
De Wette, F . W .  Physica XXIV 
Nijboer, B. R . A .  1105-11i8 

T H E  E L E C T R O S T A T I C  P O T E N T I A L  IN 
M U L T I P O L E  L A T T I C E S  

by F. W. DE WETTE and B. R. A. NIJBOER 

Instituut veer theoretische fysica, Rijksuniversiteit te Utrecht, Nederland 

Synopsis 
General expressions for the electrostatic potential in perfect multipole lattices are 

given as "expansions in terms of spherical harmonics. The coefficients occurring in 
these expansions contain lattice sums of a general type, which have been treated 
previously. Such expressions are derived for a point charge lattice, a multipole lattice, 
and finally for a lattice built  up from a number  of different arbitrary charge distri- 
butions. 

§ 1. Introduction. In many problems of solid state physics, in particular 
in the theory of ionic crystals, it is desirable to have a description of the 
electrostatic potential everywhere inside the unit cell of the crystal. In order 
to be sufficiently general, such a description should take account of the fact 
that  the atoms (or ions) are charge distributions of finite extent, which are 
deformable in the crystalline field. Although on these grounds one expects 
the atomic (ionic) charge distributions to contain, besides a net charge and 
possibly a dipole moment, certain higher multipole moments, these compli- 
cations are usually left out of consideration. For instance, in calculating the 
electrostatic binding energy of ionic crystals it is customary to consider the 
ions as spherically symmetric (point-charge-model) and to correct only for 
the overlap of these spherical charge distributions. When considering also 
higher multipole moments, however, one would expect the electrostatic 
binding energy to deviate from its point-charge-value (Madelung energy), 
even ill the absence of overlap. Other examples where the existence of higher 
multipoles should manifest itself are in the elastic behavior of crystals 
(deviations from the Cauchy relations) and in their dielectric properties 
(modification of the relation of Clausius-Mossotti ). A more precise description 
of the crystalline potential should also be of interest in the theory of ferro- 
electricity and of colourcenters, to mention a few more examples. 

In order to arrive at such a general description of the crystalline electro- 
static potential, it seems most natural to expand the potential inside the 
unit cell into spherical harmonics. We will derive such expansions firstly 
for lattices of point charges, secondly for lattices of multipoles of higher 
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order and finally for lattices built up from a number  of different arbitrary 
charge distributions. The coefficients in these expansions turn  out to be 
lattice sums of a rather general type, which have been treated by us in a 
previous publication 1) (to be quoted as I). This description of the crystalline 
potential  can be used in any situation where the charge distributions do not 
overlap the field point. Therefore, al though the present derivations in 
themselves are purely classical, this t rea tment  of the potential  might  be 
incorporated into a quantum-mechanical  theory, by inserting for the charge 
distributions those which follow from the ionic wave functions. 

In a following paper we propose to investigate which corrections to the 
electrostatic binding energy and the dielectric cons t an t  result from the 
occurrence of higher multipole moments  in the charge distributions of ionic 
lattices. 

§ 2. The electrostatic potential in a lattice o] positive and negative unit point 
charges. As a first example we will give an expression for the electrostatic 
potential  in a point lattice with alternately positive and negative unit  
charges at the lattice points. The potential  in a point  R is (the + charge at 
the origin 0 being omitted) 

(-- 1 )al+a~+a, e ~ - , a  
V~t(R) = Y/a IR _ ra I = E'a IR _ ra I = S'(RIk~, ½) (1) 

(cf. I, (12) and (22)). Using the expansion 

[ R  - -  ral-* = ~7=o Z~+L-z (4~z/2l + 1) RZra-l-1 Y*z,m(v a, ~0) Yz,m(Oa, ~a) *) (2) 

R < ra (R(R, v a, 9), ra(ra, 0a, Sa)), we can write for (1) 

V~,(R) = Y4,raR~Y*l,ra(O, 9)(4z~/2l + 1) ~ ra-Z-lYz,m(Oa, Sa) e~'a~t"a • (3) 

This can be abbreviated as 

V,t(R) = X*,m at,m R z Y*Lm(O, 9) (4) 
with 

az,m=(4•/2l+ 1)Y,~ ra -z-1 Yz,m(Oa, ¢a)e2~*½'" -- (4~z/2l+ 1)S'~.m(01k,, ½) (5) 

(cf. I, (39)). This expansion of V~t(R) in terms of spherical harmonics is 
valid for all points inside a sphere with a radius equal to the nearest neigh- 
bour distance (cf. condition for validity of (2)). This, however, does not 
involve any serious restriction. 

