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Synopsis

General expressions for the electrostatic potential in perfect multipole lattices are
given as expansions in terms of spherical harmonics. The coefficients occurring in
these expansions contain lattice sums of a general type, which have been treated
previously. Such expressions are derived for a point charge lattice, a multipole lattice,
and finally for a lattice built up from a number of different arbitrary charge distri-
butions.

§ 1. Introduction. In many problems of solid state physics, in particular
in the theory of ionic crystals, it is desirable to have a description of the
electrostatic potential everywhere inside the unit cell of the crystal. In order
to be sufficiently general, such a description should take account of the fact
that the atoms (or ions) are charge distributions of finite extent, which are
deformable in the crystalline field. Although on these grounds one expects
the atomic (ionic) charge distributions to contain, besides a net charge and
possibly a dipole moment, certain higher multipole moments, these compli-
cations are usually left out of consideration. For instance, in calculating the
electrostatic binding energy of ionic crystals it is customary to consider the
ions as spherically symmetric (point-charge-model} and to correct only for
the overlap of these spherical charge distributions. When considering also
higher multipole moments, however, one would expect the electrostatic
binding energy to deviate from its point-charge-value (Madelung energy),
even in the absence of overlap. Other examples where the existence of higher
multipoles should manifest itself are in the elastic behavior of crystals
(deviations from the Cauchy relations) and in their dielectric properties
(modification of the relation of Clausius-Mossotti). A more precise description
of the crystalline potential should also be of interest in the theory of ferro-
electricity and of colourcenters, to mention a few more examples.

In order to arrive at such a general description of the crystalline electro-
static potential, it seems most natural to expand the potential inside the
unit cell into spherical harmonics. We will derive such expansions firstly
for lattices of point charges, secondly for lattices of multipoles of higher
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order and finally for lattices built up from a number of different arbitrary
charge distributions. The coefficients in these expansions turn out to be
lattice sums of a rather general type, which have been treated by us in a
previous publication!) (to be quoted as I). This description of the crystalline
potential can be used in any situation where the charge distributions do not
overlap the field point. Therefore, although the present derivations in
themselves are purely classical, this treatment of the potential might be
incorporated into a quantum-mechanical theory, by inserting for the charge
distributions those which follow from the ionic wave functions.

In a following paper we propose to investigate which corrections to the
electrostatic binding energy and the dielectric constant. result from the
occurrence of higher multipole moments in the charge distributions of ionic
lattices.

§ 2. The electrostatic potential in a lattice of positive and negative unit point
charges. As a first example we will give an expression for the electrostatic
potential in a point lattice with alternately positive and negative unit
charges at the lattice points. The potential in a point R is (the + charge at
the origin O being omitted)

V(R , (— 1)A1+A2+As , e2mikyr)
n(R) = 3) R—_1] Zf\lR_r)\l
(cf. I, (12) and (22)). Using the expansion
IR — )|~ = 220 gl (4n/20 + 1) Rin 1 Yy m(, @) Yem(0r 61) *) (2)
R <7, (R(R, &, @), rp(7), 0y, ¢5)), we can write for (1)
Vot(R) = ZimRY*1,m(d, 9)(4n[2L + 1) Ty 1Y 1m(0), ) 275472 (3)
This can be abbreviated as
th(R) = i,m A,m R Y*l.m('l?: <P) (4)

= S'(Rky, 3) (1)

with
al,m=(4n/21+ 1) Z),‘ ?’)‘_l_l Yl,m(O,\, (ﬁ)\) eZﬁki" = (4ﬂ‘/2l+ l)sll,m(OIki, %) (5)

(cf. I, (39)). This expansion of Vp(R) in terms of spherical harmonics is
valid for all points inside a sphere with a radius equal to the nearest neigh-
bour distance (cf. condition for validity of (2)). This, however, does not
involve any serious restriction.

