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Abstract

We calculate equivariant elliptic cohomology of the partial flag variety G/H, where
H ⊆ G are compact connected Lie groups of equal rank. We identify the RO(G)-graded
coefficients E ll∗G as powers of Looijenga’s line bundle and prove that transfer along the
map

π :G/H −→ pt

is calculated by the Weyl–Kac character formula. Treating ordinary cohomology,
K-theory and elliptic cohomology in parallel, this paper organizes the theoretical
framework for the elliptic Schubert calculus of [N. Ganter and A. Ram, Elliptic Schubert
calculus, in preparation].
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1. Introduction

The topological aspects of representation theory are captured by the generalized cohomology
theory known as equivariant K-theory. Applied to a point, the K-group

KG(pt) = R(G)

is the representation ring of the structure group G. Applied to other spaces, it yields rings related
to the representation rings. For instance, the KG-theoretic transfer along the map

π : G/H → pt

gives the induction map
ind: R(H) −→ R(G).

Received 21 August 2012, accepted in final form 14 May 2013, published online 12 May 2014.
2010 Mathematics Subject Classification 55N34, 55N91, 19L47, 22E67 (primary).
Keywords: elliptic cohomology, loop group characters.

Ganter was supported by an Australian Research Fellowship, ARC Discovery Grant DP1095815, and by a
Centenary Fellowship from the Faculty of Science at the University of Melbourne.
This journal is c© Foundation Compositio Mathematica 2014.

https://doi.org/10.1112/S0010437X1300777X Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://doi.org/10.1112/S0010437X1300777X


The elliptic Weyl character formula

In [AB68], Atiyah and Bott use this point of view to derive Weyl’s famous formula for the
character of induced representations. For this purpose, they consider an inclusion H ⊆ G of
compact, connected Lie groups of equal rank and a joint maximal torus T . Then T acts on G/H
from the left, allowing the authors to calculate the equivariant transfer along π as an application
of their fixed point formula for the T -equivariant transfer π!.

Schubert calculus, originally concerned with the cohomology of the partial flag varieties, has
long been extended to include the analogous K-theoretic picture. Essential ingredients in both
theories are pull-backs and transfers (push-forwards) along maps between partial flag varieties.

In [BE90], Bressler and Evens formulate Schubert calculus in broad generality, replacing
cohomology and K-theory with any generalized multiplicative cohomology theory possessing the
relevant transfers. The universal example of such a theory is complex cobordism, and cobordism-
theoretic Schubert calculus is now becoming a discipline of its own (see [BE92, CPZ13, HK11]).

We are interested in equivariant elliptic cohomology, E llG. It has long been conjectured that
E llG plays the same role for the representation theory of the loop group LG that KG plays for
the representation theory of G. This idea can already be found in Grojnowski’s article on the
definition of E llG (see [Gro07, p. 2 and 3.3]), it took shape in Ando’s work on Euler classes [And03]
and was later picked up by Lurie [Lur].

In a sense, the paper at hand is a following to Ando’s [And00] and [And03], taking apart the
ideas presented in those papers and rearranging them into a new picture. The most important new
feature is that our derivation of the Weyl–Kac formula as a push-forward is entirely a compact-
manifold argument. This tells us that whatever is infinite-dimensional about representations of
the loop group LG is entirely encoded in the relationship between equivariant elliptic cohomology
and LG. Further, we will see in § 7.3 that

ΓE ll∗G(pt)
∼= T̃ h

W

∗

is Looijenga’s ring of theta functions [Loo77]. This is where the loop group characters take their
values (see § 7.3). This paper is the first in a joint program with Arun Ram, studying Schubert
calculus in elliptic cohomology. For this, the ring T̃ h∗ will play the same role as R(T ) plays
for the K-theoretic Schubert calculus or the symmetric algebra S(t∗C) plays in cohomology. Our
work ties in with the program formulated by Bressler and Evens in [BE90], but is not a special
case of their discussion; Bressler and Evens work Borel equivariantly, while Grojnowski’s E llT is
a genuinely equivariant theory, taking values in sheaves over a scheme MT . More importantly,
E llT does not possess Thom isomorphisms for complex vector bundles, so that the theory of
transfer maps acquires a twist by a line bundle, called the relative Thom sheaf.

In our main application (see § 8.3), the relative Thom sheaf for π! turns out to be LgLo, the
Looijenga line bundle raised to the dual Coxeter number g. This accounts for the shift of level
by g occurring in the Weyl–Kac formula. The definitions of Looijenga line bundle [Loo77] and
dual Coxeter number are reviewed in § 6.3.