The expansion coefficients at,m are proportional to lattice sums of a type 

• ) Yl,m(~t,qg) is defined by Y~,m(~9, q)) ~ (2~) -½P~(cos~)e lm% where 

~ m  = ( _ _ l ) m {  2l + 1 ( l - - m ) l } ½ ( I - - x Z )  m'/2 d'+m 
(l + m)! 2ill " dx -'']+-Zn (xa - -  l)l" 

Both definitions hold for positive as well as negative m (Iml ~ l) See e.g. M e i x n e r  a) pp. 160, 197. 
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discussed in I, § 6. Rapidly converging expressions for these sums are given 
by I, (44) for l ~ 0, while 2%/~ S'0,0(01kt, ½), the Madelung constant,  is 
given by I, (19). In these expressions a few terms of the sums in ordinary 
and Fourier space already lead to very accurate results. The  advantage 
of expressing V~(R),  i.e. the potential  in an arbitrary point  R, into the form 
(4), is tha t  one needs only one set of sums S'z,m(011 q,  ½) (which are taken 
with respect to the origin and not  with respect to R) in order to calculate the 
potential  everywhere inside the unit  cell by simply applying (4 l *). This is 
the point  where "the present method  distinguishes itself from E w a l d ' s  
me thod  4), which has been most  extensively used so far. In the latter method 
a rapidly converging expression for the sum (1) is derived (to which our 
expression I, (38) is equivalent) which has the advantage of being valid 
everywhere in the lattice. But  the formulae can only be evaluated with 
relative ease for special points in the unit  cell (viz. such points for which the 
distances JR --  rA] are "lattice vector-like"), while moreover for each point 
(or rather, each set of crystallographically equivalent points) the sums have 
to be evaluated anew. 

- + - -  + 

0 

Fig. 1. La t t i ce  vec tors  in a la t t ice  of pos i t ive  and  nega t ive  po in t  charges.  

The coefficients a~,m vanish for all odd l as a result of the inversion symmet ry  
of the potential  in a Bravais lattice (cf. I, § 6). An additional number  of 
coefficients az,m (for even l) will vanish on account of the symmet ry  of the 
particular lattice considered. This is because only such Y*z,m's can occur in 
(4), which are compatible with the particular lattice symmetry.  We shall 
have to consider this problem in a little more detail in the following paper 
(see also the next  section). 

We note, combining (1), (4) and (5), the following relation between lattice 
sums 

S'(R[k, ½) ----- ~z,m(4=/21 + 1)S'Lra(0[k, ½) RlY*z,m(tg, 9), (6) 

which holds not just for lq, but  for any reciprocal space vector k and for 
every R for which (2) is valid. 

*) The authors recently discovered a paper by Kanamor i ,  Moriya,  Mot izuki  and N a g a m i y a  8) 
who also expand the crystalline potential in terms of spherical harmonics. Explicit formulae (equi- 
valent to (4) and (5)) are given for point charge and dipole lattices. Their methods for calculating 
the expansion coefficients are, however, less satisfactory than the method of I. 
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§ 3. Numerical example: the potential in a NaCl-ty'pe lattice. As an appli- 
cation of the formulae (4) and (5), derived in § 2, we will now give numerical 
expressions for the potential  in a cubic lattice with alternately positive and 
negative unit  charges and lattice distance 1. 

The cubic symmet ry  of the potential  simplifies its expansion (4) consider- 
ably: only terms with l is even and m = 0 or a four-fold can occur, while 
for given l, the Y*Lm'S which do occur must  be combined into a linear 
combination Yz which is invariant  for the operations of the full cubic group 
0h (Y~ then is the invariant vector in the 2l + 1-dimensional representation 
space of Oh). The invariant linear combinations Y~ for l = 4, 6, 8 and 10 
respectively are (for l = 2 no such Y exists) 

Y4 =(5/14)~ (Y'4~4 + Y'4,-4) -~- Y*4,0 

Ye =--(7/2)~ (Y'e,4 + Y'e,-4) + Y'e,0 

Y8 = (5/3)(13/110)½ (Y*8,8-q- Y'8,-8) -~- (1/3)(14/11) t(Y'8~4 + Y'8,-4) + Y*8, o 
Ylo = -- (187/130)t(Y*lo,s + Y'io,-8)--6(11/390)½(Y'1o,4+ Y* lo,-4) + Y* lo,o 

