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Abstract Time geography uses space-time volumes to represent the possible locations

of a mobile agent over time in a x-y-t space. A volume is a qualitative representation of

the fact that the agent is at a particular time ti inside of the volume’s base at ti. Space-

time volumes enable qualitative analysis such as potential encounters between agents.

In this paper the qualitative statements of time geography will be quantified. For

this purpose an agent’s possible locations are modeled from a stochastic perspective.

It is shown that probability is not equally distributed in a space-time volume, i.e.,

a quantitative analysis cannot be based simply on proportions of intersections. The

actual probability distribution depends on the degree of a priori knowledge about the

agent’s behavior. This paper starts with the standard assumption of time geography

(no further knowledge), and develops the appropriate probability distribution by three

equivalent approaches. With such a model any analysis of the location of an agent,

or relations between the locations of two agents, can be improved in expressiveness as

well as accuracy.

Keywords time geography · space-time-cone · topological relations

1 Introduction

Tracking systems log sequences of discrete locations of mobile agents, technically be-

cause observations are always discrete, but more practically due to limited bandwidth

or database limitations. Locations of the mobile agents in between two consecutive

logged locations are frequently modeled by interpolation [14]. This approach leaves
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some uncertainty about the location of agents between the logged locations, depending

on the interpolation method, the degree of constraint movement, and the time interval

between two observations. A more rigorous approach to model the possible locations of

mobile agents is provided by time geography [15, 23, 41, 24], representing and analyzing

all possible locations of an agent in space and time in form of space-time volumes. One

of these volumes, the space-time cone, describes the potential locations of an agent if

its location is known only at one time. The other volume, a space-time prism, describes

the potential locations of an agent if its location is known at two times. The space-time

path describes the (known) locations of an agent over time in form of a linear trajectory.

Lifelines [18, 25] consist of any combination of these volumes for tracking an agent over

time. This means time geography analyzes discrete (countable) geometries that can be

volumetric.

Interesting operations in time geography are intersections of these volumetric ge-

ometries. Since these operations are computationally expensive [18, 8, 25], they are

usually replaced by intersections of the projected geometries on the x-y-plane. By this

way time geography facilitates qualitative statements such as about potential locations

at a particular time, and potential encounters of agents. A quantification of the re-

sults was, to our knowledge, never tried. Quantifications based on the relative size of

the intersections would be misleading, as such an approach ignores the likelihoods of

finding the agent at particular locations at particular times within these intersections.

We will demonstrate that these likelihoods do not follow an equal probability distri-

bution, hence proportions of intersections are meaningless. Instead, the probability of

finding an agent somewhere at a particular time ti depends on factors such as their

goal-orientation, or the regularity of their behavior. But even a completely undirected

random movement does not lead to an equal probability distribution. As Pearson has

summarized early findings on random walks: “The lesson of Lord Rayleigh’s solution is

that in open country the most probable place to find a drunken man who is at all capa-

ble of keeping on his feet is somewhere near his starting point!” [33, p. 342]. Thus, the

hypothesis of this paper is three-fold: (I) A probability distribution of agent locations

in space-time volumes is non-equal, (II) can be determined from a priori knowledge

about the agent’s behavior, and (III) knowing the probability distribution of an agent’s

location over time can facilitate quantitative analysis in time geography.

To prove this hypothesis this paper concentrates on space-time cones. Space-time

cones represent the case of a space-time modeler knowing nothing more about an

agent’s movements than a start location and a maximum speed. Drawing on a discrete

space-time aquarium [10], a probabilistic space-time cone will be introduced (Fig. 1).

Without loss of generality, the discrete probabilistic space-time cone approximates the

continuous probability distribution of the location of a mobile agent by any appropriate

resolution. Within this discrete volumetric model probability distributions will be de-

rived by three approaches: (a) from a random walk simulation, (b) from combinatorics,

and (c) from convolution. All three approaches come to equivalent results, support-

ing the hypothesis, part I, for the limited case of space-time cones (part II). What is

demonstrated here for a limited modeler’s knowledge, who can only assume undirected

movements, can be extended for directed movements, which will be demonstrated for

probabilistic space-time prisms in another paper.

