
368 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 54, NO. 2, FEBRUARY 2006

The Eleven Antenna: A Compact Low-Profile
Decade Bandwidth Dual Polarized Feed for

Reflector Antennas
Rikard Olsson, Student Member, IEEE, Per-Simon Kildal, Fellow, IEEE, and Sander Weinreb, Life Fellow, IEEE

Abstract—A novel dual polarized ultrawide-band (UWB) feed
with a decade bandwidth is presented for use in both single and
dual reflector antennas. The feed has nearly constant beam width
and 11 dBi directivity over at least a decade bandwidth. The feed
gives an aperture efficiency of the reflector of 66% or better over
a decade bandwidth when the subtended angle toward the sub or
main reflector is about 53 , and an overall efficiency better than
47% including mismatch. The return loss is better than 5 dB over
a decade bandwidth. The calculated results have been verified with
measurements on a linearly polarized lab model. The feed has no
balun as it is intended to be integrated with an active 180 balun
and receiver. The feed is referred to as the Eleven antenna because
its basic configuration is two parallel dipoles 0.5 wavelengths apart
and because it can be used over more than a decade bandwidth
with 11 dBi directivity. We also believe that 11 dB return loss is
achievable in the near future.

Index Terms—Log-periodic antenna, multifunction, reflector
antenna, reflector antenna feed, square kilometer array (SKA),
ultrawide-band (UWB).

I. INTRODUCTION

R
ECENTLY, there has been a growing interest in reducing

the number of antennas on different platforms by com-

bining several functions in the same antenna. To achieve this,

the multifunction antenna needs to be either very broadband or

multiband to cover the frequencies of all functions. There is also

an increasing interest in antennas with extremely large band-

width in connection with proposed scientific systems such as

e.g., the so-called square kilometer array (SKA) radio telescope

covering frequencies from 100 MHz to 25 GHz. The term ultra-

wide-band (UWB) is often used in connection with new broad-

band technology. The present paper deals with the development

of a decade bandwidth feed for the dual reflector antennas pro-

posed to be used for SKA in the US proposal.

Reflector antennas have existed since the beginning of wire-

less communication. Heinrich Hertz used a cylindrical reflector

with dipole feed when he experimentally discovered electro-

magnetic waves in 1888. When the radar was developed during

the second world war, the most common feeds were resonant

Manuscript received February 15, 2005; revised July 28, 2005. This work
was supported by the California Institute of Technology and Cornell University
under Contract with ASTRON in connection with the U.S. SKA proposal.

R. Olsson and P.-S. Kildal are with the Antenna group at Chalmers Uni-
versity of Technology, Goteborg, S-412 96, Sweden (e-mail: rikard.olsson@el-
magn.chalmers.se; simon@elmagn.chalmers.se).

S. Weinreb is with the Department of Electrical Engineering, California Insti-
tute of Technology, Pasadena, CA 91125 USA (e-mail: sweinreb@caltech.edu).

Digital Object Identifier 10.1109/TAP.2005.863392

halfwave dipoles and small open-ended waveguides or horn an-

tennas [1], [2]. The halfwave dipole got improved efficiency by

locating it on a circular disk, but still the radiation pattern was

very different in E- and H-planes. This caused low efficiency,

and high spillover and cross polarization; the latter being detri-

mental in dual polarized systems. There exist two easy ways of

compensating for these deficiencies, either by using two parallel

dipoles with half wavelength spacing [3], or by locating a metal

ring of about one wavelength diameter above the dipole [4], [5].

The feed described in the present paper is a log-periodic version

of the dual dipole feed in [3].

The horn feeds became very popular during the eighties. In

particular, corrugated horns were used to produce very good per-

formance in terms of symmetry of the main lobe and cross po-

larization. They were and still are popular as feeds for dual re-

flector antennas, and they can have octave bandwidth [6], [7].

Corrugated horns are expensive and heavy, so simpler dielec-

tric alternatives have been proposed [8]. Dielectric loading can

also enable larger bandwidth [9], [10]. The quad-ridge horn is

even more broadband, but unfortunately the efficiency and cross

polarization is poor [11], [12]. A major problem with all the

above mentioned horns in wide band applications is that the

beam width varies strongly with frequency, unless the horn is

made very large. The first compact horn feed with constant beam

width and low cross polarization over almost an octave band

width was published in [13]. There exist also self-supported

feeds for prime-focus reflectors, mounted to the center of the

main reflector with an axial tube containing the feed waveguide

or cables. Such feeds are, e.g., the Clavin [14] feed and the hat

feed mentioned in [15], but their bandwidths are typically 10%

or smaller.