Using (7) we may  write for the potential  in this example 

V~t(R) = 2%/~ S'o,o + (4~/9) S'4,0R4Y4(O, q0) + ( 4 7 ~ / 1 3 ) ' S ' 6 , o R 6 V 6 ( z ~ ,  ~o) ~- 
+ (4~/17) S'6,0 RsY8(O, 9) + (4~/21) S'lo,oR lo Ylo(0, ~o) + 0(R19.). (8) 

Knowledge of the invariant linear combinations Yz thus makes that ,  for 
each l occurring, one only needs to calculate one single lattice sum. Using 
the values (for a simple cubic lattice with lattice distance 1; z-axis along 
one of the four-fold axes), 

(4z~)½S'0,0 (0[k t, ½) = -- 1.74756 (Madelung constant) / 
(4n/9)-~S'4,o (OIk ~, ½) = --3.5789 [ 

(4~/13)~'S'6,o (O]kt, ½) = --0.9895 [ (9) 
(4z~/17)~S'8,o (0[k o ½) = --2.9329 
(4~/21pS'lo,o(OIk ~, ½) = --1.0114 

(the accuracy in the latter four being 4- 2 in the last significant figure), we 
can now, from (8), find V~dR ) for any point R(R, z~, q0). As an illustration 
we give expressions for (8) for three directions, viz. those to a 1 st (direction 
1), a 2 na (direction 2) and a 3 ra nearest neighbour (direction 3) respectively. 
We find for direction 1 
V~t re(R) = - -  1.74756--3.5789Ra--O.9895R6--2.9329RS-- 1.0114RIO+ 

+ 0(R19'), (10) 
for direction 2 

Vao, o'~ (R) = -- 1.74756 + 0.89473R4 + 1.6079R 6-= 1.6498R8 + 0.03161 R I 0 +  
+ 0(R19'), (11) 

*) The Yt's can be determined by group theoretical methods  (cf. A l t m a n n  s) for l = 4,6) bu t  
also, more easily, from a comparison of certain terms of the related lattice sums  S'l,m (ef. following 
paper). 

*) (7) 
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and finally for direction 3 

V~t (3) (R) = --  1.74756+2.3859R 4 -  1.7591R s -0 .86900RS+  1.5983R10+ 
+ 0(R12). (12) 

These functions are plotted in fig. 2 for values of R inside the unit cube 
(cube with edge 1 symmetrically around 0) ; the calculations have been made 
with (10), (11) and (12). For R-values outside the unit cube the periodicity 
of V~ot(R) + 1/R can be used to evaluate the potential. A check on these 
formulae and on the calculations is provided by  the fact that  due to its 
periodicity, V~t(R) + 1/R must be zero on the boundary of the unit cube. 

o.o R(A)=O 5 R(B) R(C) R 
- 1 . 0  ' ' ' I '1 ' I ' ~ - -  

v (c) 

(B) 
-1 .5  

- 1 . 7 4 7 6  

vp, (A) 

vp, (R) 
Fig. 2. The po t en t i a l  V~,(R) in a cubic + la t t ice  as a func t ion  of R, p lo t t ed  for  th ree  

d i f fe ren t  direct ions .  In se r t :  t he  un i t  cube wi th  the  th ree  direct ions.  

§ 4. The electrostatic potential in a lattice o/ point charges with a neutral 
basis. This is a generalization of the case considered in § 2. Let the basis 
contain 7 different point charges qj (j = 1,2 . . . . .  7), then the condition for 
neutrali ty is Y,~=l qJ = 0. If r~ gives the position of the cell ~(;l is the ce]l- 
index) and rj  that  of the i-th point charge in the basis (i is the base-index), 
then the lattice vector is tad = r~ + rj. 