Addressing the hypothesis, part III, Section 4 develops the formula for quantitative

analysis with probabilistic space-time cones, and discusses their behavior. Questions

involving a quantification of likelihoods in time geography were not addressed before,

except a suggestion of fuzzy space-time volumes [30], an idea that was not further de-
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Fig. 1 The probabilistic space-time cone showing different probability densities of an agent’s
locations over time.

veloped in that paper. These questions would be of the kind: What is the most probable

arrival time of an agent A at a particular location B? Or what is the probability that

two agents A and B have met by ti? Or, if A searches at t0 for a collision-free path

in a populated environment, what is the safest path alternative? These questions are

relevant for applications such as search in rescue and criminology, collision avoidance,

or the estimation of arrival time of individual agents.

2 Background

Probabilistic time geography is based on several areas, among them (classical) time

geography and random walks.

2.1 Time geography

Time geography [15, 24] addresses questions like: Given a location of a mobile agent

at t0, where is the agent at a later time ti > t0, or where was the agent at a previous

time ti < t0? Assuming the agent can move in any direction and is limited only by a

maximum speed vmax, time geography represents the reachable locations of this agent

by a right cone in x-y-t-space. The cone apex represents the agent’s location at t0,

and the aperture the maximum speed of the agent, such that a cone base bi represents

the set of locations the agent may settle at a time ti > t0 (Figure 2a), or may have

settled at ti < t0 (Figure 2b). If the agent’s location is known at t0 and then again

at tn, the possibly reachable volume is described by a cone with apex in t0, reduced

by the intersection with an inverse cone with an apex at tn. This space-time prism

[15] (sometimes called bead [18]) is straight if the agent returns at tn to the location

of the origin at t0 (Figure 2c); otherwise it is oblique (Figure 2d). The space-time

path is a degenerated space-time prism in form of a linear trajectory, and a stationary

space-time path as in Figure 3b is called a space-time station. A parallel projection of

a space-time volume on the x-y-plane describes all places a moving agent can possibly

have reached and is called their potential path area. If the fundamental assumption of

isotropic space is limited by constraining movements along networks, Miller [24] has

shown how to map space-time volumes to network spaces, and extended this later to

anisotropic network space by including velocity fields [27].
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Fig. 2 Traditional space-time volumes.

Fig. 3 Time geographic analysis: potential meetings.

To allow for temporal uncertainty—i.e., uncertainty on departure or arrival time—

or spatial uncertainty—i.e., uncertainty on departure or arrival location—Neutens et al.

[31] introduced rough space-time prisms. In this model based on rough set theory [32],

uncertainty defines a lower volume V and upper volume V such that V is describing

the space-time volume certainly accessible, and ∆V = V − V the volume possibly

accessible. While this model is still qualitative, it already differentiates three values

at a base bi: true, false, and maybe. In this paper we will further differentiate, and

do so based on probability rather than on logic. Note that Neutens et al. model the

uncertainty of departure or arrival (time and location), while we model the uncertainty

about the agent’s movement decisions.

All such space-time volumes facilitate qualitative analysis, be it Boolean or three-

valued logic. Time geography is typically interested in the possible topological relations

of two agents a1 and a2 with known locations at t0 and a2 either a mobile agent or

a static object. Questions are, for example, whether a1 has possibly met by ti the

mobile agent a2 (Figure 3a), or reached the static location a2 (Figure 3b), respectively.