The feed in the present paper is in comparison to all of

the above mentioned feeds very light weight and compact.

The beamwidth is constant, and the cross-polar sidelobes are

reasonably low over a decade bandwidth. It can be used for

both single and dual reflector antennas, although the large beam

width makes it better suited for prime-focus reflectors.

The square kilometer array (SKA) is an international project

that will be the next big step in radio astronomy, if fully funded.

As the name indicates the radio telescope will have a staggering

total aperture area of about 1 square kilometer. This huge radio

telescope will provide two orders of magnitude increase in

sensitivity compared to existing radio telescopes. In order to

achieve such a large aperture an array of antennas with smaller

aperture has to be used. There are many different suggestions

for antennas, ranging from a few tens of very large single
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Fig. 1. Drawing of the SKA 12 m/16 m symmetric antenna concept having a
12-m parabolic (focal length is 6 m) main reflector with a mesh extension to 16
m and a 2-m diameter subreflector, and photograph of dual polarized laboratory
model of the proposed feed described in this paper. A patent is pending [23].

reflectors to large arrays of Vivaldi antennas and Luneberg

lenses. The US proposal makes use of an array of around 5000

symmetric parabolic reflectors with 16 m diameter. In Fig. 1

a sketch of the proposed symmetric reflector of US-SKA is

shown as well as a photograph of a laboratory model of the

proposed feed described in the present paper. Note that the

outer 4 m circumferential part of the reflector is a wire mesh.

One of the advantages with the US proposal is that it makes use

of reflector antennas that represent a well known technology

which has been used in radio astronomy during several decades.

The system is very wide band; the goal is to cover 100 MHz

to 25 GHz. There are many benefits from this bandwidth. The

main advantage is that the same radio telescope may be used

to perform several functions and thus support many different

kinds of research. Key science projects for SKA include studies

of the evolution of galaxies and cosmic large structures, studies

on the first black holes and stars, strong field tests of gravity, the

search for Earth like planets and much more [16]. The number

of antennas and the bandwidth of the system have triggered a

need for development of cheap ultrawide-band components.

One of the more challenging components is the feed.

End-fire style log-periodic dipole arrays have since they

were invented [17] been used in ultra wide band antenna design

to achieve medium gain antennas for use in both antenna and

electromagnetic compatability (EMC) measurements. Log-pe-

riodic antennas are not common as reflector feeds because

their phase centers vary strongly with frequency [18], [19].

The phase center variation can be reduced to acceptable levels,

such as e.g., in the log-periodic feed for the Allen Telescope

Array (ATA) [20]. This is a radio telescope currently under

construction which uses many of the same ideas as the U.S.

SKA proposal, but for an array of 350 reflectors of 6 m diam-

eter. Still, the ATA feed is large and there are significant losses

due to phase center variation [21], so better feeds are desirable.

The purpose of the present paper is to describe a compact feed

with almost no phase center variation and almost constant beam

width over a decade bandwidth. The described feed contains no

balun as it is intended to be integrated with an active 180 balun

and receiver. An important advantage of the described feed

is that due to its compact size it facilities cryogenic cooling.

The measurements reported in the present paper have been

done with a broadband commercial 180 hybrid power divider

replacing the balun. Some initial work on the feed was reported

briefly in [22], and a patent is pending [23]. The feed has

been named the Eleven antenna because its basic configuration

is two parallel dipoles 0.5 wavelengths apart and because it

can be used over more than a decade bandwidth with 11-dBi

directivity. We also believe that 11-dB return loss is achievable

in the near future.

II. CHARACTERIZATION OF FEEDS

The antenna to be presented has been designed to feed a

reflector, more particularly the reflector depicted in Fig. 1.

Therefore, it is important to characterize its performance in

the reflector system. This is done by the aperture efficiency

in the reflector and its subefficiencies, and by spillover, input

reflection coefficient, and figure of merit, as explained later.