If the origin is placed at the position of one of the point charges ql, then 
the electrostatic potential in the lattice, in absence of the point charge at the 
origin, is given by  

ql + X~ qt (13) 
V(R) = Z ~ Z ~  i R _ r ~ , j  I . i R _ r ~  I , 

the prime on the summations meaning that the terms )t = 0 and i = 1, 
respectively, are to be omitted. For the same reasons as in § 2, it is advan- 
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tageous to expand the first term of (13) into spherical harmonics. Then we 
can write for (13) 

V(R) = ~z,rabg,raR*Y*:,m(v ~, 9) + ~;  ql/] R -- rt], (14) 

with R < rA, 1 (4 # 0) and where 

bz,m = (4~r/2/+ l) Z'~ Z1 ql ra,t-t-lYl,m(Oa,t, ¢~,1) ---- 
_-__ (4~/2z + 1)~'z,m(olo, ½). (15) 

~' ,  which is defined by (15), indicates a sum over all the points of the 
composite lattice (giving different weights qt to the various points in the 

- r 

g - ~ .  
J 

Fig.  3. L a t t i c e  vec t o r s  in  a l a t t i ce  w i t h  basis.  

bases) in analogy with S' (cf. (5)) which denotes a lattice sum over a simple 
Bravais lattice. The sum 6 '  can be brought into a rapidly converging form 
by means of the method developed in I. A straight-forward generalization of 
that  method to the case. of a composite lattice sum leads to 

1 FZ~ ZJ qtP( l + ½, ~r2Ad) Yz,m(OAd, ¢Ad) 
~ ' ~ ' m ( 0 [ 0 '  ½) - -  P ( l  + ½) _ r~,1~+ 1 - -  q l6 l ,  0 

_ Z;  qtr(l + ½, ~rt~)Yz,~(ol, ¢t) 
rfl+l + 

+ - -  Z~ G(h~)h~-~ e -~h~a Y~,m(~h~, q~h~) • (16) 
Va 

G(h) = ~I  qJ exp(2nih, rl) (17) 

is the structure [actor of the charge distribution in the basis, ~L,0 is the 
Kronecker symbol. 

For l = 0 the sum 6 '  is conditionally convergent which means that  its 
value and hence that  of V(R), is not uniquely determined but depends on 
the order of summation. This ambiguity becomes apparent in (16) (for 
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l = 0) because the value of the  t e rm 2 = 0 in the  last sum depends on the 
way  in which the l imit  h --+ 0 is taken.  A similar phenomenon  has been dis- 
cussed recen t ly  for  the  example  of the electric field in a dipole lat t ice 6). 

The origin of the ambiguity in V can be readily found when one expresses the 
charge distribution in the basis as a series of multipoles and carries out a separate 
summation of each of these multipoles over the entire lattice, as is done in § 5 and § 6. 
It is then seen that both the dipole moments (l= 1) and the quadrupole moments 
(l = 2) of the basis (as defined in § 6) appear in the expression for V as the coefficients 
of conditionally convergent sums. In a Bravais lattice, however, the dipoles do not 
contribute to the potential (due to the inversion symmetry), so that the ambiguity in 
V is essentially due solely to the quadrupole moments. But the latter only give a shape 
dependent contribution to the potential which is constant throughout the unit cell. Al- 
though this term may seem to be of little interest since most physical effects are related 
to the electric field rather than to the potential, it is precisely this quadrupole contri- 
bution to the constant term in the potential which gives rise to the difference in average 
crystal potential which is found between the F re n k el-Be t he-convention for calculat- 
ing this average on the one hand, and the Ewald-convention on the other; this 
difference was discussed recently by B i r m a n  7). 

For  cases where one is not  in teres ted  in this ambiguous  bu t  cons tan t  
con t r ibu t ion  to V, the  ent ire  diff icul ty can be resolved just  b y  omi t t ing  in 
(16) the  t e rm  in the  origin of reciprocal  space. This  procedure ,  which is 
equivalent  to s imply  pu t t ing  G(0) = 0 and which is of ten followed wi thout  
reference to the above  mer~tioned difficulties, could be argued ( though 
a d m i t t e d l y  not  in a comple te ly  rigorous way) as follows. In  the m e t h o d  for 
the  conversion of lat t ice sums (cf. I) which leads to the  expression (16) 
for  ~'z,m, the  reciprocal  la t t ice is found  as a sum of ~-peaks in reciprocal  
space, each of which is mul t ipl ied by  the  s t ruc ture  fac tor  G(h) t aken  in tha t  
par t icu la r  point .  Since G(0) = 0, no ~-peak will appear  in the origin of 
reciprocal  space and  the  second summat ion  in (16) should therefore  be read  
wi th  a prime.  I t  is for this case t ha t  the  equivalence of the methods  of § 2 
and  t ha t  of § 4 for a two-par t ic le  basis, is shown in the  appendix.  