Such qualitative questions can be answered by testing whether the intersection of their

corresponding space-time volumes is empty or not. Computationally cheaper is the

evaluation of projections, such as the analysis at the particular time ti. The cone base

bi at ti represents the uncertainty about an agent’s location at ti, hence, for the analysis

at ti one can apply the usual relational calculi for extended objects: the 4-intersection

model [9], or the region connection calculus [36]. Even extensions of these calculi for

uncertain objects exist [47, 7, 6, 31]. The qualitative statements derived from these

calculi have to consider the point-like nature of the agents, such that 2-dimensional

topological relationships of space-time volume bases have to be mapped onto qualitative

likelihoods (impossible, possible) of the only distinguishable 0-dimensional relationship,

meet.

Uncertain locations gain interest in moving object databases research. Typically

these uncertain locations are modeled by discrete bases of space-time volumes. For

example, [34] calculates the elliptic base of a space-time prism to model uncertainty,

and others formulate the constraints of time geography to enable queries to distinguish

between conditions that must hold and those that may hold in movement uncertainty
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[40, 17]. The latter is particularly useful to manage the uncertainty in updating policies

[48]. With uncertain object locations analysis based on distances from moving objects

is affected, such as nearest-neighbor queries [45, 19, 21]. We will introduce later basic

analysis operators considering the quantification by probabilities to meet agents at

certain locations.

2.2 Location prediction of moving agents

The basic argument in this paper is that unknown movements of agents can be modeled

as random walks. Then a large number of random walks would provide probability

distributions of an agent being at a particular time at a particular location. The related

work is discussed here.

A random walk is a sequence of random steps. Unbiased random walks approximate

for example continuous diffusion processes such as Brownian motion. Biased random

walks follow a trend, a direction superimposed by random decisions. Biased random

walks have not found much attention in the literature. Human agents move less ran-

domly assuming rational behavior (Pearson’s drunken person mentioned above might

be an exception). Rational behavior typically comes with goal orientation, heuristics in

wayfinding, and optimization of paths, although people’s wayfinding behavior is also

regular and habitual [38, 13, 4]. Human wayfinding may appear more random when

people stroll, i.e., move without a particular goal in mind, and also as the average

behavior of a large number of goal-oriented agents, or perhaps even the goal-directed

behavior of an agent over large time spans.

This paper starts out to design a probabilistic time geography with unbiased ran-

dom movements. In this respect, it does not assume a goal orientation (a bias) of the

agents, or it simply does not know about a bias and cannot assume anything better

than an unbiased movement. Goal orientation, or modeling the movement by biased

random walks, will be developed in another paper. A bias can easily brought in by

biased transition probabilities, say, towards the destination of a space-time prism.

It is broadly accepted to model the behavior of large numbers of mobile agents

by random walks. For example, random walks can be used to simulate large numbers

of mobile agents to study higher order patterns such as flocking behavior, crowding,

queuing or congestions of agents [20, 3, 22]. Note that, depending on the amount of

a priori knowledge about the individuals and their behavior, simulation can also go

beyond random walking models; traffic simulation, for example, takes origin-destination

matrices or activity-based destination models and assumes shortest path travels [28, 2,

46]. In turn, sensor network research deploys random walks to establish a population of

mobile sensor nodes that then can be studied for their ad-hoc communication behavior

[5].

In contrast to studying large numbers of agents, the present paper simulates by

random walks the many wayfinding options a single agent has during a period of time.

Large numbers of random walk simulations provide frequencies of visited places at

particular times, which can be normalized to probabilities of finding an individual

agent at a particular time at a particular location. An alternative approach to derive

this spatial and temporal probability distribution would be by machine learning from

collected travel data [16].

Random walks are treated in this paper in discrete space and time. Only then one

can expect probabilities of agents at particular locations larger than zero (the integral
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of a probability distribution over a point is always zero). Polya has shown for infinite

random walks in one- and two-dimensional discrete space that the likelihood of an

agent returning to the origin (or, equivalently, reaching any other particular point in

space) is one [35]. In contrast, this paper is interested in finite time spans only, as they

occur in time geography, and hence, we will get probabilities of an agent reaching a

particular location that are smaller than one.