The paper is organized as follows: treating cohomology, K-theory and elliptic cohomology
simultaneously (all with complex coefficients), we view all three theories as sheaf-valued,
revisiting, and to some extent reorganizing, the circle of ideas in [And03, Gep05, GKV95, Gro07,
Lur, Roş01], and [Roş03].

After recalling the definitions and the general setup (§§ 2 and 3), we review a powerful
calculational tool: the theory of moment graphs (§ 4). We show how to deduce the isomorphism

KT (G/H) ∼= R(T )⊗R(G) R(H)
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for torsion-free π1G (see [McL79]) directly from the moment graph of G/H. Our proof does not
use Pittie’s theorem that R(H) is free over R(G), nor does it involve any explicit calculations
with basis elements. Our argument is identical for K-theory and cohomology and also yields a
description of E llT (G/H).

Now we are in a position to prove the axioms of [GKV95] needed in our applications, which
is done in § 5. Also in § 5, we define the Ginzburg–Kapranov–Vasserot characteristic class cξ of a
complex vector bundle ξ. The term ‘class’, borrowed from [GKV95], is slightly misleading here;
cξ is actually a map, obtained by applying elliptic cohomology to a classifying map of ξ.

Section 6 treats the theory of Thom sheaves. We identify the Thom sheaf Lξ of any complex
vector bundle ξ with the pull-back along cξ of a universal example

Lξ ∼= c∗ξL
univ.

Section 7 deals with Euler classes, Looijenga theta functions, relative Thom sheaves and
push-forwards (also known as transfers).

Finally, in § 8, we arrive at the promised formula for the transfer π!. In cohomology, this is
a formula by Akyildiz and Carrell [AC83], in K-theory, it is the Weyl formula, and in elliptic
cohomology it is the Weyl–Kac formula.

The reader is not expected to be familiar with elliptic cohomology. I have included a fair
bit of expository material on various topics, hoping that this will make the paper readable for a
wide audience.

The combinatorial aspects of the theory, as well as concrete examples, will be addressed
in [GR1].

2. The three sheaf-valued theories

Let G be a compact Lie group, and let X be a finite G-CW-complex. We write

HG(X) :=
∑

n∈Z

H2n(EG×G X;C)

for (even) Borel equivariant cohomology with complex coefficients, and

KG(X) := (VectCG(X)/
∼=,⊕)gp ⊗Z C

for equivariant K-theory (as in [Seg68]) with complex coefficients. We will also consider the
relative and reduced versions of these theories. These are contravariant functors in G and in X
(or pairs (X,A) or (X,x0)). For abelian T it follows that the coefficient rings

HT := HT (pt) and KT := KT (pt)

form Hopf algebras, with the comultiplication given by multiplication in T . For the circle group
U(1), we have

HU(1) = C[x] and KU(1) = C[z±1].

These are the Hopf algebras of regular functions on the (affine) group schemes

Ga = A1
C (additive group)

and
Gm = A1

C\{0} (multiplicative group).
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The elliptic Weyl character formula

Here

x = c1(C1)U(1)

is the first Borel equivariant Chern class of the defining representation C1 of U(1). It generates
the ideal

xC[x] = I(0)

of regular functions on A1
C that vanish at 0. The K-theory class z is the character of C1. The

KU(1)-theoretic first Chern class of C1 equals 1−z, generating the ideal I(1) of regular functions
on Gm vanishing at 1.

More generally, let T be a compact abelian Lie group with Lie algebra t, and let

T̂ = Hom(T, U(1))

be the character lattice of T . Let T0 ⊆ T be the connected component of 1, and let Λ ⊂ t∗ be
the weight lattice of the torus T0. If T = T0 is connected there is an isomorphism

Λ
∼=

−→ T̂

λ 7−→ e2πiλ.

For λ ∈ Λ, let Cλ be the one-dimensional representation of T0 with character e2πiλ. Then the
coefficients HT

∼= HT0 are identified by the Hopf-algebra isomorphism

HT
∼= ΓOtC

c1(Cλ)T0 ←[ λC.

Here λC = λ⊗R C is viewed as a regular function on the complex algebraic group tC := t⊗R C.
This point of view, going back to Borel, allows us to interpret HT (X,A) as the global sections
of a coherent sheaf HT (X,A) on tC.

In K-theory, the T -equivariant coefficients are given by the representation ring

KT = R(T ) = C[T̂ ].

