opposite sign, The charge density

for a neutralized Bravais lattice is

P& = qZ% s@E-xD) - vt | EPRR!

-

where v = a3 is the volume of a unit cell and 1 is to be summed over
a

all the Bravais lattice sites,

The potential arising from the above charge density is

V'(Z,0) 1 (5}7 da?' o(r')y + ccnstantj?

4TE all 5, =
° Zspace IT' - z/
= g lim J)Z 1 -1 f)/fdf’ ]+ constant}
4LT¢ VSPLEV 5 . o v V .5 l
0 12(1)-2] a 1¥-Z 2.7.2

The limiting procedure has to be used because each of the terms diverge
" if taken separately, The constant is evaluated by imposing the boundary
.condition that the average value of V'(EﬁO) over a unit cell must
vanish, 1i,e.

U/d?"'(f’,o) =0 273
/ |
a

The previously discussed authors have all used the boundary con-
dition that the electrostatic potential of each ion vanishes at points

infinitely far from the ion,
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The final expression for the electrostatic potential of a
neutralized cubic Bravais lattice 1is
2,7.4
v'(z,0) = lim I I[[ *. 77
4’ZTC 6a

V> léV - ..,l v V I_)?"E}

1X(1)-2Z a

Tosi did not express V'(Z,0) in the above form since it is not
convenient for calculations, We have given the expressiocn for com-
parison with our result,

"Instead of considering tﬁe form of the charge dAensity given in

(2.7.1), Tosi wrote/J(r) as follows
/0(1‘5 = /01(?) * pz(?) ' 2,745

where

-

lf’ ,(1)" //rl .1
ﬁ(?) =,73ﬁ3§ ; 1§ e = v ' 2.7.6
and . - }2 9
- F=-X(1) }</,
2@ = {2 &%) - ! 75
g

Clearly/)(i?) is independent of "= the gaussian half-width,
Both /9 €9) and/(?) are periodic functions of © with the period
1 2
of the lattice, However it is convenient to expand onlyﬁ(’f’) as a

fourier series, 1i.,e,

(h) /4 iy(h) .7
ﬁ(ﬁ) L&% pzzly \ Y i qv’lg

. P lI®I2E 5® T
=9q e e 2,7.8
v

a

SN\
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where the ' indicates that the term associated with h = 0 (which has
be cancelled by the -qv;1 term) is to be omitted from the sum, Using

this charge density in Poisson's equation
251 po7 - . -
VIR0 = - gD/E 2.7.9

we obtain the solution

I RIS T A
4 2 e e 2,7.10

vi(E,O) = g |

A B e g
o 'a | ¥ )]

where we have used the boundary condition (2,7.3).

The potential associated with/;%(r) is found by first using Gauss'
theorem to obtain the electric field associated with the charge dis-
tribution, then integrating the electric ficld by parts to obtain the
electrostatic potential, Thus

V,(2,0) = g %51 - QUED 21/ - zri} 2,7,11
i JZFD - 21 "

where the boundary condition (2,7.,3) has again been imposed, (x) is
the error function given by
X -t2
D =2 dt e 2. d12
(T

Adding (2,7,10) and (2,7.11), we find that the total potential of

the neutralized Bravais lattice is

. . R I@Y2E iFE) .2 .
v'(z,0) = 4 {éﬁ] ;5 e e "
4&60 va h ;(ﬁjz

Z 51 -03D-2)M} - ot } 2.7.13
1 ) = v
1% - 2] a
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The self-potential at a vacant lattice site is

2 —f ly(h)l /4

v (0,0) = { é'il - (=) [ /)]
-l - g_/_qj 2.7.1%
v, J

The ' on the sum over f indicates the exclusion of the term associated
with T = 0 and the 2ﬂhﬁ? term is the potential at the center of a
Gaussian éharge distribution due to the charge distribution,

The the electrostatic potential V'(Z) due to ﬁhe infinite

crystal and the self-potential V'k of a k-type ion in the infinite

crystal are 9 ”12/ - : 257,15
v s |V(BYC /4 i9(h).Z

VI(E) = e {4_77 s' sy e | ! " +ZZsk§1 n[x(1)+>z"<-“l/m]}’?

4rEfv, B i?(ﬁ)]?‘ | R(D -7
where

L b & F®

s(hy = $ ¥ e 2.7.16
¥

is a structure amplitude and

2@ 214 1y<h)
4@ S(Es e i - 28k

4T€ y(h)J e

I’ k' sy —-k .u"'
]g(l) + X - xk

b |
+5' 2 & §1 - qRdak.ak) /177]? 2.7.17

Comparing equations (2,7,17) and (2,4,18), we see that Tosi's

result is equivalent to Ewald's result if we set ﬂ]= 1/R and 4 S 0,



H, Summary

Each of the methods described in this chapter has attempted to
evaluate the electrostatic potential of an infinite crystal, The
main problem that the authors had to overcome was the conditional
convergence of the infinite sum,

The methods of Madelung and Evjen relied on special ordering of
the sums to obtain the accepted values for the electrostatic potential,
Thefirst does ﬁot have a wide range of applicability and the second
method is prone to errors as Evjen's result for CsCl shows,

Three of the methods, Ewald's, Born's, and H&M's, relied on the
introduction of a vanishingly small exponential term (either explicitly
as with Ewald or implicitly as with H&M) to insure absolute convergence
of the Coulomb sum,

The last author, Tosi, used a different boundary condition to
obtain results which are equivalent to Ewald's,

All the above ﬁethods will give the accepted value for the electro-
static potential if used correctly, We will not give any further dis-
cussion of Madelung's or Born's methods since we introduced them for
historical reasone,

In Chapter IV , we will show under what circumstances Evien's
method may be used, In addition, we will show that the methods relying
on the introduction of a vanishing exponential (Ewald and H&h) do, in
fact, give the éccepted values for the electrostatic potential of an

infinite crystal, 1In both Chapters III and IV we are able to compare
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A

.éur resulfs with tg;;é-of igsi,

There has been no rigorous discussion of the relationship between
the accepted value for the electrostatic potential of the infinite
crystal and the actual value of the physically relevant, finite crystal,
In the following chapters, we will show how the two quantities are

related and give meaning to the accepted value of the infinite crystal,



CHAPTER III

THE ELECTROSTATIC POTENTIAL OF A FINITE CRYSTAL

A, Introduction

We have found that a general formula can be derived for the
electrostatic potential within a finite crystal of point charges with
arbitrary symmetry, In a finite crystal, (see definition in Section
1,3), the lattice spacing is assumed to be uniform throughout the
crysfal, In a real finite crystal this ié not the cése since the
crystal structure is asymmetrical at the surface, This causes the equi-
librium conditions to have different forms near the surface and hence
the lattice spacing to change near the surface, However, we are not
interested, at this time, in equilibrium conditions, Thus we will
evaluate the electrostatic potential of a finite crystal in which the
ions near the surface have the same lattice spacing as those in the
bulk of the sample, The resulting expression can be used to calculate
numbers associated with the electrostatic potential as readily as any
‘other method known to the author, In contrast to the infinite crystai
case, there are no difficulties with physical interpretation, since the
sum for the electrostatic potential, eq (1.3.6), contains a finite
number of terms and hence this potential is a unique fﬁnction for each
crystal,

The electrostatic potential at a point P with position vector z

(see fig, 1,3) in a finite crystal of point ions is
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" ' g k
Ww=1 2 $ q : 3.1,1
w -, v -
e, JER B haies o 2]
(see eq (1,3,6)) where k denotes the type of ion, qk is the charge of

this ion, 1 labels a Bravais lattice site,

T, k) = ) +3F (see eq (1.3.5)) 8,13
is the position of the k-type ion in the T-th charge repetition unit

CE X0, Qk is the position of the k-type ion in the c¢,r.,u, relative

to the ion which occupies a Brévais lattice site (it is independent of
the lattice index I), ?(I) is the position vector of the 1-th lattice
site, the sum over T is over all lattice sites within some finite region

ot

%1 3 5 :
\' and the sum over k is over all the ions in the c.,r,u, The ' on the

* 5 s y P -,
sum over 1 indicates that, if z is an ion site, say ¥(1

is to be omitted from the sum when k = k', As eq (3,1.1) is written,
we first sum over all the ions in a c,r,u,, then sum over the Bravais
lattice sites within V., For a finite sum, the order of summation is
not important, We could equally well sum over the contribution due to
each type of ion, then sum over the different types of ions, We note
that, for an infinite sum, this option is not open to ﬁs, The sum over
k and the sum over Y'are not interchangeable since the sum over 1
diverges if taken first,

Since we are considering finite sums, the potential at point P due

to one type of ion, which we will call the partial potential,

*1  We note that the region V has some degree of arbitrariness at this
point in the thesis since we may change the surface of V without

changing the number of lattice points within the region,
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defn
k 1
V(Z,k) = q g 1 3.1.3

is finit:, Thus
by
V(E) = Z V(Z,K) 3,1.4
k .

Substituting (3,1,2) into (3,1,3), the partial potential may be

rewritten as

b o |
e = ¢ & 1 5,18
=V zdy - 2

=F-% 3.1.6
The technique we will use is to evaluate each V(Z,k) separately,
then substitute into (3,1,4) to obtain V(Z), This procedure is not
possible using the methods discussed in Chapter II since in those cases
either each V(2,k) is infinite as in Madelung's or Evjen's methods or a
different quantity as in Ewald's method, 1In order to perform a similar
procedure for the infinite crystal, one has to assume a uniform back-
ground of charge of opposite sign to the ions occupying the lattice
sites as Tosi has done (see Section 2,7), The quantity Tosi calculates
is related to, but not equal to V(Z, k),

An added advantage of this procedure is that we are able to ignore
consideration of unit cell, structures and crystal symmetries of the
total crystal and consider only the symmetry of each Bravais lattice

associated with each type of ion, We will refer to the Bravais lattice

with an ion in the c,r.,u, as the sub-lattice of that ion, This is also
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possible using Tosi's method, 'This eliminates the inconsistancies - such
as those arising in CsCl using Evjen's method as discussed in Section 2,3,
In Section B, we introduce the mathematical relation on which our
method is based, 1In Section C, we use this relation to derive a general
expression for the partial potential of a simple cubic lattice, The
generalization to other types of lattices is straightforward, We will
give the results for an orthorhombic Bravais lattice in Section D with-
out_provihg them, The partial potential.is found to consist of two
parts - one which is periodic in Z with the period of‘the lattice and
one which is non-periodic in z and depends on the shape of the finite
array, We call these parts respectively, the intrinsic and extrinsic
partial potentials, In Section D, we give explicit expressions for
the extrinsic partial potential for an array in the shape of an
ellipsoid and the intrinsic partial potentials associated with cubic
and orthorhombic Bravais lattices, In Section E, we give a general
discussion of the evaluation of the electrostatic potential of a finite

crystal using the method developed in Section C,



B. General Theory
Consider the integral
IGh =1 m dTE (F47) 3.2.1
3 -%a
a
This is the integration of an arbitrary function f(?), thoughout a cube
of side a centered at ¥, Thus I(X) is the average value of £(X) in the
cubic region of side a centered at X. We may expand the integrand in a

A - - - w*
single Taylor's series in y about X, provided f£(X) has no singularities

e
W

; y ) 1
in the region we are considering

The Taylor series expansion of £(%4¥) in § about X is

© m n
£(@) = 2 N1 ? 72 7 ? YB P £G0 3.2,2
m=0 m! =0 n! y np=0 p! . D
axl axi dx3
Substituting (3.2,2) into (3.2.1), I(X) may be written in the form
@ o) - %a %a %a
x(i‘>=1._2,1_£_2 9__2 P D [yt [dyyh [ay P
3m=0m’famn= anpOp.ap -%a L 4 7272 45 33
a X1 X X3 3'2.3

Performing the integrations, we see that the terms associated with m,

n, p odd vanish, Therefore we may write I(X) as

*1 If f(X) has a singularity at some point, say §o’ then f£(Z+7) has
two different expansicns - one for \§l>f§o|:and another for ]?bglio}.
Provided I§4§c!>%/§é, then the singularity is not within the region of
integration of (3,2.1), In this case, only one expansion is sufficient

in the integration region, This is the case of interest here,
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I(X) = ﬁ(x)f(;;) | - 3,2.4
where

A L L .
e = % (3a)? PO S (ha)?7p%" ? (3a)2P %P
=0 (2m+1) ] axim n=0 (2n+1); axgn p=0 (2p+1).! $x§P3 5 s

is a differential operator of ¥, From (3,2,1) and (3.2,4), we see
= ;
that {'(X) has the property that
A Xa
M@ =1 []f 5 | 3.2.6
. __l/za .
a
Rearranging terms on the right of (3,2,5), we may write the
differential form of [W(X) as
N @«
N = % D, 5,2,
P
p=
A
where sz is a differential operator which contains derivatives of
only order 2p, given by

P Pp-m 3.2,8

-z 5 1 iad
"w=0 n=0 [2(p-m-n)+]] I (2m+1).(2n+1). 3x2(p-m-n)éx2max2n
1 2 3

A
sz

-

For the special case of the Coulomb potential, £(X) = 1/|¥X], the

identity (3,2.6) takes the form

A %a
P@& 1 =1 Jff a7 3,2.9

P 3 -%a |77

.Jrl

1% a

Eq (3.2.9) is valid only for values of 1X¥}~”>%/3a since £(X) has a
singularity at ¥ = 0 and the discussion in the footnote of the
o .

preceding page applies,



C. Evaluation of the Partial Potential V(Z,k)
The partial potential at a point P, with position vector E, due

to a finite, simple cubic array of similar point charges of type k is

V@K = ¢ $ 1 (see eq (3.1.5) 3,3.1
o 1 -2 s
e Tev o) - 2¥]

where, as before, we have used (see fig 3.2, P. 69)

;k_= 2.3k _ (see eq (3.1.6)) 3.3.2
and

- A A A =
x(1) = (11e1 + 12e2 + 13e3)a .(see eq (1,2,1)) 3.3.3

a is the lattice parameter of the simple cubic lattice,

We split the sum over T€V into two parts - one over a region Vn
('fé Vn) and the other over the rest (fﬁ Vn), Vn is a cube of side
(2n+l)a centered at S?Z - the lattice site of the k = 0 ion which is
nearest the point P, This volume is defimed by associating a cube of
side a (with center at a lattice site*l) with each of the lattice sites

within a cube of side 2na, The result is a cubic region of side

(2n+l)a, Thus

3.3.4
V(Z,k) = gk IE' 1 P 15 1
& - iy 7 >, b
lmeo Vn ’3?.(1) - zk’ €"n lx(l) & g l

->
%1 The cube of side a centered about a lattice point 1 will be

referred to as the basic cube of the lattice site,
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At this point n is an arbitrary, non-negative integer,
For convenience in writing, we will set the second term in (3.3,4)
equal to v'(?). It is a function of Z and is parameterized by three

quantities 2% v, Vh which will not be written explicitly, Thus

3
defn
v'(2) = % 1 3.3.5

Va lf(i) - Ekl

We will now use the theory developed in Section B to evaluate
v'(?f. From eq (3,2,9), we can write

A -

[ (1) 1 l_/ 3.3.6

Izd)-z5] a3 "2 |z "kl

Since the function 1/i§(f)-3k] has a singularity at . §(T), the
identity (3.3,6) is valid only for

12D - 2> %/3a 3.3,7
From the geometry of the lattice, we note that the 3kand i(i) appearing
in the definition (3,3.5) of v'(Z), satisfy the inequality

12D - ﬁk}? (n-%)a 3.3.6%2

*2  According to our definition of V, , (i.e, that its center be §z),
Z (not Ek), may range throughout the basic cube at the center of V.,
Depending on the problem, the vectors X may also range throughout a
cube of side a, This means that the vectors Ek may range within a
cube of side 2a, Thus

- %)

zZimax

'lf("i) - 2K 2132’(1)-§’z]min "

D (n+l)a - ¥2/2a
> (n-%)a
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Therefore, if we restrict n to be greater than or equal to two, the
inequality (3.3.7) is automatically satisfied for allvTE Vn (see
fig .3.1).

We will define a quantity v'"(Z) as the sum of

PEd) 1
LT 52

over all the lattice points f(-f) which have T1¢# Vn‘ i.e,

defn . ~ - ~
vy = g [Ed 3.3.9
1€V 1
n v, )
| 2(D)-2 1

Due to the nature of the function on which I“(Q(I)) operates, it

A

spad
may be regarded as either an operator of X(1) or of -Z. We choose f1

>
to be an operator of -z, so that it commutes with the sum over 1,

We
~
note that from the definition of [, (eq (3.2,5)), that it is an even

operator, 1i,e,

I:‘(—‘z’) = 1:'(2) 3.3.10
Thus
W@ = S P
‘i{f_vn ')?(I)-—,k'
- P@ | 1
1€V, 12 -2M
- @V @ 3.3.11

We will first find an'explicit expressioﬁ for v"(Z), then solve
the differential equation (3.3,11l) for v'(Z),

Using (3.3.6), v"(?) may be rewritten as
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Figure 3.1

The Region V,

The points within the sphere have li(i)-2d7<%/§a ;nd thus the ,‘
relation (3.3.7) is not valid for lattice points in this region,

The cubic region enclosed by the double line (Vl) must be excluded
since most of the basic cubes of the lattice points within this region
enclose parts of the sphere where (3.3.7) is not satisfied,

The cubic regicn enclosed by the single line (V2) is chosen to be

excluded for convenience,

See Figure 3,2 for an expanded diagram of the vectors related to ?,
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" (i)

ka
=N ‘f S dy 3,3.12
VIEY, - jzDy4y-2N :

where N/V = a~3. We may now uniquely define V as follows:

'V is the volume of the array of charges defined by associating
a basic cube with each lattice site of the k=0 ion in the crystal,'*3
N is the number of occupied lattice sites in the array.

Introducing the transformation §'= A i(i), the integral on the
right'of (3.3,12) may be writtén as 4

R(1)+%a

[ a5

(D)% g5k |

While the integrals in (3.3.12) are of different functions over the
same region, after the transformation, they are integrals of the same
function over different regions, We may now combine the sum and

integrals top obtaim an integral over one region

v'(Z) = N I _a ©3,3,13
v V" .aak'
|5-2
where we have dropped the prime on the ¥'s, V' is the region defined
as the region V from which the region Vn is excluded,

Although the integrand is sirngular, the volume element dominates

.

*3 If the volume built up from the basic cubes does not have a smooth
surface, as for example in the case of an ellipsoid, then we will use
\' to-denote the volume which is constructed using basic cubes and Vs

to denote the smooth volume which best approximates V in both size and

shape,
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so that an integration over the region of the singularity is finite
(see Appendix 1), Hence we may add and subtract the integral over

the region V to the R.H,S, of (3.3.13) to obtain

v'(z) = {Uf @ - /V/f.._L_ 3.3.14

At this point it is convenient to set

Fag a2® 3.3,15
in the second integral in (3.3.14) (see fig 3.2)., We introduce the
prime to indicate that E&Chas a different origin fronn%galthough it
refers to the same point in space, The origin of E'kis the center
of Vn and the origin of Zk will be chosen to be the center of V,

Introducing the transformation y=3'+ ?7 into the second inte-

gral of (3.3.14), we find that it does not depend on ?;, £.8.
v(@ =N U}___y - ) _w 3.3.16
Vv ok) Vn ]S’"z'k}
Since the second integral does not depend on iz’ we may consider it as
being a periodic function of Z with the period of the lattice,

We have succeeded in our aim of finding an explicit expression
for the L,H.S, of (3.3.11), We now need to solve the differential
equation (3,3.11) to find v'(Z), which is the quantity which actually
appears in the partial potential (see eqs (3.,3.4) and (3.3,5)).

As stated earlier, v'(Z) is a function of Z with three parameters

.,V

2 V.- We will now reduce the problem to two independent differ-

b
ential equations where the unknown functions are functions of one

variable and are parameterized by only one quantity.

From the definition of v'(2), eq (3.3.5), we may write it as
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(1) closest to Z

0 - center of the region V1

Figure 3,2

Vectors Related to z

To avoid confusion between the various vectors used in this

chanter. we have given all the vectors related to the position vector
I ’ g P

Z in the above figure,
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! '
v - 2 1 - 3817
Lev zn-29 1€V 23

Shifting the limits of summation of the second term, as we did to
obtain eq (3.3.12), by setting‘g(i) = QKT') + 2;, the second term may

be rewritten as

] ]
Z 1 = 1 . 3.3.18
léV I”(I)-Qk’ 1 éVn h—g(i’,)_—',kl

where the origin of summation is now the center of the region Ve

Thus

v'(2) = Z' 1 & é' 1 3.3.19

V-2 T hizd@n-2¥

Let us now consider the two general sums

defn ZE' -
B2, V) = 1 ZEV “ 4 3.3.20
1€V 121)-2)
and
HAR BT TZ' 1 2ev 3.3,20a
EVa 12D -2
= 9(z',V

since the sum is of the same form as in eq (3.3,20), only with different

parameters, In terms of these functions, v'(Z) may be written as

v = 635,y - 82,

X.) 3.3.20b
n .

Although #(Z,V) and ¢(Z‘,Vn) are functions of different parameters,
the two functions may have terms which are exactly the same, These

terms will have to be independent of V and Vn since these quantities

are unrelated, However, the position vectors of the functions, as they
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are used in eq (3.3.20b), are assumed to be relatgd as follows

3' =2 - 3; ~ (see eq (3.3.15))
Thus the common terms could be functions of Z or 2'; provided they are
periodic (with period of the lattice spacing). Thus we assume §(Z,V)

and §(2',V ) may be written in the form

$(2,v) = NECZ,V) + g(D) 3,3,21
v

and

B(2',Vv.) = NE(E', V) + g(Z") . ' 3.3.21a

v

where

g(z) = g(2'+%,)

= g(z") 3.3,21b

due to the assumption of periodicity, g(?') is independent of the
three parameters V, V_ , and iz, It contains all the terms which are
the same in #(Z,V) and ﬁ(z',vn), except for the constant part of these
functions, This constant is shared betwecen f and g, We need this
restriction since we find later (see eq (3.3.46)) that f has a constant .
term, We choose to write the functions in these forms so that vhen we
take the difference between them to get v'(g), eq (3,3.20b), all the
common terms (except possibly a constant) are explicitly cancelled,
Although the sum on.the L,H,S$,.,of eq (3,3,20a) is defined for
Z&V,, due to the way in which #(2',V,) is used {in eq (3,3,261:), only
the values for z' within a limited region at the center of Vn are of
interest to us, This limited region is a cube of side 2a, This happens

because the position vector we are interested in (i.e, that appears as
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1K ot 2', Although 2' lies only

the argument in eq (3,3,20b) is z
within the basic cube at the center of Vh,vi'k ranges over a cube of
side 2a (sée footnoée *2 of eq (3.3.8)).

We note that ¢(§k,v) is proportional to the partial potential of
the region V, We will assign physical meanings to f and g at the end
of this section,

We will first solve for the f's using v'(Z), then solve for g.

Substituting (3,3.21) and (3.3.2la) into eq (3.3.20b), we obtain

v @ = 55 m - £EE ] | 3.3.22
\'4

A

Operating on (3,3.22) with [, we have
nv'@ =8 JMe@, 0 - PEE",V )] 3.3,23
viL n

From eq (3.3.7), with the aid of (3.3.11), we have’

ﬁv‘(“2'>=%1U”__z_ w a7 ] 3.3.24

N P
Thus
”I v _ - ek = // ay’ -ﬁf(Z'k,vn) i e
' I3 Ek} I5-2* l 3.3:25

k k :
where C is a constant since Z . z' and V, Vn are independent, We may

set G = 0 since in our definitions of f(Ek,V) and f(?'k,vn), we allowed
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a constant term to appear either in f or in g, We would choose this
constant to be part of g.
Hence the functions f(Ek,V) and f(Z'k,V ) are solutions of the
n

differential equations

Deekn = [ 3.3.26
A
19-27]
and
l:_'f(é"k,v') - ) s - 3.3,27
n V' o ack
n [7-2' ]

Since eqs (3.3.,26) and (3.3.27) are of the same form, we will only
discuss eq (3.3,26) and assume all statements are the same for eq

(3.3.27) with 2 = Z' and V = Vi
Unfortunately, eq (3.3.26) is not sufficient to uniquely determine

f. since as with all differential equations, the solution of (3.3,26)

s
is not unigque, We may add any solution ¥ of the homogeneous equation
"E =0 | 3.3.28
to £ and still safisfy (3.3,26), This £ + f is also a solution of
(3.3.26), We must remember that we are trying to find a different
representation for v'(Z). Thus f(%k,v) is a well defined function,
Since f must satisfy equation (3.3.20), we impose the following boundary
conditions on f:
1, f must not contain a solution of (3,3,28) which is not a
function of V, and

2. f must have the same V dependence as the L,H,S, of (3:3:,20).

These boundary conditions are sufficient to uniquely define f(Zk,V)
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Although we will not use f explicitly, we need to know some of its'
properties for later calculations, In addition to satisfying (3.3.28),
the solutions f must also satisfy Laplace's equation, From the defini-

tion of v'(?), we see that it satisfies Laplace's equation, i,e,

(@ =0 3.3.29
Thus
vzg%(g,y) - £, V) + EEV) + f(z',vn)}. =0 3.3.30
From (3,3,26), we have that
Avieen = o[
vV |¥-Z]
= - 47 ' 3.3.31
Hence
FEE,V) = - 4T 3.3.32
Similarily
FEE' V) = - 4T 3.3.33
Thus, eq (3.3,30) reduces to
VHEE Y - 8@ )] =0 3.3.34
Since ?, Z' and v, Vn are independent variables, (3,3.34) gives
e = IR,V = ¢ 3.3.35
vhere C is an arbitrary constant, Operating on (3,3.35) with:fa, we
have
AAtEm = Me | 3.3.36
or

A
VNEZwn = ¢ o 3.3,37
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Since £ satisfies eq (3.3.28), we must have C = 0,
Returning to eq (3.3,23), we have that the solution of (3,3,11)
can be written in the form

v'(2) = %_[f(*zk,V) - f(:z"k,vn)] 3.3.38

where £(ZX,V) and f(Iz"k,Vn) are solutions of eqs (3.3.26) and (3.3.27)
respectively which satisfy the boundary conditions stated in the
discussion following eq (3.3.29). _

-The problem has now been reduced tohsolving (3,3,26) or (3.3.27)
for a function of one variable with only one explicit parameter, The

k .gk .3 . The

third parameter, ¥ , appears implicitly through 2' .
z

functions f(Ek,v) and f(Z'k,Vn) do not have ié as an explict parameter,
As we have done in simplifying eq (3,3,11), we will first find an
explicit form for the R,H,S, of (3.3,26), then use this result to
obtain an explicit form for £(Z,V).

The integrals in eqs (3,3,26) and (3.3,27) will be defined as

1(Z,d) = //[-dz" 3.3.39
vV |y-zl

where Z is a general variable (i.e, %=3K in (3.3.26) and 2=2'K in eq
(3.3.26)) and V is a general volume, The origin of Z is chosen to be
the center of the region of integration and d is a measure of the size
of the volume, The choice of d is arbitrary; a convenient one to use
might be the cube root of the volume (d = V1/3), To find the expansion
for I(?,d) in powers of d, we define the limits of integration in terms
of this parameter, then integrate (3,3,39) to obtain the required
expansion, In (3,3,27), half the length of a side d = (nt+%)a = 3V 7,

is a convenient parameter to use,
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17

From Jackson™ ', the integrand can be expanded in spherical harmonics

as follows:

< m
1 = 47% 2 2 (y/z)" Y:;(G,(b)yg*(e',g;:) y< 2

<
1
]
)
=}
Il
o
ge]
1l
1
8
—~
N
=]
+
=
~

3.3.40
@ m "
i S 5 ) LEHT e,8)  yre

where (z,6,¢) and (y,8',8') are respectively the spherical coordinates
of Z and ¥. Substituting (3.3,40) into (3.3.39), we may perform the
integration to obtain
@ m
2 2m P 2
1,0 = & F @OTT o B8 - 2z 3.3.41
m=0 =-m 3
where
¥ 2p* 2 (m-1) ¢ Y
= 4z J]aav:Pe,en S- (1-§ )+ & ;n@
S T gy s 2 Z(@-1) o, * &, 110
3.3.42

(see Appendix fﬁ.,o? is the equation of the bounding surface (for

example, in the case of an ellipsoid with semi-axes bl’ b2, b3,
= (d/y)2 [(y /b )2+(v /b )2+(y /b )21 with d being proportional to
11 2" 2 37737 4

ﬁhe cube root of the volume i,e, d = (ﬂb1b2b3)1/3), The odd powers of
z/d and odd spherical harmonics vanished due to the symmetry properties
of the integral, Equations (3,3,41) and (3,3,42) are valid no matter
what kind of bounding surface V has, However for practical célculations,
the surface of V needs to be smooth, For a slab, which is a shape that
can be built up of cubes, the bounding surfaces are planes and hence no
smoothing problems arise, However, for an array which closely approxi-

mates an ellipsoidal shape, the surface of V is not smooth - it differs

¥ page 175
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from the smooth surface of a peffect ellipsoid because of the cube
stacking which led to V, .For macroscopic sized specimens, we
approximate the rough surface by a smooth ellipsoidal surface Vg say;
the difference between the rough surface and smooth surface contributes
a constant to the total potential, This point will be discussed in
greater detail in Section D,

From (3,3.,41), we see that I(E,d) is a sum of terms such as

zszZP which is a solution of Laplace's equation, plus a term
2m? s
. 2
proportional to z ,

We wish to find a solution of the differential equation (3.3.,26)

A

Mez,v) = 1(z,4) 3.3.42
Tz obtain some insight into the nature of P(?), we will now discuss
some of its properties,

[ (Z) does not operate on d, therefore £(2,V) will have the same
type of power series in d as. I1(Z,d) has (except for the dependence of
the part of f which is a solution of the homogeneous eq (3,3,28)).