While this paper concentrates on motion prediction over longer time periods (or

larger time budgets), short term motion prediction is bound to physical constraints. A

popular method for short term motion prediction is Kalman filtering [12]. The Kalman

filter is a recursive estimation procedure based on the recent observations of location,

bearing, and speed of the agent, and assuming that an agent is moving with linear

change of speed. In contrast, in this paper we do not limit ourselves to short term

predictions. Also, with coarser temporal resolution one can no longer assume linear

extrapolation. Accordingly, we will allow any jump in direction and speed between two

time instances for our agent.

3 Uncertainty of location

This section will introduce a random walk in a discrete space-time aquarium, and then

develop three approaches of computing probabilistic space-time cones from random

walks.

Assume an isotropic discrete space-time aquarium that is regularly partitioned

into voxels of ∆x, ∆y and ∆t. Assume an agent moving in this aquarium, starting

at t0 from a known location (x0, y0), and ending at tn after n time steps of a priori

unknown movements. The discrete steps of the agent are limited by its maximum

speed vmax. Assume a discrete vmax, which can be realized for example by choosing a

suited temporal resolution ∆t. For simplicity, let us assume vmax = 1, and a distance

measure in the x-y-plane realized by 4-neighborhood (von Neumann neighborhood).

Thus, in one step the agent can move to the South, North, West, or East neighbor of

its actual location, or it can stay where it is (Fig. 4). Then a random walk consists of

a sequence of a pair of actions: a move according to the actual heading, and a random

assignment of a new heading. This random assignment should be unbiased because no

prior knowledge of the agent’s goal, preferences or behavior exists (Fig. 2a).

In the following sections three approaches will be discussed to calculate the proba-

bility distribution of the location of an agent at any time t0 ≤ ti ≤ tn: by simulation,

by combinatorics, and by convolution. All these approaches provide equivalent models

of a probabilistic space-time volume (such as Fig. 1), but differ in their computational

complexity.

3.1 Simulation approach

Random walks can easily be constructed in the discrete space and time of cellular

automata [39], essentially forming a discrete Markov chain with state space and transi-

tion probabilities. Cellular automata are nonlinear dynamical systems [29]. According

to [44], a cellular automaton a can be represented by a set of states S, a set of transition

rules T , and a set of neighboring automata N , a ∼ (S, T, N). The transition rules define

the automaton’s state sa
i at a time instance ti based on the previous states of itself,
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Fig. 4 One random walk of vmax = 1 in discrete space-time between t0 and t3.

sa
i−1, and its neighbors, sn

i−1, n ∈ N . Basic cellular automata are defined on a regular

square partition of space, and choose a fix neighborhood, such as 4-neighborhood (von

Neumann) or 8-neighborhood (Moore).

Adopting [39, 11] for our purpose, basic cellular automata applying the 4-neighbor-

hood realize a random walk by a set of states S = {0 . . . 5}, such that s = 0 means

the cell is empty; s = 1 means the cell is settled by an agent that is heading towards

North; s = 2 means the cell is settled by an agent that is heading towards East; and

so on, until s = 5 means the cell is settled by an agent that is planning to stay in the

next time interval. The corresponding set of transition rules T is: (1) If at ti a cell is

empty (s = 0) do nothing; (2) if at ti a cell is settled with an agent of state s = 5,

then update its status by assigning randomly a new heading from {1 . . . 5}; (3) if at ti
a cell is settled with an agent of state 1 − 4, then relocate the agent to the cell it is

heading to and update its status by assigning randomly a new heading from {1 . . . 5}.
To initialize a random walk simulation at t0, all cells are set empty except the one in

the center of the space that has a random status between 1 and 5.