The expansion coefficients a;,s, are proportional to lattice sums of a type

*) Yim(B,@) is defined by Yi,m(f, @) = (27)-2Pm(cos #) eim®, where

A A L e

. S (zB— 1)
2 U+ m 241 dxlm

Both definitions hold for positive as well as negative m (|m| < 1) See e.g. Meixner 2) pp. 160, 197.
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discussed in I, § 6. Rapidly converging expressions for these sums are given
by I, (44) for I 5 0, while 24/ S’,0(0|k;, 4), the Madelung constant, is
given by I, (19). In these expressions a few terms of the sums in ordinary
and Fourier space already lead to very accurate results. The advantage
of expressing ¥V 4¢(R), i.e. the potential in an arbitrary point R, into the form
(4), is that one needs only one set of sums S';,,(0|k;, 4) (which are taken
with respect to the origin and not with respect to R) in order to calculate the
potential everywhere inside the unit cell by simply applying (4) *). This is
the point where ‘the present method distinguishes itself from Ewald’s
method 4}, which has been most extensively used so far. In the latter method
a rapidly converging expression for the sum (1) is derived (to which our
expression I, (38) is equivalent) which has the advantage of being valid
everywhere in the lattice. But the formulae can only be evaluated with
relative ease for special points in the unit cell (viz. such points for which the
distances |R — r,| are “lattice vector-like’’), while moreover for each point
(or rather, each set of crystallographically equivalent points) the sums have
to be evaluated anew.

!
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Fig. 1. Lattice vectors in a lattice of positive and negative point charges.

‘The coefficients a;,,, vanish forall odd / as a result of the inversion symmetry
of the potential in a Bravais lattice (cf. I, § 6). An additional number of
coefficients a;,, (for even I) will vanish on account of the symmetry of the
particular lattice considered. This is because only such Y*; »’s can occur in
(4), which are compatible with the particular lattice symmetry. We shall
have to consider this problem in a little more detail in the following paper
(see also the next section). :

We note, combining (1), (4) and (5), the following relation between lattice
sums

S'RIk, 3) = Zim(4n/2L + 1)S"1,m(Ok, ) RYY *1,m(9, @), (6)

which holds not just for k;, but for any reciprocal space vector k and for
every R for which (2) is valid.

*) The authors recently discovered a paper by Kanamori, Moriya, Motizukiand Nagamiya3)
who also expand the crystalline potential in terms of spherical harmonics. Explicit formulae (equi-
valent to (4) and (5)) are given for point charge and dipole lattices. Their methods for calculating
the expansion coefficients are, however, less satisfactory than the method of I.
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§ 3. Numerical example: the potential in a NaCl-type lattice. As an appli-
cation of the formulae (4) and (5), derived in § 2, we will now give numerical
expressions for the potential in a cubic lattice with alternately positive and
negative unit charges and lattice distance 1.

The cubic symmetry of the potential simplifies its expansion (4) consider-
ably: only terms with /is even and m = O or a four-fold can occur, while
for given [, the Y*;'s which do occur must be combined into a linear
combination Y; which is invariant for the operations of the full cubic group
O (Y; then is the invariant vector in the 2/ 4 1-dimensional representation
space of O). The invariant linear combinations Y; for /=4, 6, 8 and 10
respectively are (for / = 2 no such Y exists)

Ya =(5/14) (Y*s,0 + Y4,-4) + Y740

Yo =—(7/2) (Y*6,4 + Y'6,~4) + Y76,0 :

Ys =(5/3) (13/1 10)*(Y*3,8—|— Y*s,_g) +(1/3)(l4/1 l)*(Y*g.,‘;—}- Y*s,_4) —+ Y*s,o

Yi0=—(187/130)¥(Y*10,8+ Y *10,~8) —6(11/390)¥(Y*10,4+ Y *10,-4) + Y * 10,0

Using (7) we may write for the potential in this example

Vpt(R) = 24/7 S'0,0 + (47/9) S'4,0R4Y4(, @) + (47/13) S'g,0REY (9, @) +
+ (47/17) S's,0 R8Ys(®, ¢) + (47/21) S'10,0R1® Y10(8, ) + O(R2). (8)

Knowledge of the invariant linear combinations Y; thus makes that, for
each / occurring, one only needs to calculate one single lattice sum. Using
the values (for a simple cubic lattice with lattice distance 1; z-axis along
ane of the four-fold axes),

(47)S’0,0 (Oky, 4) = —1.74756 (Madelung constant)
(47/9)2S4,0 (O|Ky, 3) = —3.5789

(47/13)4S%6,0 (O|ky, 3) = —0.9895 9

(4n)17)¥S'g,0 (O[k;, 3) = —2.9329

(47/21)45"10,0(0/k;, &) = —1.0114

(the accuracy in the latter four being 4 2 in the last significant figure), we

can now, from (8), find Vy(R) for any point R(R, &, ¢). As an illustration

we give expressions for (8) for three directions, viz. those to a 15¢ (direction

1), a 274 (direction 2) and a 3¢ nearest neighbour (direction 3) respectively.