A. Subefficiencies

The realized gain and directivity of a reflector are re-

lated by

(1)

where is the antenna efficiency, is the aperture effi-

ciency and

(2)

is the total radiation efficiency. accounts for the input re-

flection coefficient , i.e., impedance mismatch, and for

the dissipation losses. When we calculate the reflection coeffi-

cient we will assume 50 input feed line impedance.
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Fig. 2. Illustration of a 0.15 to 1.5 GHz dual polarized model of the feed with
key dimensions indicated. The largest value of each dimension is given in mm.
[26]. These sizes are also given in terms of the wavelength at 100 MHz. The
lowest frequency of operation is 150 MHz. A side view is shown on the top left,
and on the top right a more detailed view of the central part of the feed is shown.

The aperture efficiency is a measure of how efficiently

the feed illuminates the reflector aperture, and it becomes unity

for a uniform aperture illumination with constant phase and no

spillover. The aperture efficiency can for classical symmetric

reflector shapes like the SKA reflector in Fig. 1 be expressed in

closed form in terms of the radiation field function of the feed.

To characterize different properties of the feed we will separate

the aperture efficiency in different subefficiencies, see ([24, Sec.

8.4]) and [25]. According to

(3)

where each of the subefficiencies are explained below. The body

of revolution (BOR) efficiency measures how closely

the far-field resembles that of a BOR antenna ([24, Sec. 2.4])

and [26]. The far-field of a BOR antenna has only first-order

variation in and can be expressed as

(4)

for the y-polarized case. The BOR efficiency accounts for the

power radiated in higher order -variations in the pattern, which

cannot contribute to the gain of a symmetrical reflector antenna

and thus represents a power loss. The spillover efficiency is

the fraction of the radiated power that actually hits the reflector.

The power lost in the cross-polar part of the field is accounted for

by the polarization efficiency . The illumination efficiency

is a measure of the loss that arises from the actual tapered

illumination of the reflector, and finally the phase efficiency

accounts for loss due to phase errors in the copolar aperture

field. This efficiency is the only efficiency that depends on the

TABLE I
COSMIC SKY NOISE TOWARD THE GALATIC POLE

location of the feed relative to the focal point of the reflector.

The feed location that maximizes the phase efficiency defines

the phase center, see ([24, Sec. 2.3]). When calculating the phase

efficiency below we have used the center of the ground plane as

phase reference point.

B. Figure of Merit

For radio telescopes, such as SKA, the figure of merit for

the overall system performance is effective area over the total

system noise temperature given in , i.e.,

(5)

where is the geometrical aperture area of the

reflector, and is the system noise temperature. For a receiver

with an isolator at temperature, at its input the system tem-

perature can be expressed as

(6)

with K a typical receiver noise temperature,

K the ambient temperature causing ground radiation, and

the cosmic sky noise. The feed will be located inside a

Dewar cooled to 15 K which is assumed in (6). For the same

reason the ohmic loss in the feed is neglected in this paper, so

. is the fraction of the radiated power in

the radiation pattern of the feed which illuminates the ground.

For prime focus case and when we assume that the antenna is

pointed vertically, it can be calculated as

(7)

where is the relative power between and ,

and is the relative power between 53 and 67 , hitting the

mesh reflector. is the transmission coefficient of the mesh.

We will assume that the mesh is the same as the mesh in [27,

Section IV], only scaled down in frequency by a factor 10. The

transmission coefficient is then about 1% at 500 and increases to

5% at 1.5 GHz, but we have assumed that it remains constant at

5% over the entire 0.15- to 1.5-GHz band. The cosmic sky noise

toward the galactic center is found from [28, Fig. 2]. We approx-

imate this by the values in Table I, with linear interpolation in

log(T) versus log(f) between the values. For other pointing di-

rections the spillover hitting the ground is modified, see, e.g.,

the formulas in [5], but we will not include such analysis here.
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Fig. 3. Computed co- and cross-polar far-field patterns in the 45 plane of the
antenna in Fig. 2. BOR -components only.

III. NUMERICAL DESIGN

We started by considering a simple feed consisting of two

parallel halfwave dipoles separated by a half wavelength and lo-

cated above a ground plane. This is as explained in the introduc-

tion an old feed which gives a pattern with equal E- and H-planes

and with phase center in the ground plane [3]. Our idea was then

to replace each single dipole by log-periodic series-fed dipoles,

with a logarithmically varying dipole length, spacing and height

above the ground plane, see Fig. 2. The initial studies were made

with wire dipoles, and we soon found out that the dipoles needed

to be folded and mounted together in such a way that the feed

gap of each folded dipole is connected to a gap in the normally

connected folded part of the previous dipole. The studies were

later concentrated more on strip models of the dipoles to enable

printing on a normal dielectric circuit board.