We note that

P gyl ~ 2 % 3.3.43
and hence that

By o o D 2
[(z)(z"-%") = 2 3.3.44
The function szZP is a 1 ial of d 2m i
e function z Y, 1 polynomial of degree 2m 1?\21’ Zg, 23
which contains terms only of order 2m, We recall that [T can be written
; » . 2w _2p . A ; :

as in eq (3.2,7). Thus when we act c¢n 2 YZm with th, which is a
different:ial operator which has only derivatives of order 2t, then we

obtain another polynomial which is of order 2(m-t), This polynomial

is also a solution of Laplace's equation., Thus we may write the
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polynomials as a sum of spherical harmonics of order 2(m-t) as follows

-t

=)

A 2m_2p tmp 2(m-t)_2s
D,,z Y, = € z Y tg&m
2t 2m & = (iet) s 2(m-t)

3.3.45
=0 t>m
where the ézmp are constants,
Thus ﬁ(Z) acting on a spherical harmonic will always decrease in
steps of two, or leave unchanged, the order of the harmonic, The maxi-
2mY2p 2 A
mum order of z associated with each- power of (1/d), that may

2m’

occur in £(2,V) is the power of (1/d) plus 2, as in 1(Z,d). Therefore
we allow, as the coefficient of each power of (1/d) in £(Z,d), a sum of

' 2mY2p
all orders of z om UP to the order of (1/d) plus 2, 0dd powers of

~

1/d will not occur in £(Z,V) because 7 would operate on an odd power
to give the same odd power, No odd powers occur in I(?,d), so there
must be no odd powers in f£(Z,V),

Thus, from these comments and eg (3.3.44), we choose a solution

£f(2,V) of the form
o m P
£(2,V) = d° % e Zo S /g‘;'szz"ygs(e,m - 2u(z-1a%)
m= p=0 s=-p P 3 3.3.46

The'ﬁgs are unknown constants which we have to find in terms of the
‘Cmp's which appear in I(Z,d), Operating (3,2,7) on (3,3,46) with the
aid of (3.3.45), we equate the result to I(Z,d) to obtain

? bl

m ol 2m

Pns T “hs? m=n |
N S 2347
0 = 2 z{ s jz éz » n=0,1,,,,n1
p=n s=~p °* € =-n

where we have used the fact that the coefficients of each term

2m 2p 2s
d z PYQP must be the same on both sides of the equation, These
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equations can now be solved uniquely for the /;;s° This procedure is
carried out explicitly for special cases in Section D,

We now need to: check that this solution satisfies the boundary
conditions on page 73, We see immediately that the first boundary
condition is trivially satisfied, We will show that the second
boundary condition is also satisfied for the simplest case of V = Vn

(i,e. d = (n+¥)a in (3.3.46)), The same argument can be generalized

to more complex V, We introduce
% 1
¢(z,Vn) = 42 1 3.3.48
lévn ’ﬁ(f)-‘?ﬂ

Instead of comparing the n dependence of ¢(£:Vn) and f(é’,vn), we will
compare the n dependence cf the quantities

BE(Z,V) = £(4,V) - £(Z,V ;) 3.3.49
and

LP(Z,V ) = O{Z,V) - 0(Z,v,_1) 3.3.50

Clearly if Af and AP have the same n dependence then f and @ will
also have the same n dependence since f and @ can be obtained from &f
and AP by summing over n, From eq (3,3,46), we have
w -
DEEV) = 23-2@-1) {(nﬁ%)-Z(m-l) - -2(1" 1}} m 2pY25
n pPs 2p
m=0 p=0 s--p

3,3,51

Therefore the n dependence of Af(‘z’,vn) is given by

=2 (m- l)

(n-%)

- -2(m-1) _ {(n_*_;é)z(m-l)_ (n_%)Z(m-l)j/(nZ_%)2(m-l)

=~ _1 [(1+1/2n)2(m'1)_ (]__1/2n)2(m"1)

2m-1 2, 2(m-1)
" Bl=ti8n) 3.3.52
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Expanding the term in square brackets on the R, H,S, of (3.3.52) in a

pover series in 1/n2 (the odd powers cancel), we obtain

aray 2 e

@
R ORI NP A A S X X
n2111--1 =

where the d: are constants, Thus

@ m P
-2(m-1) -2r m 2p_2s
AL(Z,V) d“ 25 (0,6
X méo 2m- p£=0 SZ-ZP ,Bps 2p( 4
3.3.54

Rearranging the orders of summation, we may write (3.3.54) as

@
2? é? 2{ é{ -2(m-1)cgﬁgsnl-2(r+m)

Af(‘z’,vn) B
p=0 s=-p P mp r=0
a P o
_ % b 22Py i: 2 ﬂ.x;snl-zm 3.3.55
pel jg==p m=p

where we have combined the sum over r and the sum over m into one sum
over m with new coefficients/B'm =
ps
We will now determine the n dependence of‘bﬂ(EZVn), From the

definition of @, eq (3.3.48), we may write AQ as

A¢(g,vn) = _,2' 1 - 42' 1
LeV, ra-2) 1€Y1 12D -2
- 42{ 1 3,3,56
Té€s

2,2 =2
n |X( )-z,
vhere Sn is the set of poiuts next to the surface of Vn' i,e, within

the region Vn - Vn-l‘
We may expand 1/l§(i)-?| in a Taylor's series in Z, using eq

(3.3.40) to obtain
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| o .
MEY ) = > 5 _4a & 20,072 (0",0")

s 1D 010

m=0 p=-m 1€3 (2m+1) 2,7 12m+l
n XI5 5,57

]
AN
&
G
N

Using the property of A¢(2;Vh) that it is invariant under the operations

of inversion and reflection, we may rewrite¢ﬁ¢(Z,Vn) as

m - 200 2PF oo oy
AFEV ) = % S 24P, S _un 1ZD 7Y, 6,8

i Sn (4m+1) v.’f(f)l4m+l
3:3.58
The coefficient
*)2m 2p* ., .,
B,.(5) = S 4w RO G (8',8")
mpon 1¢ s CGuiD) lﬁ(-—f)’4m+l 3.3.59

is an odd function of n, Each of the terms may be written in the form

:E()‘E"/n)n'zm'1

where £(2) is an even function of Z, As functions of n, each term is
of the form

£(1+1 /0,141, /n, 1+13/n)n'2“"1

where Ilil< n, However due to the inversion symmetry, only terms of
the form

£(1+1/n) + £(1-1/n)
etc, have to be considered, This polynomial is an even functien of n,
i,e;

¢ (yn~2r | 3.3.60

£(141/n) + £(1-1/n) = ¥

M\ g

o]
]
o

Thus
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-

e =]
_ oom-1 -2r
A5y = Z i,éés[l ¢, (D

r=0

]

oo
r
o-2m-1 2{ o2t [n-2(r+1) dmpn-2s]

r=0 s=0 S

co
- n-2m-1 Zf C.mpn—2(r-1)
r=0

<o
S & nl-27 3.3.61
r=m TP : . '

where Crs’ C.mp’ and C* are constants whose exact nature is not
mp T mp
important to us, Substituting (3.3.61) into (3.3.58), we have
F B g Z 152
g e m . /P T -T a
92,V ) = Z_ 7 = sém(e,qa) i ¢t o 3.3.62
m=0 p=-m T=m
which is of the same form as (3,3.,55),
We have shown, eq (3.3.47), that there is only'one non-trivial
solution of
N :
r'f(Z,Vn) = I(Z, (n+})a) (see eq (3,3.27)) 3.3.63
which can be written in the form (3,3,46), with thelgip found in terms
of the d%p's through eqs (3.3.47).
If the coefficients C°_ differ from the ﬁfs , then this would
mp mp
mean that there are two possible solutions to eqs (3.3.47), This is
obviously not true and hence

1S _ S ’
/gmp Cmp 3.3.64

Thus'f(g,vn) has the same V_ dependence as ¢(2,Vn) as required by the
sccond boundary condition,

Therefore the required solution of (3,3.11) is
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Vi@ = 8EEEY - 2@, v)] 3.3.65
v

where f(?k,v) and f(Z'k,vn) can be written in a power series (3.3.46)
with the coefficientﬁ%g obtained from (3.3.47) in terms of the o .
PS mp
Returning to eqs (3.3.20) and (3,3,21), we may solve (3.3.21) for
g(?‘k) to obtain

g(z') = 2' ___1____ - NE(Z

ko
- 3
1éV lx(l) a|l\l Vv

n) 2 - 3,3,66

"

Substituting (3.3.66) into (3.3.21), it becomes

1 ‘k (l
2 1 = Nf(z",V) + ﬁé 1 - gf(?'k,vn)
(3

V Ja T ok v TEV_ T2y.2%]  V
12c1)-2¢ 12 -2l Y

Tharefore the partial potential may be written in the form

V(2K 1 - NEGET V) + & nectwm
4"(6 1c V lg(f)_g,k‘ A aﬂ'% \Y

3.3.68
Fq (3.3.68) lends itself to the definition of two new quantities:
Vi(z',k) - the intrinsic partial potential and Ve(Z,k). - the extrinsic

partial porential, These quantities are defined by

defn 5 ;
vy 2,k = qk f_ 1 -gf(a"l‘,vnn 3,3.69
I/-(‘_ =y <
and
defn :
'RCASIEE & nEES,W) 3.3.70
Lwe v

Vi(g',k) is independent of ?;. It depends only on 2', the relative
position of the point P with respect to the nearest k=0 lattice point,

and on the lattice parameter a, Thus ve may ccnsider Vi( ',k) as a
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periodic function of Z. It is independent of the shape and . size of
the microscopic region v, by definition, An intrinsic'Madelung con-
stant will be defined using this quantity,

When considering the electrostatic potential or electrostatic
energy, the additional term arising from Ve(EZk) must be considered
since it does not always vanish, Unlike V., V_ is characteristic of
the sample under consideration, 1In addition to the lattice #arameter

a, it depends on the position vector Z non-periodically, and on the

3
shape of the sample, (see eq (3,4,18)).
Writing (3.3.68) in terms of the intrinsic and extrinsic partial

potentials, it becomes

V(Z,k) = Vi('z",k) - Ve(Z,k) : 3.3,71

We have therefore succeeded in our cbjective of finding a usable

expression for the partial potential of a finite array of point charges,



D, Sample Calculations

To give a better understanding of the steps involved in calcu-
lating the extrinsic and intrinsic partial potentials, we will give
detailed calculations for three different problems - the extrinsic
partial potential of an ellipsoid, and the intrinsic partial potentials

of sub-lattices with cubic and orthorhombic symmetries,

(i) The'extrinsic partial potential of an ellipsoid

'‘As stated earlier, our calculations are valid for volumes V which
may be build up from basic cubes of side a, Thus the region of inte-
gration Qe should consider is an ellipsoid with a microscopically
rough (~a) surface, Letting the volume of the perfect ellipsoid which
best approximates V in both size and shape be Vg, then the difference
between the two volumes is a microscopiéally thin shell V - Vs. The
integral, eq (3.3,39), may thus be written as

I(z,d) = 1(Z,d ) + I'(Z,v-V) 3.4,1

where It?,V-Vs) is the integral over the microscopically thin shell and

ds is the parameter associated with Vs' Eq (3.4,1) may be rewritten as

I'(E,v-vs) I(Z,d) - I(E,ds)

- - I s 3,4,2
V j> = V 2=
ly-z s )y-z/

If the point of interest is sufficiently far from the surface, then
the shell appears of uniform thickness, say a'~a, and (3.4.2) may be

approximated by the surface integral

85
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) i ('z’,v-vs)

]
o
<
N—
[a P
wn

=1 ‘ ' 3.4.3
where Is is a constant independent of Z (Ramsey (1956)18) which is of
no particular interest to us,
From the standard gravitational theory of ellipsoids (Ramsey), we

have
2 2 2
I(Z,d) = Iy - 20(Ly 2] + Lz, + 123) _ 3.4.4

where we have chosen the origin to be at the center of the ellipsoid
and the coordinate axes are parallel to the principle axes, The

constants L, (i=0,1,2,3) are given by

m
L. = ?‘l’b b b ) D(v)dv 3.4,5
0 5 o
and
o
L, = bbb, 0] bnav i=1,2,3 3.4.6
(bo)

where bl’ b2, b3 are the semi-axes of the ellipsoid and

_ 2 2 2 %
D(v) = {(b]+v) (by+v) (b3 +0) 3.4.7
The Li (i=1,2,3) are the principal values of the so-called depolarization

tensor,

In terms of our previous notation (see eq (3,.3.41))

2
Ly «oébods 3.4.8
L, =1- /13 5 5 Ao 3.4.9
3 2T
L2 =1 + /15
3 .'ZL’r 3.4,10
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L,=1-1 /5 : ' 3.4.11
373 @m/m 0 .
1/3
d = (wb_b_b
where 5 (r 1% 3) A
We now want to solve the differe (tial equation
r7(2)f(2,vs) = I(Z,ds)
=1L - 20(L.2% + L_z2 + L_z2) 3.4,12
0 11 22 33 o

Since I(Z,ds) is second order in Z:s f(E,VS) must also be only
second order in z, (see the discussion preceeding eq (3.3.46)). Thus

eq (3.3.46) may be written in the simple form

3.4,13
P4 2, ¢l ) 2 o
= - 27 +
f(z,Vs) Lb {Ll(z1 KZO) + L2(22+?20) + L3(z3+?20)}
Now
Se2 2.9 1 2 2 - 3
£(Z = - 2w L _{ + e
M) (Z,v) =1, {L1\41+¢a Upp) + L, (z+m +oo) + L3(23+%a +5¥0§}
3.4,14
Equating eqs (3.4.14) and (3.4.4), we find
3;0 = - a2 L =1,2,3 3.4,15
Hence
£2V) =L +ga’ - 20(L 22 + L_z2 + L_z2
(z,Vs) L0 g%__ (le1 L222 -4 323) 3.4,16
where we have used the property of the Li that
L +L +1 =1 3.4.17

1 2 3

Therefore the extrinsic partial potential asscciated with an ellipsoidal
cubic array is

¢
Ze v L
(o]

+ Lbzg)é

3.4,18
where we have included the correction term I, This expression for

- 2 2 2
\ = + + - 2T +
e(z,k) (Lo IS KZ (le1 Lz

2 2

Ve(E,k) is valid only for points far from the surface due to the

assumption in the calculation of I.



(ii) The intrinsic partial potential for a cubic sub-lattice

This is the next simplest problem, since the function I(g,d) and
hence f(z,V) possess the full symmetry of a cube (i,e, possess m3m
symmetry), Therefore, instead of the general equation (3,3,41), we

may use the symmetry relations to obtain the simpler expression

©
m(6)
1E,0) = a2 (/)™ S <P P oons” 3.4.19
m=0 p=0 3
where

and m(6) is the integral number of times six divides m, The S;?) are
' — 2m2p .. : ¢

symmetric combinations of z om which are invariant under the opera-
tions of m3m, The m($) arise because, although there is only one such
combination for m& 5, when m% 6 there are two or more symmetric com-
binations (2 for 6<m£11, 3 for 12< m £17 etc), There is no second
order combination which is invariant under m3m symmetry operations and
hence S?_ = 0, The coefficients ollg appearing in eq (3,4,19) are given
by (see (3.3.42))-

0
2}

. =0

0
o< [+l L
2(m-1) .

% 3 H daP, (cosB8')
T 4o " g

3.4,21

n

i

m=0,2,3,4,5,6

The coefficients o(::l (p#0) are difficult to evaluate, However we

; 1
need only 056 which was found by an analytic continuation of the 6:::1pr

(see Table 3,4), Since we are only interested in the sP up tom = 6,
m
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we will introduce the new polynomials

0
Sp.= S, m=0,1,2,3,4,5 3.4.22
0 1. 0.-1 ‘ .

Explicit expressions for the above 6 polynomials is given in Table 3.1,
The coefficients of the six polynomials in eq (3,4.19) are given in
Table 3.2, The expression for /7 for a cube which is needed in eq
(3.4,21) is given in Table 3.3

The first 6 of the ﬁ operators are given in Table 3.4, If we

2m
operate D on S , then we obtain an S, of equal or of lower order,
2m 2p 2t
1:€:;
=¢"Ps mg p
=0 mz>p
The values for ¢"P are given in Table 3,5, Since S2 = 0, we have
immediately that
b Soqmin) = (or hence ¢™™2 = 0 for allm)  3.4.25
and since the S2p are solutions of Laplace's equation
52 S2m =0 (or hence eZ,m = 0 for all m) 3.4,26

Since I(Z,d) has the simpler form given by (3.4.19), eq (3.4.46)

also can be written in the simpler form

" Z d_zmzm p(6)

A - 2w (z2-%aD) 3.4.27
m=0 p=0 t=0 "P:P

3

ct

Considering only the terms up to m = 6, and ignoring the remainder of

the terms, the explicit expression for £(2,V ) is
n
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£E,V) = ﬂgdz +od 4 a2 (ﬁisa*}?g) + d"*(/@syé) 3.4,28

n
(L 0 -8 3
/9 St St 4 (St +,€§Sé +
e 3 0 2, 2
(/36812+/g6 +Be S +/5%s4 +8¢) +§_’1f(z “3a%)

where we have set

_ P
= Ao 3.4.29

~ and used S rather than .
' m m

Operating on f(‘.v:,vn) with l:' gives
FOEEY) = o + & {,az(s "+ B+ d“‘{@(s6+23>+ A3
{134(s +& )+/34(s +& )+,34}
+ d‘8{Igg(slo+62556+é3534+€55)+ ,32(56+23)f,g§(sz+522)+ /jg%
+ d'mé,cf’(s +€705 €705 4405+ 56)+ g (5,445, +84)+ ACK
2

2 2 0
+/G6(S4+62 )+l36} + 22:;2

3.4,30

Equating the coefficients of the different powers of d and the different

orders of S in eqs (3.4.,30) and (3,4,19), we find

Q=% -k B--r poG p3--E%

/_32 s - e A L& Pt i
/é’§=°§ ,53=- ézsoc5 ,6§=- 6353"5 ﬂg= (555+c33625+ 22 35)0%
ot g €% pi-- €% o= &%

Ae

(_é66 /;4 26 é_33C36 é22é46 '22624 .26 og
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where we have set

o =of° . 3.4.32

m m
The numerical values of the/gz are given in Table 6,3, Substituting

these values into (3,4,29), we obtain

£(5,V) = a2 3 of (%) + of ()2 (5 a7 41 ) +og (i) (5,a78-1)
: 7 : “ w3 " &
+ 0.54 (n+'15)-6 (Ssa'8+zs4a'4+ 13) +og (n—i-%)'8 (Sloa'_'mi-g_l_sﬁa-6-s4a'4- 23
-6 480 : 10 : %40
+ of (i) 105 a 124125 a"8455 a0 +135 a~t42611) + 20(P a2 -E)

3.4,33
Substituting (3,4,33) into eq (3,3,68), the explicit expression
for the intrinsic partial potential at point Z' associated with a

cubic lattice with lattice constant a is

n
v =& (g
i lm'fakl,.lf,l =n Y a,;32 K 2%
o (177237 7 f(11a-2] ) +(1pa-23 ) “H(lza-z§ )}

- o (o)’ - o6 () A (5,2 L) - oG (a) T (85 0-1)
40 84

-6, -8 -4 -8 -10 -6 . =4
- O (nth)” (Sga +7S,a +13) - K (ath)  (Sppa +%S6a -S,a - _23)

6 480 440
- - - - - -2
= Og(n+%) 10(812a 12+1258a 8+-SS6a 6+1384a 4+2611) +-21(L2'k 2 —%_3
1265 3

3.4,34
where the Sn are understood to be functions of E'k, Although Vi(E',k)
1
-

may appear to be a function of n, the n dependence of the sum over 1

is exactly canceled by the n dependence of the series (at least up to
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(n+3§)-10 which is the order to which (3.4,34) is valid).

We note that

U/ a3 oﬁ(n—l—%)zaz ;w4 o(Cn+s1"%) 3.4.35
L - 5-2Z1 3

(See eq (3.4.19)).
Therefore we may write Vi('ﬁ',k) in the form

Vi(‘i',k) = { 1 -1 /// ay + 1+ 0([n+%] )}
zmé fev K[ 3V 3k 6a
n lx(l) a n |y ] 3.4.36

Taking the limit Vn - co, of eq (3.4,36), we have

3.4,37
1 o Te
1lim Vi('z",k) = qk 1im _.Z : 1 - _1__ Tf/ dz" + &
V >0 LuCc |V > JIEV a2 +,k|
n oL n n [X(1)-2 a J
Comparing (3.4.37) with (2.7.4), we see that the intrinsic partial
potential is the quantity which Tosi evaluated, i,e, the electrostatic

potential due to a neutralized Bravais lattice,
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4 4 2 2 2 2 2 2
+ z, + 2y - 3(z 2223 + 2321)
6 6 4,2, 2 2 22
+ z, + 23 - E12[ 1(22+z3) + zz( 3+z ) + 73(zl+22)]+ 90212223
8 8 6. 2 6,62 2 4 4 4 4 4 .
+ z, + zg = 14[_z (z2+z ) + =z (z3 ) + 23(21+22)] + 35(z1z2 + 2923 + 23z
10. 10 8 82 2 2.2 222, 4 4 4
+ 2z, + zg - 52+_5_|zl(4 +z3) + z2(z +zl) + 23(2 +zz)] + 504212223(zl+ zy+ zg
2 2 2 2 2. 6, 4 4 4 6, 4 4
6302 1%9 3(z 2,2y + z z1) 21[1(22 ) + zy (z !—zl) + 23(z1+~ )]
12 12 = 10, 2 2 10 2 2.
+ z, + 45 = 33[21 (_22+z3) (z.\+ ) + zﬁ (z +zn
8,4 8 4 22 6, 6
+ 9;5[21( 2+z ) + 22(23+z ) + 23(2 2)] - LSOz 1% 3(2 + zz'- z
22 2 4,2 2 2 4, 2 4 4 4
+ - 0
+ 315022 222§ (e 42y) + 2, (z2+z ) + 75z 22)] 15750 z.7, %,
6 6 6 6 6
- 1092(z z, + 2,24 2321)
Table 3.1

Symmetric Combinations of Spherical Harmonics



Coefficients o, of gm/E(n+%)a

JIf a7

_‘;-,—??'
v, [ Y-2f

for V_ a cube
n

94

it

+ 9,520309455918213

.

N
~

&5

-
~J
|

W
’—l
o
(9%)

—
V]
a

(0%}
—
Lo
O
N
(o]

49728559/3

11.218.311

Table 3,2

'm-z, which appear in the expansion of
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$ limits ‘ 8 limits _ ﬂ’l(g,ﬁ)
-a, 0, tan” [ 1 cos®
4 4 CcOS
-1 -1 :
tan 1 , L - tan 1 sin@cos@
cosP cos
B T - tan-l [ 1 s - cos®
7. -cos
7€ " 39 0, tan 1 cosO
L % cos (8-37)
- [ - -
tan 1 , 7( - tan 1 1 sinBcos (F-%z)
cos (952 EICET
T - gan Tl 1] 5 % - cos®
Cos (3-53)]
3y DU o, tan-1 1 cosB
4 4 cos(9-7)
tan™?

1 , W - tan'1 1 sinBcos (B-)

cos (0-70 cos (@~
w - tan L 1 )
cos (P-1)

s, 7o 0, tan"! 1 cos®
4 4 cos (P-%370
tan-1 1 1, 7c- tan L T 1 sinBcos (B-%37)
cos(@--’-gB’Z‘()_ . '_cos( -3370) .

w-tanl .1 7,7 ol
cos(@-%31’1)~

7t - cosB

-

Table 3.3

The Angular Dependence of 27 for a Cube
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D2m

g_ﬁ[_l_(344+34+34)+ 163 a3 4 )]
1 2 2y 2 232 2),2
Qzl sz 3z3 3D azlazz 322323 9z3azl

a1 (Y P Y 4P+ L (3 FE+3r+3 G+ S
26} 7. Dzi ;zz c)z3 94922 éz 324 )zz 94 924 Jzz ;)z'
+ 1 36 'I
173 2\, 2
(39 9z1342323J

1 P+ }|£> Gt + ¥ @+ L i),
AL T 08 A SE a2 o7 0E AT %2 azg 37 %
N P+ _1 (P +P +
5531 )2921325923 (5:)2 Dzl{'i)z; 9229z3
(continued)
" Table 3.4

"
Explicit Expressions for the First Six Dzm's
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Table 3.4 cont,

w D2m'
5 alo[ 30 4 +0 1 $ e 8 w3 s
210 . 9y, 10 3210 leo 7!(3!)2 922822322 azi ng ng

41 {3 F2y+f Gt +3 G5
928 az2 az 97.8 azz dz 2 azs az?- az2

o Zé(é+;)+3(a+g)+é(b+é)
dz i 322 923 326 324 az 3 6 824 Qz

+ 1 g (3 i 3§ . )]
o 2o N2N.2 2 2N .2 2y 2 T
(58553 3“1322523 ézlézz 322323. 623 2]
¢ a1 (P 2 ety 1 3 ¢ s +2')
212L 13. 9212 3212 3212 9!(3!)2 ézzéz ozg Qz ézg ng
0 2 0 2 2
+ 5 ;+9)+31 A+>+51(r,+9)
11" 210 %2 %2 310 azzéi'z' %210 327 3.