We find for direction 1

VotV (R)=—1.74756 —3.5789R4—0.9895R6—2.9329R8—1.0114R104
+O(R®),  (10)

for direction 2

V pt'?(R)=—1.74756+40.89473R4+ 1.6079R6—1.6498R84-0.0316 1 R10 4
+O(R12), (1)

*) The Y,’s can be determined by group theoretical methods (c¢f. Altmann %) for I = 4,6) but
also, more easily, from a comparison of certain terms of the related lattice sums S’;,  (cf. following
paper).
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and finally for direction 3

V '3 (R) = —1.74756+2.3859R4— 17591 R6—0.86900R8 - 1. 5983 R104-
+O0(R1). (12)

These functions are plotted in fig. 2 for values of R inside the unit cube
(cube with edge 1 symmetrically around 0) ; the calculations have been made
with (10), (11) and (12). For R-values outside the unit cube the periodicity
of Vpi(R) 4+ 1/R can be used to evaluate the potential. A check on these
formulae and on the calculations is provided by the fact that due to its
periodicity, V(R) 4+ 1/R must be zero on the boundary of the unit cube.

0.0 R(A)=0.5 R(B) RC) 10R
-10 r r . r T . T —T ——

w©) |

Vy (B) F-
-1.5 }

: \

Vpl (A) —
Vit R '

Fig. 2. The potential V(R) in a cubic 4- lattice as a function of R, plotted for three
different directions. Insert: the unit cube with the three directions.

~17476

§ 4. The electrostatic potential in a lattice of point charges with a neutral
basis. This is a generalization of the case considered in § 2. Let the basis
contain y different point charges ¢; (j = 1,2, ..., ), then the condition for
neutrality is 3¥_; ¢; = 0. If r, gives the position of the cell (4 is the cell-
index) and ry that of the j-th point charge in the basis (j is the base-index),
then the lattice vectoris ry; = r) + rj.

If the origin is placed at the position of one of the point charges g1, then
the electrostatic potential in the lattice, in absence of the point charge at the
origin, is given by

V(R) = 3} 3 NU S

! , (13)
IR — 14| "R — 1y

the prime on the summations meaning that the terms A =0 and § =1,
respectively, are to be omitted. For the same reasons as in § 2, it is advan-
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tageous to expand the first term of (13) into spherical harmonics. Then we
can write for (13)

V(R) = ZimbimR'Y 1,m(d, ) + I ¢s/|R — 1y, (14)
with R < 7,5 (A # 0) and where
bim = (4n/2 + 1) 3 Sy ¢ g™ Y 1mOrg, fag) =
= (47/2]l + 1)&"1,m(0]0, $). (15)

&', which is defined by (15), indicates a sum over all the points of the
composite lattice (giving different weights gy to the various points in the

Fig. 3. Lattice vectors in a lattice with basis.

bases) in analogy with S (cf. (5)) which denotes a lattice sum over a simple
Bravais lattice. The sum &’ can be brought into a rapidly converging form
by means of the method developed in I. A straight-forward generalization of
that method to the case of a composite lattice sum leads to

, 1 Sa 23 gl 4%, 72,9 Y1,m(Or,1, ba.g)
©um000. ) = 7 [ i — @100 —
gyt + % wr?) Ym0y, 69)
— % it +
flgl—t

+

S0 Gl ™ Vit 90 | (16

a

G(h) = Xy ¢; exp(2mih-1y) (17)

is the structure factor of the charge distribution in the basis, ;¢ is the
Kronecker symbol.