§ 5. The electrostatic potential in a lattice with multipoles o~ equal or alternate 
sign. As a p repara t ion  for the  descr ipt ion of the  e lect rosta t ic  po ten t ia l  in a 
la t t ice  consisting of a n u m b e r  of a rb i t r a ry  charge distr ibut ions,  we will now 
derive an expression for the po ten t ia l  in a lat t ice of equal  multipoles.  These 
mult ipoles  m a y  all have  the same sign, in which case the  corresponding 
inverse power  of r (l + 1) should be equal  or higher  t h an  three  in order  to  
have  convergence,  or t hey  m a y  be of a l te rna te  sign (valid for a rb i t r a ry  
inverse power  of r, cf. § 2). 

The  poten t ia l  in a poin t  RA(R~, ~9;~, 9~) due to a simple mult ipole  Ql,m 
(fixed l, m) of order  2~ in the  origin m a y  be wr i t t en  as 

Vz.ra¢'X' (R,O Qz.raRA -~-1 ~.m (~9,~, 9,0- (18) 
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The multipole moment Q~,m gives the strength of the pole. The potential in 
the neighbourhood of a lattice point (where the multipole is thought to be 
removed) due to all the order multipoles in the lattice is found by summing 
expressions of the type (18) over the entire lattice 

Vz,m ~±) (R) = Z~( ( - -  1) ax+a'+~) Vz.m ~' (Ra). (19) 

The factor (-- 1 )~l+h+h applies for multipoles of alternate sign; for multipoles 
of equal sign it should be omitted. In order to arrive at a more convenient 
expression, where Vz,m is given in terms of the spherical coordinates of 
the field point R (cf. fig. 1), we start out by using the relation 

R ,+i - 2V,, ,*). (20) 

where the upper sign holds for m > 0, the lower sign for m < 0; 

Az,m = (2l + I/(l + m)! (l - -  m)!)½. (21) 

X~, YA, Z~ are the cartesian components of R~. Let X, Y and Z be the 
components of R, then 

(a/aX;OR~-i = (a/aX)lR - r;~[ - i  and cyclic. (22) 

If we now substitute (22) into (20) and at the same time replace [R -- r~[-i 
by its expansion in terms of spherical harmonics (cf. (2), using #, v instead 
of l, m) we find for (18) 

V.C;bz,m(R) = (--I)  ~-}mcl+l) 2%/]r Q~,ra At,ra Y,~,,. (2# + I) r;~ +1" 

• Y " 7  
~z , _~_~.] \.~_~] R~'Y*~,., (#, ~). (23) 

A further transformation of (23) is obtained by using the relation 
a '~lml( a y-lml 

( O-~ T i--~ff-] \-a-z/  R~'Y*~,,,,(#, ~o) = 

= ( _  1)tm(l=~l)Bz,~; ~',. R~-~ Y*~._z,.+,~(0, 9) (24) 

(upper sign for m > 0, lower sign for m < 0), where 

( 2t* -{-- I (# "k ")! (# -- v)! )'~. (25) 
Bz'~;~"'= 2 / ~ 2 l +  1" ( # - - l + 7 + m ) ! ( # - - l - - v - - m ) !  

Substitution of (24) into (22)gives 

Vl,m~'(R) = 

Y~,,~(O~, ¢~) e 
=( - -1 )  z-m 2"v3zQ,,raA,,ra Zt,,v (2"p ~ 1-)r~--~-+i z,m"t',"R~'-~Y*~ -z,"+m(#'9)" 

• ) This relation, as well as (24), can be obtained by repeated differentiation of the well-known 
differentiation formulae for the spherical harmonies. See e.g. M e i x n e r  s), p. 206. 
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The/~-summation runs from l up. Further,  only such v's occur for which 
I v + m J  <#- - l .  P u t t i n g / ~ - - l = k  a n d v + m = n ,  we have k > O  and 
In[ < k, hence 

V~,m~(R) = 

= ( -  1)z-m 2C~r Qz.m Az,m z~k,~ ( ~ ) 7 ~ k ~ 1 B ~ . m ;  k+z,,~--,,,RkY*~:,,~ (#,~). 