+ 1 {98@‘%9") + 3 & +$’>+3 &+ >2S
gz? azg & dz 8 624 32 5"8 324 dz% ¢! ? Qz 4324

o1 ¥ {a<>+3>+s<>+s>+>< j_>§
5 3 321322923 azl;. azz 323 324 )Zz ;Z ‘ QZA 922 C)Z
+ 1 ¢ \,12

3 + ) + )]
(71)2 gziazg gzggzg ézggzi
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1 0 0 0 0 0 0
1 Ya? 0 0 0 0 0
1 0 - 1a® 0 0 0 0

%0
1 0 0 1 a° 0 0 0

&

1 0 i 0 Y 0 0

3 80
1 0 -21a* 1a® 0 « 180 0

16 240
1 0 -12a* 5a° 1a8 0 a1 gt

36

Diagonal Components

2 6 , -~ 3 4 3/2 , - 3 , = 6
2 4,3,2 6.5.4 8.7.6 10,9.8 12,11,10 14,13,12
Table 3,5
np0 Matrié

Components of the éo

60 componcntis were obtained by analytic continuation of the

The ¢~
€0

diagonal comporent series by assuming it could be written with a denominator

in the same sequence as the other denominators as indicated,
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-%a’ La* -1a® 1328 g3
40 84 480 440
1 0 0 0 0
0 1 0 Za4 -1a°
6
0 0 1 0 21a%
10
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
Table 3,6

The /Jp/oc latrix for a Cubic Lattice
m Im

13a8
5a6

12a%



(iii) The intrinsic partial potential for an orthorhombic sub-lattice

To show how the method described in Section C is generalized to
more complex sub-lattices, we will evaluate the intrinsic ?artial
potential for an orthorhombic sub-lattice with lattice parameters
(al,az,a3). The integral in eq (2,2,1) is now over a box of sides
(al,az,as) rather than over a cube of side a, The method described in
Section C proceeds step by step for the orthorhombic case as it does for
thercubic'case,

We were only able to evaluate the coefficients«ihp, eq (3.3.42)
up tom = 2, The<5 4 are easily evaluated for m>2 but symmetry.
operations are not sufficient to determine thecaclmp (p#0) as was true
for the cubic case,

As in Section C, we find that an expression for the integral over
a box with sides (2n+l)(a;,a;,a3) is needed (cf volume V, - a cube of

side (2n+l)a), We may write I(Z,d), (keeping only terms up to m=2), as

. 2 2 <2 4
4 oL 4 2
+9%92 (Y4o+Yy _9) + %42 (Y44+Y4,-4)} + %1"
3.4,37
where
d = (nt+k)a 3.4.38
with
1 !
a = (ai + ag + a§)2 3.4.39

The operatorlﬁ(g), up to the fourth order, is (cf Table 3,4)

100
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P =1+1 @) +ad +87 )+ L[}T<a‘{a‘*_ tay +ad )
4 "3 * 3z 2 9z 2 16(5. 3,4 dz4 dz4
1 2 3 1 2 3
+ 1 ( iagi + a§a§ 34 + agazl}l» )] 3.4,40
(31)2 éziézg bzgézg ngézl

Instead of writing I(Z,d) in the form (3,4,37), it is more

convenient to write it as

- _ 2 ol i - -2 -
I(Z,d) = 9§,d" +%5,B, () +°4,P,,(2) + d {"201’40@ + 5, B0 (2)

2
ol Z
+ 44PZ4(ZZ}+ §Wz 3.4,41

where the Prs(g) are polynomials of order m in the components of Z,
The relevant Prs(g) up tom = 4 are given in Table 3,7, Theaﬁno are
determined from (3,3,42) using the /77 given in Table 3,8, The ¢
(p#0) were found using the symmetry properties of the integral, (It
is invariant under the combined operation a1 =vay, 8yrag, A3»3;;
24y, Z,Zg
Table 3,9, The €7°

z,-»2, etcj, The values for the are given in
e ol | ) OSm,Zp g
% for the operator [’ and polynomials Prs are given
in Table 3,10,

The form of the solution £(Z,V) is

0 2 2 | 2, 4 4 4
E@,V) = ool + BoPye + Faaas +Rog + 4 (iR + BiBuy + Auy +

4 4 2 2
tBy0P20 * ﬂgzpzz +8op) + %ﬂ(z -i_z') 3.4.42

A
Thus, operating on £(Z,V) with I, gives us
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- 2 220 222 2
r'(?)f(z v FOOd +'820(P20+60 ) +'522(P22+60 ) +’800

-3 240 40, ., H40 ATy B0 ok
d
+ R IR W R P e W W

A 244 A +220
-1;444(:9 +é2 A s I )+/520(P %%
222, 4 2
2
+/*2(P22+40 )+/300‘§ +§g_z 3.4.43

Comparing (3.,4.37) and (3.4.,43), and equating the coefficients of

the terms with equal powers of z and the same pollynomial P we have .

rs?

220 222
= o = of
:300 %0 550 20 Egz 22 '800 ~(%0& 5550 )

& ool A ool W o ol
Buo®™ %0 PasT™%% Pu™ %L

5 240_, 242_, 244
Pao= (€ G0+ T2t €0 ) 3.4.44
/ 240 242 244
- OC OC
/%z (€, %0 T&; , T €5 %)
4 _ 440_, 4420(- N 220 292 4
oo = ~(€o “4o" €0 G2 €0 “uu t <0 Pao + €5 Fg)

Thus the intrinsic partial potential associated with an ortho-

rhombic lattice with lattice parameters (al,az,a3) is

0 2
v, (Z',0= g [ 2 1
4iTe 1.,1,,1,=-n 2, %
S 2 2(11a1~z1) +(1,3,-23) +(13 523

a1""2"33 £(n+¥)a3?

2
1 {"605(!1 z)a}’ +o00Pa0 T9%2F02 ~Boo T —L (L0040

A
W oPuot 44+/82on0+ /5’221’22+ >”oo>} + 2m(z"? a ) + 0f [(n+)d) - j
3, 4 45
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1
2 2 2
zy - %(zl + zz)
2
%(zl = 22)
4 4 , 4 2.5 . @ 292
Zq + _3__(zl + zz) - 3z3(z1 + zz) + 272,
64
4 2,2 2
& {zl -2, - 623(21 - 22)}
4 4 2.2
zq + z, - 621z2
Table 3,7

The Polynomials P2

i 9% for m = 0,1,2

2
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¢ limits 8 limits . 7(8,9)/d
- ¢1, ¢1 0o, tan"1[ b/c cos8/c
cos@
tan~! b/c| , - tan~! b/c sinBcos@/b
cosP cosf@
W - tan" [ b/ y W - cosB/c
cos@ ‘
g .0 -9 | B . tan" L[ b/c | cosB/c
1 1 cos (9-3a)
tan~! b/c , 0 - tan™! b/c sinBcos (f-%®) /a
[cos(@-%ﬁ) [}os(ﬁ-% J
€ - tan™! b/c , TC - cosB/c
LFOS(ﬁ—%ﬂj
= ¢1, o+ ¢l 0 s w /,'((esg-m/d
T+ ¢1, 2%~ ¢1 0,7 n‘l(e,ﬁ-?o/d

$ = tan~l(a/b)

Table 3,8

/OY(O,¢) for a Box with Sides 2(a,b,c)
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mp

2. .2 2 2 2
4| beln (a2+b2+02)%+a§ i caln{(a +b 4c );5+b§ + ablnf(a” +b +02)%+c3
5 3
(32+b2+02) -a (a2+b2+c2) % (a2+b2+c2) %o

& 2 -1/ 2 -1
- aztan 1 be }- b tan 1{ . ca - ¢ tan { ab .2
& 5
a(a 2+b2+c2) 3 b(a 2+b2+c2) - c(a 2+b2+c2) 'L{,

4 | -3 +,3tan-l{ ab } + 3abc {ln(c/a) + 1n(c/b)} '
c(a?bZ+c?)Z)  (aZ4p2ic?)E( (a24cd)  (b2+cd)
2[4 (b,c,a) + ¥%,(a,b,c)]

abe c2{3( ¥ @ L Oy e kB )}
12(32+b2 2,.242

462y L @)  (boaed) (@422 ied
- % [oy(b,c,a) - 4 (c,a,b)]

5[ Go(b,c,a) + Sfy(e,a,b) - %ozo(a,b,c)]

Table 3,9

The Coefficients ;?np for a Box of Sides 2(a,b,c)
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Opm _
€t: Smt:
22m 0
0
€ _ |2
2
0 v2
24m 2 44m 0
ét ) 6v 3v2 0 Gt } v, 0 0
2 2 2
12v2 12\72 0 0 v4 0
2 4
0 0 24v2 0 0 v,
0 2 2 2 2 2 2
v, = 1 [2a, - (a; + a,) v, = 1 (a; - a,)
2 24f 3 1 2] 2 A 1 2
0 4 4 4. 2,2 2 2
v, = 1 [la, +3 (a; +a,) - laj(a; +a,) +1 a.a
4 16[53 Ve, tapd = 2aaay Vi 112]
2 4 4 2.2 2
v4=-1_6['5£(al-a2)-_2_a3(a1-32)1
Ve = L[La] +ay - 2aja)]
16* 5 3
Table 3,10

Values of é‘lzmp for an Orthorhomic Lattice with Lattice Parameters (al,az,a3)



E, The Finite Crystal
We stated earlier (Section 1,3) that the definition of a finite
crystal for our purposes is: |
'A crystal which is constructed by associating a neutral
charge repetition unit (c,r,u,) with each lattice point
within a finite region V of a Bravais lattice,'
The electrostatic potential V(Z) of a finite ionic crystal
~V<'Z')=1_ Zr e 35
4re, k 1€V |23y zk 3]
where Z is the position vector of the point of interest, §k the position
vector of the k-th ion in the c,r,u, and ik?3 is a lattice vector,

Using the results of Section C, eq (3,3,71), we may write (3.5,1)

as
X
V(Z) = S V(ZF,k)
K
T T
=3V.E.0 + S VG0 3.5.2
kKt k €

Thus we may define an intrinsic electrostatic potential Vi(E') and an

extrinsic electrostatic potential Ve(g) as follows:

defn T
v.EY = ZV.(2,K 3,5.3
i L
and
defn r
-». = - 1
v, () %Ve(z,x) | 3.5.4

We will now show that, although Vi(Z') was derived using the c,r,u,,
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we may use any c¢.b,u, in the sum over k,

In our calculations in Section C, we chose the center of Vh to be
at ﬁ; to aid later calculations, We may equally well have chosen‘;he
center of V  to be some other lattice point, i(Ib_say. The only change
in the analysis is the minimum value which n may have (see eq (3.3.8)).
We see immediately that this change of origin does not change Vi(Z',k)

since it changes neither V(Z,k) nor Ve(E,k) (see eq (3.3.71)), Thus

A '
Vi(z,',k) = 43{6 {fé v ll{ - Nf(z +}. -x(l) V )
& —-d' - . - V
o n l?(l )-2 +{x(1)-xé§\ 3.5.5
All we have effectively done is to give the point P a new position

k k i3
vector z - %(1) rather than Z2' =2 - iz. Thus we may write

k ; >,k -
A (Z',k) = 1 é { 2 1 - gf(z'lsl-x z_'}z(-‘f)’vn)}
4?”6 léL 1 '€ V -;1 prd A
o, [z gD Y
where L is a set of one or more lattice points near §z and ny is the number of

lattice points in this set, Thus

r ' .
vi(E") =1 2 42 _g_l_(_ 2 1 = Nf( x(T)+>‘Zz,vn)7
lm‘% k 1<£LnL 1év ' (1) 2 +{x(1) }.{»gl 35 , j

-5
The sum over 1 and the sum over k may now be combined to give a
new sum over k, i.e,

T b ’
k, k
2 .4 a = Z2aq 3.5.8
k 1£L n k .
|k . . . k
where q' may be fractions of the ionic charge ¢ and the sum 1is

now over a c,b,u, rather than over a c.r.u,
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Thus

V() = 1 Equ s 1 - NEGZ'KY )} 3.5.9
i 4wé K T'ev m v n)o

o n [x(1")-2

where the ik implicit in eq (3.5.9) are those of the c,b,u, Therefore
the 2¥ in egs (3.5.3) and (3.5.9) may be different if the c.,r,u, and
c.b.,u, which are used are different,

To obtain a better understanding of how equ(3.5.3) and (3.5.9)
are used, we will let the finite crystal be a line of alternating point
charges (see fig 3.,3.2). Using this crystal, we will discuss how the
intrinsic and extrinsic electrostatic potentials are evaluated,

In fig 3.3.a, the crystal is considered to be a superposition of
two sub-lattices, each with lattice spacing a, one shifted with respect
to the other by an amount %a, 1i,e, there are two ions in the c.r,u,

with xo

= 0 and xl = Ya, To evaluate the electrostatic potential as a
function of the position near the ion site C (which is vacant), we
proceed as follows,

The point A is the center of the region V and hence will be the
origin which is used in the evaluation of the extrinsic partial potent-
‘jals associated with each sub-lattice, We let the distance from A to
P be z, then the distance used, when considering the k=1 sub-lattice,

is z = x! =z - Xa, We note that this is just the distance from B

(the center of the region Vl) to the point P, The origin A remains

%1 The region V is defined by the k=0 sub~lattice, When we arec con-
sidering a k#0 sub-lattice, we will refer to the region defined by
k

associating a basic cube with each k=1 ion site as V=, The regions vk

which belong to the same c,T.U, will have the same volume,
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unchanged as the point P moves along the line, Al and A2 represent

the origins, relative to which the point P is measureq, which are used
in the evaluation of the intrinsic partial potentials, Conceptually,

we may consider the origin as being fixed at A with Vi(z) being a
periodic function of z, However, to use the formulae of Sections 3.4,ii
and 3,4,iii, we must express each of the intrinsic partial potentiéls

as a function of the distance from the nearest k=0 sub-lattice point,

Thus the distances used in the evaluation of the intrinsic partial

potentials are as follows:

Point Nearest k=0 Lattice Site b Position Vector z'k

0
P Aq 2a (z' W =7 -X%

1 _ 0 1

"'

|
—~
N
~
-
1
»

1
N
1
»

s
N
Il
~
N

=z, - 7a/2

In fig., 3.3.c, we have shown how the same finite array, as dis-
cussed above may be constructed using four sub-lattices with lattice

spacing 2a, The volumes Vk vary for the different sub-lattices, 1i.e.

WO = vl = 4(2a); V2=V = 3(2a)

Thus for this case the crystal is constructed using two c.r.u's, The
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values of the intrinsic and extrinsic electrostatic potentials at any
point remain unchanged,

Returning to eqs (3,5.4) and (3,5.9), we may associaté a dipole
moment with both the c.r.u, and c,b,u, The extrinsic electrostatic
potential depends on the choice of the c,r,u, and hence on the dipole
moment of the c,r,u., 1In contrast, the intrinsic electrostatic
potential does not depend on the c,b,u, and hencé does not depend on

the dipole moment of the c.,b,u,
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(a)

A finite crystal in which the centers of the regions Vk (A and B)

are lattice sites of the sub-lattices which define Vk,

(b)

* >
oo}

A finite crystal in which the centers of the regions Vk are not

at lattice sites of the sub-lattices which define Vk.

(c)

0 %* o * o *

B
% c * fe) £S5 Fo) k4
k 0 1 2 3 0 1 3

0 1 2 3 0 1

N O

A finite crystal which may be considered to be built of four

sub-lattices instead of two as in (a).

o - ion of charge q A - center of region V0

% - ion of charge -q B -~ center of region V1

Figure 3,2

Finite Crystals



CHAPTER IV

THE INTRINSIC ELECTROSTATIC POTENTIAL

A, Introduction

We have seen in Chapter III that the electrostatic potential, V(Z),
may be written as a sum of two types of terms - intrinsic and extrimsic,
This chapter will be devoted to the discussion of the quantities which
are derived from the intrinsic partial potential,

The intrinsic electrostatic potential was definmed in Section 3.5

as

b N
V(D) = ZV(EK) (see eq (3.5.2))
k

b '
k - =K
1 Zq {4’2 1 - Nf(Z-x ’Vn)}
4t k Levy 12Dzl V 411
where we have substituted for Vi(g,k) using eq (3.3,69), In addition

we define an intrinsic electrostatic energy per c,b,u, as

defn b k' -;k'
X

U = % { ¢ V&)
b Kk k' ' k' Lk
=1 _ £ 4qq Z/_,é 1 - NEGX % ,vn)j
- 1 - - 1)

' on z' since in this chapter there is only one

We have dropped the
origin, the center of V_ , which we need to consider (not two origins,

the center of Vn and the center of V, as in Chapter III).
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In Section B, we will discuss the pfoperties of the intrinsic
eiectrostatic potential, eq (4.,1,1), and in Section C we will define
an intrinsic Madelung constant which is associated with eq (4,1,2),

In Section D, we will give the numerical results for NaCl, CsCl, ZnS,
and BaTiO,, In Section E, we will compare the intrinsic electrostatic
potential with the quantity evaluated by Evjen and in Section F, we
will prove that the intrinsic electrostatic potential is equivaleﬁt to
the quantity evaluated by Ewald, H&M, etc, whose methods are based,
either explicitly or implicitly, on the introduction of a vanishing

exponential,



B, The Intrinsic Electrostatic Potential
We have defined the intrinsic electrostatic potential of a finite

array of point charges as

b
k 1
-5 & (& 1 .
"It" -, - ~
4 é 1€Vn lX(l)’l‘xk-Z}
The first property of Vi(g) which we will investigate is its
average value over the basic cube associated with the center of V .

To do this, we will first evaluate the average value of the intrinsic

partial potential, Vi(ZZR), over the basic cube, 1i,e,

AR i dFV; (5, k) 4.2,2
V -%a
Thus
OIS W“% _%a 1e£ -1 /%f} a7 y_fc?-?ck,vng
o lEDy) VRT

In the second term we may use the relation
%a > nk = -k
N fff dyf(F-%) = [M£(-%) (see eq (3,2.6)) 4,24
V -%a
since f(?) has no singularities within the region of integration, Thus

N jfg e,V ) = [ffa7 (see eq (3.3.21)) 4,2.5

V -%a Vn l? -’t\l

For the first term in eq (4,2,3), we proceed as for the derivétion of

eq (3.3.13) by introducing the transformation y = i(f3 - ¥'. Then

><5

‘ v T)
2 = _,é j}[ ay 4,26
..%a éVn Ix(l)_'_-;{l\--ol 1& Vn l)
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combining the integrals over the different regions into a single integral,

eq (4,2,6) may be written as

%a ' _
e & =l 4.2.7
MY eyl Ve g3-2Y
Hence
V() = g {N [ a2 - N fffay
B [V Y, 33k v v ..k/
= d | for all k ’ 4,2.8

Thus the intrinsic partial potential has the same average value, namely
zero, as the electrostatic potential of the neutralized Bravais lattice
vhich Tosi evaliuated (see eq (2,7,3)), This result was expected since
we showed in Section 3,4 that, for the case of cubic symmetry, the
intrinsic partial potential was of the same form as the electrostatic
potential of a neutralized cubic Bravais lattice,

The average value of the intrinsic electrostatic potential is

b
SV

v2Y
t R
=0 4,2.9

We will now investigate how the intrinsic electrostatic potential
is related to the electrostatic potential of an infinite crystal as

defined by eq (1,3,9), The intrinsic electrostatic potentialvmay be

written as the difference between two terms as follows

2N = yl(2 v - g '
Vi(z) = Vi(z,Vn) V;(d,Vn) (see eq (4.2.1)) 4,2,10
where
b K '
V(@v)=_1_ 54 2 1 4,2,11
R A A T
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and

b
(V) = _N S q £(Z-% ,V.) o 4,2,12
4OTEV k : .
o

From the second boundary condition that f(?,Vh) must satisfy (see
page 73), V{(Q,Yﬂ) has the same V, dependence as V}'(Z,V,). They also
have the same c,b,u, dependence since Vi(Z) is indepéhdent of the c,b,u.*0
In eq (4.2.1), v, is any arbitrary region which may be constructed using
cubes (in Chapter III we chose v, to be a cube for convenience), Letting

V, »®, we find that Vi' (fz',Vn) becomes the electrostatic potential of an

infinite crystal, i.e,

. b '
lim  V/(£V) = 1 1lim 3 & S 1
v, o 4TE U, ~»o k _Ie Vo Rk
= V@) (see eq (1.3.9))  4.2,13

If the L,H.S, of (4.2,13) depends on the shape of Vn-or on the c¢,b,u,,
then V“kz) may be referred to as conditionally convergent, (See Section
1,5), Since Vi and V; have the same v, and c¢,b,u, depéndence, by
~examining the Vn or c.b,u, dependence.of Vg we examing the Vn or c;b,u,

dependence of V{ at the same time, i.,e, if lim VI depends on V_ or

V - )
on the ¢,b,u,, then this is also true for n 1lin, .Vi~and hence
V_ ‘=voo
V®(z) would be conditionally convergent; similarily ‘B if lim V;
V.  woo
n

is a constant, independent of both Vn and c,b,u,, then Va%?)
would be represented by an absolutely convergent series,

Using the results from Section 3,3,ii, we have that for Vn a cube

8(Z,V) = & [(ea]? - 2x (ZP-kad) + o@D 4.2.14
3

(See eq (3.4.33)).

*0 Sce proof at the beginning of Section 3.5.
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Therefore

1o =
(V)

b
2 qkf(i"-?ck,v )
k

TRET
m%v[g %%mmw%g %i gzgqta +o¢r%}

4,2,15
The first term vanishes due to charge neutrality, The second term may

be written as

3 * k
- 2aN 2{ q (z - 2xiz. + xixi)

b
S (2,25 (z;-x5) .
k Y

- 2%
3

*1
_gLZ((ZiPi = pii) 4-2¢16

where

qui 4,2,17

= Mo

P: =
Fs

<=

is the dipole moment of the c,b,u, per unit volume, and

P;i5= AN

~N\e

k k k
q xixj 4.2.18

<

is the quadrupolé moment of the c,b,u, per unit volume,

These woments are associated only with the position vectors ik of
ions in the c¢,b,u, They are not to be confused with the moments
of the whole crystal which has to derived using the c,r u, (see

discussion in Section 3.5),

Hence
"R = - -2 '
Vi(Z, V) g%rgfzipi p,) + p(n {f 4,2,19
o

*1 We will be using the Einstein repeated index summation convention

for summing over coordinate subscripts,
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If we take the limit V -, where vV, is a cube, then

lim V"(z Y ) = 1 (z Py P..) 4,2,20
V -»co 3& ll ’
n

The Vh dependence is implicit in the factor 1/3 and the combination of

Z, B, and P... If we had chosen a different shape (a box say with sides

(n n n )a), then from eq (3.4.42)

a2

£(Z,V,) = 00 +

1
where d = (nln n,)°a and the o 50 10, 11 are non-zero constants given

-2 2 2
s oL - -%
lOPZO + 11P22 + 0(d ) i?t(z 42 ; )1

by eq (3.3.42), This gives rise to a different combination of zipj and
pij than the one given in eq (4,2,20), This result holds for arbitrary
shapes since f(z,Vh) always is the sum of a quadratic term in Z which
is independent of n and of other terms depending on n which wvanish

when the limit Vh - or vanish due to charge neutrality,

Therefore the R.H.S. of (4.2.20) will be independent of Vh i¥ and

only if
1, pi =0 i=1,2,3 4,2,22
2, p.. =0 i, j=1,2,3 4,2,23
ii

When (4,2,22) and (4,2.23) hold

V(2 = lim V!(ZV) - lim V'(Z,V)
i V oo 1 n V > 1 n
n n
= lim  V'(Z,V)
V o> © n
n
= V(D) ’ . ' 4,2,24

Thus the series (1,3,9) representing V¥(?) is absolutely convergent
and is equivalent to the intrinsic electrostatic potential when the

c,b,u, of the infinite crystal has vanishing dipole ard quadrupole
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moments,
We note that, since V°Y(Z) is a'fﬁnction of P, and P, . it is

always c,b,u, conditionally convergent, However, when the.c,b,u,

satisfies the criteria (4.2.22) and (4,2,23), then v®(Z) is not shape

conditionally convergent, This means that the infinite lattice electro-

static potential is a function of the choice of c¢,b,u, and if this

choice of c.b.u. possesses a non-vanishing dipole or quadrupole moment,

4
then the 1 summation is also conditionally convergent,



C, The Madelung Constant
We will now define an intrinsic Madelung constant which is
derived using the intrinsic partial potentials, 1In Section A, we

defined the intrinsic electrostatic energy per c,b,u., u;, by

U& = %2{ q V (x ) (see eq (4.1.2))
2 k' k ! K sk
= 1 £ q ¢ ,Zz 1 - Ef(x -x,V )
8ue k',k 1ev 5 2 -k k! \
o - > o Jx(L)+x - | 4.3.1
The intrinsic Madelung constant,cii, is defined by
defn 2
= - 4U¢D .
of 4twe bu, / (me) 4.3,2

where b is an appropriate scaling distance, e is the electrounic charge,

and m is the greatest common factor of qk/e with k ranging over the

c,b,u, (if qk is not a multiple of e then m = 1), Thus
b 2- k!
. =- b 2 s 1 - NE(X 3 V) / (me)?2
N k', k 1év 12043 2K ak'! v 4 3.3

Since Ui is made up of a linear combination of Vi, Ui and hence‘%i are

independent of the choice of Vﬁ or c,b,u,
As we did for the intrinsic electrostatic potential, we will write

oL, as the difference of two terms, 1i,e,

= ’_' - " H
ot cui(Vn) oCi(Vi) 4.,3.4
where
b I k 1
oc) (V) =-%b < = ‘ }/(me) 4.3.5
k' 1&vV Qk k'
n /x(l) -X

and
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b !
oy (V) = - %b 2 q q f(x -?ck,v )/(me)2 4.3.6
n k' k n

b

The Madelung constant for an infinite crystal, &% is defined as
g ’ ’

defn b ., '
< o dweb & F' v @'Y/ (me) 2 4,3,7
[o] kl 1
Thus
€ = 1im o (V) 4,3,8
Voot T

Therefore we may investigate the conditional convergence of «* by
investigating the Vn and c,b,u, dependence ofoti' which is the same as

the Vn and c,b,u, dependence ofoc],i'(Vn~).

b b,
o'y =-3"3 xS & FEy )]/(me) 4,3.9
i n k Vv k'

We have already evaluated the term in square brackets for Vn a cube

(see eq (4,2,19)). Thus

tt

b
- b (2 q“ e, - b)) + o) 3/ (me)?

OC"(V )
i 3 ™ i

- 20V[p,p, + 0(n™2)] /(me)? . 4,3,10
3N

where the P term vanished due to charge neutrality, Hence
lim oc(V ) = - 2&bv P;P; /(me) 4.3,11
Voo &+ B 3N
n
As in Section B, if Vn was a box say, wewould obtain a different com-
bindtion of pipj on the R,H.S. of (4.3,11), Thus the only way for the
R.H.S, of (4,3,11) to be independent of Vn is if P, = 0, Therefore

lim o<!(V ), and hence oCO? is represented by an absolutely convergent
V ol B
n
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-series if and only if
1, p. =0 ' : ' 4,3,12
Taking the limit of di as Vn-+oo (we may do this since < is
i

independent of Vn), we have, if the dipole moment of the c,b,u,

vanishes,

oC

. 1 - : 1"
< lim oc_(Vh) lim oCi(Vn)

V 200 * V =~
n n

1lim OC-' )
V; <o * B

= L% | 4,3,13

Therefore the infinite series representing the Madelung constant
of an infinite crystal is absolutely convergent and equals the
intrinsic Madelung constant if the c¢,b,u, of the infinite crystal has
a vanishing dipole moment,

As with V“YE),cﬁ”is always c,b,u, conditionally convergent but
when the c_b,u, satisfies (4,3,12), then «”is not shape conditionally
convergent,

In the past it has been common practice to obtain the Madelung
constant for a diatomic crystal from the electrostatic potential,

‘This can lead to confusion since the criteria for the absolute con-
vergence of the electrostatic potential and electrostatic energy of an
infinite crystal are different, An example of this confusion is the
evaluation of the Madelung constant of CsCl using the Evjen method,
Evjen used the criterion that pi = 0 which insures the absolute con-
vergence of the electrostatic energy, yet evaluated the electrostatic
potential which needs the additional criterion pij = 0 for absolute

convergence,



D, Numerics

To show the computational effectiveness of the theory described
in Chapter III, we will evaluate the intrinsic electrostatic potential
and intrinsic Madelung constants for NaCl, CsCl, ZnS, and BaTiG3. To
evaluate these quantities we need to evaluate only five partial
potentials,

We define a dimensionless quantity, ﬁ;(i},lwhich we associate with

the. intrinsic partial potential as follows:

k P o
V; (£,k) = mes”_ 5 (2) 4,41
4uE b '
o .
where e is the electronic charge, b is the scaling distance introduced
in Section C, eq (4.3.2) (in this section we will use b = a where a is
the lattice parameter), m is the greatest common factor of qk (all k), and
k k
s =qle (see eq (1.3.2))  4.4.2
Similarily we will define a dimensionless quantity, oC(Z),
zssociated with the intrinsic electrostatic potential by

L(z) = 4&5015 V(Z)/ (we) 4,4.3

Thus o{(Z) is related to/S?(Z) as follows:

b
d(z) = & s (-5 bbb
k :
In terms of the/j?(z), the intrinsic Madelung constant is just
>k k' Pk ok
L = = s's /é’(z ) 4,45
= k',k m

To simplify writing we will set
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b, = £7(0,0,0; b, = F(%,0,0; by =FE50; b = F 5D
bs =4 (4,%,%) . 4.4.,6

These partial potentials were evaluated using the formula for
Vi(z,k) given in Section 3,4,ii (see eq (3.4.34)) with n = 7 and all
spherical harmonic terms up to the twelfth order, The results are
given in Table 4,1, The error in the last significant figure is of
the order 3 due to cowputer error,

The infrinsiq self-potentials and intrinsic'Médelung constants

for NaCl, CsCl, ZnS, and BaTiO, were evaluated using the results given

3
in Table 4,1, These results plus the accepted values for the Madelung
constant of the infinite crystal are given in Table 4,2, The values
{or BaTiO, are based on the assumption that

3
qk = (valence of the k-th ion)e,
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b, (0,0,0)a
b, (5,0,0)a
by - (%,%,0)a
b, ‘ (%5,%,%a
b ,%,0a
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2@
~2,83739737948,

-0,095932304945

-0.582521531548

-0.80193597003

-0,20048399251,

Table 4.1

Tosi

-0,095932

-0,582522

-0,801936

Intrinsic Partial Potentials at Points near a Lattice Site in a Cubic

Bravais Lattice
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Intrinsic Electrostatic Seif-Potertials and Madelung Constants

Crystal Ion o< (3K o< oC oc®
Type i Accepted Value Evjen3
25
_ CsCl Cs bl-b4 = - 2_035361509454 2.035361509454 2.035361509426 2.034
Cl bA'bl = + 2,035361509454
NaCl Na bl-b4}3b3-3b2 = - 3,495129189263 3.49512918926 3.49512918926636443215 3,496
Ccl ba--b1+3b2-3b3 = 4 3.495129189263
14
ZnS Zn b1+3b3-l+b5 = - 3,782926104095 3.78292610409 3,78293 3.78
S -bl-3b3+4b5 = 4 3.782926104095
' 16
BaTi.O3 Ba b1+2b4-3b3 = - 2.619360482492 12.37742369783 12.378
Ti b4+2b1-3b2 = . 6.188689058666
0 -b1+2b2- b3 = 4+ 3,227954401141
Table 4,2

L1



E. Comparison with Evjen's Method

Evjen introduced weighting factors wk (see discussion preceeding
eq (2.3,5)), to specify the contribution of an ion's charge to the
unit cell he uéed, Instead of considering weighting factors, we can
let the crystal lattice be built up from sub-lattices whose lattice
sites are occupied by ions of charge wkq, We then associate a sub-
lattice with each of the ions in Evjen's unit cell, Thus our c,b.u,
would, in faét, be Evjen's unit cell with the ions actually having
fra;tional charges,

To give a simple example of this procedure, let us consider the
set of points in fig, 4,1, This arra& of charges is the result of
taking a sum of nine squares of side a with charge %q at each corner.
This is the type of sum Evjen considered, What we will do is to con-
sider it as the sum of four sub-lattices (with charge %q at each
‘dattice site) with volume V = (23)2 and centers at (+1,+1)%a_ By
inspection of fig, 4.1, we see that these two ways of looking at the
sum over the lattice points are equivalent,

The intrinsic electrostatic self-potential at a lattice site whose

ions are of type k is (eq (4.1.1) with Z = ik)
b ' 1 b
k k sk k!
Vi(i’ )y =_1 2' q _2 _ 1 - N Z qk f(x-X ’Vn)
4o e [k 1ev, ;;(1)+—,§k'_§kl vV k'

4,5..1

- - )
where the ' on the sum over 1 indicates that 1 = 0 is to be excluded
from the sum when k' = k,

If we choose our c,b,u. to be Evjen's unit cell, then the first term
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%q %q %q *q

o~ a > . .