For [ = 0 the sum &’ is conditionally convergent which means that its
value and hence that of V(R), is not uniquely determined but depends on
the order of summation. This ambiguity becomes apparent in (16) (for
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l = 0) because the value of the term A = 0 in the last sum depends on the
way in which the limit h — O is taken. A similar phenomenon has been dis-
cussed recently for the example of the electric field in a dipole lattice §).

The origin of the ambiguity in ¥V can be readily found when one expresses the
charge distribution in the basis as a series of multipoles and carries out a separate
summation of each of these multipoles over the entire lattice, as is done in § 5 and § 6.
It is then seen that both the dipole moments (/=1) and the quadrupole moments
(I = 2) of the basis (as defined in § 6) appear in the expression for V as the coefficients
of conditionally convergent sums. In a Bravais lattice, however, the dipoles do not
contribute to the potential (due to the inversion symmetry), so that the ambiguity in
V is essentially due solely to the quadrupole moments. But the latter only give a shape
dependent contribution to the potential which is constant throughout the unit cell. Al-
though this term may seem to be of little interest since most physical effects are related
to the electric field rather than to the potential, it is precisely this quadrupole contri-
bution to the constant term in the potential which gives rise to the difference in average
crystal potential which is found between the Frenkel-Bethe-convention for calculat-
ing this average on the one hand, and the Ewald-convention on the other; this
difference was discussed recently by Birman 7).

For cases where one is not interested in this ambiguous but constant
contribution to V, the entire difficulty can be resolved just by omitting in
(16) the term in the origin of reciprocal space. This procedure, which is
equivalent to simply putting G(0) = O and which is often followed without
reference to the above mentioned difficulties, could be argued (though
admittedly not in a completely rigorous way) as follows. In the method for
the conversion of lattice sums (cf. I) which leads to the expression (16)
for &';,m, the reciprocal lattice is found as a sum of é-peaks in reciprocal
space, each of which is multiplied by the structure factor G(h) taken in that
particular point. Since G(0) = O, no d-peak will appear in the origin of
reciprocal space and the second summation in (16) should therefore be read
with a prime. It is for this case that the equivalence of the methods of § 2
and that of § 4 for a two-particle basis, is shown in the appendix.

§ 5. The electrostatic potential tn a lattice with multipoles of equal or alternate
sign. As a preparation for the description of the electrostatic potential in a
lattice consisting of a number of arbitrary charge distributions, we will now
derive an expression for the potential in a lattice of equal multipoles. These
multipoles may all have the same sign, in which case the corresponding
inverse power of # (/ + 1) should be equal or higher than three in order to
have convergence, or they may be of alternate sign (valid for arbitrary
inverse power of 7, cf. § 2).

The potential in a point R(R,, #), ¢)) due to a simple multipole Qym
(fixed /, m) of order 2! in the origin may be written as

VimM(Ry) = QumRy = Y*1m(B, @2)- (18)
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The multipole moment @, gives the strength of the pole. The potential in
the neighbourhood of a lattice point (where the multipole is thought to be
removed) due to all the order multipoles in the lattice is found by summing
expressions of the type (18) over the entire lattice

Vz,m‘i’(R) . E)"((—— 1))‘1+)‘“+’\’)Vl,m(’\'(R,\)- (19)

The factor (— 1)M+4+d gpplies for multipoles of alternate sign ; for multipoles
of equal sign it should be omitted. In order to arrive at a more convenient
expression, where V., is given in terms of the spherical coordinates of
the field point R (cf. fig. 1), we start out by using the relation

Y* (P, —1)i—ma£l 9 o \Iml 7.9 \i=Iml 7|
l$(1+/\1 n | )2 As.m <_ + z_> (_> (—> ") (20)
A \/n 8X,\ aY,\ 82,\ R/\ .

where the upper sign holds for m > 0, the lower sigﬁ form < 0;
Aim= (2L + 1/ + m)! (I — m)!)L (21)
X, Y,, Z, are the cartesian components of R). Let X, Y and Z be the
components of R, then
(00X )Ryl = (9]0 X)|R — 1|1 and cyclic. (22)
If we now substitute (22) into (20) and at the same time replace |R — r;|™1

by its expansion in terms of spherical harmonics (cf. (2), using u, v instead
of /, m) we find for (18)" '
Yp.»v(Q\:‘ﬁz\)