We can now write for (19) 

V+t,m(R) = ]~k,n c~±)Z,m;k,nRkY*k,n(~9, 9), (26) 

where 

c~+)z,m;k,n = Fz,m;~:,n Ql,m Z'~ ((-- 1)~l+~l+~3)r~-~:-z-1Y~+z,n-m(O~, ¢~) = 

= Fz,m;~,~ 0~,,, S'~+z,~-~ (01~, ½), (27) 

Fz,m;~,,, = ( ( - -1)z~2C=A~, ,~B~,~;~. , z ,n-~) / (2k  + 21 + 1). (28) 

c refers to the case of multipoles of equal sign, the reciprocal space vector 
k appearing in the lattice sum S' is then zero. In this case V~,m only exists 
• [or l > 2. For l = 2 the value of VI,m(R) depends on the order of summation 
because the sum S'2,-m (appearing in the term k = 0) is conditionally 
convergent. Sums of this type, which for example appear in the expression 
for the electric field strength in a dipole lattice, were considered in some 
detail in a separate publication 6). 

c~±~ refers to the case of multipoles of alternate sign. In that  case the 
reciprocal space vector appearing in S' is k~ = ½(bl + b2 + bs). 

Equation (26) is the desired expansion of Vz,m in terms of the spherical 
coordinates of R. 

§ 6. The electrostatic potential in a lattice containing di]]erent types o] charge 
distributions. Just  as in § 2 and § 4, the potential may be expressed in various 
different ways. First there is the method of direct summation, which is equi- 
valent to the expressions (1) and (7) for the point charge case. If the charge 
distributions are denoted by p(r), then the total potential in the lattice is 

f p(r) dsr. V(R)=~  JR--r~--r I 

To obtain better  convergence, this expression may  be further treated by the 
method of I, § 5, leading to an expression which, just as the above, is valid 
everywhere in the lattice. This again is essentially Ewald's method which has 
been most commonly used so far, e.g. recently by B i r m a n  8) to evaluate the 
effect of overlap of the charge distributions on the lattice potential. While 
having the advantage of being valid for field points which are overlapped by 
the charge distributions, this me thodcan  only be applied relatively easy for 
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spherically symmetric charge distributions and for selected field points. 
Moreover, for (crystallographically) different points R, different sums have 
to be calculated. 

A second obvious way to express V(R) would be to adapt the method of 
§ 4 to the case of continuous charge distributions, namely by replacing the 
summation over the charges in the basis by integrations over the charge 
distributions. The potential could then again be expressed as an expansion 
in spherical harmonics, but  the coefficients would still be very complicated 
sums which are not very well suited for numerical computations. 

For the problems for which we intend to use this analysis, namely the 
effect of the finite size of the ions on binding energy and dielectric constant, 
it seems most profitable to describe the charge distributions in terms of 
their multipole moments. 

Let us consider a lattice containing ~ different types of charge distri- 
butions (distinguished by the superscripts 1, 2, ..., 7) which occupy 
different sublattices in the lattice. 

The potential due to a charge distribution p(r, 0, ¢) in a point outside p at 
the distance Rz from its center may  be writ ten as 

Vp(R;0 = ~z,m Qz,m R~-~-I Y*z,m(O~, ep~), (29) 
where the multipole moments Qz,m are given by  

Qz,m = (4=/2l + 1) f p(r, O, ¢) r ~ YZ,m (0, ¢) d3r. (30) 

o 0;,o 
0 ,-,/- @ "..2. iRji 

© Q ©  
Fig. 4. La t t i ce  consist ing of two  types  of charge d is t r i tbut ions  (~ = 2). 

Let us consider the potential around a lattice point of the i-th sublattice, 
the charge distribution at the lattice point itself being removed. We have 

V'*'(R) = v',(R) + Y~J,i  vj(R); (31) 

v', is the potential due to the i-th sublattice (central charge distribution 
removed), vj that  due to the 7"-th sublattice. 