%q q q kg
0

%q q q %q

%a %q %q . %9

0 - the origin of our coordinate system

Figure 4.1

A Possible Two-Dimensional Square Array with Fractional Charges
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of (4.5.1) is equivalent to the quantity evaluated by Evjen,

b 1 1
V;(xk) = 2' _S:‘- "i 1 :
KAES T mDaR

Thus

4,5.2

where ngik) is Evjen's self-potential provided v is large. Hence

b 1
V9. W@ = n 2 g @
E V k' 4ae
(o]
Kk
- . y" .
Vi(x ’Vn)

V)
n

4.5.3

where we have introduced the notation of Section B (see eq (4.2.12)).

The properties of V?(ik,V ) have already been investigated for Vh a
i n

cube, 1i,e,
wE vy 1 @ -p ) + o@?)
i n 3¢ i1 ii
o
where
b 1 1
p. =N 5 xlf
1 v kl
and
b k' 1 1
p.. = 3N Z & &
1] vV k' 13
(see eqs (4.2,20), (4.2.22), and (4.2,23)).
v (&) - vy = - 1 6 - b))
i E i ii
3&%

We will now evaluate the difference

av = v &) - vEs)
i E

4,5.4

4,5.5

4,5,6

Therefore for n large

4,5.7

4.5.8

for the three crystals Evjen considered - NaCl, CsCl, and ZnS.
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(1) Nacl
From Table 4.3, we see that the dipole moment density and quadru-

pole moment densities of Evjen's unit cell for NaCl are

b
ERR A
~0 4,5.9
and
5k k.k
Pyi g— Zk %%
= N (9.0 - %q.6.% + %q.12,% - ¢.8,3)a’
v 8 &
=0 4,5,10
Thus
AV =0 4,5.11

Therefore Evjen's quantity is equivalent to our intrinsic electrostatic

potential for NaCl,

(2) CsCl

For the case of CsCl, we consider two different c¢.,b.u.s (fig 2,4)
with the relévant quantities given in Table 4.3,

(i) the ion at the surface of the c,b,u., has opposite charge to

the ion at the center of the c.,b,u,

p, =0 4,5,12

i
P.. = 3N (0.q - g.8.§_)a2
11 Vv 8 4
=~ 3q 4,5,13
8a

Hence
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Avéa) = - %nq : - 4.5.14
Aﬁzsa

(b) the ion at the surface of the c,b,u, has the same charge as

the ion at the center of the c¢,b,u,

p, = 0 4,5,15
Py = % (0,9 - q.8.3 +gq.6,1 +4q.12,2 + g,8.3)a2
3 4 2 4 8
a .
= 3q 4,5,16
8a
Hence
avi® = 3rq , 4,5,17
L éaéga '

Thus the self-potentials Evjen evaluated for CsCl differ from our
intrinsic electrostatic potential, However taking the average of eqs

(4,5.14) and (4.5.17), we have

(a) ™y _ |
%(AVE +AVE )y =0 | o 4,5,18
or
aky _ 1ro(a) 2k (b) .=k
V.(EY = VR () + Vg (R ) 4,5,19

Therefore, the a&erage of the self-potentials,evaluated using the two
‘unit cells of cases (a) and (b), is equivalent to our intrinsic self-
potential, Thus the averaging procedure used by Evjen gives the
accepted value for the electrostatic self-potential because the‘
averaging eliminates the effect of the quadrupole moment rather than

the reason Evjen gave (see discussion following eq (2,3,22)).

(3) ZnS
Again using the data given in Table 4,3 for the unit cell used by

Evjen, we have
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o
[
!
o

4,5.20

o
(=)
(=%

|
|da
~~
o
-
0
[
=)
-
~

Iw

+
ke

-

N

-
Jr=
|

o

N

a
= 3q 4,5.21

AV = %uxq 4,5,22

Therefore Evjen's quantity also differs in the case of ZnS from our
intrinsic electrostatic potential,

In order that the quantities Engn evaluated be equivalent to our
intrinsic electrostatic self-potentials, we conclude that the unit cells
used in Evjen's method must have the following properties

1, charge neutrality

2, no dipole moment

3. no quadrupole moment
These are just the ﬁecessary and sufficient conditions to assure
absolute convergence of V°(Z) (eq (1.3.9)).

In the next section we prove that the intrinsic electrostatic
potential is equivalent to the potential evaluated by Ewald, Since
Ewald's results give the accepted values for the electrostatic potential
of the infinite crystal, we may conclude that Evjen's results ‘are in
error for CsCl and ZnS and that this error is due to Evjen not real-
izing that the quadrupole moment of the unit cell must vanish for the

infinite sum to be absolutely convergent, This is the result of
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assuming that the electrostatic‘potential and electrostatic energy are
proportional to each other in diatomic systems, We have shown in
Section C that this is not a valid assumption since the two quantities
have different properties i,e, the electrostatic potential of an
infinite crystal converges absolutely if the dipole and quadrupole
moments of the c,b.u, vanish whereas the electrostatic energy of an
infinite crystal converges absolutely if only the dipole moment of the

c,b,u, vanishes,



Crystal
NaCl
CsCl (@)

(b)
ZnS

0
1,2,3,4,5,6

7’8,00090’18

19,20, ...,26

0

1’2,0‘000038

0

1’2’01100-,8

9,10,....,14
15,16, ...,26
27,28,...,34
0

1,2,3,4

3T

5,6’00000’16

Tables of the origins of the
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q
-%q
%q
- q/8

- q/8

q/8

q

(0, 0, O)ka

(21, 0, 0)%a,( 0,1, 0)ka,( C, 0,+1)%a

(+1,+1, 0)%3,(11, 0,4+l)%a, ( 0,+1,+1)%a

(+1,+1,+1)%a

(0, 0, 0)a

(+1,+1,+1) %a

(0,0, 0)%a

(41,+1,+1) %a

(+1, 0, 0)a, ( 0,+L, Oja, ( O, O,+l)a

(+1,+1, 0)a, (+1, 0,+1)a, ( 0,+1,+1)a

(#1,41,+D)a

(0,0, O)a

- q (1,1,—1)%3, (l’-lgl);‘a, ("1;19 1)%&, ('1,"1,'1>;‘;

%q

Table 4,3

(+1,+1, 0)%3,(1—1, 0,-_!-1)35a,( 0,+1,+1)%a

sub-lattices (plus the ‘charges

of the ions occupying the sub-lattice) with respect to the ion site

chosen as the origin, These quantities are obtainable from figs, 2,3,

2.4, and 2,5,



F, Comparison of the Intrinsic Electrostatic Potential with the
Electrostatic Potential Evaluated by Harris and Monkhorst
The intrinsic partial potential at a point P with position vector
Z due to a sub-lattice (with charges qk) shifted by an amount K with

respect to the Bravais lattice sites occupied by the k = 0 ions is

V. (Z,k -Nfikv) 4.6.1
1 47{5 1<_v 2T 4k/ v

where the ' denotes the exclusion of 1 = 0 from the sum when Zk =0
(i.e, when zZ = Qk), and

3k =z gk (see eq (3.1.6)) 4.6,2
f(i’V ) is a solution of the equation

e, v) = }{/ (see eq (3.3.27))  4.6.3

y-z

subject to the boundary conditions given on page 73,

In order to use fourier transforms, we introduce the quantities

%D 2] 17~
lim e =1and 1lim e =
=0 g0
into respectively, the first term on the R,H,S, of (4,6,1) and into
the integrand on the R,H,S, of eq (4,6,3),

Thus the intrinsic partial potential becomes

BT 2%/
vi('z"—’,k) 2 lim e - N £(ZK,v )}é
4((60 léV B>0 /"(f _z)k‘l \ .6.4

where f(Z,V ) is now a solution of the equation
n

136
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Precry = e A7 4.6.5

Both the sum and integral are over finite regions, thus the lim
B+0
commutes with both the sum and integral and eq (4.6.4) may be written

as

<|=
h
Py
N
:’<
S
g

>0, K
. =BIEQ) -2
V(K = lim g~ { 2' e Al .

i ——— -
0 =7 -
-ﬂ-y 4‘Ztéo 1€.Vn ]x(l)-zkl o6
wherxe f(Z,Vh,fQ is the solution of
A ' . BlF-Z] .
PeEv,p = [ffde | 4.6.7

‘o 19-2/
subject to appropriately modified boundary conditions,

The term in curly brackets inm eg (4,6.5) is independent of Vh,
1f we had wished we could have derived this quantitylusing the method
of Section 3.3,

Introducing fourier transforms, we may write

-Igr ‘ -iR.?

e

= 1 ([(dR
s

(see eq (2.6.2)) 4,6.8

To simplify writing we will introduce

e 4,6.9

S =
-
1€ v 5?(6) _2K|

s=_1 g' f[[4R e | 4.6.10

I
e
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- - .
The sum over 1 and the integral over k commute, Thus

-Qak -,

Zl - iE, 3?( )

wdze <2 e © 0 4,6.11
R AL

The sum over T'may be evaluated to give

7 3 *1
S=_1 (((dRe 77 sin(nty)kja;/sindlega; - &y ifh.6.12

(k23

It is now necessary to solve (4.6.7) for f(E:Vnﬂxﬁ subject to the

boundary conditions (appropriately modified) discussed in Chapter III,
page 73,
Substituting (4.6.8) into (4.6.7), we have

-iK, (7-2) |
r’f(aV B = de 1 (/d 7 4.6.13

(k2+,62)
The integral over Vﬁ comnutes with the integral over ﬁi Thus

A . iﬁ,? -’ik’,y
ME@Ev,m = 1 f (dk e [\ﬂdf e 4.6.14
" 22, 2 -
2 (k fﬁ ) n

The integral over Vh may now be performed in (4.6,14) to give

ik.Z 3
77 sinkjaj(n+35)/%kj 4,6,15

U(k +132) J=1

‘% £ ( 2), Vn :/3)

To find a solution of (4,6.15), we assume f(2§ has a fourier transform
el

8(1?). i,e,
ik, z 4.6.16

(@) = _1_[[[dkg(®)e
81(31//

%1 The Einstein repeated index summation notation is not being used,
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Using the general form of eq (3;2,6), which is valid for all types of.
»~

Bravais lattices, to write r in: an integral form, we have

~ %a .
(He@ =N [ff? 47 £GE9)
V -%a,
j
%a . . ik, (742)
=N [J)? a5 1_[[fRe(®)e
V-Rj o g
| , > iK.Z a . ik, ¥
=N 1 [[jaf®e f[[3 aFe
V8l -%aj
ik.Z 3
= E__]:_/{/dfc’g(fz)e 77 sinkk a /3k 4,617
V ol / j=1 iy

Taking the inverse fourier transforms of (4,6,13) and the R.H.S. of

(4.6.11), we have

.3 3 4.6.18
N g(k) 77 sinkk a /3k = 4T 77 sinkjaj(n-i-%) /%kj
v j=1 33 3 T2 7. 9=
J (¥ +/}) °3
Thus we may set
3
g = 4w 77 sink a (nt)/singk q | 4.6.19
N(k2+,62) j=1 :
Therefore a solution of (4,6,7) is
ik.Z 3 4,6,20
£(Z,V ,Ig) =v 1 {[(dE e 77 sink a (n+%)/sinkk a .
. N2 2 2. §=1 3] 3]
21 (k 6 )

We see immediately that this has the same form as S and hence satisfies
tle modified form of the second boundary condition on page 73,
However if we evaluate the R,H,S, of (4,6,20), we find it may be

written in the form
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- _ >
f(z,Vn,/)z) = f1(375) + f?_(z,Vn, 4,6,21

where f1(£7,/g) is a solution of the homogeneous equation (3,3,28) and

is given by -
F@® .2
§E -l _e 4.6.22

B S5 @l f7

where 'i(ﬁ) is a reciprocal lattice vector (see eq (1.2.4)) and T is

a triplet of integers (hl’hZ’hS)’ The ' indicates that the term with
B = .0 is to be omitted (it doesn't satisfy the homogéneous equation),
We show in Appendix 2 that solutions of this form are not allowed and
hence must be deleted from (4,6.,22) to obtain the correct solution,

Thus the required solution of (4.6.7) is

iR.2° 3 SO%
£(Z, V) =V 1 f/fdrg = 77 sin(nt¥)k.a, - 4'&'2‘ e
n N 2 j=1 VBN i 52 2
2 (k 1782) sin%kjaj f)y’(h){ +/g}
4,6,23

Substituting (4.6.12) and (4.6,23) into eq (4,6.6), the partial

potential becomes -

‘ . iK,2¢ 3
V(2% = lim g 1 /fdfc’ e /7 sinkjaj(n-k%) - Sk o
B 70 zméo 2772 (kz-}icz) =1 sinkk.a . ’
3%3
if:'f,'z°k 3 . iy (h) zk
-1 Idfc' e 77 sinka (n¥y) + 4G e ]
2 2 2 =1 - Vv B (.= 2 2}
2 (k40 ) s::.n%kjaj _ {y( )+
_k k
. iy'(h) .z ) ik.2
= lim 4q i [/mN S e — Sk, L ﬁfdk - 3
4 H
7 2>0 wE \Y gl (h)] 473‘? 2_"2 (k2+/82)
4,6,24

The last term on the R.H.S, of (4.6,24) is present only when Z is an

. . . -2 . . : - <2k !
ion site., When .z is an ion site, say z = Zk , then each of the terms
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the above terms diverges, To obtain the correct limit, the regions of
summation and integration must be the same before taking the limit of
the region going to infinity (see discussion following eq (2,6,13)),

Therefore the intrinsic electrostatic self-potential at a k' ion

site is
v, @) - 2v<k 0
= &' lim [znzNZ 1 - L_[[fE ]
bw¢ B>0| V H{(ly(h)) _'_/3} . (k2+/62)
b, L AR,
+ Z gk 1lim 4«Né e

k 4%%5 /@ﬁ?o V h fl?(h)lz 2

4,6,25
' on the sum over k denotes the exclusion of k = k',

where the

The lim may now be taken to obtain

50
(qk') = 1 {émN é; qk' _ qkl (}S dk
GTE E ) ol ﬂ-? RIS
, i . @ 3
+ S ka5 e , 4.6.26
k v &

Holk

Comparing eqs (4,6,26) and (2.6,13) (with %X =0 in (4.6.26)), we
see that they are identical, Therefore the intrinsic electrostatic
potential is equivalent to the potential evaluated by H&M, and hence

*2

Ewald,“whose methods are based on the introduction of a vanishing

exponential,

%2 See discussion at the beginning of Secion 2,6,




G, Summary
In this chapter we have found that the electrostatic potential of
an infinite crystal may be written as an absolutely convergent infinite

%
sum provided the c,b,u, chosen satisfies the criteria

b
1, charge neutrality zquk =0
k
2, no dipole moment p; = 0
3. no quadrupole moment pij =0

For this case, the electrostatic potential of the infinite crystal is
equivalent to the intrinsic electrostatic potential,

Similarily we found that the Madelung constant of an infinite
crystal may be written as an absolutely convergent infinite sum, which
equals our intrinsic Madelung constant, if the c,b.u, with which the
infinite crystal ig constructed satisfies the less stringent criteria

1, charge neutrality

2. no dipole moment

To the author's knowledge, the difference between the conditions
of absolute convergence of the infinite series representing the electro--
static potentiai and Madelung constant of the infinite crystal has not
received any attention in the literature, As a result, in diatomic
crystals, the quantities ai(ik) and ai (see eqs (4.,4.4) and (4.4.5))
have been used interchangeably (i.e, they were assumed to be exactly
the same quantities) without regard to the difference in convergence
criteria necessary to obtain them,

In Section E, we have shown that Evjen evaluated the wrong quantity
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in CsCl and ZnS by using unit cells thch had non-vanishing quadrupole
moments (he usedcl(§k) and o& interchangeably),

In Section F, we have shown'that the quantity evaluated by Ewald
(who introduced a vanishing exponential) is equivalent to our intrinsic
electrostatic potential, As our approach is more appropriate td real
systems, we consider this equivalence a proof of the validity of
Ewald's procedure rather than of ours,

In Section 1,5, we stated that the accepted value of the electro-
static potential of an infinite crystal was the electrostatic potential
which was obtained using a c,b,u, which insured that the sum was not
shape conditionally convergent or was the quantity defined by the
introduction of the vanishing exponential, We have shown that both
of these cases give an electrostatic potential equal to the intrinsic
electrostatic potential, Therefore the accepted value of the electro-
static potential of.an infinite crystal is the intrinsic electrostatic
potential,

The next Chapter will be devoted to the discussion of the extrinsic
partial potential which has no counterpart in the infinite crystal

theories,

*1 We have shown this explicitly only for cubic crystals, However,
the analysis is easily generalized to more complex crystals to give

the same results,




CHAPTER V

THE EXTRINSIC ELECTROSTATIC POTENTIAL

A, Introduction

In Chapter 3, we separated the electrostatic potential of a finite
- erystal into two parts - an extrinsic and an intrinsic part, This
chapter will be devoted to a discussion of the éxtrinsic part, The
extrinsic'part contains all the effects which are related to having a
finite sample, |

In Appendix 3, we will show that the intrinsic electrostatic
potential is the same for points at the surface as for points in the
bulk of the crystal, Thus any aeviation from the bulk properties of
the crystal (such as surface energy) near thg surface is directly
related to the extrinsic electrostatic potential,

The surface energy forms only a small part of the total energy of
crystals whose thickness 250 A®, Thus little work (compared to the
~amount of work on bulk properties, such as the Madelung constant) has
been done on the evaluation of the energy at the surface, Recently
surface effects have become more important since experimental research
is being done on surface waves and thin crystals where surface ‘effects
are significant,

Tosi has considered the electrostatic potential at thg surface of
a crystal which extends to infinity away from the surface, Huang and
Grindlay (H&G)19 considered the problem of a semi-infinite slab (two

surfaces are present), Tosi used a modification of the Ewald method,
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whereas H&G summed the contribution due to each plane as one goes from
one surface to the other,

In Section B, we will discuss general properties of the extrimsic
electrostatic potential for an ellipsoidal specimen, We will show .
that the extrinsic term may contribute significantly to bulk properties
‘of the sample such as electrostatic energy,

In Sectipn C, we will derive an expiicit expression for the
extrinsic elecfroétatic potential for points near the surface of a
slab-shaped specimen, .Numerical_results for the electrostatic con-
tribution to the surface energies for various orientations in NaCl and

CsCl will be given in Section D,



B. The Extrinsic Electrostatic Potential

We have shown in Chapter III that the total electrostatic potential,

V(Z), due to a finite array of point charges may be written in the form
V(Z) = Vi (2 + V(D) 5.2.1
Vi(Z') is the intrinsic electrostatic potential (which may be considered

to be a periodic function of Z) given by

b
V. EY) = 2V (E' k)
, K
... b v . - 5,2,2.
= " 42 1 ' -_gf(‘é'-?:k,vn)}
k 47('é° lc:VI1 l;"{(*i)_-z'_*_—ik/ \Y

Ve(g) is the extrinsic electrostatic potential (which is a nun-periodic

function of Z) given by

.
R A TSR A W
%
x
=5 ¢ NE@EEY 5.2.3
k W@E v

In Chapter IV, we discussed how Vi(E) was relatéd to the electro-
static potential of an infinite crystal, V®(z). The quantity Ve(i) has
no relation to any quantity which is derivable using infinite crystals,
Even the conditional convergence of the infinite sums, such as the sum
for the Madelung constant, arise due to the second term in eq (5.2,2)
not from Ve(g)’ although this term appears similar in form,

We will discuss the properties of Ve(g) for an ellipsoid, From
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Section 3,4,i, we have that the extrinsic partial potential for an
ellipsoidal specimen is (the coordinate axes are not parallel to the
principal axes) K 2 Kk Kk
ve(Z,k) = ¢ N {LO +I, +m@ - ZaLij(zi-xi) (zj-xj}s,z,a
4R€B'V 6

(see eq (3.4,18)) where the ik are defined by the c.r.u,

Thus .
- T
RACEIRAACH
>k 2 % K, .k k
= - N qQ (L AT +ra“) - 2aL 2 q (z_-x)(z -X%)
Z‘frévg? 0 s ijk i i3 3
(o]
T T Kk
o N (TqN(L 4T gale2el z 2 ) - 201 S q(2z xS-xx)
GHEV ) k 0 s7% 1313 i3k i3 13
N 5.2.5
=1 L (Pz_-P_ ) ‘ 5.2.6,
g i3 13 ij .
where
r
P =N 2 qkk 5.2.7
1 vV k 1
and
by
P =N 5 qkxKxk 5.2.8
1] Vv k 1]

are respectively the extrinsic dipole moment density (polarization) and
the extrinsic quadrupole moment density. The first term on the R,H,S,
of (5.2,5) vanished due to charge neutrality which we have assumed for
the c,r,u,

The quantities 7K used to define Pi and Pij do not have the same
arbitrariness associated with the corresponding terms (pi and pij)

derived using the c,b,u, which is used in the evaluation of the intrinsic
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electrostatic potential (see eqs (4.2.17) and (4.2,18)). These ;k are defined
by the particular sample (i.e. choice of c.r.u.) we are considering, whereas
the ﬁk of the c.,b,u, are chosen according to convenience criteria vhich

depend on the crystal structure, not on the particular sample, Thus Pi

and Pij are properties of the sample under consideration,

We mote that, for some crystals such as CsCl, we have not found it
possible to conmstruct a c,r.u, which is neutral and yet has no dipole moment,
When discussing c.b,u,'s we did not have to considef this point since c.b.u.'s
are allowed to have charges which are fractions of the ionic charge and
hence may have both charge neutrality and vanishing dipole moment, The
charges used in the c.r,u, have to be the ionic charges, Charges which
are fractions of the ionic charge are not allowed in the c,r,u,'éince they
do not exist in real systems, Therefore, if we neglect effects of surface
_ charge such gs'glgctpoqs,gqq:ipns'frpmqutsidg'tpe_;rys;al which is not. ..
part of the crystai, then samples of CsCl will all have dipole moments,

This means that the magnitude of Ve(i) will be large compared to the
magnitude of Vi(§') due to the linear dependence on z, However, the
physically relevant quantities are the derivatives of the electrostatic
potential with respect to 7. For these quantities, the intrinsic terms

will be of the same order as the extrinsic terms, From eqs (4,2,19) and
(5.2.6), the intrinsic and extrinsic electrostatic potentials ére pro-
portional tol?% where P is the dipole moment of the c¢.b,u, or c,r,u, There-
fore the derivatives are proportional to{?[which is of the same order in

both cases, (Thel?lof the ¢,b,u, is assumed non-zero to obtain an estimation
of the order of the terms involved in the intrinsic electrostatic potential,)

For crystals such as NaCl where it isvpossible to construct c.r.u,'s

which are electrically neutral and have vanishing dipole and quadrupole moments
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We may define an extrinsic electrostatic energy associated with

the extrinsic electrostatic potential by

defn r . .
U o= 57 g&v @Y
e k! e
r r
ki xkl k!
= L P - P
5 ij(% T 5% %. T E )
€
(¢}
= PP o . 5.2.9

vV L . )
Ne it
[}

As we introduced an intrinsic Madelung constant in Section 4;3;
we will introduce an extrinsic Madelung constant, of, in this section
as follows

defn
oc = 4aeau /(me)? - 5.2,10
e o e ,
C(EL T RgT(4:3.2)) .