V‘)"t,m(R) = (—1)l-imazl 24/7 Quom Aim Z’MW.
A

P ) 0 Iml 9 l—|m| .
7 av) (z) FYeee @

A further transformation of (23) is obtained by using the relation

Fl ] F) |m| 9 I—|m| .
(e 7iaw) (57) B0 =

oY oz
= (_ ])im(l?l) Bl,m; 7% 4 Re—t Y*,u.—l,v-i-m(ﬁ’ (P) (24)
(upper sign for m > 0, lower sign for m < 0), where
2u + 1 (v + ) p—2)! :
Lmipy — . . (25)
2u—204+1 (w—It4+v+m!(p—101—v—m!

Substitution of (24) into (23) gives
Vl,'m;()"(R) =

=(—1)"""24/7 QumAim 2.y

Y;L.v(oz\' <l’/\)

(2u + N+t

*) This relation, as well as (24), can be obtained by repeated differentiation of the well-known
differentiation formulae for the spherical harmonics. See e.g. Meixner 2), p. 206.

Bl,m:p.,v _Rp-—l *p—l,v+m(19» (P)'



THE ELECTROSTATIC POTENTIAL IN MULTIPOLE LATTICES 1113

The p-summation runs from / up. Further, only such #»’s occur for which
|v +m| < u — I Putting u — ! =%k and v + m = n, we have 2 > 0 and
|#| < &, hence

Vz,m‘A’(R) —

=(—1)"2/7Q1m A1,m Tk, Yk+1,n-m (Op 2)

G o irtn Bum ks R s (0.

We can now write for (19)

VEmR) = Tk, ¢F1mk, aREY 5 a(9, 9), (26)
where
cEmik,n = Frmsen Qum Ty (— NNHeR)y—k=1m1Y 0 (6), ) =
= Fim;k,n Qim S'k+1,n—m (OI?%): 1), (27)
Fimen = (=14 2/ Aym Bimikid,n-m) /(2R + 20 4 1). (28)

¢ refers to the case of multipoles of equal sign, the reciprocal space vector
k appearing in the lattice sum S’ is then zero. In this case V), only exists
forl > 2. For ! = 2 the value of V;(R) depends on the order of summation
because the sum S’o,—, (appearing in the term %2 = 0) is conditionally
convergent. Sums of this type, which for example appear in the expression
for the electric field strength in a dipole lattice, were considered in some
detail in a separate publication 6).

c'®) refers to the case of multipoles of alternate sign. In that case the
reciprocal space vector appearing in S’ is k; = (b1 4 ba + bg).

Equation (26) is the desired expansion of V4, in terms of the spherical
coordinates of R.

§ 6. The electrostatic potential in a lattice containing different types of charge
distributions. Just asin§ 2 and § 4, the potential may be expressed in various
different ways. First there is the method of direct summation, which is equi-
valent to the expressions (1) and (7) for the point charge case. If the charge
distributions are denoted by p(r), then the total potential in the lattice is

_w p(r)
R = 28 ey = o

To obtain better convergence, this expression may be further treated by the
method of I, § 5, leading to an expression which, just as the above, is valid
everywhere in the lattice. This again is essentially Ewald’s method which has
been most commonly used so far, e.g. recently by Birman 8) to evaluate the
effect of overlap of the charge distributions on the lattice potential. While
having the advantage of being valid for field points which are overlapped by
the charge distributions, this method can only be applied relatively easy for
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spherically symmetric charge distributions and for selected field points.
Moreover, for (crystallographically) different points R, different sums have
to be calculated.

A second obvious way to express V(R) would be to adapt the method of
§ 4 to the case of continuous charge distributions, namely by replacing the
summation over the charges in the basis by integrations over the charge
distributions. The potential could then again be expressed as an expansion
in spherical harmonics, but the coefficients would still be very complicated
sums which are not very well suited for numerical computations.

For the problems for which we intend to use this analysis, namely the
effect of the finite size of the ions on binding energy and dielectric constant,
it seems most profitable to describe the charge distributions in terms of
their multipole moments.

Let us consider a lattice containing y different types of charge distri-
butions (distinguished by the superscripts 1, 2, ..., ) which occupy ¥
different sublattices in the lattice.