Summing an expression of the type (26) over all the multipoles appearing 
in the i-th charge distribution, we may  write 

v,'(R) = ~k,n C~°k,~ R ~ Y*k,n(v% 9), (32) 
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where 
C(~)k,)~ = 51,~,m Fl,m;~,, Qa)l,m S(~)'k+z,n-m (010, }). (33) 

S a')' denotes a lattice sum over the i-th sublattice, in which the origin is omit- 
ted. In a similar fashion we can write for v;( i :~ i) 

• vl(R) = ~k,n C~J'k,n R k Y*~,n(t~, 9~), (34) 

but now 

CCJ~k,n ----- •z,m F,,m;,,~ QcJ~,,m S~k+~,m-n (Rj, I0, ½). (35) 

In SCJ ~ the origin of the i-th sublattice is included in the summation. The 
complete expression for V~*~(R) is 

V~*~(R) = ~k,nAa~g,n R k Y*k,)~(O, 9 ~) (i --. 1, 2 . . . .  , y) (36) 

where 

A a)k,~ = Y,~=I ~k,~r(J) = Ya,m F~,m;k,n {Q~)~,m S(~)'~+~,n--m(0[0, ½) + 

+ ZtJ*  (gj 10, ½)}. 

Now, clearly, (37) cannot be used for all values of k and l. Consider for ex- 
ample A0,0. The first term (l = 0) in this sum, giving the potential in the 
center due to the monopoles (net charges) at the other lattice points, does 
riot exist since the sums S'0,o(0[0, ½) and So,0(R[0, ½) are divergent. Ap- 
parently the division of the lattice into sublattices is not appropriate in this 
situation. However, the potential due to the net charges can be treated by 
the method of § 2 or § 4. The term l = 1 in Ao,0 gives the contribution of the 
dipoles at the other lattice points to the potential in the center. If we assume 
each lattice point to be a center of inversion then all the sums S~,m vanish 
for odd l (cf. I, § 6); this dipole contribution, therefore, vanishes. The term 
l = 2 in Ao,0 gives rise to the sums S'~,ra (0[0, ½) and S=,m(RI0, ½) which are 
conditionally convergent. Their values depend on the shape of the crystal 
that  is being considered (cf. ref. 6). In Al,n the term 1 = 0 vanishes while 
the terms l = 1 give rise to conditionally convergent sums. Finally in A~,n 
only l - - 0  gives rise to conditionally convergent sums. All other terms 
contain' absolutely convergent sums. 

We can easily modify (37) to include the potential due to the net charges, 
viz. by simply adding (15) to (37) and by carrying out the summation in (37) 
over values of l larger than zero, 

Aa'g,~ = (4~/2k + 1)~'g,n (OlO, ½) + 

+ Y~t>o,m Fz,m;~,n {Qa)t,m S~,*)'~+~,n--m(OI O, ½) + 

+ ~ Q~1)~,m S~,~.+~,~-m (R~]0, ½)}. (38) 

The equations (36) and (38) give a general and complete description of the 
electrostatic potential around the lattice points of a composite lattice which 
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are centers of inversion and for field points which are not overlapped by any 
of the charge distributions. If overlap occurs it will usually only be of 
importance between nearest neighbours so that  these would have to be ex- 
cluded from the expansion in (36), while their potential should be added 
as an extra term. If there would exist considerable overlap of the charge 
distributions then the crystal should have to be considered as one whole and 
the introduction of polarizabilities (c.f. following paper) would no longer be 
possible. But for ionic crystals the assumption of small or no overlap seems 
to be quite reasonable and will be fulfilled the better according as the ionic 
character of the binding of the crystal is the stronger. 

In actual cases some or all of the sublattices of the crystal will have the 
same structure. Well-known examples (for y = 2) are the NaC1- and CsC1- 
crystals which have simple cubic (so) and body centered cubic (bcc) structures 
respectively. In the first case both sublattices are face centered cubic (Ice), 
in the second case they have sc structure. Crystals with the perovskite 
structure such as BaTi03 contain 5 sublattices, all sc and with the same 
lattice constant. 

APPENDIX 

Proo/ o/ equivalence o/the methods o/§ 2 and § 4. The case of the lattice 
with alternately positive and negative point charges at the lattice points, 
which was considered in § X, can also be treated by the method of § 4, e.g. 
jf one considers a base containing two particles. We will here prove the equi- 
valence of both methods for this example. 

In I ((38), (44)), we found for the lattice sums occurriflg in the potential- 
field expansion (4), (5) of § 2 

s' , (Ollq, { )  = 
! 