Thus for an ellipsoidal specimen, the extrinsic Madelung constant

is

= 2a L PP 2,11
e T i 3

Assuming that the polarization is of the order %e/a2 (this is a reason-
able approximation for a crystal such as CsCl), then

o, = | 5.2.12
which is of the same order as the intrinsic Madelung constant,

We must remember that the above discussion only holds for points
far from the surface since this assumption was used in deriving eq
(3.4.18) (see discussion preceding eq (3,4.3)), The next section will
consider the problem of the extrinsic electrostatic potential near the

surface of a crystal,



C., The Extrinsic Partial Potential at the Surface of a Slab

In the section, we will consider the extrinsic partial potential
of a finite slab since, next to the ellipsoid, it is the simplest
problem to solve, In addition, we will show in the next section that
these extrinsic terms contribute significantly to the electrostatic
potential and electrostatic energy at the surface .of a slab even when
the dipole and quadrupole moments of the c,r,u, vanish (causing the
extrinsic terms to vanish in the bulk of the sample)%l, The extrinsic
partial potential contains the total effect of the presence of the
surface on the electrostatic potential,

Generalizing eq (3.3,70), the extrinsic partial potential for an

orthorhombic array (with lattice parameters a;, 2y, 33) is

V(0 = < neE-F v 5.3.1

%1  We note that for an ellipsoid, there is no contribution due to the
extrinsic term when the dipole and quadrupole moments vanish, Thus a
thin slab, in the limit of the edges going to infinify, does not
approach an ellipsoid, as is commonly supposed, We think the reason
this happens is that the smoothing operation (i.e, the approximating of
I'(?,V-VS), eq (3.4.2), by a constant Is)is not valid when coﬂsidering
a point near the surface, Thus the surface of a slab can never truly
appfoach the surface of an-ellipsoid althcugh for points far from the

surface the approximation does hold,
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where Z’ is the position vector of the point of interest P (with the
origin of the coordinate system chosen to be the center of the region
V), ¥ is the amount the k-th sub-lattice is shifted with respect to
the k=0 sub-lattice, V is an arbitrary region (which is made up of

basic cubes), V = a a,a,, and £(Z,V) is a solution of
N

2 -
rezv = [[_da 5.3.2
Vi, -
O y-E
subject to the boundary conditions given on page 73, The extrinsic
~ partial potential is defined at points both inside and outside of the
region V,
The simplest surface to consider is a plane, i,e, the surface of
a slab, Thus we will let V be a slab with sides of length {32m1+1)a1,
(2m2+1)a2,(2m3+1)a3§ (see fig, 5.1), To solve eq (5,3.2), we proceed

as described in Section 4,6, Thus the solution, for Z.within V, -is

ik.z 3 . .
£XZ,v) = lim 1 /dE’ e 77 sintmgtokiay
. iy .2
- 4N S e 5.3.3

R 12,4222 ( Zev
VR Sl 278 )
where the i superscript denotes the interior solution,
For z exterior to the region V, the solution is
ik.Z2 3 . )
. . L *
£Z,V) = lim 1 f/ dc e 77 SinmgDk.a, g g %2
A0 21'(2 (kZ_'ﬂZ) j=1 einkk.a

The limit £+ 0 has to be taken after the integration over ¥ has been

performed, It does not commute with the intégral, The e superscript



¥
| |
z . l(2m3+1)a3
e e e -
, e
./ 4
/ 0 //
/ . /
/ . / .
l/oaooolco.vhl.oo.-o-ooooaoo:a / (2m2+1)32
/’ 0. //
// . / a
i / €
/ ) / 3
P .__[
R (2m1+1)a1 ——————————— - 4
. e
1
" Figure 5,1

A Finite Slab

A finite slab with sides of length {(2my+1)a

1,(2m2+1)a2,(2m3+1)a3§ and center at O.
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denotes the exterior solution,
There are three cases in which eqs (5,2,3) ana (5.2,4) are easily
evaluated, They are
(1) m; —>oo j=1,2,3

This is the case of an infinite crystal, Vz does not exist,
(ii) my, Wy 2o, My finite
This is the infinite slab case which H&G considered, V:
doeshexist.
L GAD By ) = 1,2,3 but also 2 = (agray -z
This insures that the point of interest remains at one of the
surfaces while the other surfaces recede to infinity,
This is the case of the semi-infinite crystal, V: does exist,
We will evaluate V: and V: (when it exists) for the first two
cases, The third case can Pe easily derived from the results of the

second case,

*2 The extrinsic partial potential is not continuous at the surface

(i.e. at [z | = (m +¥a)
J J J
vi(z k) # Vo(Z,k)
e e
However the total partial potential
v, (2,k) + V(2K = v&(Z,k)
i e e

is still continuous as expected,




154

(1) The infinite crystal

Taking the limits m o of eq (5.3.3), we have
P :

il'z z .
1im Ve (Z,k) = g lim  1lim ; ///dk e sin(mg-i-g)kjaj

(g - 0 1 s
m - 4Twe v m © B-r 2,“ (k + j= s:u.nzkjaj

P o

2,72 2
: iy(h).zk
by 5 e g 5.3.5
N b . .2 2
H3®IT4ES ) 521
To proceed further we have to assume that the lim commutes with the

"lim |, ‘We are unable to show that this is a P  valid assumption,

A%0

Provided this assumption holds, then the limit also commutes with the

e
integration over k-space, Thus

772k
ik,z™ 3
lim V (Z,k) = Ng¥ 1im 1 }//cﬂ?e 77 1lim [Si“(mﬁ%)kjaj
e P . 1.
mp—)oo 4‘2760V '5-70 2’TZ (k2+,82) j=1 mp-;ao suvzkjaj
. e Y . e li(h) « ° .
-mZ

g {/y(h)'2+/<3f>Z =1,2,3

We may now use the identity

lim sin(mtyka = 27 Z S(k-y(h)) 5.3.7
m o sinkka a h

where y(h) is a one-dimensional reciprocal lattice vector, to obtain

iy (h) 2 . ¥ 2K
lim Ve(?,k) = NgX  lim {4’0’5 e - 45"2 e ?
"p7 A S TP TN
= lim Nq%/ve 5.3.8
B =0 0152

which is independent of Z and goes to ® as ﬂ-—;O as expected, The total
electrostatic potential of an infinite array. of charge is infinite, We
have separated it into two parts - an intrinsic and an extrinsic, The

intrinsic remains finite, therefore the extrinsic part must divexrge,



(ii) The infinite slab

It is convenient to introduce the quantity ¢a(?,m3,}g) as follows

lim ¢3¢ ,3/3) HNE gy Vi(Z,k) a=ie 5.3.9
B =0 Vq k ml, 9 Y0

Since V: exists in that case, we will evaluate both ¢i and ¢° for

completeness,
(a) o1
From 1nspect;10n of eqs (5.3.1) and (5 3 3) we have that
et senTetin e -rk . Kk
¢i('z',m3,)g) 1 11m f dI? IE 51n(m %)k a - zrblé_ i}’-'(h) Z
—)oo (k _w ) j= 1 s:.n/kJaJ 5 3 10 g{’Y(h)lz"ff%; \
We may immediately take the limits my, My P, as we did for the

infinite crystal case, to obtain

- >k
y , iy(h).,z ik, z
07(Z,my, ) = 2Mag 5 fax, e 272 sin(my+i)kqaq
v ad sinxk _a
- 7 2 2 2 2 3 3
hy=0 {13@)| Heg 7
3,0 2K
2 iy(h) .2
- 4N & e 5.3.11
\'4 h -

§7 @) 2443

We now need the additional identity (found using contour integration)

ikz iy(h)z -(m+%)ad
}dk e sin(m+s)ka = 277 e - e coshdz
) e £ - X R e
Fee) (d +k ) sinska a h {dz-i-yz(h)} d s 3 i;.nh sda

which is valid for Iz| £ (m+%)a

Substituting (5,3,12) into (5,3.11), we have
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1y(ﬁ> P - ) {5 R 46537 a
ﬁi(z,m3 /9) 4uN {2 - %a 2 e { coshzry"(ﬁ)[ +,5}

3% = :
S5 28 i, S WO ntyml s 5'2%2—a3

s iy®) . 2¢
- e

SIF@] 4673
2 . -(m+3)a
= &%_I\j IB - —533e cgsh/az 5.3,13
. sinh’,gfaB

< m@HD I 28235,

g Z " '} 3cosh {lj?(h)] 2+»32§;5zk '
—o {)7’(5’)/ *3,? smhg)si(h)} 215247 “a, f

where the ' indicates the exclusion of hl = hz = 0 from the sum over ﬁ

(ve have seperated this term out), Letting 4 become very small and

keeping terms only up to order 0, eq (5,3,13) reduces to

i, = 3 ) 2.2 ., ky2 _ 2
) (z,mS?g) = _2_;r[_l_\l_{2(m3+r§)a3 (m3+52‘) a3 +(z3) .a_% 5.3.14
. yia 12
v 1A ZF - ) FE) ] a
- a, é e e 3 3coshr§(ﬁ°)} zg
h - 2
hy=0 I,-V(h)l sinh[7 (D) %aj

We note that this quantity still diverges as £-»0, but at a slower rate
than the infinite crystal,

We are interested in the value of the extrinsic potential at the
surface of the crystal, Thus it is convenient to shift the Z origin
to the surface of V by introducing the transformation

Zy = (m3+32')a3 - gé 5.,3.15

where z' is positive (this z; is not related to the z:',’ associated with
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the intrinsic partial potential),

Thus
i 2 1ky2 .k a2
¢ (Zmy 8 = _TIE{Z(%%)% +(z3") CRO 3 5.3.16
. 12
v T2 - ) [T a .
- a, é e e 3 3cosh|§(h)liz3'lfl-(n13+-’é)a3%2
. ‘
/ y (H)/ sinh l;’(ﬁ)[ %a3 _J
whefe
L9 28, +zye, < 28, and 2k = 2+ 5,317
(b) ¢°
From inspection of eqs (5,3,1) and (5,3,4), we have
-k
lk 3
0° (Z,m,,0) = 1 ﬂdf e 77 sin(msHkaas 5 3 18
oL -
2{( ml,m2 ->00 (k 76) j= l s:.nzkjaj

Proceeding as for case {a), we take the limits m , W, PO to obtain

ok
1y(h) ik _z .
ge(Z,m_,3) = 2Na - Z . [dk e 373 sinkgas(my+’)
‘ 3/8 R 3 !2 2‘{3' sin%k383
h_=0 F(h) +kZ¢ =2 ;
3 ﬂ By 5.3.19
Since |z§{ >(m3+12')a , we have to use the identity
. ikz -dz
"dk e sin(mt¥)ka = qre sinhad (m+%5) - 5.3.20
- (d2+k2)% sinkka d sinh’ad :

rather than (5,3,12) which is valid only for [z]| > (m +%)a. Thus

#=(z, m, ,/g) becomes
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-, WK Keyw, g2 32‘
iy(h), - h
e E IO a5 #3

. ) sy 2 2%
P @m0 - 2y 2 T—,(g)/ 7 33% .Sinh{'y(_}i)l2+ﬁ9§,a3 e
hy=0 Iy A | sinh{ﬁr’(h)l -I;B"f/z%a:i
..z3/5
= 2tNa, e . sinhlga3(m3+%) 5.3.21
Vg
s:‘.nh,tfl*ia3
w > 9K k -2 2-%
, iy(h) .27 -z § 0] "483 N o
+ % e > ; 13 # sinh {5'}'7’(h)(247‘f3%a (g )
hy=0 {IY(h)l 8% sinh{]y(h)l "2 %y a3

: 'A'gé'ih'expa'ﬁdiﬁg in bowe.rs' ofI'B‘ keépihg only t'-erms‘ up td ovraer'”O,. é‘q

(5.3.21) reduces to

¢ (z m, J = 2N § (m +%)a, ( 1- zk) + a Z,' e e sizih;’;?(..),’a (z=,+%
/ v 3 3 y: 3 3 Z - 373
h=0 [T sinh{FB))] 3a

3 5.3.22 3

Letting z‘}; (m3+%)a3. + z:;k where .z:;'k.> 0, (5.3.22) becomes

g&((z',m = 4AN +5)5 1 - z'ke
(z', 3,/9 Tazi(m3 )“',Z;' z3 (m.?’+%)a3t‘3> 5.3.23
B IOR A N ) R 17 )
+ % S e e smhly(h)/a (m_+%) ¢
2,2, ;
h3=0 ,}’(h)l s:.nh]y(l—s; 2a -
We note that at zé =0, ge diverges in the same manner as ¢i as g0,
In alddition
' =28 +2z¢& +2z'¢ ' : 5.3.24

1
11 2 2 33



D, Numerics
In this section, we will evaluate the extrinsic electrostatic
potential as a function of the distarce from the surface of NaCl and
CsCl slabs, Experimentally, neutral surfaces are the easiest to obtain,
Thus, we will consider slabs which have electrically neutral surfaces,
The simplest neutral planes to consider are the (100) and (110) planes
in NaCl and the (110) plane in CsCl
The lattice arrays associated with éach of these orientations are
.givgn.in fig.s 5.2,J5,3,_;pd,514 xespecpiyely,_ ;n;order to use what .
we have defined as the extrinsic electrostatic potential, we first have
to decompose each of these arrays into its sub-lattice.components
(i.e, determine the c,r,u,).
The simplest decomposition into sub-lattices of each array is as
follows: |
(1) NaCl (100)
- 8 cubic sub-lattices with lattice parameter a
-k =0,1,....,7
(2) NaCl (110)

1, Da
27T

- 4 tetragonal sub-lattices with lattice parameters (1,
-k=20,1,2,3 |
(3) CsCl (110)
- 4 tetragonal sub-lattices with lattice parameters (1,/7,/7)a
k

The %X values for each of the above cases are given in Table 5.1,

For simplicity we will assume each of the sub-lattices has the
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A (100) Surface of Nacl

Top and side view of the lattice array of NaCl with a (100) plane
at the surface, The numbers labelling the ion sites are the k values

assigned to the sub-~lattices,
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A (110) Surface.of NaCl

Top and side view of the lattice array of NaCl with a (110) plane
at the surface. The numbers labelling the ion sites are the k values

assigned to the sub-lattices,
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A (110) Surface of CsCl
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same m_ value, This means that the crystal may be constructed using
only one c,r,u, For m3-2.5, the térms in eq (5.,3.16) containing
negative exponentials in m3, may be neglected, This is almost equ”’.-
valent to letting one of the slab surfaces be at infinity (i,e, the
case Tosi considered), The only difference is that we retain mg in
the linear terms of eq (5.3.16).

Thus, summing (5.3.16) over the sub-lattices,within the above

approximation, to obtain the electrostatic potential, we have

T - ) . .
R | f 2 ke : 2 k2 L,k
V(%) = g 2N $2(m +¥)a, - ai + (z)° - 2z, (m,+%)
e zé an;"ﬁf‘f{ 3 3 3 3 33V3
0. 1
- - -
S iy(h) .z -z 1y (h)|
o+ %a3 - e e
h 2,701 s -,
hy=0 y()|  sinh|y(n) jZa; )
BT R S T OB S !
=1 \P +‘{z -a (mﬁ-%)jP + %Na é S ke e 3 i
€ 133 3 3 3 3 V3R k T3m sinhly(m)T%a,
° h3=0

i) .2 -z_|F
e e 3 5.4.1

The terms in P33 and P3 are the ones we would obtain by approximating
the thin slab by an ellipsoid (see comment *1 of Section C), We note
that the singularity arising from the 146 has vanished due to charge
neutrality of the c,r.u,
To simplify writing we will introduce a dimensionless function
a%(i), (cf o&(z), eq (4.4,3)), as follows
defn .
< (Z) = 4wébVE(Z)/ (me) 5.4.2
e o e
where b is an appropriate scaling distance and m is the greatest common

factor of qk/e with k ranging over the c,r,u,
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Substituting (5.4.1) into (5,4.2), we have

oce'(?) = i’_:_fg gPBB + {23 -3, (ug'*-%)fl’g‘ 5.4.3
Cr ~F®RE SNEE B3 250
+ @_33 2 Z q e e e e 3
Vv k P 5,9 -
% |¥(h)]  sinh [F(h)fsag
h3=0

We will now evaluate 04(;(% for the three cases mentioned earlier .

by substituting for ?ck and qk from Table 5,1
(1) NaCl. (100)

, -iy.(h )% -iy (h )%a - F@)| %a
LD =-tha T (e b1 Sae 2270, Fel )4
\Y

=

heo IFM| sinh|F()|%a,

3 F®.Z -z )3B)
e e
. . 2. 2% S | 2. 2.%
. -7t(m “4m 5) i2q(m_z.+4m,z,)/a <29z, (m +m>)%/a
-==2£(1~e 1720 AR iR,
T L
MysMy (m2+m2)2 sinh(m2+m2)3n 2. Ak
oy 12 12

where we have set yl(hl) = 2tzm{a and yz(hz) = Zttmz/a. The terms with m,,

m, odd vanished and hence have not been included in the sum over m_,

m, in eq (5.4.4). We note that the c¢.,r,u., does not have a dipole or
quadrupole moment, (see Table 5,1),

(2) NaCl (110)

, -iy_(h )%a iy (h )%, -%a_ T iy®).Z -z_|F (@)
(B =- N, 2 dee 1V hae 2277 % 3 Ye e 3
v h

h =0 I?(E')t sinhl?(ﬁ)’ %a3 5.4.5

Setting yl(hl) = Z'mnl/a1 = Zﬁnpl/a -and y, (h2) = 2fvrm2/a2 = 2'r[,/§m2/a
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in eq (5.4,5), we obtain

u? '“’(m +2rn )%/ /_ iz'ﬂ(m z +m z, /2)/a -21(23(m§+2m§

%(E)’:f de(l(l) e ) e
::1’0 (m i—l2m§) sinh('n +2m2)% 5.4,6
2

We note again that the c,r,u, does not have a dipole or quadrupole
moment, (see Table 5,1),
(3) CsCl (110)

-infy, (b))ka 4y (. )%a ka1 3R] -iy. (h,)ia
oc () —'nNaBa 2(1- 1 272 2]) +e 3 (e L1171
. h .

R SETRE

B - N
3™ -1y, (b))%, T3 -z, T
- e )¢ e e
]S"'(ﬁ)l sinh[ffa(ﬁy%a:),
' IR LA 24am?) %
-1 2 faenty . (D - 1 2 >§X
mml’m‘?- (mi % 2) sinh(ml-#fmz)iﬂf/i '

-2a(m, 2 +m,a,(7) /a -2nz3(mi+?§m§)%/a

e e
We have set yl(hl) = 2mn1/a, y2(h2) = 21(1112/:32 = ﬁmz/a, We note
that the c¢,r,u, has a dipole moment (see Table 5.1), but since it is
not in the $3 direction, it deces not appear explicitly,
We have evaluated the above o(é(g) for points with z_ = z_ =0

1 2

and z3 equal to the location of the pianes of iens (i.e. z3 = nzaB,
n an integer), The results are given in Table 5.2. We have denoted
the leading term in each of the °€(Z) by 052('2), By leading term, we
mean the exponential with the smallest coefficient of 23/a3, From

Table 5.2, we see that 0(2(%) is the dominant term in each case.
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This knowledge is of interest if one is attempting to solve for
the displacements of the ions at the surface which are needed to
satisfy equilibrium conditions, It gives a reasonaBle guess as tc the
type of position dependence that one should assume these displacements

have,



(1)

(2)

(€))

NaCl (100)
gk K
-q (0,0,0)%a
-q (1,1,0)%a
-q (1,0,1)%a
-q 0,1,1)%a
NaCl (110)
. 95 j, o 2k,__
-q (0,0,0)%a
-q (1, 1, Dxa
V272
csCl  (110)
qk 2«
-q (0,0,0)%
-q (0,1,1)%a/2

Charge and Position of Each Ion in the C.R.U,
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Table 5.1

2k
(1,0,0)%a
(0,1,0)%a
(0,0,1)%a

(1,1,1)%a

»k

(1,0,0)%a

(0,1,1)%a/V2

-k
X

(13',530);53
(1‘30’[2_);2'3



(1) NaCl - (100)

(2) NaCl (110)-.

(3) CsCl (110)

Leading terms my=1, m2=1 m =1, m,=0 . m1=0, m,=1
2w -2/20(z,/a,) -1 2wz, /a,) -27(z.,/a,)

of(zq) 4/2(1-e e 33 2/2(1-e J75e 33 gl-e-u)e 33
- sinhw /2 siah@//%) sinh@

ol 2k

1 (x) 3.4591 3.4591 2.0354

z, /a oc (2) ot (z,) ot (2,) oC('.z ) & (22) o5 (zq)
373 e 3 e 3 e 3 e "3 e "3 e\’3

0.0 1.3153x10-1  1,3202x10-} | 2.7674x10"  3,5284x1071 1.6570x101  2.0106x10"1
0.5 1.5470x10"3  1,5470x10"3 3.0013x10"2  3,1537x1072 2.1604x10"3  7,5570x103
1.0 1,8196x10"7 same 3,2550x1073  3,2874x1073. 3,0943x10"%  3,1409x10~%
1.5 2.1403x10"7 same 3.5302x10"%  3,5371x107% 1.3372x107°  1,3427x107°
2.0 2,5175x1077 same 3.8286x1075  3,8301x1077 '5,7786x10"7  5,7851x10"7

Table 5,2

Variation of the Extrinsic Electrostatic Potential w}th Distance from the Surface

891



E, Summary

We have considered two cases:

1, an ellipsoid in which a dipole moment is present, and
2, a thin slab with no dipole moment perpendicular to the
surface,

In the first case, the extrinsic terms contribute significantly
in the bulk of the sample, 1In both the electrostatic energy and-the
derivatives of thé electrostatic potential (which are the significant
.-quantities phygical}y), we fgund that the extrinsic terms were of the
same magnitude as the intrinsic terms

In the second case, the extrinsic term decreases exponentially
as the point of interest recedes from the surface, Attthe surface the
extrinsic terms are of comparable magnitude (-v10%) with the corres-
ponding intrinsic terms,

We note from eq (5.4.1), that if a dipole moment is present which
is perpendicular to the surface of the slab, then the electrostatic

potential diverges as my -»® i,e, for the semi-infinite crystal,
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CHAPTER VI

SUMMARY

In this part of the thesis we have‘succeeded in doing the following£*1

A, evaluate the electrostatic potential V(E), eq (1.3.6), of a
finite ionic crystal, |

B. compare the electrostatic potential V%), eq (1.3.9), and the
electrostatic energy of an 1nf1nite ionic crystal w1th those of the
finite ionic crystal and

C. determine when the finiteness is significant,

We found the electrcstatic potential of a finite ionic crystal
can be written in the form .

V() = v, G 4V (@) | (3.3.71)
where vi(Z' ) is the intrinsic electrostatic potential (which may be
considered to be a periodic function of 2 with the period of the lattice)

given by

<l-4

X |
s & .g' 1 = kv  (3.3.69)
K GaE J1EV T =5 5

(o] n -2

and V (Z) is the extrinsic electrostatic potential (which is not a
e
periodic function of Z) given by
r
v = S ng* £k, ) | (3.3.70)

k 4ave
o

*1 See footnote *1 of Section 4,6,
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where
;k =Z - xk ' (3.1.6)
k k '
2 2
Z' =7 - iz

2; is the k=0 lattice site nearest Z, £(2,V) is a solution of the

differential equation

ez = [/ @ (3.3.26)
) V > -:/
. [3-2 .

subject to the boundary conditions

i.'f must’ not contain a solution of the hoﬁogenedus differential
equation

Frf = o - (3.3.28)
which is not an explicit function of V, and

2, Nf must have the same V dependence as
\%

¥
#(z,V) = _f 1
1€V X (1) zl
We derived the above equations for the special case of cubic
symmetry but the results are easily generalized to more complex

symmetries,

We found that there are two ways in which the summation over the
lattice sites in the expressions for the electrostatic potential of an
infinite crystal may be made absolutely convergent,

The first ways is by choosing a charge basis unit (c,b,u,) which

has
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b
(a) charge neutrality qu =0
: k
(b) vanishing dipole moment P; = 0
(c) vanishing quadrupole moment pij =0

The second way is by introducing a vanishing exponential, i.e,

b Bl -2l
V'@ = lin  lin I ¢~ Z' eﬁ ’

p (1.3.11)
B+0V >0 k4'&‘éo 1€v 1z -2l

In both cases the electrostatic potential of the infinite érystal is
equal to our intrinsic electrostatic potential Vi(Z),

"Simiiarily'there éré;twé déys in‘wﬁicﬁ‘the éuﬁmaéiﬁn‘ovéf the-
lattice sites in the expression for the electrostatic energy of an
infinite crystal may be made absolutely convergent,

The first is by choosing a c¢,b,u, which has

(a) charge neutrality

(b) vanishing dipole Qoment

The second way‘is the introduction of the vanishing exponential
as for the electrostatic potential,

We note that the conditions on the c,b,u, for absolute convergence
are different for the cases of the electrostatic potential and electro-

static energy,

. There are two situations in which the fact that we are dealing
with a finite syvstem is important,
The first is when either a dipole moment or a quadrupole moment

is present in the system, For example, fur the electrostatic energy
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per c.r.u,, the dependence on the shape of the sample (from the extrinsic
electrostatic energy) is of the same order as the intrinsic electrostatic
energy which is equivalent to the value obtained using an infinite
crystal (see eq (5,2,12)),

The second case is when neither a dipole moment nor a quadrupole
moment is present but we are considering the electrostatic potential
near the surface, This is inherently a finite crystal problem, The
deviation from bulk properties is significant (~ 10%, see Table 5,2);

| The problem that remains is how to observe these effects experi-

mentally, The simplest way to investigate these effects would be
through observation of lattice spaciﬁgs.

The lattice spacing may be evaluated theoretically in two ways:

1, minimization of the potential energy of the system with respect
to the lattice spacing, and

2, through equilibrium conditions.

We note that when a dipole moment is present, this adds a term
(the extrinsic electrostatic energy), which depends on the shape of the
sample, to the potential energy, Thus when the potential energy is
minimized, we find that the lattice spacing is dependent on the shape
of the sample, Unfortunately, if a dipole moment is present in a real
finite crystal, then free electrons and ions from outside the crystal
would collect on the surface to exactly compensate for the dipole moment,
mak;ng the detection of the shape dependent lattice spacing very difficult,

We note that in CsCl with a dipole moment perpendicular to the
surface of the sample, that Huangzo was unable to find

a lattice spacing which would satisfy the equilibrium conditions,
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Since the electrostatic potential depends on the distance from
the surface, this causes the equilibrium conditions to change as one
goes away from the surface, This causes the lattice spacing to

change near the surface,



APPENDIX I
In this appendix, we will derive the expansion for 1(Z,d). It is
defined as

V, 12 >
d |y-Z _
We will divide the region of integration into two parts: V; - a sphere

of radius r >1Z] and V, = V4 - v;,*!

Thus
I(z,d) = I, +1, - A1,2
" where l S

I, = 4!/ d5 A,1,3

1 (y-2/
and

12 = {// df’ A.l.‘l

2 )5-Z/ ‘

We will first evaluate I,, then evaluate L.

Writing the limits of integration of I1 explicitly, we have

2T r 2
I, = [ df | d8 sin8 [ dy y A1.5
0 0 0

T
(y2+22-2yzcose)2

*1 This is a valid procedure for all I(§:d) related to the intrinsic
partial potentials, For the extrinsic partial potentials, there may be
points such that a sphere'of radius greater than | Z| cannot be enclosed
in V4, If this is the case, then a different approach must be taken,

For our calculations, this second approach is of no interest to us,
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This integral is easily evaluated to give

1-42{(-2 +%r) ' A l,6
6

To evaluate I,, we introduce the expansion

(o)

m
1 =4S = (2/y)"¥P(0,0)¥E " (e, 9') A1,7
’?L?I y m=0 p=-m (2m+1)

(see eq (3,3,40)) which is valid for all y»z, This inequality is
satisfied for all y in the region of integration of I,, Thus

S ) ™ . C e e

i wee ([ s @) 2 b g gy Preg g
I, =4 H sn! iy y* Z Z R CROVCIRAD
(2m+1) =
A,1.8

where dn' = d¢'d8'sin®' and 67 is a function of (8',#') which specifies
the surface (see Table 3.3 fortozfor a cube), Rearranging terms in

(A.1.,8), we obtain

/
= 4rr f Yg(e,m ﬂ er‘Yz*(S',Q?') d]o]dy y
1

m=0 (2m+l) p=-m 4ar r A,1,9

The integral over y may be performed to give

m
I = 4&5 z" YP (8, 0) UdvaP (8',9' )({ /™2 (1- )+ 1In @)%
+ 2 n=0 (2m+1) £§;m m 4T ?ﬁtﬁy 3;:2 5;,2 /95

gyz““ 1-§ ) +§ 1n<d/y>}]

(m-2) m, 2 m, 2 A,1,10
The term in the second set of curly brackets is independent of (8',8'),
Thus all the terms, except m=0, vanish due to the orthogonality relations
possessed by the spherical harmonics,

The contribution of this second

term is just - 2wr2. Hence
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@® m
I = - 2t - bad S (2 S YR8, Uda'Y"*w' g’ )f 222 - .2
(@-2)

2 m=0 (2m+1) p=-m

+ Sm,zln(ﬂ])g A,1,11
Substituting (A,1,6) and (A,1,7), into A,1,2), we obtain

<

m
1(Z,d) = - 2gz° - 4ud? Zo (z/O7 S (0,0 /fda'yp @', ){ - (1-3‘ ]
= (m.. ’

3 (2m+1) p=-m

+8m’21n(/'7)§

where
' = 4T f dn!Yp((B‘ g') {nm-z(l-g ) + S In@p)
np i) 4’{1' Z((m-Z) m, 2 A.p{. 3

If the integral in (A,1,1) is invariant under inversion and

reflection operations, then the terms o' with m or p odd vanish,
mp

this case -
5 m
I = - 2az% - @2 f 2/ S ¥2P(B, )L A1.14
3 m=0 =—m 2m mp
where
= ! .1.15
°ﬂnp c'<2m,2p A

are functions of the shape of Vd’ see eq (A,1,13).