For instance,

KT0(pt)
∼= C{eλ}λ∈2πiΛ,

with eλeµ = eλ+µ. So,

KT
∼= ΓOTC

is identified with the ring of regular functions of the complexification TC of T . This allows us to
view KT (X,A) as the global sections of a coherent sheaf KT (X,A) on TC.

We have

TC
∼= Hom(T̂ ,C×) and tC ∼= Hom(T̂ ,C).

Let E be a complex elliptic curve, and let1

MT := Hom(T̂ , E).

1 We may interpret MT as the moduli scheme of certain principal T -bundles on E, see [GKV95, (1.4.2)]; note that
in [GKV95, (1.4.2)], the authors denote MG by XG.
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Grojnowski’s T -equivariant elliptic cohomology takes values in coherent sheaves over MT , and

E llT (pt) = OMT
.

We will see that the above theories form the degree zero parts of three RO(T )-graded (sheaf-
valued) equivariant cohomology theories. Note that the complex group MT is no longer affine
and the global sections ΓE llT (−) do not form a cohomology theory. This makes the sheaf
point of view essential to the theory. We will now see how the formal properties of E llT , as
axiomatically postulated in [GKV95], determine the stalks of the theory. This is the motivation
behind Grojnowski’s construction, which we will recall in § 3.3.

2.1 Homogeneous spaces and representation spheres
Let T ′ ⊆ T be a closed subgroup. Then we have canonical inclusions t′C ⊆ tC and T ′

C ⊆ TC and
MT ′ ⊆ MT and isomorphisms of coherent sheaves

HT (T/T
′) ∼= Ot′

C
(over tC )

KT (T/T
′) ∼= OT ′

C
(over TC) (1)

E llT (T/T
′) ∼= OM′

T
(over MT ).

The first two of these isomorphisms are classical. We recall the definition of the third on page
1209. That it is an isomorphism will be an immediate consequence of the construction of E llT .

From now on, we let AT be one of the complex abelian groups tC or TC or MT , and we let
FT be the theory HT or KT or E llT taking values in sheaves over AT . Often we will write +
for the group operation in AT and 0 for its unit, with the understanding that these are to be
replaced by · and 1 for the multiplicative case AT = TC.

Let T be a torus, λ ∈ Λ, let Sλ be the representation sphere (one point compactification) of
Cλ, and write Kλ for the kernel of e2πiλ inside T . We may identify the equator of Sλ with T/Kλ.
Then the usual Mayer–Vietoris argument gives the following corollary.

Corollary 2.1. The sheaf FT (S
λ) is identified with the kernel of the map

OAT
⊕OAT

−→ OAKλ

(f, g) 7−→ (f − g)|AKλ
.

2.2 Stalks
By a point in AT , we will always mean a closed point. For a ∈ AT , let

T (a) :=
⋂

a∈AT ′

T ′

be the smallest subgroup of T with a ∈ AT (a). Let

ia : X
T (a)
→֒ X

be the inclusion of the T (a)-fixed points. We will identify the stalk of FT at a in two steps.
First, we note that

i∗a : F
∗
T (X)a

∼=
−→ F∗

T (X
T (a))a (2)

is an isomorphism of T -equivariant cohomology theories. Indeed, it is enough to check this on
orbits X = T/T ′, where it follows from (1). Second, consider the quotient map p: T → T/T (a)
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and use the isomorphism2

FT (X
T (a)) ∼= A∗

p(FT/T ′(XT (a))).

Let

τa : AT −→ AT

b 7−→ a+ b

denote translation by a. Then

Ap = Ap ◦ τa, (3)

and hence

FT (X
T (a))a ∼= FT (X

T (a))0.

Combining these two steps, we obtain isomorphisms

HT (X)a ∼= HT (X
T (a))⊗HT

OtC,0

KT (X)a ∼= KT (X
T (a))⊗KT

OTC,1

and

E llT (X)a ∼= E llT (X
T (a))0.

Over a sufficiently small neighbourhood U of a (see § 3.3 for details) these isomorphisms extend
to an isomorphism of sheaves

FT (X)|U ∼= (τa)∗(FT (X
T (a))|U−a). (4)

3. The Chern character and the construction of EllT

3.1 Completion

In the sheaf-theoretic language, the Atiyah–Segal completion theorem identifies the formal
completion of FT at 0 ∈ AT with the Borel equivariant version of F . More precisely, we have the
following theorem.