For example, Figure 5 presents the base of a space-time cone created by 100 concur-

rent random walkers (black spots) over 200 iterations, who all started in the apex of the

cone. The total explored area is shown in grey. The figure was computed by a Swarm

simulation provided online by the Complexity Virtual Lab, Monash University. This

tool allows to set a probability of the agents changing their directions. This probability

was set here to 80%, according to the five possible states of which one is the current

one. Unfortunately the simulation shows us only visited places, but no frequencies of

visits.—Note that the radius of the cone base after 200 iterations is 200, and is much

larger than the total explored area in Figure 5. This means it is unlikely that an agent

reaches outer areas of the base. Even in the explored area the density of agents varies,

with the highest probability to find an agent in the center.

To find frequencies, let us again consider m random walks of length n of an agent

in this space-time aquarium, m À n. Now for each cell in the aquarium, register the

frequency of being visited. These frequencies provide a discrete probability distribu-

tion for each time ti by norming the frequencies in the base bi = b(ti). For continuous

movements (Brownian motion, Wiener process) the distribution is expected to be nor-

mal. In the present discrete version the distribution is 2-dimensional multinomial with

k = 5 possible outcomes.
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Fig. 5 100 random walks of 200 steps; black cells show the end locations of the agents, gray
cells show previously visited locations.

Simulation with basic cellular automata yields a physical explanation for a prob-

ability distribution. For example, it is impossible (p = 0) that an agent is outside

its space-time cone base at any time, and for t À t0 it is unlikely that an agent is

somewhere on the boundary of the base.

Such a simulation is a rigid abstraction of reality. It is restricted in the number of

directions to move, in the speed to move, in the space to move, and it assumes that the

directions are all alike (isotropy). The first restriction can be overcome by introducing

more states and transition rules. The second one is interesting only if the agent can

move with various speeds, and this again can be included by more states and rules.

Movement can actually be constrained to network space, which again can be reflected

in a modification of the model. The last point can be addressed by a modification of

the random function, bringing in a bias, a case we referred to another paper.

3.2 Combinatorial approach

Another approach to think about random walks and probabilities of settling at parti-

cular places comes from combinatorics, studying the number of possible paths to reach

each cell at tn. The number of possible paths provides a frequency distribution.

Figure 6 shows an agent at a particular location at time t0. This agent is able to

move maximally one grid position within one time interval (vmax = 1). This means the

agent can take only one path from its actual location to p1 at t2. In contrast, a total

of five paths exist to p2 at t2, i.e., the probability of finding the agent at t2 at p2 if five

times higher than at p1.

For a formalization, it is useful to start with one-dimensional space over time

(Fig. 7). Here the number of possible paths is given by the trinomial triangle: For

level i, the values represent the coefficients of (1 + x + x2)i. The triangle can be deter-

mined by summing the values of the direct predecessor, and its left and right neighbor.
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Fig. 6 Over two time steps, a mobile agent can travel only one route to p1, but five routes to
p2.

Among the multiple ways of computing the trinomial coefficients there are direct and

recursive formulas [1].

Fig. 7 The number of possible paths in a one-dimensional discrete space over three time
intervals.

Extended to the two-dimensional discrete space-time aquarium, the result is a pyra-

mid. A value at level ti of the pyramid is determined by summing the values of five

predecessors at ti−1: the value itself and its four neighbors. Figure 8 shows quarters of

the pyramid levels of t0 to t3. To our knowledge this pyramid has not been considered

in combinatorics so far, although we expect that again a recursive computation can be

formulated.

Fig. 8 The levels of the possible route pyramid from t0 (left) until t3 (right).

The values, normalized for each level, are equivalent the probability that a random

walk passes this location. A recursive computation is of order n3 for the frequencies,

and linear for normalization, hence, O(n3).
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3.3 Computation by convolution

Another approach that computes only the distribution, but not the individual random

walks, is by convolution. Convolution, or discrete linear spatial filtering of a field a by

a kernel h, can be expressed by:

bx,y = ax,y ⊗ h =

∞∑

i=−∞

∞∑

j=−∞
hi,j ax−i,y−j (1)

with b the resulting filtered spatial field. In this most general expression, the neighbor-

hood of a focal point (x, y) is unlimited (−∞ . . .∞), but in practical applications its

area of influence can be limited to a small neighborhood, supported by Tobler’s law:

“Everything is related to everything else, but near things are more related than distant

things.” [42, p. 236]. A typical size of a kernel is only 3×3, describing the neighborhood

from (x − 1, y − 1) to (x + 1, y + 1). This kernel has a radius of d = 1. In the present

context the neighborhood is even physically limited to d = 1, by the maximum speed

vmax of the agent. The kernel reflecting the above described discrete random walk is:

h =




0 1 0

1 1 1

0 1 0


 (2)

Applied recursively on a unit impulse function at (x0, y0) (the agent’s location at t0)

one gets directly the results of Figure 8: frequencies of visits. Using instead a normalized

kernel:

h′ =
1

5
h =




0.0 0.2 0.0

0.2 0.2 0.2

0.0 0.2 0.0


 (3)

provides probabilities directly. For example, the probability for an agent to stay between

t0 and t1 in (x0, y0) is 0.2. Figure 9 shows the first two convolution steps, where the

intensity in grey is proportional to the probability value.

Fig. 9 The probability distribution of locations of a mobile agent at two sequential time steps.

In contrast to typical applications in signal processing, the convolution has to be

computed here only locally, in the neighborhood of the moving agent, and not for

the full space considered. For this purpose time geography allows to compute a priori

the volume to be convoluted [37]. The space-time volume of a moving agent can be
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approximated by a discrete cylinder of n temporal layers and a radius of n vmax. In

fact, this cylinder approximating a space-time cone contains still about 75% empty

cells. Thus, a recursive formulation of the convolution is applied to avoid computations

for empty cells. For an agent at t0 being located at (x0, y0) the space-time cone between

t0 and tn consists of n + 1 layers computed by:

cx,y,k =

{
0 if |x− x0| > k ∨ |y − y0| > k

cx,y,k−1 ⊗ h′ else
(4)

This means computational complexity is a function of time only, more precisely, of the

n time intervals for which a cone is computed. For each time step k the convolution

computes (2k+1)2 new values, i.e., O(n2). Also biased convolutions can be formulated,

which requires adaptations to Equations 3 and 4; we refer to the other paper for details.

Overall, compared to the simulation or combinatorial approach, convolution turns out

to be more transparent with respect to normalization and biasing.

3.4 Learning from collected travel data

While the theoretically derivations of probability distributions for the locations of a

mobile agent (Sections 3.1-3.3) all lead to equivalent results, the applicability of the

assumptions made, especially the random movement behavior, can only be tested from

large scale travel data. Since such a test is always dependent on the context of the

collected travel data, no general insights can be found from testing other than that re-

maining differences must be the result of the particular context of the data. The most

relevant aspect of context is intentionality: (most) collected travel data concerns di-

rected movements, and hence, should be discussed together with biased random walks.

4 Reasoning with uncertain location

Up to now time geography makes binary statements. For example, at a time ti > t0
a moving agent is within a space-time cone originating in its position at t0; it is not

outside. Or if space-time cones of two moving agents intersect from ti < tn these two

agents can have met between ti and tn; otherwise they cannot [26]. With rough space-

time volumes, Neutens et al. [31] have extended the binary to a three-valued reasoning

(‘certainly accessible’, ‘possibly accessible’, ‘certainly not accessible’). However, the

probabilistic extension of time geography enables to revisit the analysis operations of

time geography, facilitating a refinement of queries as well as results. This section will

explore this potential exemplarily; a thorough design of an algebra with probabilistic

space-time cones is beyond the scope of this paper.

4.1 Meetings at time tk

Queries regarding the likelihood that two agents meet at a time tk, 0 ≤ k ≤ n, have

to be based on an agreed semantics of ‘meeting’. We say two agents meet if they are

both found at a time tk at the same location lx,y, which can be written in short as a

cell in the discrete space-time aquarium: lx,y,k. I.e., the semantics of ‘meeting’ depends

on the granularity of locations, or the spatial and temporal extensions of the cells. We
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Fig. 10 Two agents, shown by their cone bases at tk, can meet in the cells of the intersecting
area.