To calculate impedance characteristics and radiation patterns

of the feed we have mainly used the method of moments (MoM)

as implemented in the commercial code WIPL-D [29], but we

also used the in-house MoM code described in [30] for some

initial studies and validation.

Here we will present numerical results obtained for the feed

in Fig. 2 operating from 0.15 to 1.5 GHz, thereby covering a

decade bandwidth. Note that we believe that, in principle, there

exists no theoretical limit to the bandwidth of the log-periodic

Eleven antenna, but our objective in the SKA application is to

design decade bandwidth feeds. In practice the bandwidth is nat-

urally limited by the size of the feed at low frequencies and by

the diameter of the feeding cables at higher frequencies. Fig. 2

shows the most important longest dimensions of the feed. These

sizes are also given in terms of the wavelength at 100 MHz. All

the dimensions of the dipoles such as length L, separation D,

height above ground plane h, and strip width, are scaled with

frequency to provide the log-periodic shape. The scaling factor

k is 1.1161. The feed is excited with a delta voltage source be-

tween the two strips of the split transmission line originating in

the center, and the dielectric support is neglected. Furthermore

the initial simulations were done for one linear polarization to

reduce computational effort. The finite ground plane is included

in the analysis. Fig. 3 shows typical far-field patterns in the 45

plane between 0.15 and 1.5 GHz similar to the patterns shown

Fig. 4. Computed directivity of the antenna in Fig. 2.

Fig. 5. Computed return loss of the antenna in Fig. 2.

Fig. 6. Computed phase center location of the antenna in Fig. 2.

in [22] for an eleven antenna covering 1 to 12 GHz. Fig. 4 shows

the directivity of the feed as a function of frequency. In Fig. 5

we see the return loss of the feed at the feed point. This consti-

tutes the main drawback of the feed. The return loss is not better

than 5.0 dB at the worst frequencies, but we are confident it can

be improved. One of the major advantages of the feed is shown

in Fig. 6 which presents the phase center location as a function
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Fig. 7. Computed aperture efficiency when the antenna in Fig. 2 is used to feed
a reflector with subtended angle of 53 and 67 .

Fig. 8. Computed A/T of the reflector in Fig. 1 fed by the feed in Fig. 2. The
ground plane size is 1750 mm or 0.88 wavelengths at 150 MHz, the lowest
frequency of operation.

of frequency. We see that the phase center deviates by less than

0.2 wavelengths from the ground plane at . Figs. 7 and 8

show the aperture efficiency and figure of merit in the reflector

system, respectively. Fig. 7 shows that the subtended half angle

influences the aperture efficiency quite significantly. In [22], the

effect of the subtended half angle on the aperture efficiency was,

therefore, studied and the optimum angle was shown to be close

to 50 . A rather large range of subtended angles, from 40 to

60 , can however be used and still remain very close to the max-

imum efficiency. The strong reduction of A/T at low frequencies

is not an effect of the feed but an effect of an increase in sky

noise, see Table I. The A/T in Fig. 8 is compared to the theo-

retical maximum that would be achieved with an antenna with

unity aperture efficiency and no spillover over the entire band.

Table II shows a summary of the different efficiencies of the

feed. Worth noting here is that the phase efficiency is very high

over the entire band, which was one of the main goals and indi-

cates that the phase center location is fixed to the ground plane

for all frequencies.

TABLE II
SUMMARY OF EFFICIENCIES OVER THE 0.15- TO 1.5-GHz BAND FOR THE FEED

IN FIG. 3 FOR A SUBTENDED HALF ANGLE OF 53 DEG

Fig. 9. Relative spillover at 150 MHz hitting ground as defined by (7) versus
ground plane size, computed for of the antenna in Fig. 2 when it is feeding the
reflector in Fig. 1.

The far-out sidelobes and spillover can be reduced by in-

creasing the size of the ground plane. This can of course only

be done if practical size constraints allow it and if the increase

in blockage is acceptable. Fig. 9 shows the percentage of the

total radiated power which misses the reflector and hits the

ground when the reflector is pointed normal to the ground. We

refer to this quantity as relative power hitting the ground and

its definition is stated in (7). We see that the spillover decreases

significantly when the ground plane size increases, up to a

ground plane size of around 1750 mm after which there is very

little reduction of the spillover. This motivates the choice of

ground plane size in the previous paragraph. This improvement

in spillover should be traded off against the increased blockage

loss, which we have not considered yet.