The potential due to a charge distribution p(, 0, ¢) in a point outside p at
the distance R, from its center may be written as

V,(R)) = Zim Qum R Y m(B, @), (29)
where the multipole moments Q;,,, are given by
Qum = (4mf2l + 1) fp(r,0, ) ' Yy, (0, ¢) dar. (30)

Fig. 4. Lattice consisting of two types of charge distritbutions (y = 2).

Let us consider the potential around a lattice point of the ¢-th sublattice,
the charge distribution at the lattice point itself being removed. We have

VO(R) = v'y(R) + S¥ii 03(R); (31)

v’y is the potential due to the ¢-th sublattice (central charge distribution
removed), v; that due to the j-th sublattice.

Summing an expression of the type (26) over all the multipoles appearing
in the 7-th charge distribution, we may write

24 (R) = Zk,n CV%,n R* Y*k,n(8, 9), (32)
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where :
lec,n = Zl,m Fl,m;lc,n le,m Sm,k+l,n—-m (O|O, %) (33)

S@’ denotes a lattice sum over the ¢-th sublattice, in which the origin is omit-
ted. In a similar fashion we can write for v;(j # )

U3(R) = Zk,n CPV%,n R Y7k, 0(3, @), (34)
but now

ka,n = Zl,m Fl,m;lc,n Q(j)l,m S"’k+l,m—n (Rjilo: %) (35)

In S the origin of the j-th sublattice is included in the summation. The
complete expression for V¥ (R) is

VO(R) = T,nd P g, 0 RE Y oS, ) =12 ..9 (36

where

A®p = 3¥_, Cg,)n = Yum Fimk,n {QP1m S ki1, n-m(0[0, ) +
+ X¥i#i QVm SP ki1, n—m (Ryl0, 3)}. (37)

Now, clearly, (37) cannot be used for all values of %2 and /. Consider for ex-
ample Ag,0. The first term (! = 0) in this sum, giving the potential in the
center due to the monopoles (net charges) at the other lattice points, does
not exist since the sums S’0,0(0[0, 4) and So,0(R|0, }) are divergent. Ap-
parently the division of the lattice into sublattices is not appropriate in this
situation. However, the potential due to the net charges can be treated by
the method of § 2 or § 4. The term / = 1 in A¢,¢ gives the contribution of the
dipoles at the other lattice points to the potential in the center. If we assume
each lattice point to be a center of inversion then all the sums S;, vanish
for odd ! (cf. I, § 6); this dipole contribution, therefore, vanishes. The term
} = 21in Ag,o gives rise to the sums S’z 5 (0]0, %) and Ss,%(R|0, ) which are
conditionally convergent. Their values depend on the shape of the crystal
that is being considered (cf. ref. 6). In A;,, the term / = O vanishes while
the terms / = 1 give rise to conditionally convergent sums. Finally in dsg »
only / = 0 gives rise to conditionally convergent sums. All other terms
contain’ absolutely convergent sums.

We can easily modify (37) to include the potential due to the net charges,
viz. by simply adding (15) to (37) and by carrying out the summation in (37)
over values of / larger than zero,

Ay = (4a/2k 4+ 1)&'k,n (010, 3) +
+ Si>0,m Frmke,n {QP1,m S k41,n—m(0]0, 3) +
+ E‘fﬁ“ Q(j’l,m Smk+l,n—m (Rﬂloy %)} (38)

The equations (36) and (38) give a general and complete description of the
electrostatic potential around the lattice points of a composite lattice which
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are centers of inversion and for field points which are not overlapped by any
of the charge distributions. If overlap occurs it will usually only be of
importance between nearest neighbours so that these would have to be ex-
cluded from the expansion in (36), while their potential should be added
as an extra term. If there would exist considerable overlap of the charge
distributions then the crystal should have to be considered as one whole and
the introduction of polarizabilities (c.f. following paper) would no longer be
possible. But for ionic crystals the assumption of small or no overlap seems
to be quite reasonable and will be fulfilled the better according as the ionic
character of the binding of the crystal is the stronger.