Fig. 11 Probabilities over time to be at the space-time station (x0, y0) (left, starting with 1
because this is the known origin of the agent), and to be at an ex-center space-time station
(right).

also do know that two agents C and D can only meet in the overlapping area of their

two space-time cones c and d (Figure 12). These areas cover multiple possible meeting

locations at tk, Lk, such that:

Lk =
⋃

(lx,y,k ∈ ck ∩ dk) (5)

The trivial query with a probabilistic cone is: “What is the probability of an agent

C being at the location lx,y at time tk?” In terms of map algebra [43], this query can

be answered by a local operation, extracting cx,y,k from the cone:

P (C ∈ (x, y, k)) = cx,y,k (6)

For example, Figure 11 (left) illustrates the probability of the agent to be at (x0, y0)

over time, from t0 to t10 (at t0 the probability is 1 since we know that agent started

from here). Note that the values were actually computed by a continuous normal distri-

bution, hence, small deviations from the discrete convolution are visible, but the overall

behavior is present. On the right, the probability is shown for an ex-center space-time

station. In both cases, values converge quickly towards 0, according to expectations.

Generalizing to a zonal query, we can also ask: “What is the probability of an agent

C being in locations Z at time tk, with Zk being any subset of the cone base at tk?”

This query can be answered by a zonal operation, the integral over all locations l ∈ Zk:

P (C ∈ (Zk)) =
∑

l∈Z

cx,y,k (7)
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Also reasoning between the movements of two agents can be considered, e.g.: “What

is the probability of the mobile agents C and D meeting in lx,y at tk?” This query

corresponds to the joint probability P (C ∈ (x, y, k)∩D ∈ (x, y, k)), which for indepen-

dent movements of C and D can be computed by the product P (C ∈ (x, y, k)) ·P (D ∈
(x, y, k)), or simply cx,y,k ·dx,y,k if c represents the space-time cone for C and d for D:

P (C ∈ (x, y, k) ∩D ∈ (x, y, k)) = cx,y,k · dx,y,k (8)

Similarly, a zonal query based on the movements of two agents can be considered,

e.g.: “What is the probability of the mobile agents C and D meeting somewhere in Z,

Z ⊆ Lk at time tk?” The zone Lk where the two agents can meet at tk is shown in

Figure 10 (Equation 5). Let us denote the number of locations in Z by m, m = |Z|,
and call the event of a meeting E, such that:

E(C ∈ (xi, yi, k) ∩D ∈ (xi, yi, k), 1 ≤ i ≤ m) =
⋃

i=1...m

E(xi, yi, k) (9)

According to probability theory, the probability of the meeting event for two agents

follows just as:

P (E(C ∈ (xi, yi, k) ∩D ∈ (xi, yi, k), 1 ≤ i ≤ m)) = P (
⋃

i=1...m

E(xi, yi, k)) (10)

which in turn computes as:

P (
⋃

i=1...m

E(xi, yi, k)) =

m∑

i=1

P (E(xi, yi, k)) (11)

=

m∑

i=1

(cxi,yi,k · dxi,yi,k) (12)

The following example is based on two agents’ movements represented by identical

kernels with 4-neighborhood according to Equation 3, over 200 time steps, and with

an initial situation of the two agents being 20 units apart. Figure 12 illustrates the

probability of the agents meeting at each time step. Since the agents, traveling with a

maximum speed of 1 unit per time interval, and initially being 20 units apart, cannot

meet the first 10 time intervals, the probability is 0 in the beginning, but then rises

quickly. However, after some time the probability decreases again.