Theorem 3.1 (Completion theorem). We have an isomorphism of pro-rings

FT (X )̂0 ∼= lim
←−
k

F(ET (k) ×T X),

where ET (k) is the k-skeleton of ET .

In the case of K-theory, the right-hand side is K(ET ×T X), and Theorem 3.1 is [AS69]. For
cohomology, the right-hand side is

∏

n∈Z

H2n(ET ×T X;C)

(see [Roş03, p. 6]). In § 6, we will see how Theorem 3.1 follows from the formal properties of FT .

2 This isomorphism was proved in [AB84] for H, in [Seg68] for K and postulated for Ell in [GKV95, (1.6.3)].
Again, it will follow immediately from the construction of EllT .

1201

https://doi.org/10.1112/S0010437X1300777X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1300777X


N. Ganter

3.2 Roşu’s Chern character
Consider the exponential map

exp: tC −→ TC.

This is an analytic map of complex groups, it is not algebraic. For an algebraic sheaf F on a
complex variety, we let Fh be the analytic sheaf associated to F . The following theorem is a
reformulation of the main result in [Roş03].

Theorem 3.2 (Roşu). Assume3 that HT (X) is free over HT . For a small enough analytic open
neighbourhood U of 0 ∈ tC there is an isomorphism of analytic sheaves

chT : K
h
T (X)|exp(U)

∼=
−−→ exp∗H

h
T (X)|U ,

uniquely determined by the commuting diagram

Kh
T (X)1

chT |1 //
��

��

Hh
T (X)0

��

��
KT (X )̂1

ch
// HT (X )̂0

where the top row is chT at the stalk 1, and in the bottom row, ch stands for the (Borel
equivariant) classical Chern character.

We will refer to chT as Roşu’s Chern character. Consider now the quotient maps

expE : C −→ E = C/2πi〈τ, 1〉

and
y : C× −→ E ∼= C×/qZ,

where q = e2πiτ . These induce the following commuting diagram of complex analytic group
homomorphisms.

tC

expMT !!

expTC // TC

y
}}

MT

When it exists, Roşu’s Chern isomorphism chT will fit into a commuting diagram

(expMT
)∗H

h
T (X)|U y∗K

h
T (X)|expTC(U)

y∗(chT )oo

E llhT (X)|expMT
(U)

φ

ii

ψ

66

of sheaf isomorphisms over a small neighbourhood of 0 in MT .

3 This assumption ensures that the restriction maps ofHh
T (X) and, more importantly, the mapHh

T (X)0 →HT (X)0̂
are injective. I do not follow Roşu’s argument for arbitrary X in [Roş03, p. 7]. This does not affect the main
applications in [Roş03], since for those Knutsen and Roşu do require HT (X) to be free over HT .
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3.3 Construction of EllT
The construction of E llT (X) was first outlined in [Gro07]. The technical details were filled in
in [Roş03], see also [And03] and [Roş01]. This section is a reminder of Grojnowski’s construction.

Note first that the properties stated in §§ 2.2 and 3.2 determine E llhT (X) locally: every a ∈MT

has a small analytic neighbourhood Ua satisfying

b ∈ Ua =⇒ XT (b) ⊆ XT (a).

Choose U0 small enough such that the logarithm is well defined over it and

c ∈ U0 =⇒ XTlog(c) = XT (c).

Further, we assume Ua to be small enough to satisfy

(Ua − a) ⊆ U0.

Then we are forced into

E llhT (X)|Ua
∼= (τa ◦ exp)∗H

h
T (X

T (a))|log(Ua−a).

We need to understand how these patches are to be glued. Given a non-empty intersection
U := Ua ∩ Ub, we make the additional assumptions4

a− b ∈ U0 and XT (b) ⊆ XT (a).

Lemma 3.3. Let i denote the inclusion of XT (b) in XT (a). After restricting to log(U − a), the
map

i∗ : HT (X
T (a))

∼=
−→ HT (X

T (b))

becomes an isomorphism of (analytic) sheaves.

Proof. We check the statement on stalks. Let γ ∈ log(U −a). We claim that we have an equality
of simultaneous fixed point sets

XT (a) ∩XT (γ) = XT (b) ∩XT (γ).

The statement then follows from (2) with γ in the role of a. To prove the non-trivial direction
of the claim, let c = exp(γ). Then a+ c is an element of Ub, and we obtain

XT (a) ∩XT (γ) = XT (a) ∩XT (c) ⊆ XT (a+c) ⊆ XT (b).