In actual cases some or all of the sublattices of the crystal will have the
same structure. Well-known examples (for y = 2) are the NaCl- and CsCl-
crystals which have simple cubic (sc) and body centered cubic (bcc) structures
respectively. In the first case both sublattices are face centered cubic (fcc),
i the second case they have sc structure. Crystals with the perovskite
structure such as BaTiOs contain 5 sublattices, all sc and with the same
lattice constant.

APPENDIX

Proof of equivalence of the methods of § 2 and § 4. The case of the lattice
with alternately positive and negative point charges at the lattice points,
which was considered in § 2, can also be treated by the method of § 4, e.g.
if one considers a base containing two particles. We will here prove the equi-
valence of both methods for this example.

In I ((38), (44)), we found for the lattice sums occurring in the potential-
field expansion (4), (5) of § 2

S1m(Olky, ) =
= (I + )7 [Zu(—Dmteereal( + 3, 27,2, Y 1 m(B,.8,) — 10 +
+ ittt ot by, — k[ e T Y (8, i, Pn,—a))). (A1)

In order to compare this with the corresponding sum obtained by the
method of § 4, we have to absorb the second term in the right hand side of
(13) into the first one. The sum to be compared to (A.1) then is

(¢ + 1)U 6@+ % 7r%.9) a1 Y 0 m(B)5 h21) — 91600 +
+ ittt 55 G)i—2 € Yym(By, o)) (.2)

where the prime on the first summation indicates that theterm A =10,7 =1
is to be omitted. In the second summation we have omitted the term in the
origin (cf. § 4). Now (A. 1) should be equal to (A.2) if in the latter case we
have two unit charges (of opposite sign) per unit cell, one in the origin and
the other in the center of the cell. In (A.1) we have indicated the index by
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u# and the volume of the unit cell by v, because the Bravais lattices are
different from those in (A.2).

Comparing (A.1) and (A.2) we see that the first two terms in both ex-
pressions are equivalent; they both are sums over the same (composite)
lattice, but written in a different form. It thus remains to be shown that the
third terms in (A.1) and (A.2) are equivalent, i.e. that

Fig. 5. Two possible unit cells in a lattice of pos. and neg. point charges.

Let a1, as, ag define the unit cell in (A.1) and a,, as, a3 that in (A.2), then
it is seen that (cf. fig. 5)
a) = o1 + op
as = ag + ag ¢, (A3)
ag = o | o3
from which follows
Vg = Q3° (ag N aa) = 2”«- (A4)

Let us next consider the effect of G(h,) in (A.2). There are two particles in
the basis at the positions r; =0 and rs = }(a; + a2 + as). Since
g1 =+ 1,92 = —1 we have

Ghy) =1— exp{2m'h,\- a1+ az + a3)} =1—(— 1))\1—&)\2+¢\3,
hence

2 when 4; + Az 4+ A3 is odd (A.5)

Gl = {o when 11 + A2 + As is even.

The value 2 of G(h,) is compensated by the 2 in (A.4) which enters in the
denominator.

Finally we have to show that X, is a summation over the same points in
reciprocal space (when taken with respect to the point k;) as 3,’ (when
taken with respect to the origin).
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If B1, Ba, Bs determine the reciprocal lattice of ay, ag, aag and by, bg, bg
that of a;, ag, ag, then it is easily verified that

hy = A1b1 + Aebe + Asbs = (A1 —2s + A3)B1 + $(41 + A2 — A3)B2 +
+ 4(— A1+ A2+ 43)Bs. (A.6)

This vector, taken for all values of 1;, A3, A3 such that 4; + 13 + A3 is odd
(i.e., 41 =23 = A3 = 0 excluded), should indicate the same points as

h, —k; = (u1 — 3)B1 + (42 — H)B2 + (43 — 3)Bs, (A7)

when taken for all values of 1, ug, #s (0 included).
Equating (A.7) to (A.6) gives ‘

C 2m— 1= M—Aatis
2/12— 1 = ).1—|-}.2—)»3 J (A8)
2us — 1= —A1 4+ 22+ 43

It is readily seen that with each set of (pos., neg.) integers for u1, e, 13 there
corresponds just one set of integers A1, 42, A3, of which the sum is odd. The
inverse is also true. This completes the proof of the equivalence of (A.1) and
(A.2) for the special case under consideration.
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