IV. LAB MODEL AND MEASUREMENT

The first experimental feed was linearly polarized and de-

signed to cover 1 to 6 GHz. It is shown in Fig. 10. Fig. 11 shows

a photograph of the central part. We see the soldering points

where the inner conductor of the two feeding coaxial cables are

connected to the strip lines. These cables come up through the

ground plane via a centrally located hole and the shields of the

cables are soldered to the ground plane. Each of the two parallel

strip lines are fed by separate coaxial cable. Each coaxial cable
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Fig. 10. Photograph of the 1- to 6-GHz lab model [23].

Fig. 11. Photograph of the central part of the 1- to 6-GHz lab model [23]. The
inset shows a sketch of the feeding structure. Each of the two transmission lines,
1 and 2, are fed by a separate coaxial line, 3.

is, on the back side of the ground plane, connected to a com-

mercial 180 hybrid. The inset in the photograph shows a more

illustrative sketch of the exciting structure.

The main features of the theoretical far-field patterns are well

reproduced in the measurements. To illustrate this we plot two

of the most important pattern parameters in Fig. 12: The 10-dB

beam width and the highest cross-polar sidelobe. Both values

are on average in agreement with simulations using the same

model as described in Section III. The differences we see at cer-

tain frequencies probably arise from measurement inaccuracies,

in particular when it comes to the cross polar levels, and from

the fact that the excitation is not modeled with sufficient detail

in the computations.

In Fig. 13, we compare typical measured and calculated far-

field patterns at four frequencies. We see that the agreement is

fairly good. The computed and measured reflection efficiencies

are shown in Fig. 14. The effect of the feed cables and the 180

hybrid have been removed by appropriate calibration. We see

Fig. 12. Measured and computed 10 dB half beam width and highest
cross-polar side lobe level in the 45 plane for the 1 to 6 GHz lab model.

Fig. 13. Measured and computed co- and cross-polar far-field patterns in the
45 plane at four frequencies.

Fig. 14. Computed and measured reflection efficiency for the 1 to 6 GHz lab
model plotted against logarithmic scale in frequency.
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Fig. 15. Measured and computed product of polarization-illumination- and
spillover efficiency for a subtended angle of 53 .

that the lowest level of the reflection efficiency is well predicted,

but the more detailed behavior of the reflection efficiency is only

approximately predicted by the simulations. We note that the

measured reflections at the input cause up to 1.3 dB loss. The

prediction of the pattern and the reflection efficiency shows that

our numerical feed model provides useful and fairly accurate

results.

We saw in the previous paragraph that the measured and cal-

culated far-field patterns are similar. To quantify their similarity

we have computed the efficiency of the feed in the SKA re-

flector, by using both the computed and simulated feed far-field

patterns. Fig. 15 shows the product of the polarization-, illumi-

nation-, and spillover efficiencies. This product corresponds to

the aperture efficiency, since the phase- and BOR -efficiencies

are close to 0 dB. In this figure, we have also included results

of simulations when the dielectric support boards are included.

Then, the simulations predict the aperture efficiency more accu-

rately. The reasons for the discrepancies are the simplified ex-

citation model, an imbalanced feeding due to imperfections of

the hybrid, and measurement inaccuracies. However, the aper-

ture efficiency is overall well predicted.

V. CONCLUSION

A novel UWB feed called the Eleven antenna has been de-

signed and manufactured. The feed provides nearly constant

beam width and directivity over at least a decade bandwidth. It

is also shown to give constant aperture efficiency of around 66%

or better in the reflector system suggested for US-SKA over the

same decade bandwidth and an A/T which is around 55% of

that of an ideal antenna with 100% aperture efficiency and no

spillover. It has been shown that the spillover efficiency can be

controlled by changing the size of the ground plane. We have

also shown that the feed can be used in dual linear polarization

with little degradation of performance.

There are many things that still can be done to improve this

feed. One of the key issues is to improve impedance matching

and ongoing work shows promising results. Another issue is to

study the losses introduced by the dielectric substrate and the

finite conductivity of the metal parts.
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