The inclusion in the middle may be checked on orbits T/T ′ ⊆ X, where it follows immediately
from the definition of T (−). ✷

Now let γ := log(a − b). Similarly to the proof of the lemma, one argues that T (γ) fixes
XT (b). As in (3), we obtain an isomorphism

φ: (τγ)∗HT (X
T (b)) ∼= HT (X

T (b)),

and hence of the corresponding analytic sheaves. Finally, we have

τb ◦ exp ◦ τγ = τa ◦ exp.

The desired glueing isomorphism is the composite

(τb exp)∗(φ) ◦ (τa exp)∗(i
∗).

To define the algebraic theory E llT (−), we use Serre’s GAGA result.

4 This is possible by [Roş03, 2.5].
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Theorem 3.4 [Ser56]. Let X be a projective algebraic variety over C, let Xh be its underlying
analytic variety and let Cohalg(X) and Cohan(X

h) be the categories of coherent algebraic
(respectively analytic) sheaves over X. Then the functor

Cohalg(X) −→ Cohan(X
h)

F 7−→ Fh

is an equivalence of categories.

3.4 Compact connected Lie groups
Let G be a compact connected Lie group with maximal torus T and Weyl group W . Then FG
takes values over the scheme

AG = AT /W and FG(X) = FT (X)W

is the sheaf of W -invariant sections. In the elliptic case, these are to be taken as the definition
of MG and E llG.

4. Moment graphs

Moment graphs provide a powerful tool for calculations. Their application to flag varieties and
Schubert calculus has a long history, dating back to the work of Kostant, Bernstein–Gelfand–
Gelfand, Lascoux–Schützenberger, Kostant–Kumar and others. Let T be a compact torus and
X a compact T -manifold. Let

i: XT −→ X

be the inclusion of the fixed points in X. For a subtorus T ′ of T , this factors through the inclusion

iT ′ : XT −→ XT ′

.

Recall that the equivariant 1-skeleton X1 of X is defined as the set of all points in X whose orbit
is at most one-dimensional. The following theorem was proved for cohomology by Goresky et al.
[GKM98]. Knutsen and Roşu later generalized it to K-theory and elliptic cohomology [Roş03].
Further generalizations appear in [HHH05].

Theorem 4.1 (Localization theorem). Assume that HT (X) is free over HT and that X1 consists
of a finite number of representation spheres Sλ, meeting only at the fixed points. Then the map

i∗ : FT (X) −→ FT (X
T )

is injective, and its image is equal to

Im(i∗) =
⋂

T ′

Im(i∗T ′), (5)

where the intersection runs over all subgroups of codimension 1 in T .

The data determining the right-hand side of (5) are recorded in the ‘moment graph’ of X.

Definition 4.2. In the situation of the theorem, the moment graph Γ of X has vertices indexed
by the fixed points of X and an oriented edge with label λ ∈ Λ from x1 to x2 for each Sλ ⊆ X1,
containing x1 as 0 and x2 as ∞.
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Corollary 4.3 (of Theorem 4.1 and Corollary 2.1). In the situation of the theorem, FT (X) is

described by the following equalizer diagram.

FT (X) −→
⊕

v

OAT

⊕

(e,λ)

OAKλ

Here Kλ = ker(e2πiλ), the first sum is over the vertices, the second sum is over the edges of the

moment graph, and the two arrows are defined in the obvious manner.

This formulation of the theory can be found in the paragraph before (1.3) in [GKM98, p. 27].

Example 4.4 (Partial flag varieties). Let H ⊆ G be compact connected Lie groups of equal rank.
Let T ⊆ H be a maximal torus (of both). Let WG be the Weyl group of G. Then the Weyl group
of H can be identified with a subgroup WH ⊆ WG. Fix a set of positive roots R+ of G. For
α ∈ R+, let sα ∈ WG be the corresponding reflection. The following description of the moment
graph of G/H can be found in [Tym09, Theorem 3.1]: we have a bijection

WG/WH −→ (G/H)T

wWH 7−→ wH.

Writing [w] for the vertex corresponding to the left-coset wWH , we have an edge labeled α

from [w] to [sαw] whenever α ∈ R+ is such that w−1(α) < 0 is not a root of H. (For the

explicit calculations in [GR1] and [GR2], it turned out to be convenient to relabel the vertices

by exchanging w with w−1, but in the paper at hand, we will follow Tymoczko’s conventions.)

Often the groups Kα = ker(e2πiα), turning up as the stabilizers of one-dimensional orbits in

G/H, have an interpretation as fixed points.