In
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APPENDIX II
In this appendix we will find the solution which is common to the

two differential equations

~

Fr£=o0 A2.1
and
FE¥=0 | A.2.2

~
Provided f has no singularities in the region of integration, we

may use the identity
Ao ;éa —ON" -2
[f=N [4/ dy £ (z+y) (see eq (3.2.9)) A.2.3
V -%a ’

Thus (A.4.1) may be written as
%a 2V 2 o -
g/ dyf(z+y) = 0 for all z A.2.4
-%a

Since Z ranges over a finite region, we may introduce a cube of
side La, (L an integer) which encloses the region V (see fig, A.1).
Ve may represent any function within V as a fourier series in the

harmonics of the cube, Thus

P
v, 2 . 12¢h.Z/La
£(z) = < G(h)e A 2,5
h
-
wherehis a vector (hl’hZ’h3) whose components are integers and the
C(B) are constants, The sum is over all possible E, Thus
Ya i2an,Z/la %a  i2nh.y /La %a  i2%h.y./La %a  i2ahay
- o s 171 272 7 ~
{1 $FCH) = Ze@e [ dy,e | { dye {dy.e T3
> . 1 2. 72 1 3
-%a h -}3‘8 . -3a -7za

=0 for all Z A,2,6
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Figure A,i

A Cubic Region of Side La Enclosing an Arbitrary Finite Region V
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Performing the integrations, (A.2,6) reduces to
L i2ah.2/La
0 =1la é C(h)e sin(ﬂ.hl/L)sin(trhz /L)sin(zrh3/L) A 2,7
7 h
This equation is satisfied if
ch) =0 A28
for all h except those which have at least one component satisfying

h;, = h/L i=1,2, or 3 - A2.9

where hi is a non-zero integer, Thus

S £ iamhlzfa Cidw(h;zsthy 7. ) /la
¥, - i k“k
i) = Z e Z ce 37 A.2.10
i,j,k hi hj,hk :
where i,j,k are summed over all permutations of 1,2,3, We may seperate

the terms with hj and hk satisfying (A.2,9) as follows:

- i27(h.z . +h z )/la v i2a(h.z.+h, 2z, )/La
f c(h)e 33 kK - . I3RS Dy
b by hohy

i2tthlz_ /a ~, 12h, z, /1a i2 (hlz.+'z,)
p2o Zledye S cdye IR

' 1 1

h! hy hi,hy

A,2,11

: 1 1
i2ath z.+-hkzk

i2ch.z./a
Se 5%/ 373

-— 1 1 ] 1 T34
= 8'(25,2,0)) + 8(z;hy,b 1)+ hlih'c(h)e
i’k

h'
J
where the ' one the summations indicates the exclusions of the terms

with hi's satisfying (A,2,9). The functions g' and g do not have the

periodicity of the lattice,

*1  The Einstein summation convention will not be used in this Appendix,
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In terms of our previous notation

23;h£ = yi(hi) (see eq (1.2.4)) A.2,12
a .

is a component of a reciprocal lattice vector,
Thus the general solution of the homogeneous equation (A.2.1) is

~ ' iy(®).2 . ly(h) z v iy;(h)z, .
£32) = Z_cch)e + é gz,0) +5 e = itz z !
l,& J k1

M A,2,13

where the C's are arbitrary constants and g, g' arbltrary non-periodic

_(with pgr%od of the lattice) fungtions. -Ihe_' on the sums over h
indicates that the term with h = 0 is to be omitted, We have dropped
the ' on the E' for convenience,

We will now show what restrictions Laplace's equation, eq (A,2,2),

impose on the C's, g, and g', Operating on (A,2,13) with the Laplacian

operator, we have

F¥ =

| 1y(h) z - lY(E)-z = =3
- Zf C(h)e Eiolk 25, é? {-lych)123+ aigg
i » 3,k 1’ Dzi
b= 0 , A2,14

iy, (h,)z
! i ir 2 2 2
AR & O - SR Y.
hi ' azz ézz
h| k

The three expressions on the R,H,S, of A,2,14) are mutually orthogonal,
Since each of the terms is also made up of orthogonal functions, the
only way in which eq (A.2,14) may be satisfied is if

c =0 for all h A.2.15

- FDI% + 2 g =0 - A.2.16
7
ézk
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and
2 2 ’ .
- yi(hi)g' +((Q_+3 )J)g"'=0 A.2,17
922 322
j k
Thus
-» -
P LGN - . =ly®lz
g = B (h)e + B (h)e A,2.18
and
27 . y.(h;) (z.cosB+z, sinB)
g' = [ dec(n,,8)e S A,2,19
0

'whéreiﬁ+; B;; and C are arbitrary constants which are functions of ﬁ;
Therefore the common solutions of equations (A,2,1) and (A,2,2) is
2,7 - =~ 1 >
iy(h).z , ||z _ L -lF) =
fa EET 2{’ e Eﬁkh)el k + B (ﬁ)e %]
i, i,k hi’hj
hk=o A,2,20
) 27 yi(hi)(zjcose+zk51n9)
. dy.(h. )z, | d8C(h_,8)e
+:E e 1 1714 i
h,

1



APPENDIX III

The intrinsic partial potential at a point P (which is not near

the surface), with position vector Z', due to the k=0 sub-lattice is
3 3

v.(2',0) = % 42' 1 - Nf( V)f
i 4e ) 1€V -
o n [2D) - 2!

where the ' indicates that the 1 0 term is to be excluded from the
sum.when Z' = 0 and £(Z',V ) is a solution of the d1fferential equation

r’f( U__Ll_ | A.3.2
o y-z' L P

subject to the boundary conditions that

o
(1) £ must not contain a solution f of the homogeneous differential

equation

A

N = o - A.3.3
which is not an explicit function of Vn’ and

(2) Nf must have the same Vn dependence as

\'
1]
#(z',v) = 4 1 A.3.4
n -1’5V A
n Ix(l)-zd

When the ion occupies a lattice site at the surface, we may still
write the intrinsic partial potential by eq (A.3.1), However V no

n
longer has the same number of degrees of freedom (only 5) as the Vv

n
used in Chapter III where V has 6 degrees of freedom (although we

n
used only one by setting Vn equal to a cube), By degree of freedom we

mean that one of the sidec may vary in distance from the origin -~ six

sides: six degrees of freedom (see fig, A,Z)J In this case, we find
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Figure A, k2

V, at the Surface of a Crystal

The above diagram shows the regions Vn which must be considered
when the ion is at the surface, One surface of Vn is always fixed by

the surface of the crystal, The other five surfaces are allowed to

vary,
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that the two boundary conditions are insufficient to uniquely define f,
To show this, we will consider the infinite slab discussed in
Chapter V., This is the only case for which we have been able to et al-
uvate all three of the electrostatic potentials V(Z), Vi('Z'), and Ve('i).
From Chapter IV, we have that, for a box of sides of length
[(2m1+1)a1,(2m +1)a2,(2m +1)a ], the electrostatic potential V(Z) is

ik, 3"

. 1

V(2) = lim [//dk’e 77 siamADka, 4,
320 k 41(6 2,&.2 (k +15) j=1 s:m%kjaj

where we have used the generalized .fo.rm of ‘eq (.‘4.6.12)' and the point P -
is assumed to be not at an ion site,

Taking the limits my, m, ¥ to obtain the infinite slaL, we have

K 1y(§) ,'z'k © ikBZg A.3.5
V(Z) = lim Z q 2 dk3e sin(m +5)k3 3
B+0 k 4”"’ - o 2 sin¥k_a
h3=o f}y(b)]2 +23+,8j “"3%3

From Chapter V, eq (5.3,11), we have that the extrinsic electro-

static potential for this system is

K
iy(h) ik, z
V (2) = lim 2 { dk3e 33 sin(m -i»l')k3 3
& 30 k wc 1
fly(h)’2 valeg  Sindkgag

: Z i7(hy.2"
- 4N e 'g A,3,6
VR ma)?

If we calculate the intrinsic electrostatic potential V?(Z') of
a surface ion using only the two boundary conditions, we find

S »
ViE") = v(Z';s) - A.3.7
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where V“k?';s) is the electrostatic potential at the surface of a
semi-infinite crystal,
If we take the difference betwern V(E) and Vé(E), we find
P 2"

. T '
V@ -V @D = Zn 5 e A.3.8
k Véo h 15’?(5)l 2

=V, (Z"  (see eq (4.6.24)) A.3.8

whére Vi(g') is the intrinsic electrostétic potentiél aé calculated
_in the bulk of the sample., We note that the derivations of V(Z) .and
Vé(23 do not depend on where the poiht P is, Therefore since

V@EY AV @9 = VY | R
we conclude that the method used to calculate Vf(?‘) is in error and
this error we believe arises because of the ‘inadequacy of the firét
boundary condition, -

Bince the intrinsic electrostatic potential may be calculated in
the bulk of the sample and the extrinsic electrostatic potential is not
affected by this inadequacy, the total potential at any point may be
obtained by summing Vi(Z') and Ve(z) whether the point P is in the -
bulk or at the surface of the sample, Thus we do not think it is
necessary to give a new set of boundary conditions fér calculating
the intrinsic electrostatic potential of a surfaceblattice site,

We have given this discussion only to show that the inconsistancy
exists and how it is avoided, It is of no interest to us in any other

way,



CHAPTER I

INTRODUCT ION

A, Introduction

In Part One, we evaluated the electrostatic potential of a finite
ionic crystal whose ions occupy lattice sites, 1In this part of the
thesis, we will consider the more general problem of solving for the
electrosfatic potential in a finite cryétal whose ions are displaced
from the lattice sites,

In Section B of this chapﬁer, we will introduce the terminology
which we will reqﬁire and specify the system more exactly,

Chapter II will give a discussion of the previous methods used to
define macroscopic fields, In Chapter III, we will solve for the
electrostatic potential of the system described in Section B, Using
this electrostatic potential, we give a generalized definition of the
macroscopic electric field E and the electric displacement field 3.
Unfortunately, we are unable to give a perscription for uniquely
defining either E or 5, Thus we will investigate the properties of
‘our E and D to see how they compare with the other definitions of E
and D in common use, In Chapter IV, we will require that the ions in
the finite crystal satisfy equilibrium conditions, These equilibrium
conditions will be used to find a relationship (i,e, an equation of
state) between the displacements, E, and 3, in addition to the defining

relation of D (see eq (3.4.14)).
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B, Terminology

This section will be devoted fo a discussion of the system we will
consider in the following chapters and the terms we will use to describe
it,

Since we will be considering a system which undergoes changes, we
will call the unchanged state the initial state and the state which
the crystal is in after all the changes have been performed, the final
state, | | |

~ For Chapters II and III, the following descriptions of the initial

and final states will hold, The initial state will be the finite®*l
crystal defined in Part One, 1i.e,

'A finite crystal is one which ie constructed by asscciating

a charge repetition unit (c,r,u.,) with every Bravais lattice

site within some finite region V.'
There are assumed to be no applied fields in the initial state, The
final state is one in which all the ions are displaced by amounts
H(T,k) from the positions i(f,k)*z in the initial state, The volume

of the crystal in the final state will be denoted by v There may be

d.

applied fields such as applied electric fields E;p or applied stresses

in the final state but, for Chapters II and III, we do not assume any

*1 In Chapter II, the crystal may be either finite or infinite,
*2  Whenever possible, we will be using capital letters to denote
position vectors in the final state and small letters to denote

position vectors in the initial state,
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explicit connection between the applied fields and the displacement
fields T(I,k). |

In Chapter IV, we also assume that the ions in both the initisl*s
and final states are in equilibrium, This causes H(T,k) to be a function
of the applied electric field and the applied stresses,

The position vector ikf;k) of the ions in the final state are
given by

CX(T,k) = 2(T,e + e RS) | 1.2.1

(See figu:e,l.l). ,We‘allow only deformations'which uniformly deform
the surface of the sample, This means that the displacements of the
ions at the surface may be written in the form

u, (1,0 e u; 5%5(1,0) + vy (I3s) 1.2,2
where uij.is the gisplacement gradient of the surface ions (of type
k=0) defined by the.above relation and ui(i;S) is a microscopic vector

>
which may be an explicit function of i:he lattice indices 1, The S is to

denote S(T;S) is a vector which is associated with the surface, We now

*3  The ions at the surface do not, in general, occupy lattice sites,
This is a result of the symmetry conditions being different for the
ions at the surface (from the ions in the bulk of the sample) which
results in a different set of equilibrium conditions, However,
numerical calculations, (H&Glg), for the case of the slab show that
this difference is signifiéant (21%) only for ions within a few
lattice parameters of the surface, We shall assume that this result

holds in general,
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. = Position of an ion in the initial state - it forms
part of a Bravais lattice
X =~ Position of an ion in the final state - does not

form part of a Bravais lattice

Figure 1,1

Positions of the k-type Ions in the Initial and Final States
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assume that the quantity ﬁk(T;S) which is defined for the k#0 ions by
K - defn > ;

ui(lgs) = é{(l,k) - uijxj(l’k) 1.2,3
is also a microscopic vector,

For ions which are not at the surface, we may define a vector Gk(i)
as the difference between the displacement vector 3(T;§) and the
quantities uijgj(i,k), i.e,

ety w (L -u x 1,0 L.2.4

: T . -
We will call this vector the interior displacement, It need not be a
microscopic quantity im the interior of the crystal, However, we know
from the definition of the uij’ eq (1,2,2), and from the assumption of
eq (1.,2,3), that ﬁk(i) is a microscopic quantity at the surface,
Rearranging the terms in eq (1.2,4), the displacement.vecﬁor may be

“gritten as
u (L, = u_x (T, + &) 1.2.5
i ij j i

for all I and k, At this point the ﬁk(i) are arbitrary functions of

. -»
the lattice indices 1 in the interior of the crystal and the u_ , are

1]
arbitrary constants,
In later calculations we will need the inverse of %k+ ujk' We
will denote it by Vij' i,e,
v + = 1.2.6
ij(Sjk Y $ix

Whenever possible, we will be using the following notation, A

-
vector written in capitol letters, say X, is a vector in the final
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state and may be written in terms of a vector in the intial state
(written in small letters), say 2; as follows

X, =%, +u, . x, 1,2,7
i i ij°3

->
We note that we may write X in terms of X as follows

X, = +
Vot i T Vi (657w 0%,
= x 1.2,8
3 .

Since the displacements ﬁ(T,k) are arbitrary (up to the restrictions
of eqs (1,2,2) and (1.2.3)), the i(f,k), eq (1.2,1), need not be lattice
vectors, As in Part One, the position vectors, §(T,k), of ions in the

initial state are given by

2T, 0 = 2(D) + %K (see eq (1:1.3.5)"%)1.2.9
where

1) = La8 + 1a@ -+ 1-3.a~333 (see eq (1:1.2.1)) 1.2.10 -
and

e = 4k + x%6 4 xk@ (see eq (1:1,3,3)) 1.,2,11

11 2 2 33

The electrostatic potential in the final state at a point P (with

-3
position vector Z) in a finite crystal is given by

v(Z) = 1 2'§ ¥ 1.2,12

*4  When referring to equations of Part One, we will use four numbers

b

e.g. (1:LM,N), For equations in Part Two, we will use only three

numbers, e,g, (L.M,N)
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Substituting for Y(T,k) ﬁsing eq (1.2,1), the electrostatic

potential may be written as

V(@ = 1 _’f z q" 1.2,13
4¥E lev k 12d,x) + 23,1 -Z]

where, as in Part One, k is summed over all the ions in the c.r,u,
and f is summed over all the Bravais lattice sites within the region
V. We have dropped the r on the sum over k since we are only con-
sidering finite crystals in this part of the thesis and hence will not
“ 'have to distinguish between c.f.d)é-ana c;b,hfs:

The applied electric field E;p is produced by the free charges
present in the system, These =narges may be inside the crystal, E;p

satisfies the field equation

v,i’ap = 21 € : : 1.2.14

where /? is the free charge density, ﬁ;p may be written in terms of
the electrostatic potential Vap of the free charges as follows

= - Vva 1,2,15

>
E
ap P



CHAPTER II
AVERAGING TECHNIQUES
A, Introduction

In the past, authors have obtained the macroscopic fields
and field equations by averaging the corresponding microscopic fields
and field equations, There are three principal types of averaging in
use:

1, Time

2, Ensemble

3. Spatial

On the microscopic level, the ions in a real crystal have non-zero
velocities but their motions are limited to the vicinity of a lattice
site due to the presence of the other ions, These thermal motions
cause the microscopic fields to be rapidly fluctuating functions of
time and space,

Using time averaging techniques, the macroscopic fields are
found by integrating over a time interval, then dividing by the time
interval,

With ensemble averaging techniques, the macroscopic fields at a
point in the crystal is evaluated for some configuration (position and
momenta of all the ions), then averaged over all possible ensembles
according to some distribution law such as Boltzmann's Distribution,

Both time and ensembie averaging are not suitable for considering
the rigid ion mocdel because there is no time dependence and only one

ensemble, Thus the time and ensemble averaging would have no effect,
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The remaining method, spatial averaging, is more acceptable
since it may be applied to the rigid ion model (i,e, timeAindependent
qase) to give macroscopic functions which are slowly varying functions
of position, To give an example of spatial averaging, we will discuss
a recent method developed by Russakoff21, His definition is similar
to those of Lorent222 and of RosenfeldZd who were the first to give
a comprehensive treatment of this problem,

In Section B we will discuss spatial averaging and in Section C
we will use spatial averaging to derive the macroscépic fields g (the

electric field) and D (the electric displacement field).



B, Spatial Averaging

We will be foliowing Russakoff's artic1e21, as closely as possible
in this and the following section, He considered molecular crystals
but we have generalized his method to the ionic crystal, Where
vRussakoff refers to molecule we will refer to a c.r.u,

The spatial average of a microscopic function of position, A(E),
is defined as

<a@= [[fegac-mve S 2.2
whe;e the integration is over all space and w(y) is a weighting func-
tion which depends on the type of spatial averaging that is being
performed, |

Normally one chooses w(?) as follows:

w(@) = 1/vo Jev

=0 ?gévb

where v, is some microscopic volume which is large compared to volume

° 2.2.2

of the unit cell (see fig. 2.1). We note that w(¥) is normalized to
unity, 1i,e,

e =1 2.3
This is essentially the type of averaging used by Lorentz and by
Rosenfeld,

However, if one uses the above form for W(;), then the average is
not continuous, Rather it is a step function, To obtain smooth
averages, it is necessary to use a different form for w(¥).

w(?) is chosen to be a non-uniform, real, positive, well-behaved
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w(y)

Figure 2,1

One Dimensional Weighting Function 6f -the Type Used by Lorentz

w(y)

Figure 2,2,

One Dimensional Weighting Function of the Type Used by Russakoff
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function which is non-zero only in the vicinity of y=0,(see fig 2,2),
In addition w(¥) is normalized to unity, w(¥) is assumed to be suf-
ficiently slowly varying so that only the first few terms of the

expansion
@

w(§+z) = 2 ('z'.vy)“‘ w(3) 2.2.4

m=0 —

need be considered for Z of the order of the lattice parameters,
All the authors who used spatial averaging assumed that the

derivatives with respect to Z commute with the averaging process, 1i,e,

2LA(Z)? = LA > | - . 2.2,5
oz, '

gzi i

They make no mention of tne fact that eq (2.2,5) depends on the
nature of the function A(Z), 1i.e, if A(Z) = 1/|212, then taking the

spatial averages, we find

W1/121%7 4 - 22513147 2.2.6
L ]

since the L,H,S, is finite and the R,H,S, is infinite,



C, Macroscopic Fields and Field Equations

The following derivation also holds for time dependent fields,
but since our work is with time independent case (i,e, the rigid ion
model), we will consider only the time independent case, The micro-
scopic field equations are

oxg = 0 2.3.1

v.€ = /ﬂVéé 2,3,2
where r:4 is'the microscopic electric field and 2 is the chérge density,

Taking the average of the above equations, we have

KX = 0 | 2,3.3

{vd2 =<Lp7/€ 2.3.4
Assuming the averaging process commutes with the derivatives, then

TXE = 0 2.3.5

V.E=<ple, 2.3.6
where '

E=<4E7 | 2.3,7%1

*1 We note that if we define an internal electric field é; by

- - =
ei =e - E

then the average value of this function vanishes, 1i,e,

Although it is seldom explicitly stated, this is one of the justifi-

cations for using the averaging techniques,
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is the macroscopic electric field,

To transform (2.,3,6) into a more familiar form, we need to
- evaluate P2 The charge density//7 is given by

=2+ A 2.3.8
where /% is the free charge density and,ﬁ} is the charge density of

the ions in the crystal, 1i,e,

T k g
k lev

where § (%) is the Dirac delta function,

Thus
P77 = {/0f7+ </0.(x)7
r
= A0 + Té 5 qk<S(§- R(1,x))7
A
= 2@ + W @E-AT,0) 2.3.10
/% 1’éZv 2: )
where
A® = <0> 2.3.11

is the average of the free charge density,

We now assume that the position vector g(izk) of the ion in the
crystal may be written in the form

Lk =20 +FD (c.f. eq (1.2.9)) 2.3.12
where (1) is the position vector of the Bravais lattice site with
which the c,r,u, is assoeiated and ﬁk(i) gives the position of the
ion in the c,r,u,, which may depend on the position vector i(f),
(In Part One we assumed 7k was independent of gkf), our definition

and use of c.r,u, is still valid when %X depends on Z(1). Since ik(a

)
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is of the order of the lattice parameters, we may expand w(i'-}?(i.,k))

i= = power series in k(*), and keep only the leading terms, i,e,

r
LODY =4+ % S 2 COIED I E-R(D)
k

’ F Tev m=0 m!

= +
’0F i€

<

D V32w( (D )]

r
=4 - ;,,Z g 2D wE-2D)

1€V
2,3,13
r > o - > -,
- %V [,,5_ Z FEDO D) w(x-x(l))]}
1€V k
CeZining
T
2.() = z quxl;(i)W(i"—f(l)) i=1,2,3 2,3.14
* 1€V &

> Z)= é > K KD K Pweze T s .
2. (%)= Z oxDx Duw@RD) 1,5=1,2,3 2.3.15
T€v & '

ij
(z.=. Pi, eq (1:5,2,7) and Pij’ eq (1:5.2,8)), then eq (2,3,13) may
= ~wTIitten as
L o> =2 -_D__[Pi(i') -2 P®] - 2.3.16
e ij .
Thus (2,3,6) becomes
T.E =1 1 B(? | 2.3.17
E=L1p - ___v.{ B - 2EE? 3.
& &
o o
w==2T= We are using the dyadic notation for Pj ij (L.e. PiJ = (‘E)IJ-)'
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v,(éoﬁ’+ F-vp =2 - 2.3,18

Therefore if we define a field D (this is not a unique definition for

3*2) by

- - > '

D= e‘oE +P -2 2.3.19
then

v.l’)’=,ﬂF 2,3,20

In summary we have defined two macroscopic fields E and D by

E =<2 2.3.21
- - ~%
D= €E+F-vp A 2.3,22
which satisfy the field equations
KXE =0 2.3.23
-
D =,0F 2,3.24

where /% is the average of the free charge density, Equations (2.,3.23)
and (2,3,24) are the field equations satisfied by the electric field and
electric displacement field respectively, Therefore E is said to be the
macroscopic electric field and D the macroscopic electric displacement

field,

%2  We could equally well have chosen a vector
b d — -
D' = D + ¥xd
where d is an arbitrary vector field and still have satisfied the

field equation

V.5 = £




CHAPTER III

MACROSCOPIC FIELDS

A, Introduction

In this chapter, we will introduce a new method for defining
macroscopic fields., We will not use averaging techniques such as
spatial averaging described in Chapter II. Instead we will use a
generalization of the method developed in Part One to obtain the.quan-v
tities which we will consider to be the macroscopic fields,

In Section B, we derive a representation for the electrostatic
potential at a point in a deformed finite crystal whose ions are dis-
rlaced by ﬁzi:k) from the lattice site f(T,k) of the undeformed crystal
{sce Section 1,2), As in Part One we are able to write the electro-
static potential as the sum of an intrinsic and an extrinsic electro-
static potential, 1In Section C, we use the extrinsic potential to
define a macroscopic electric field, ﬁ, as the sum of the applied
electric field and the negative gradient of the extrinsic electrostatic
potential, This quantity is well-defined both in the interior and ex-
terior of the crystal, 1In Section D, we obtain a definition for the
electric displacement field, 6; by manipulating the expression for CZE,
This does not give a unique definition for D but it is the only method
available to us (as it was for the D defined using spatial averaging

(see eqs (2.3.18) and (2.3.19)) ).
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B. The Electrostatic Potential
->
The electrostatic potential at a point P (with position vector Z)

in the deformed crystal described in Section 1,2, is

qk 2{ 1 3.2,1
S,

v = 1
AwE & eV 3d o - 7]

where iki:k) is the position vector in the final state of the ion (see
eq (1.2.1)) which, in the initial state, was the k-th ion of the charge
repetition.unip (e.r,u,) asséciated with the i—th lattice site, As in
Part One, we sum over all lattice sites in the undeformed crystél, then
sum over the ions in the c,r.u. We may do this since there is a one-to
one correspondence between the ions in the deformed crystal and the

-

ions in the undeformed crystal. Considering only the sum over 1 in

eq (3.2.1), we define a quantity Qk(E,V) by

defn
*cEvy - = 1 3.2.2
L€vizd,o - 2

(c.f, the partial pdtential, eq (1:3,1,3)),

Thus
v = 1 Z MG . 3.2.3
g

Substituting for ik?,k) using eq (1.2,1), ﬂk(i,v) becomes

oz v = S 1 3.2.4
tev 1Z(T,0) + &(T,x) - 3|

? . s 42 . ) .
where ¥(1,k) is the position vector of an ion site in the undeformed

crystal (see eq (1.2,9)). Although we use the lattice site indices, T,

to label 3(f:k) for convenience in writing, we implicitly a2ssume K(T,k)
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can be written in the form

A0 = 3@ED,K) . 3.2.5
i,e, we treat 3(I,k) as a function of i(i) rather than of T,

The displacements can be considered in two ways:

1, As a set of N'vectors (N'being the number of ions in the crystal)
with each vector being the displacement of an ion, or

2, as a continuous function of position (for a given k value)
which gives the displacements of the ions when the positionAis a
lattice site in the initial state,

Our method is valid only for displacements of the second kind,

In order that the generalization of the method of Part One will
be as close as possible to the original method, we will assume that
the undeformed lattice has cubic symmetry with lattice parameter a,

The method is easily extended to more complex lattices, We note that
the set of points defined by the vectors

X, D = (§, + v, %, (D

i ij° 71i377)
form a Bravais lattice (although, in general, not a cubic one). We
will call this lattice the deformed lattice,

As in Part One, we split the sum into two parts - one over all the
points within a cubic region Vn of side (2n+l)a, centered at ;z (i; is the
deformed lattice site nearest Z) (1€V ) and one over the rest of the
crystal (I¢ V).

- Thus
Y Va lzd@o 3@ - 2l N zd0 + dd - 7

e
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where n is any non-negative integer, Again following Part One, we
- }
define a new quantity ¢'k(z) as the second term in eq. (3,2,6), i.e

.

defn

sk@ = ,? 1 3.2,7
VT + 4T -7 )

Although we have not written them explicitly, ¢'F(2) is also a funcfion
of V, Vn’ and §Z (see definition of v'(?k), eq (1:3.3.5)).
It is now necessary to expand ¢'k(2) in a power series involving
3(f:k), Eq (3.2.7) has only four practical expansion parameters
involving &(T,k) - &(T,1), T, (T, )+X*, and TXA)+%X, We find .

it necessary to use

T =D + K (see fig. 3.1) 3.2.8
rather than one of the other three as the expansion parameter in order
to obtain definitions consistent with those in present use, (Sce
discussion following eq (3.2.10).) Although we have not written them
explicitly (to avoid confusion with‘ﬁ(T,k)), U is a function of k and
of #(1).