= (/l(l + {))--1 [~,,V, ( -  i)~,x+~,~+~3F( / + {, =r~2)r-z-lyz,m(O~,$~ ) _ ~z,o + 

+ izz~z-½ v - 1  ~ l h ~  -- ktlZ-~ e-~lh~-~½t 2 Yz,m(Oh~-,{, 9h~--k½)]" (A. 1) 

In order to compare this with the corresponding sum obtained by the 
method of § 4, we have to absorb the second term in the right hand side of 
(13) into the first one. The sum to be compared to (A. 1) then is 

(F(I + {))-l[y, Ay~; qjF(l + {, =rg~j) rzd-~-lY~,,,(O~,~, 4~,~) -- ¢18,,o + 

+ i~zd-~va -1 ~ G(h;0h;~l-2 e-'rhA~ Yt,m(#a A, 9h~)], (A.2) 

where the prime on the first summation indicates that  the term ;t = 0,/" = 1 
is to be omitted. In the second summation we have omitted the term in the 
origin (cf. § 4). Now (A. 1) should be equal to (A.2) if in the latter case we 
have two unit charges (of opposite sign) per unit cell, one in the origin and 
the other in the center of the cell. In (A. 1) we have indicated the index by 
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/~ and the volume of the uni t  cell b y  v~ because the Bravais  lat t ices are 
different f rom those in (A.2). 

Comparing (A.I) and (A.2) we see tha t  the first two terms in both  ex- 
pressions are equivalent ;  they  bo th  are sums over  the same (composite) 
lattice, bu t  wri t ten  in a different form. I t  thus  remains to be shown tha t  the  
third terms in (A. l) and (A.2) are equivalent ,  i.e. tha t  

v - 1  . . . .  v -i Y.i . . .  

4- + 

\ \ \ \ ~  

Fig. 5. Two possible unit cells in a lattice of pos. and neg. point charges. 

Le t  al ,  a2, as define the  uni t  cell in (A.1) and al ,  a2, as  tha t  in (A.2), then 
it is seen tha t  (cf. fig. 5) 

a I = at I + (X2 

a g . = a 2 + a a  , (A.3) 

from which follows 
va = al" (a2 A aa) = 2v~. (A.4) 

Let  us next  consider the effect of G(h;0 in (A.2). There are two particles in 
the basis at  the positions r l  = 0 and rg. = ½(al + a2 + as). Since 
q l =  + 1, q2 = - - l  we have  

G(h;0 -= 1 - -  exp{2uih;~. ½(al + a2 + a3)} = 1--(--1)~l+~*+~L 

hence 

02 when 21 + 22 + 2a is odd (A.5) 
G(h~) = when 21 + 22 + 23 is even. 

The value 2 of G(ha) is compensa ted  b y  the 2 in (A.4) which enters in the 
denominator .  

Final ly  we have to show tha t  E~, is a summat ion  over the same points  in 
reciprocal space (when taken  with respect  to the point  kt) as Y,a' (when 
taken  with respect  to the  origin). 
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if  1~!, Is ,  138 determine the reciprocal lattice of "z, 32, as and bi ,  b2, bs 
tha t  of al, a9., as, then it is easily verified tha t  

h~ = 2zbz q- 22b2 -k ;tab8 = ½(23--;t9. q- ;ts)13z -q- ½(;tz -F 22 -- 28)132 -F 

q- ½(-- ;tl + 22 q- 2s )~s .  (A.6)  

This vector, taken for all values of 21, ;~., 28 such tha t  21 -b 22 q- 23 is odd 
(i.e., 23 -----29. = 23 = 0 excluded), should indicate the same points as 

h~  - -  k t ---- (#1 - -  ½)~1 -t- (#2 - -  ½)139, -q- (/za - -  ½)~s, (A.7)  

when taken for all values o f /q ,  #2, #s (0 included). 
Equat ing (A.7) to (A.6) gives 

2/zz-- 1 ---- 21 - -  22-q- 23 ] 
2#2 - -  1 = 21 -F ~t2 - -  23 [ ." (A.8)  
2 / ~ 3 - -  1 = - - 2 1 + 2 2 q - 2 3  

It  is readily seen that  with each set of (pos., neg.) integers for/zi,/~2, p3 there 
corresponds just one set of integers 21, 22, 23, of which the sum is odd. The 
inverse is also true. This completes the proof of the equivalence of (A. 1) and 
(A.2) for the special case under  consideration. 
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