4.2 Meetings by time tk

Questions about temporal ranges, such as: “What is the probability of an agent hav-

ing reached location lx,y by tk?”, can be answered by cumulative probabilities, or∑
t=0...k cx,y,t. Figure 13 shows the cumulative probability of Figure 12, i.e., of the

probability of a meeting at each time step. Basically it computes the sum of the meeting

probabilities over the whole intersection of the two space-time cones.
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Fig. 12 Meeting probabilities over time. The agents have a maximum speed of 1 unit per
time interval, and are initially 20 units apart, so the first 10 seconds they do not meet at all.
Small values are a result of joint probabilities.

Fig. 13 The (cumulative) probability of two agents meeting by time tk.

5 Discussion and conclusions

This paper has presented first steps into a probabilistic time geography, or more gen-

erally into a quantitative time geography. It addresses questions such as how likely it

is to find an agent in a particular area, or how likely it is that two agents meet. The

paper has clearly shown that the probability distribution of finding an agent within a

space-time volume is non-equal. This is an important result, because it disqualifies any

attempt to quantify by relative sizes of intersections.

The paper also discusses the importance of sufficient a priori knowledge about

the agent’s behavior. Different behavior forms significantly different probability distri-

butions. For this paper, an agent’s movement behavior was assumed to be unbiased.

Unbiased movement can be assumed for example for an average behavior from a large

number of independently moving agents, but also for a strolling agent without a par-

ticular goal, or perhaps even for an agent with goal-directed movements over longer

time spans. Unbiased movement is well captured by the a priori knowledge expressed

by the parameters of classic space-time cones: known is only the location of an agent

at a time t0, and their maximal speed vmax (and nothing else needs to be known).
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In general, however, goal-directed behavior violates these assumptions, and hence,

goal-directed movements are not well described by the presented probability distribu-

tion. If the modeler knows about the goals, this additional a priori knowledge can be

brought in by biasing the transition probabilities and changing by that way the proba-

bility distribution. These extensions are mentioned, but their development are beyond

the scope of the paper. One particular additional knowledge well-known in classical

time geography is the space-time prism, adding to the knowledge of a modeler a (at

least intermediate) goal of an agent, and the time when the agent was observed at

this goal. In another paper we will study the form of the probability distribution for

such a biased movement. It is clear that any of these extensions leads also to non-equal

probability distributions.

The presented method is derived from theory. While it does not need an experi-

mental validation, the paper refers to some experimental evidence of its applicability.

The presented model lays the foundations for a large number of future questions.

Among these are a further refinement of the probabilistic cone model for different

types of environments or different agent behaviors, the completion of the cone to a

probabilistic space-time prism, and the further development of reasoning mechanisms

with these probabilistic space-time volumes.

Refinement of the probabilistic cone model: The current model is based on a regular

isotropic grid-shaped network. It is clearly worth to overcome these simplifying as-

sumptions. First, the grid can be anisotropic. With clutter in the environment, some

nodes may be impossible to be visited. Other nodes (‘space-time stations’) may form

attractions and have higher probabilities of being visited. Second, the network to be

modeled can have irregular shape instead of a regular grid. Then the combinatorial

node-based computation of probabilities has to be changed to one that considers true

lengths of edges, and is capable of dynamically segmenting the irregular network.

Completion of the cone to a space-time prism: Up to now all directions are considered

equally likely for an agent’s move (Equation 2), due to no better previous knowledge.

Thus, the computations so far are sufficient to replace traditional space-time cones by

probabilistic ones. But if a general heading of the agent is known, i.e., if an adequate

tracking frequency reveals a (traditional) space-time prism, the assignment of assign-

ment of values to the convolution kernel k has to be adapted to this knowledge. The

reasoning behind, and the theory for probabilistic space-time prisms will be developed

in a future paper.

Development of probabilistic reasoning mechanisms: The above demonstrated potential

for probabilistic reasoning needs to be explored in depth. Especially the reasoning

methods Neutens et al. apply [30] for fuzzy space-time volumes can be investigated.

With fuzzy representations being rather a (semantic) generalization of probabilistic

representations, their algorithm should be applicable in a probabilistic environment,

and get more meaningful.
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