Using eq (1,2,2), ¢'k(§) may be written as

6 7y = “fi 1 3,2.9
A 12T - 2 +3)

where we have set

x LW =2 do +u o © (see eq (1.2.1))
1 .
= x (L, +u_x (T,K) + uk) (see eq (1.2.5))
1 1] ] 1
= X.(f3 + x5+ UF(T) (see eqs (1.2.7) and (1.2.9))
i i i . )

I

Xi(l) + Ui 3,2.9a
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A
Koo _ (T, k)
a(1)
a
xk B
C
X, k) LTy +Xk
D) 2(1, k)
A - ion site in the final state
B - lattice site in the deformed
lattice of the final state
C - 1ion site in the initial state
0 - the origin
Figure 3,1

Vectors in the Final State

A diagram giving the relationships between the position vectors

in the final state and the expansion parameter u,
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We may now expand ¢'k(2) in a power series in ﬁ, provided the
region Vn is such that

1T <D - Z| for all ¢ v_ 3.2,10

This restricts the lower limit which n may take,
We stated earlier that it is necessary to use displacements of

the form
(T = (1, + o 1.2.5)
w1k = uijxj ’ us( see eq (1,2,

One of the reasons it is necessary, is related to eq (3.2,10),
-> .
Let us assume ﬁ(l,k) is not of the above form and we are forced to use
- .
u(l,k) as our expansion parameter, i,e.
-»
T = 45,k

rather than

T =Tk + %k . | . see eq (3.2.8)

Consider the point P in fig, 3,2, With ﬁ(T,k) as our expansion
parameter, we have to exclude the macroscopic region surrounding the
point P since the ﬁkf,k) can be macroscopic near the surface,

This would cause the analysis of this section to break down in
the macroscopic region near the surface because the region Vn would be
indirectly a function of Ei It would depend on the distance the point
P is from the surface, This distance fixes one side of Vn‘ Thus the
boundary conditions given in Part One are invalidated and the difficulty

discussed in Appendix III of Part One arises, Only now the difficulty
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0 - center of V

Figure 3,2

The Initial and Final States of a Crystal

The regions V_ which must be excluded if ﬁ(f,k) was chosen as- the

expansion parameter are shown for varicus points,
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is important in a macroscopic region near the surfate, rather than in
a microscopic one as in Part One,-

For a point such as P', the analysis would still hold since the
region, which may be macroscopic in size, may be made independent of
Z; Thus in the interior of the crystal, it does not matter what
quantity is chosen as the expansion parameter g,

We note that the formalizm of this section would still apply in
the'macroécopic region near the surface,- Wé would, ‘however, have to
give a new set of boundary conditions for this region,

By choosing ﬁ(T,k) of the form given in eq (1.,2,5), we are able

to use

Z=tkh + T see eq (3,2.8)

as our expansion parameter, By doing this, the problem still remains
but now it is limited to a microscopic region near the surface (i.e,.
within a few lattice parameters of the surface),

A second reason is that the analysis would give fields which are
defined with respect to the undeformed volume rather than the deformed
volume as is done in other definitions for macroscopic fields in commen

use,
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-» -
The expansion of ¢'k(Z) in terms of u is

6153 = i g (l)m(uv)“’ 1 3.2.11
1 V m=0 m! l-)-? ..I :
At this point it simplifies writing if we introduce the outer
product denoted by B (see Appendix I). We will use the symbol an to

o
denote the m-th order outer product of a vector A, i.e,

A" = Kuieda, .. .5k ~ - 3.2.12
where the symbcl B appears m-1 times, Zm is a symmetric m-th order

tensor whose components are given by

o :
>m .
[A]i . =77 A i=1,2,3 3.2,13
L1**** j=1 j J
In addition te the outer product, we need to introduce the generalized

inner product denoted by (,)., It has the property that
- X0 0y

(_)B i 3.2.14

In terms of thlS notation, eq (3,2,11) may be written as

ko2 2 m EE sm m,_m
6'%(2) = 5 (GO u ()Y, 1
w0 mi 1V, 1Zd) - Z!

Zosi‘“v“’ﬁ”) - G 3.2.15
TEv, XD - Zl
since U is independent of E and hence V% comnutes with U,
The problem of evaluating the electrostatic potential at a point

in a deformed crystal has now been reduced to evaluating

defn o
Sm = 4f " 3,2,167
V(2D - 7
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By inspection S(m) is an m-th order tensor,
To proceed further, we have to assume the components of %™ can be

.written in the form

L}

[37] (XD T,

i,..1 .
1°*"m 1°°1p

RB*"ED-2+27 . .
Jll“’m

]

n

. m .
[ gk (DHnk ED-D], | 3.2.17
p= mp mp 11,,1m

An example of this type of function is the exponential, 1i,e,

ik, 2(D)

[t
]

4

[¢]

ik,7 ik (&ED-2
= e e . 3.2,18

where z'is a vector in the reciprocal lattice, Another example of
this type of function is any polynomial of finite order,

We note that although the R,H,S, of (3.2,17) contains functions
which have Z as an explicit argument, the sum is independent of E, Up
to this point ?(fzﬁl and hence T, by eq (3.2,8), has been an arbitrary

A -> >
function of Q(l), and hence of X(1), Now it is restricted to the set

of functions which satisfy (3,2,17). Substituting (3,2.17) for U™ in

eq (3,2,16), we obtain

o
= B k 2 hk Fr 7 3.2'19
fgv [ng Bup ) wp DB

[5m] i i
n XD - 7|

.

*1  We will be using the notation éﬁm) to denote a tensor of rank m,
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Hence

[sm] , [:E' & @ z . L ADD T, 3.2.20
1--1y p=0 léV _-____ i..1
1X(D)-Z(

In order to be able to use eq (1:3,2,3), we must impose the
constraint on Vn that

[ED) - Z|> %3 for all T¢ v 3.2,21
Thus the value which n may take is the greater of the two values as
determined by eqs (3,2,10) and (3.2,21).

Therefore, for the functions hgp(i(i)-i}/[f(ﬁ)-i} appearing in eq

(3.2.20), we may write

) v @D = x S a7 bk Z(h-D 3.2.22
. V -%a -
122! XD - 2

where lX(T)'7l> /3a for all'fé\l and hence the 1ntegrand does not

have a singularity in the region of integration, 1In addition

Y= ( S + u )y see eq (1.2.7) 3.2.23
and
Z = + - 3.2,24
i T 8Ty -
Summing over‘f¢\%.in eq (3.2,22), as in Part One, we obtain
e _f b AD-D = n de? hk (¥-2) 3,2,25
fey, 0T g 50 e
nxT - Z1 ¥ - Zl

where V' is the region V from which the region Vn has been.excluded,
This is the same type of differential equation as we solved in
Part One, (see eqs (1:3,3,11) and (1:3,3,13)), Therefore, using the

results of Part One, see eq (3.3.22), we may write the solution of
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(3.2.22) as

k == = ) ’
h  (X(D)-Z) =N £k @, - £k (Z',v) 3.2,26
- mp mp mp
Tev, —— - v :
X - 7|
where
=7 szz 3.2.27

k
fmp(z,v) is a solution of the differential equation

Ao K - :

Pereg@n = Jlfeg vy @ . 3.2.28
3.2

subject to the boundary condit:ions*2

k = ~n
1, fmp(Z,V) must not contain a solution f of the homogeneous

differential equation

A As

Pf=0 3.2.29
which is not a function of V, and

k . .
2, fmp(E:V) must have .the same V dependence as the sum

defn
H:;p('i’,v) = 42 h:p X(D)-2) 3,2.30
TV, —_——lxd) —

The above statements with 2 = 2' and V = Vn hold for fk (E',Vn),
mp
Substituting (3,2,25) into (3.2.20), S(m) becomes

3.2,31

Lol o ['if g, DN gfk Ew - £ G0 ] iy..dg

%2 We note that the first boundary condition is the samwe as the first
one introduced in Part One (following eq (1:3.3,29)). The second
boundary condition is a generalization of the second boundary condition

of Part One,
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or
S(m) = Bk(m,V,.é) - gk(m,vn,-'z','i') . 3.2,32
where
k 2 x
[B@v,D], | = g[é B € Z)f L, V)] 3.2.33
1 m V*-p=0 m

and
3.2.34

(=<}
ot _ k « &k -
[., m,v_,2,2')] i 7 g[go Bnp (2) £, (2 ,vn)] ..

Substituting (3.3.32) into (3.2,15), we have

¢lk(g) = 2 ( 1) ( ){ R (m,V,Z) - R (m, n’z’z')} 3‘2.35
m=0 m!
Thus
¢k(2',v) = 2 1 . 2 (-l)mv‘;(’f’)gk(m,vn,f,’i')
tev, (XD - Z+3l m=0 m!
+ 3 [G)) TR m,v,E)  3.2.36
m=0 m!

Therefore the electrostatic potential at the point P in the deformed

crystal is

VD = S {L s 1 2 CD"FME @,y 'z’,%}

-’
k 47T€0 léVn '}—(’(1) - z’_'_:l m=0 m!

1 7Y Zev 3.2.37
- m?(_'lvzf’)R(mv,,z) €V,

+ 2 g
k4

where Vd is the volume of the deformed crystal, Vd may be written in

terms of the undeformed volume V as follows

= 3V ' 3.2,38

Va
where J is the determinant of S. .+u, ., 1i,e,
1] 13
J = |sij + uij, 3.2.39

As in Part One, (see eq (1:3.3.68)), eq (3.2.37) lends itself to
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the definition of two new quantities - the intrinsic, V;(2), and

extrinsic, Ve(f), electrostatic potentials of a deformed crystal, 1i,e,

[o2)
. - k k - >
v,® = 2 g Jf 1 - Zo (-1 V(DR m,v_,Z,Z")
k 47T€ i€ v Iiii3-§43; m=0 m!
° n 3.2.40
and
k 2 m k
VD = S o 5 0"FORN@,vP e v, 3.2.41
k 4T w0 m! Z &

Due to the method used to derive‘gk(m,vn,fgz'), it is not obvious
that the potential Vi(i) is independent of V. To show that Vi(f) is
independent of V_, we proceed as follows,

n

k >
From the second boundary condition, we know that fmp(Z',Vn) has
.k

the same V_ dependence as H_ (

-
=1 ~y N\ -~ N -

' . Thnerefore the V_ dependence of
n mp Z,V_) Th ore t n depe c

83

the two quantities
> k,* .k z
. - ) . - |-
Z g (DEf (Z) and Z gk (Muk (I
is the same,

However, from eq (3.2,30),

> 2 N N N = 2 .k 2 2 k 23y 2
p% e, (DB (Z) pé() 8op (D ”iéiv hmp():(l) A
©XD -7
= Z ANR(D+) (see eq (3.2.17)'and eq (3.2.27))
i'ev - - —p “Z.-o
n D +X, - z|
= 4,2 W 3.2.42
1'€v

n [Z(IY- 71
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where we have shifted the origin in the last step using the transformation

X1 = XD + ¥, | . 3.2.43

bl

Thus

-

)o? m s K > -3
m2=0 '(T;T%l v, (OB (v ,Z,2")

has the same V dependence as

o0 n

Z o S W 3.2.44
= [} & - - -y

m=0 m] | lC.Vn /X(l) } z}

‘ We will now consider the Vn dependence of the first expression cn
the R.H.S, of eq (3.2,40), From eq (3,2,10),

18X - 7l for all TV 3.2.45
However, if Vn is sufficiently large, then

Wi IXD - Z]
for some -laéVn. If we let n' be the minimum value of n for which eq

(3.2.45) is satisfied, then we may set

‘ . 3.2.46
€, Bhiw T RD-zal Ve [RH-20)

We may expand the last term in a Taylor series to obtain
o ‘
JE 1 = SO g Wsauw
€V -V = =0 : 1 - =
n n' /X(T)-'Z?ﬁ?} " " évn Vn' }3?{(1) - E}
which has the same Vn dependence as (3,2.44) and hence V,(E) is in-
i
dependent of V , It depends only on the crystal structure, the dis-
n
placements, and the position of the point P in the sample, In contrast,
. -3
in addition to depending on the above three quantities, Ve(Z) also

depends on the shape of the region Vy.
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We note that using averagiﬁg techniques the guantity corresponding
to Vi would have an. average value of zero (see footnote of eq (2.,3.7)),
The average value of Vi(g) is, in general, not equal to zero, (When
ﬁ(f:k) = 0, the average value of Vi(Z) is zero (see eq (1:4.2.9),)

In terms of the intrinsic an extrinsic electrostatic potentials,
the total electrostatic potential at a point within the crystal is

V(Z) = vi(Z) + ve(%) Zev, | 3.2.48

This is the potential at a point fixed in space, As we deform
the crystal, the point P remains unchanged, Thus (3,2.48) gives the
potential at the point P when the ions are displaced from the lattice
cites by some applied fields, How the displacements are related to the
applied fields is not of interest to us in this chapter, Thus, the
quantities in (3,2,48) are suitable for defining fields such as the
electric field and electric displacement fields since we are interested
in how these two fields change at a fixed point when external fields
(such as applied electric fields or applied stresses) are applied,

The intrinsic electrostatic potential is a rapidly fluctuating
function of position since as we move from one ion to another, the
potential can vary greatly in magnitude due to the singularities at
the ion sites in the sum over Vn' It is also a rapidly varying function
of the dispiacements since these can move the ions near the point of
interest and hence cause the magnitude of Vi(E) vary greatly,

On the other hand, VG(E) does not contaiﬁ any singularities and
may be expanded in a power series in 2, For the case of uniform fieclds
in an ellipsoid, Ve(Z) is so slowly varying that only the first few

terms in the power series are non-zero for points far from the surface.



C, The Electric Field
->
The total electric field, E_, which would act on a test charge
(both in the interior and exterior of the crystal), is by definition

> defn

- -
Et = Eap - <%V(Z) 3.3.1

where E;p is the applied electric field due to the free charges present
in the system (see eq (1,2,15)) and V(E) is the electrostatic potential
due to thé ions of the crystal, |

For points within the deformed crystal, we may use the results of
Section B, eq (3.2.48), to immediately write

- - cd - .
V(Z) =V, (2) + Y, (2) Zev, 3.3.2

where Vd is the volume of the deformed crystal, Tor points exterior
to the crystal, we may go through the same analysis as given in Section

B, to obtain a similar expression, 1i,e,

- - -

V(2) =V (2) +V (D) Z£ v, 3.3.3
where

vi(’Z) =0 3.3.4
and
‘ g 25. k = me k -

v (D) = q -D"LCHR (0, V,72) 3.3.5

e k 5T mg() o 2 ‘

gpk(m,v,i) (7,évd) is defined in the same way as for —févd, i,e,
(RN, v, %) ] N[‘E kK A T n ] 3.3.6
,V, . . =N g . : .3.
< 11, ,1m v P=O mp mp ll . .1m

(see eq (3.2.33)) with f:;p(-'z,v) a solution of eq (3.2.28)*) and subject
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to the boundary-conditions which follow eq (3,2,28),

What we will now do is define a macroscopic electric field, then
. give some of its properties, In choosing definitions for macroscopic
fields, one of the‘criteria we will impose is that it must be slowly
varying over atomic distances, We have noted that Vi(f) is a rapidly
fluctuating function of position and deformation, Thus we choose to
define our macroscopic electric field as

defn
-

'E = E_ -vv (@D for all % 3.3.6
ap Z'e

This definition is not unique sipce it is possible to include a
slowly varying part of -U%Vi(ﬁb. We have chosen to define ¥ by eq
(3.3.6) because it has the following properties;

1. it is a slowly varying function of position,

2, it has the same form both in the interior and exterior of the
crystal,

3. the electro;tatic potential at a point within the crystal and

hence the electric field in the interior of the crystal is clearly

*1 We note that although

neZwv = (67 n@D

L &

for éoints both in the interior and exterior of the crystal, the methods
of solution for the two cases are different, In the interior of the
crysfal, we may use a polynomial expansion in éowers of I?/ but in the
exterior of the crystal, we need to expand in powers of 1/}?/ so that

f does not diverge as|Z|»>®,
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separable into an intrinsic and an extrinsic part, The extrinsic part

depends on the sample and hence changes if a different sample is con-

sidered. This is a property we would attribute to a macroscopic field,
-

4, E satisfies the field equation

vzxiz'-- 0 3.3.7

E is easily shown to satisfy eq (3,3.7) as follows

-

E

-
X(E - \
Y%(,ap V& e)

I

VX(- =
Z( V%Vap gye) (see eq (1,2.15))

- sz\'é(vap + ve)
=0 3.3.8

Subsituting for V (Z) using eq (3,2,33) or (3.3.5), we have that
e

the macroscopic electric field is given by

o
E=E - ¢ 2 O"Z & PO w3
ap Zm=0 “ml K zug 2
o
> @ -
=E - D™ S % PIMEK@ v ) for all 2 3.3.10
<P
P §=0 "m! k Gw€ 2



D, The Electric Displacement Field

Unlike the electric field, the electric displacement field, ;i
is not usually defined on the microscopic level in terms of microscopic
quantities, 1Instead it is a field which is defined in terms of other
macroscopic fields, As we have shown in Chapter II, a common way of
introducing D is as the quantity, resulting fromkthe averaging pro-
cedure which satisfies the differential equation

. . «
: = ' : d (2
7.D /p% ‘ (see eqs (2.3,18) an3 2 i3.19))

wherel/% is the average of the free charge density,

What we will do is to find a field which obeys a similar
differential egquation, Namely,

Y.D = /9f 3.4.2
where/A7 is the free charge density, We noté that/é% and/A? are related
by the equation e

<
2B = fdyw(y)/(%y) (see eq (2.3.1))  3.4.3
F
all
space
where w(;) is a weighting function,

To find an expression for B, we will manipulate the expression for

Vﬂg since E is the only macroscopic vector field we have defined at

present,
>
Taking the divergence of E, as given by eq (3.3.10), we have
w.E = V.Eap -v.vg § DTS _df QMR @,V D¢

m=0 m! k 47¢
o

. o2 g SR D 3.4,4

m~0
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Rearranging terms and setting

4
V'Eap = ﬂf/éo ' (see eq (1,2,14)) 3.4,5
we can write (3,4.4) in the form
3.4,6
a
V.{E’-f— Zx g-l)‘“‘f g« :}"’l(mil)vzlgk(m,v,'i)} = gléE -5 < vzéf’{k(o,v,'i)
o=l m! Kk 4wé =0 k 47
)

The Laplacian of each element of R may be evaluated to give (see

Appendix II)

V2R @m,v,2) = - 4ay " Zev 3.4.7
& - d
v
d
=0 74 v, 3.4.8

-
where U is now treated as a continuous function of Z (see discussion
following eq (3.2.5)).

Thus eq (3.4,6) reduces to

]

,/? - fj_/qu/Vd

. | - .
A=-1 ¥ wl1mn-l+m
<. {eoE 3 S (™5 & g )u}

m=1 m! k
= 3.4.9
% Zey
, d
since
%qk =0 3.4.10
from charge neutrality, and
> —>
VEEE? =4 ZEV, 3.4.11

' -
Therefore if we define a quantity D as

Q0
S
d m=1

defn

. D = ¢E+
(o]

IZ

)" LS gk gmlEihm Zev, 3.4.12
k

<

-1
m}
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and
defn
b d

= é’E’ ‘ Z’ef‘vd . 3.4.13

’ -
then we see immediately from (3.4,9) and (3.4.11), that D satisfies

the field equation

=/of for all Z 3.4,14

Thus, the quantity'fidefined by eqs (3.4,12) and (3.4.13), is an
acceptable field to be chosen as the macroscopic.electric displacement”
field since it satisfies the required Maxwell equation, As with the
electric field, this definition is not unique; in the former case, we
could add a term D' = wAd' where &' is an arbitrary vector field and
scill have D + D' satisfy (3,4.14)., However, to our knowledge, there
is no justification for introducing such a term, Thus we will use D
as given by eqs (3,4,12) and (3.4,13) as our electrlc dlsplacement
‘field, This is the ‘same philosophy in defining D as taken by the
authors who»used averaging techniques (see eqs (2,3.18) and (2.3.19)).

Setting ‘

P(m Z) N_% qkam, 3.4,15
m Va

which is related to the multipole moment density per unit deformed

volume, we can rewrite (3,4,12) in the more familiar form

=2

= ¢E+ ; D™ 1™ Yy pm 2y Zev 3.4,16
o & ) R ‘ d k

This equation reduces to the same form as given in Chapter II, eq
(2.3.22), if we retain only the terms up to m=2,

If the higher order multipole moments (m22) are negligible, then
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4
D reduces to

B-cE+F , ' . 3,4,17
where
P = B(1,2)
= -]_:I'_ 2 qk\-{ 3.4.18
Vg k

is polarization,



E, Summary
In this chapter, we have defined the macroscopic electric field,
->
fﬁ, and the electric displacement field, D, as follows:

- .
E = E, -2 "2 & SR @, v, %) for all 7 3.5,1
m=0 m! k éa'éo

(see eq (3.3,10)) and from eqs (3,4,16) and (3.4,13)

©
= k-1 4 : -1, m-1 > - .
D=¢€F + nél COTMIEmD  Zev, . 3.5.2
2 -
=&k Z¢ v, 3.5.3
where
};’(m,‘Z’) = y__f qu_}’(k +ﬁk(E)}“’ (see eq (3.4,15)) 3.5.4
V., k

d

-’
These definitions of E and D are not unique (see footnote at the
end of Section 2,3), To see how they compare with the definitions of
-y -

D and E in common use, we will investigate the equation of state which

relates E and D. This will be done in the next chapter,

226



CHAPTER 1V

EQUILIBRIUM CONDITIONS

A, Introduction

In Chapter III, we used a generalization of the method developed
in Part One to define a macroscopic electric field and an electric
displacement field, 1In this Chapter, we will use the results of Chapter
ITI to solve an equilibrium condition problem for an ion in the system-
described in Chzpter I,

Up to this point, the displacements have been arbitrary functions
which were subject only to the two constraints that they satisfy eqs
(1.2,2) and (3,2.17). Although there were applied fields present in
the system we considered in Chapter III, we did not assume any explicit
relationship between these applied fields and the ﬁ(i,k) of the ions,

- We will now assume that the displacements ﬁ(i,k} are produced by the
applied fields, i.e, applied electric fields and/or applied stresses,
The ﬁ(T,k) can be found in terms of the applied fields through the
equilibrium conditions which the ions of a crystal must satisfy, If
an ion, at say i(T,k) in the initial state, is part of a real, un-
disturbed crystal, then it must be in equilibrium, 1i,e, the net force
gk(f) acting on it must vanish,

D = o0 44,1
If fields are applied to the system, then the'ions will be subject to
non-zero forces, This causes the ions to redistribute themselves such

that (4.1,1) holds for the ions in the new positions, i,e,
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Fk() =0 44,2

where ¥ (1) is the net force acting on the ion at i(i;k) in the final
 state,
In Chapter III, we assumed all the ions in the initial state
occupied lattice sites, We now make the additional assumption that
the ions are also in equilibrium in the initial state. We will further
assume that there is no c.r,u, dipole moment (see eq (1:5.2.7)) in the
intial state, |
We now subject the crystal to applied electric fields and/or
applied stresses, The ions in the final state will eventually reach
an equilibrium state (if one exists, otherwise the crystal will destroy
itself) and hence the net force acting on an ion in the final state
will vanish, 1i.e,

M =o0 4.1,3

-
The net force Fk(TS acting on an ion (at i(f,k)) is composed of
two parts - the electrostatic contribution and a short range contribu= .
tion, 1i,e,
-

=X(1,%)

b

I = - q‘bvt(é’) -V a‘s‘(‘i)/ 4.1.4

where Vt(i) is the total electrostatic potential due to the crystal

plus the free charges and @i(%) is the potential energy due to the

short range forces. The short range forces are assumed to be two body,

zZ is to be set equal to the position vector of the ion under considera-
» -a 4 2 » .

tion (i.e, Z=X(1l,k)) after the derivatives have been taken. We have

implicitly assumed that it is at a k-th ion site by the k superscripts
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: -

on qk and &E(Z). Unlike the problem discussed in Chapter III, Z
changes as we apply the fields (since it is an ion site), .

We have already solved for the rotal electrostatic potential

“--idn Seetion’ 3,3, i.e,

V. (2) = Vap + V(2) (c.f. eq (3.3.1))
=V _ +V +vV 4,1,5
ap e i
where
E = - nggp + Ve) (see eq (3.3,6)) 4,1,6
is the macroscopic electric field and
- A
3 . k > >
Vi(Z) = Z gk _’Z 1 - Z g'l)mvm(r?)‘g (m,Vn,Z,Z')
k e )1€V 125 = 5 m=0 m!
o n [ X(0)-Z+al 417

(see eq (3,2,40))., The two-body short range potential is usually

expressed in the form

k.2
&(Z) = f Z
8 P'i’évn

Va2 SRS E)| 4,1.8%

*1 A common short range potential to use (for ionic crystals is the

Born-Mayer potential, i._e

2, ,k'k
DA Y
e

@ = A

' 1
where Ak k anq/Ok kare constants, TIf only nearest neighbour inter-

1 1
actions are allowed in diatomic crystals, then Ak k and/Qk k need not
carry k and k' superscripts,
The sum over T should be over T&€v but, due to the short range

nature of dz(g),.the error in summing over Te Vn is negligible,
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where ¢k'k(2) is the short range potential of thé k-th ion in the field
of the k'-th ion,

Substituting (4,1.5) and (4.1.4), and using (4.1,6), we can rewrite
?k(TB in the form

D) = & -V [v D +v D] -9v.@)2 - &)
g VI ap @ 7Y ); y }2=2(T,k)

= qu(E) - &k (E)\*.4‘4 4,1.9
o eff” " IZX(T,K)
where
(D = v (@) + 8D 4.1.10
eff i s

is an effective short range potential energy,
Therefore the equilibrium condition of the ion at i(i,k) in the
deformed crystal is

Ky, 3 k 2
q E(Z) - & __(2) /,, v =0 4,1,11
{ eff } 7=%(T, k)

s

We note that due to the way in which we have defined the macro-
scopic electric field E, the equilibrium condition is not an explicit
function of the shape of the sample,

Unfortunately, eq (4,1,11), is, in general, not solvable in closed

s
form for the G(T,k), However a great deal of information can be obtained
from eq (4,1,11) for the special case in which the fields are uniform,

In Section B, we investigate how eq (4,1,11) is simplified when
the fields are uniform, In Section C, we discuss the equation'of state
and how it is related to the equilibrium conditions, 1In Section D, we

obtain the set of equations from which the coefficients of the equation

of state may be obtained, 1In Section E, we show that our electric



231

field is equivalent to the acéepted macroscopic definition for the

case of uniform fields in an ellibsoidal specimen,



B. Equilibrium Conditions in a Crystal with Uniform Displacements

To give an example of the calculations involved in a problem
concerning equilibrium conditions, we will consider the case of a
crystal whose ions are subjected to uniform displacements, These dis-
placements are assumed to be caused by applied electric fields and/or
applied stresses, The undeformed crystal is assumed to have all its
ions occupying lattice sites and in equilibrium, The only systems
known to the author in which ﬁnifcrm fields exist tﬁroughout the
crystal are an ellipsoid and, to a good approximation, a thin slab,

The position vector of an ion in the initial state is

-

2T, =zd) + 37 (see eq (1.2,9))  4.2.1
where %X is the position vector of the k-th ion in the e¢,r u. with
respect to the origin of the c¢,r.u, and §TT3 is the position vector
of the 1-th lattice site,

The position vector of the same ion in the final state is ]

X (1,0 =T,k +u x (T, +dd
i i ij j i
. |
= X, (1) + xX + ok ‘ 4,2.2
i i i

(c.f, eq (3.2,9a)), where

XM =xD +u x (D (see eq (1.2.5))  4.2.3
i i ij j
and
xk = x% +u_ xK 4.2.4
i i ij j ' :

u,, is the displacement gradient (of all the ions, not just the surface
1]

ions as in the definition (1,2,2)) and-fnk is the internal strain vector
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which is of microscopic size throughout the sample, We note that this
- internal strain vector is the quantity which we previously called the
* . .
interior displacement, 3k is assumed™l to be independent of ?(T,k),

The displacement vector can thus be written in the form

ui(i’,k) = uijxj('f,k) + u‘i‘ 4.2.5
which is of the necessary form (see eq (1.2.2)). We note that it
satisfies the criterion of eq (3,2,17) and hence'wé may use the
analysis of Chapter III wherever it is appropriate, The expansion
parameter 3, eq (3.2.8), is

T =% 43K | 4.2.6

In a crystal on which uniform fields are acting we may shift
all the ions by the same amount, i,e,

R for all k' 4,2,7
and the eguilibrium conditions will remain unchanged, Thus one of
the ﬁk' is arbitrary, We will chocose the ion (at i(f,k)) whose equi-
librium condition we are considering to have zero internal strain, i.e, -

W =0 4.2.8

In addition, we will choose the origin of the c.r,u, to be at the
k-th ion, Thus

* -0 42,9

Hence

*1  This assumption is valid if, by using it, we obtain equilibrium
-2
conditions which are independent of the ion chosen, i,e, of i(l,k)

(see eq (4,4,9) and the discussion follewing this equation),
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31,0 = XD ’ , 4,2.10

Therefore after we have taken all the required derlvatlves with
‘respect to Z but before we take any deri§atives with respect to the
independent variables’? (eg. E, uij or 3, uij etc,), we must set Z
equal to the lattice vector in the deformed state f(?), i,e,

= X(1) _ 4,2,11

From eq (4,1,11), the equilibrium condition‘for the ion at iki:k) is

FdE@) - vdsz(z)f}i,_f(_f) =0 ' | 4.2.12

We recall that we are dealing wifh the uniform field case in

which E is independent of Z and 6 (Z) is given by

*2  Up to this point, some of the fields we have introduced are
'Ffap, E, B, &(T,K), oy gk 3
These fields are not all independent of each other, However, we know
that E;p and 3(T,k) may be considered as independent because the sz,k)
‘can be caused by applied stresses which are independent of the free
charges which produce E;p'
Thus we have the liberty of choosing one of the electrostatic
fields and one of the displacement fields as independent varlables
say ¥ and uij' Once the independent variables are chosen, then the
other fields are considered to be functions of these independent

variables, i, e,

E (Eu ), B(Eu ), O(Fu ), 2% u )
ap ij” > ij ij ij
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&<, (D) = Z Wk'k(ff(i",k )2+ 5~ 1 '
eff I ZEV } 4HE
| X1y -Z+5l
1 (b ] A
- a5 S D" MR m, v, 2’,"2’)} 4,213
4Wé m=0 m! .

The only quantities which are unknown in eq (4.2,13) are the
internal strains ﬁk', This is assuming we know the short range
potential (and hence Ak'k and/6;<'k ). Due to the nature of eqs (4.2,12)
and (4,2,13) (i.e, that it is an infinite pcwer series in ﬁk'), we are
unable to solve for the ﬁk. explicitly in closed form.' How eq (4.2.12)

is used will be discussed in the next section,



C. The Equation of State
In Section B, we obtained a general expression, eq (4.2,12), for
Cos . 2k .
.the equilibrium conditions which relate U , E, and Yige The equi-
librium conditions can be written as the vanishing of an infinite power
. . =k . -k . .
series in u .and hence we cannot obtain Q explicitly in a closed form
in terms of E ulJ, and the parameters of the short range forces, How-
k
ever, it is possible to solve for the various derivatives of U with
: - )
respect to E and uij (see Section D),
To give an idea of how these derivatives are used, we will con-
sider the electric displacement field D, From eq (3.5.1), D may be

written as

[¢0)
B(@) = €E@) + g A IICTE N Z) 4,3,1
where
CBEH,D = N < g™ (see eq (3.4.15)  4.3.2
)

From eq (4,2,6), the expansion parameter U may be written in the
form
= XX 4k 4.3.3
which is independent of E, Therefore all the terms in eq (4,3,1) with
m 21 vanish and we are left with

D=c¢cEF+7 Zev 4.,3.4
e} d ]

which is an exact relation for the case of uniform fields (for non-

uniform fields, this relation would only be approximate, see eq (3.4.17)).

236



237

We have dropped thelg as an explicit argument sincé §>is independent
of 7 by assumption (of uniform fields) and F is independent of Z by
"calculation, Thus D is also independent of Z. P ié the polarization

which is given by
F= N_ 2 qk(ik +‘ﬂk) (see eq (3.4.18))
Va K ~

- Equgk 4.,3,5
Vv k , ’ :

when the initial dipole moment vanishes,
In order to simplify the discussion as much as possible and yet
not miss any significant results we will consider the expansion of uk,
i

which is needed to solve the equilibrium eq (4.2,12), only up to term

second order in E, and u,.,, 1i,e,
i

1]
k uk ° uk ° 2 ﬁk ° 2 uk °
h =(§ 1) E, +(% i ) w'o+ () )1 BE + [3% Y B
E, w DEJ. E_ )Eiéumn
2 k o
+ (3 %4 u u : 4,3,6
N~ mn rs ’
du du
mn o rs

There is no non-zero term which is independent of E; and Uiy since Ei’
uij’ and ur vanish in the initial state, The © superscript indicates
that Ei and uij are to be set equal to zerc in the enclosed function,

~ To be consistent, we must also use a second order expansion for DB,

Substituting eq (4.3.6) into (4.3.5), then subsituting the result into

eq (4.3,4), we obtain
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. v J
DEJ. du__ JE ;3E
4.3.6 _
k .k kAo
<&
N >_q ‘/32 uy S i? E o +§x é{qk]?éZ ug _ S 34 9 uu
Vk [QFéu /J vk k)u du " Ju } ‘
\oh mn  rs rs
where we have used the relation
1 T 1(1 - u,,) ' (see eq (3,2.38)) 4.3.7
— = ii
Eq (4.3.6) is an equation of state relating 5, E, and uijl This
relation is usually written in the form
4,3,8%1
Di = eijEj * eimnumn + QijkEjEk + QijmnEjumn + Qimnrsumnurs
where &, ., e, Q,. ~ are, respectively, the dielectric, piezoelectric,

13> “jmn’ “ijmn

and electrostrictive constants, The remaining constants have not been
named to the author's knowledge, We note that we could equally well

have expanded Ei as a function of Di and Uij to obtain a different

*] The coefficients in this equation are also obtainable from experi-
ment, This serves as a check on the validity of our definition of the

electric displacement field,
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equation of state, We have cﬁosen eq (4.3,8) in order to compare with

eq (4,3,6). Thus the coefficieﬁts in eq (4.3.8) may be written in terms
K .

of the derivatives of 0 appearing ir eq (4.3.6) as follows:

kyo

ks u’

& N5q (j 1\) + €5 4.3.9
*5

k uk °
Con ggq(a_l_) , 4.3,10

S 1

qk( - o | 4.3.11

2 uk uk °5
Qijmn = N q?&? i a (A 1)‘} 4.3,12
V k
j .

. . < k 2 u, . 0 . u% °
Umors = %fqé(i——-l 3@1()9_1_ } 4.3.13

The derivatives of 3k appearing in eqs (4,3.9) to (4.3.13) must
be determined from the equilibrium conditions, We note that equations

"(4.3.9) and (4,3,12) are the same as those derived by Grindlay and Wong26.



D, The Derivatives of gF

In Section C, we showed h&w the electric displacement field, ﬁ,
may be written in terms of E;, Yy and the derivatives of'ﬁk with
respect to E;, and Uy (see eq (4,3,6)), 1In this séction, we will give
the set of linear equations which the derivatives of“L'xk must satisfy

due to the equilibrium conditions,

The equilibrium condition of an ion at i(T,k) is

' k> k - ’ )
T F - V& .. (2 I”‘ =0 (see eq (4.2.12)) 4.4.1

k
where deff(23 is given by eq (4,2,13), Namely

k -
s (2

]

K - k-
&, (D) +q V(D)

[ é o 1 +<pk'k[)?(‘f')-"z' +Gk'+ik_'])£

ﬂ' - - ! - !
T '‘év 4 e !X(?L?)--Z; -i-uk +Xk}

f ( 1) vae )R "(m, v ‘z’,“z")] 4,42
4QZ; m=0

Assuming that
] 1
\ﬁk'l < lgk 1 for all k' : 4,4,3
then we may expand the first term on the R.H,S, of eq (4,4,2) in a

'
. . =2k
power series in u as follows

g k k! 1 +(y [X(1)+x '+u"’k':g=
Tev 4T I3 425 2143 ]
4,44
o .
:E ( l)mvm( )(9k ) 21 {Aqu' 1 [X(l? 4k _zz{E
m=0 Tev | u7e /f(f‘)+§'{k'-2"/
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We have introduced the transformation

(I = XA + XD © 445
(and dropped the ") so that the origin of summation over T‘is tﬁe
center of Vn. Also

7' =27 - XD 4.4.,6

coo2k' 2.7 ce s .
Since the quantity u~ is independent of X(1), it immediately

satisfies the condition (3,2,17), and the expre551on for R (m,Vn,Z
eq (3.2.34), reduces to
' o ! ' - .
5}‘ (m,v ,Z,2") = (R Ho NE(Z',V) 4.4.7
\Y

where f(Z',Vn) is the solution of the differential equation

A

rEne@ vy = Jff @ 44,8

Vn [? -.27
Thus

e ) ' - o S ! (N - ’
éo COMR @,V LI = 2 (DR E )
= - < n n

m=0 m!

Z S;Lv( YCRIDRITEANS IR
m=0 4,48

Substituting (4,4.4) and (4.4,9) into eq (4.4,2), we can write

k =
Geff(é) as

. D= 2 ﬁ C"" M EH" dRE R Jug ) 4.4.10

k' m=0 m!

where

1 St ' ) 1 - '
O AN S S A k K 1 @ [RDH-243]

U5 W
l'CV 41&0 ,2(3.)_—2',_&1('}
1 ]
RIS A 4.6.11
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We note that Ek'§§'¥§k',uij) is an explicit function of 7' = 7 - X(D)
where fkf) is the lattice site in the deformed state nearest Z (Z is
to be set equal to f(f3). Therefore when we set 2 = f(I) in eq (/.4.1),
E' = 0 and hence the equilibrium condition is independent of f as
required by our assumptions (see footnote *1 of Section B).

Equations (4,4,10) and (4,4,11) have enabled us to isolate the

k'
implicit F dependence of eq (4.4,1) since u 1is an implicit function
S k! R > ,
of E. " & “is not a function of E; it is only a function of uij.

In order to show clearly where the uij dependence arises, we

must use the inverse of Si.+ uij’ namely vij (see eq (1,2,6)).

j
z, = Zjvij (see eq (1,2.8)) 4,4,12
Thus
zZ.
2 =973
9Z; Iz, S?J'
= vji L i 4.2,13
sz

Thus the equilibrium condition, eq (4,4,1), may be written as

m K’ m_k'k k!
B = Vi '39‘2— <, mgo (r;}) (-}z— VrsUs (E’”pq)) & ((Gqtipg) (2gmxg )5upy) .
3 .

r z'=

= 0 4,.4,14
where we have shown all the places where E and uij appear explicitly or
implicitly,
~ Taking the derivatives of eq (4.4,14) with respect to Ei and uij’

we obtain, (with the aid of the identity ()vij)o - Sim Sjn ),

Ju
mn
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11\ O . o
Z(E‘f k) = 0 4,4,15
k'\ 3z '
i .
k'vo o
2 '
Ve | [ya<k = - a*§. 4.4.16
k' \3E. PERE g
- qu7o
k' o 1 \O -
f (a“r yak'k ) = g@“mn 44,17
k' )umn )zi)z k! SZ;- ‘ :
1\ © k' .k' ) ‘ o
(32 “ )ak B = Up us | [Pak'k 4,4,18
JE )E Jz )z k'[JE . ME dz 3z Iz
J° m r s i
1] k‘ o o
Z 32 up \ [k i} f (3 ;S 25k'K\ s 2 ak'k
k' { 9E Ju dz )z k' QSE. 1513z 3z ms{)z 52/
8 il > m r R T
4,4,19
k'k\o
, QE__) k' o) 3 . o 7 .
= 3%Urs/ 4 [yun '(D gk 'k )
dz 3z u 3z 3z Iz S
i rs i m n ~
k' (o] . (o] (_L k"'\o
Z ) Ur )261( k = Z -5 ()urs -5 Q._Bupq +S /;u ) 2 gk'
k' [3u 2u dz Jz k' 193z 159z 1q{ju Qz oz
pPq rs i r ) r rs P u
k'ko
k' o 9 71\ . klyo . ,1\0 k' k'\c A&
+S (gum ) [ 3%k k) + 3% ) /\25k 'k +(} ) k! k) --(aum | 2\ durs
ir X ' T 3 P
Bqu \azsazm \)upq Bziqz \az z qu é&iaam
)5k'k o Az mk'k 1) 4.,4,20
k' o . A k'\O k'\O . (o]
- [m 32(5“rs + Q_(fursd“pq) +()”m ) D ) ()3 gk
du 3z 32 z 2 u SEFRPR TN
rs i m i Pq rs

. 1
The problem of solving for the derivatives of & has now been

1 *
reduced to finding the microscopic quantities (dk k)o 2,(3§k k) , and
: u
mn
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1 k o . )
and _QE_QE;__ as functions of E: (see eq (4,4,11)), What we have
A3u u ' .

pq s

- 3 . - . - 3 -’
done is to give a recipe based on our definitions of E and D for cal-
culating the coefficients in eq (4.3,8), and hence for comparing our

definitions with experimental results,

We note that eqs (4.4.16) and (4.4,19) are of the same form as
the corresponding ones obtained by Grindlay and Wong26 (eqs (28) and
1
(29) of their paper)., Our definition of gk k'differs slightly from

the definition of the corresponding quantity used by Wong and Grindlay.

o o o o
k'K ' k k' !
32 s K . Afjk*'ﬂ q ()?.)
32 92, 4we )
73 -0

They sum over a sphere while ours involves a sum over a cube, The
limiting value as the sphere goes to infinity is the value of our
expression,

We recall‘that in Part One, éection 4.6, we provedAthat our
intrinsic electrostatic potential was equivalent to the electrostatic
potential as evaluated using Ewald's method., Since the Vi(E) is 4
simple generalization of the Vi(é) of Part One, we conclude that our
results are equivalent to those of B&H who used Ewald's method in
calculating the electrostatic contribution to the total potential
energy (the short range forces are treated the same in most theories).
This means that our equat§0n of state for thg finite crystal is

equivalent to the equation of state of the infinite crystal, This is

%2 The electrostatic contribution of this term is the intrinsic

electrostatic potential calculated in Part One,
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a further justification of the infinite crystal methods,
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E, The Electric Field in an Ellipsoid
The standard result for the electric field in a uniformly

deformed ellipsoid is

S
Ei = (Eap)i- éf Liij | 4,5.1

o

where Pj is the polarization given by

P. =N ijk(x3 + ug) (see eq (3.4,18))
V, k

where both L.. and V, are functions of u. .,

ij d ij

From eq (3,3.,10), our electric field is given by

[=5]
]

- k' 2.
= (E). - CDFORS (@,v,2)
B3 2 2 O,

= k' *k' m -
= (E, ) - 2 DR @ EHNEE, Y 4.5.3
ap’ i 9Z, k' m=0 “m! v oo

i

where we have used eq (4.4.5)., For the deformed ellipsoid, f(Z,V) is

£ZV) =-1S2001L..2.7. -
(z,V) j{ wLly iz %fg 4.5.4
Thus
( ) 1 4 2 1 1 1
E. = - N w q L..(u, + X))
1 av L Y3 4we k'
=y
= (E - 1 L,.pP. . 4,55
(ap)l ‘é"' 1] J 5
[
where
1 1 1
Po=n S g% Wk &5k 4.5.6

which is in agreement with the relation, eq (4.5.1), in common usage,

We have used the relation Vg = JV in writing eq (4.5.5).

246



F, Summary
3 ) 2 . 7
In this chapter, we investigated the relationship between E and
’? 3 .
D when the fields are uniform,

We found that

D =yéb§ + P (see eq (4.3.4)) 4,6,1

and when the specimen is an ellipsoid, the further relation
E, = (_Eap)i - é‘ L; 5Py (see eq (4.5,5))  4.6.2
5 A 4 ,

which are the accepted relations between E'and D when the fields are
‘uniform,

In addition, we showed that the eéuation of state relating D and
E wﬁich results from the equilibrium conditions is equivalent to the

equation of state derived by Born and Huang, .
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CHAPTER V

SUMMARY

In this part of the thesis we have done two things:
A, defined a macroscopic electric field and an electric displace-
ment field, and

B, investigated the relationship between them,

A,
The definitions we used for E and 3 are
2 2 o) k m+1 m nd
Z-7% -f(l)f (M 2 m,v,2)  for all Z  (3.3.10)
ar m=0 m! QWf
and
- 7 1 m-1
Mo - - -»
=€E+ é D™ HEM,Z) Ze v, (3.4,16)

where e13:‘(m,v,‘§) is given by eq (3,2,33) and

2m?) = N 2R i@y C(3.5.4)
v,k

These fields are slowly varying over atomic distances and satisfy the
field equations
VXE = 0 (3.3.7)

V.3 e , (3.4.14)

where /L% is the free charge density,
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When the fields are uniform, the relationship between D and E

~ takes the simple form

D=cE+7 Zev (4.3.4)
[o} d

When the sample is an ellipsoid, then E also has a simple form given

by (for uniform fields)
E = (E;p)i- _lé__Liij Zev, o (4.5.5)

: :
 which are the accepted feiatiohé'befweén E;and D when the fields ;ré
uniform,

In additon, we showed that the equation of state relating D and
E’which results from the equilibrium conditiqns is equivalent to the
equation of state derived by Born and Huang who used-an infinite

"érystal, '

To our knowledge, no absolute criteria have been put forward in
» the literature to uniquely define E or D. Thus we have been unable to
prove that our definitions of E and D are the ones that should be used,
However, they have satisfied all the conéitions, (which the electric
field and electric displacement field must satisfy), which we have been

able to investigate,



APPENDIX I

The direct product W of two quantities U and V will be denoted by
the symbol B (see Leech and Newmannzq), i.e,
W = URV A l,1

As an example, let U and V be a pair of 2x2 matrices,

U, U vy, V
1 V12
- 12| (1

b s A A, 1,2

Up1 Uyp Va1 Voo

then the direct product of U and V.is.given by .
W = URV
/U11V11 U11%12 Y12Y13 U1aVio

Up1V21 U11Voo UpaVoy UpoVos A13

Up1Y11 Ua1Vig UppVyq UppVyy

VU21V21 Un1Vop UppVsy UpoVy,

For our purposes, the quantities U and V will be vectors, 1i.e.

- -
U= (U},U,,U3); V=/[v A1.4

1

V)

Vg

-;
Thus the direct product of the two vectors U and V is

UpVp Upvy UV

URV = [ UV, UV, UV, | A.1,5

UV Uy UV,

which is a 3x3 matrix,
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When we are taking the direct product between two vectors which

are the same, we will use the following notation

»o defn
¥ = 0ad, U A.1.6
1
where ﬁt is the transpose of U, 1i,e, U2 rather than (UI’UZ’UB)'
U3

The vector symbol on ﬁ2 is retained to avoid confusion with U2 where
; 22 . . ‘
U= lﬁ[. We note that U° is a symmetric 3x3 matix,.
Generalizing eq (A,1.6) we will use the notation " to denote the
following n-th order direct product

defn

- —y -2 -
= UR Ut R ,...BUR Ut n even

= gl 8..... 8080 n odd

< n
where the symbol‘& appears.n-l‘timgs,.IWe‘no;e,thgt:g,.is a tensor

- whose components are given by
n

-n _ 57
(v Ji i / i,
1 n j=1 j

I~

u, i, =1,2,3 A.1.8
i

In conjunction with the direct product, we need to introduce a
generalized inner product which we will denote by the symbol (.),
The inner product of a vector with a direct product reduces the

order of the direct product by one, 1i.e,

V(O = (@5t | A.1.9
. - =) .
where V,U is the standard inner product between two vectors.

The m-th order inner product will be denoted by the symbol (?),

’ -
If we take the m-th order inner product of two direct products U" and
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3P
V* where p2m, then

THIP = (@ H™P A.1.10

We note that we could not have an m-th order inner product between

", P

, where n,p>m, Either n or p must equal m,



Appendix II

- - .3
Let us consider a function R(Z,Z-Y) given by

R(Z,2-¥) = J

N\g

gp(z) fp(fﬁf’) A2.1

[
O

P

where prf) is a solution of the differential equation

ﬁ(%)fp('}?). = U{dﬁ hp(ﬁ-?{’) A.2.2
1% - %
with' _
Xj = (Sij+uij)xj . A,2.3
and
Wy = (5 oy v, A.2.4

J is the determinant of (Sij+uij)‘ i,e,
J = det( Sl_’l-*-uij) ] | ‘ | A.2.6‘
In addition we have the relation

oo

W@ = S e Dh @D A.2.7
oo PP

Introducing the transformation, egq A.2.4), into eq (A.2.2), we

may rewrite it as

B —

17 - %]

What we want to do in this appendix is find an expression for the

'ﬁ(i’)fp(z?) - %mdﬁ n (7-3) A.2.8

quantity VéR(E,E3,
Before taking the Laplacian of R, we first operate on eq (A.2.1)

A
with P(;) to obtain
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oo

MFRE,ZY =1 2 gP(Z’) r ®t D
p=0
@ - - —."-' |
= éé; gp(z)/Qyﬁw hp(W-Z+Y) (see eq (A.2.8))
V-7 + 7l
- w o~ =
- ]f/ Z, 8,n, @D
|V -7 +%]
= j}dﬁu!-ﬁ‘f‘—ffy) A’z‘g
W{?JZ!

Taking the gradient of eq (A,2 9) with respect to E we have

["'(")sz(z 7-3) = /}/dw u (WHY).

| W3=Z]
= f/dw wi@H v, 1
I?—r?—
e v el i B f}fdw u(W+Y) Vx 1 T R
SU Wf+§"z |
= - {{]ds Bu @) + dwv (@) A.2.10
V477 | jj m

Taking the divergence of eq (A.2,10), we obtain an equation involving

.2 .
§7ZR. i,e,

]

f’(?)véR(i’,Z’—?) -{f/dSu(W-i-Y)?l.V +)Udﬁ%u(ﬁaﬁ).v 1

Z

\{3’@ Zl v | !w’+¥ Z|
- f ISR g f/ [dwv u@ .y 1
\w+Y z VJ+’Y’ Zl

The first term on the R.H.S, of eq (A.2.11) has to be considered

carefully, Ve write it as

= =2 A i e did
// dSu(W+Y)n,v 1 = f/dSu(w+Y)n,v 1 + /[dSu(w-xLY)r?,Y 1
‘ -~ k P J -
v -z Y vzl S )W—H{-f
/deU(w—w)n v, A2.12

PR S A |
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-7-7.

where S is a spherical region of radius B centered at W

We may apply Gauss' theorem to the first two terms to get

’ [deu(ﬁ&)ﬁ.vw 1 = /ffd’ﬁvw,iu(ﬁ?)v 1 % //dSu(w+Y)n Gy L
[W+Y-Z "> (#7-Z1 l WA~
= / f fdﬁku('ﬁﬁ) v, 1+ ///qu(W+Y)V2 1

V=5 L l"+¥ Z} V=SR]

U dSu(ﬁ’+<z’)ﬁ,vw 1 A,2.13

5 -z '
However
G2 1 = 4w SEHE-D) A2,14
1W+7-Z1

where S(X) is the Dirac delta function and hence the second term on

the R,H.,S, of eq (A.2.13) vanishes, Substituting eq (A.2.13) into

eq (A.2.11), we have '

A . A,2.15

F(y)VéR(f,?—?) f/fdw%u(my’).v + U dsu(f+)a Ay, 1
n:f “raz] \-7)

Introducing the transformation

e -9 — )
V=W+Y -2 ' A.2,16

‘into eq (A,2,15), we have

Y’:'(S”)V;R(_Zo,?-?) = - }gjdx?c{/u({z’ﬁ) ,%(%) + £[d8u(\7+’z’2ﬁ;VV%)A.2.17

As we let/ge»o (i.e. let the region S become vanishingly small),

then the first term on the R,H,S, of (A.2.17) vanishes and the second

term becomes
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o T 2 at
lim f ag fdesinevzu(\7+%)3 {l) / = ~ lim g a¢ ldesineu({‘/!{z)
g>0 0 0 VLV A0 0
V=
= - 4rcu(?) A.2.173
Thus
FHVRELD = - 4wud) 4.2,18

We note that R is indirectly related to G, Thus when T changes, .so does
R, The boundary condition we have assumed for R is that it must be a

—p .
function of U. Since u is an arbitrary function of position, R.will "

)

not, in general, contain a term which satisfies
f(HE = 0 A.2,19

Thus we assume the solution of eq (4.2.18) is

vgx(f,ii) = -4u(?) 4.2.20
which is independent of .'1_() We have been unable to prove that this

solution is the compleie one,



GLOSSARY OF SYMBOLS

PART ONE
- 2
x(T) a lattice vector
-
1 a triplet of integers (11,12,13)- lattice site indices
a; . a lattice parameter
31 a unit vector in real space
i . .
k a vector in reciprocal space
- . :
y(h) a reciprocal lattice vector
&; a unit vector in reciprocal space
Sij the Kronecker delta functicn
k .
2 charge of the k-th type ion
k the symbol used to label the type of ion
e the magnitude of the electronic charge
k k
s =q /e
<k s . .
X the position vector of the k-th ion relative to the center of
the c,r,u,
2 position vector of the point of interest
z magnitude of Z
\Y volume of the finite crystal; also the self-potential of the
k=0 ion in an infinite crystal
V(2) the electrostatic potential at a peint with position vector Z in
a finite crystai
é% permittivity of free space
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vI(z)

V()

vi(®)

vE (%)

8(1)

V(zZ,k)

258

the electrostatic self-potential of the ion site at §(T,§)
the electrostatic potential at a point with position vector
Z in an infinite crystal

the electrostatic self-potential of a k-type ion in an

infinite crystal

the electrostatic potential defined by the introduction of a

vanishing exponential

the electrostatic self-potential of a k-type ion associated
with V'(2)

the electrostatic potential due tec a line of point charges
the electrostatic potential due to a plane of point charges

k

q
1= -2

i
I
= Mo

a weighting factor which devends on the position of the ion

4n the unit cell

i
Pt
[%N
=
o
1]

the error function

the electrostatic potential of a neutralized Bravais lattice
the volume of the unit cell

charge density

a structure factor

the partial potential of the k-th type ion
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a differential operator (see eq (3.2,5))

a differential operator which contains only derivatives of

order 2p (see eq (3.2.8))

the lattice site (of the k=0 ion) nearest Z

- £

1¢Vn IS{'(I) -%k

1

>
A,

<§

= z-%
Z
= '5: ’_."'k
[}
= 1
L€V 12D -2

a parameter which is a measure of the size of V

a solution of the differential equation f(i)f(?,v) = I(z,d)

a cube of side (2n+l)a |

a constant defined by eq (3.3.45)

a coefficient in the expansion of I(Z,d) in powers of Z and d

a spherical harmonic

a coefficient

i

the intrinsic

the extrinsic

the intrinsic
the extrinsic

(i=1,2,3) the

£(Z,Vv) - £(Z,Vv )
n n+

in the expansion of £(Z,V) in powers of % and d

1
partial potential of the k-th ion
partial potential of the k-fh ion
electrostatic potential of the k-th ion
electrostatic potential of the k-th ion

principal values of the depolarization facZox

a symmetric combination of spherical harmonics of order m
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PART TWO

2

260

the function describing the surface of V

dipole moment per unit volume of the c,b,u,
quadrupole moment per unit volume ef the c,b,u, . -
madelung constant of the infinite crystal

the intrinsic madelung constant

the intrinsic electro§ta;ic energy

the extrinéic electrostatic energy

the extrinsic madelung constant

a dimensionless quantity associated with the intrinsic
electrostatic potential

dipole moment per unit volume of the c,r.u,

quadrupole pole moment per unit volume of the c¢,r,u,

a dimensionless function associated with the extrinsic

electrostatic potential

the macroscopic electric field

the electric displacement field

displacement of the ion which was at %(T,k)

volume of the deformed crystal

displacement gradient of the k=0 ion at the surface,
the internal displacement vector

the inverse of § . + u, .
1] 1]

‘position vector of the point of interest in the deformed

crystal
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= %(1,k) +u(,K)

free charge density

the electric field due to the free charges

the electrostatic potential due to the free charges

a weighting function

a microscopic region which is muéh 1arger thgn the lattice
parameter

the microscopic electric field

-2

v %50 - 2.

expansion parameter of Q'k(Z)

J
1 1: o
=1 N 5 qk(§“4ﬁ‘(2))m
ml Vy ok
= P(1,7) - the polarization

the short range potential energy
kk' k

= @& + q Vi(is - an effective short range potential energy

)

the dielectric constant

the piezoelectric constant

the electrostrictive constant

the net force acting on an ion of type k at the T-th c.r.u.
the total electrostatic potential

see eq (3,2.33)
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