Lemma 4.5. Let G be a compact connected Lie group with maximal torus T and Weyl group

W . Let α be a root of G. Then the action of sα on T leaves the elements of Kα fixed. If π1(G)

is torsion free then the inclusion

Kα ⊆ T sα

is an equality.

Proof. The first claim is [BT85, V.(2.9)(iii)]. Recall from [BT85, V.(7.1)] that

π1(G) = Λ∨/Γ,

where

Λ∨ = ker(exp) ⊆ t

and Γ is the sublattice generated by the coroots. Let x ∈ t be such that exp(x) is fixed under sα.

Then

α(x)α̌ = x− sα(x)

is an element of Λ∨. Since Λ∨/Γ is torsion free, it follows that α(x) is an integer. Hence e2πiα(x) = 1,

and we have proved

exp(x) ∈ Kα. ✷
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4.1 The scheme XAG

The sheaf FG(X) is a sheaf of commutative algebras over AG. Following [GKV95, (1.7.4)], we
let XAG

be the spectrum of FG(X). This is a scheme over AG. The assignment

X 7−→ XAG

is covariantly functorial in X. We have ptAG
= AG. Writing π : X → pt for the unique map from

X to the one point space, the map

πAG
: XAG

−→ AG

is the structure morphism. In other words, XAG
is determined by the fact that

(πAG
)∗OXAG

∼= FG(X).

4.2 Partial flag varieties
Let H ⊆ G be compact, connected Lie groups of equal rank, let T ⊆ H be a maximal torus, WG

the Weyl group of T in G.

Theorem 4.6. Assume that π1(G) is torsion free. Then we have a WG-equivariant epimorphism
of schemes over AT

ϕ: (G/H)AT
−→ AT ×AG

AH ,

inducing an isomorphism of schemes over AG

(G/H)AG
∼= AH .

In the case of ordinary cohomology, the assumption that π1(G) is torsion free is not needed.

Proof of Theorem 4.6.. With the notation as in Example 4.4, we write

F := WG/WH

for the set of vertices in the moment graph. Consider the map

ϕ:
∐

[w]∈F

AT −→ AT ×AG
AH

([w], a) 7−→ (a, [w−1a]).

Let WG act on the source of ϕ by

v · ([w], a) = ([vw], va),

and on the target by its usual action on the first factor. Then ϕ is WG-equivariant. By
Corollary 4.3 and Example 4.4, we have a coequalizer diagram

∐

[w],α

AKα

∐

[w]∈F

AT −→ (G/H)AT

([w], α, a) 7−→ ([w], a)

([w], α, a) 7−→ ([sαw], a)

where the first coproduct runs over the edges of the moment graph. Both maps on the left are
WG-equivariant with respect to the action

v · ([w], α, a) = ([vw], v(α), va)
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on their source. The universal property of coequalizer yields a WG-equivariant map

ϕ: (G/H)AT
−→ AT ×AG

AH ,

which is easily seen to be an epimorphism. Note that we have identified ϕ with Ai, where i is
the inclusion of the T -fixed points F in G/H. To obtain the promised map of schemes over AG,
we quotient by the action of WG. It remains to prove injectivity of ϕ/WG. We have

ϕ([w], a) = ϕ([v], b) ⇐⇒ a = b and [w−1a] = [v−1a].

In the source of ϕ, we have made the, a priori finer, identifications

([w], a) ∼ ([sαw], a) : ⇐⇒ sαa = a. (6)

Here we have used Lemma 4.5, which is why we need the assumption that π1(G) be torsion free.
In many cases (6) is sufficient to imply injectivity of ϕ, but we will see an example where this
fails. Assume now that [w−1a] = [v−1a]. Then there is an element u ∈ WH with

w−1a = uv−1a.

In (G/H)AG
we have

([w], a) ∼ ([1], w−1a) = ([1], uv−1a) ∼ ([vu−1], a) = ([v], a).

Hence ϕ/WG is an isomorphism, as claimed. ✷

We now ask when the map ϕ of the theorem is injective.

Lemma 4.7. Let w ∈ WG and let Twc be a connected component of the subgroup of w-fixed
points in T . Then we can write w as a word

w = sα1 · · · sαl

in (not necessarily simple) reflections such that

Twc ⊆ T sα1 ∩ · · · ∩ T sαl .

Proof. Choose t ∈ Twc with Twc ⊆ 〈t〉. Let ZG(t) be the centralizer of t in G. This is a connected
closed subgroup of full rank. Its Weyl group WZ may be viewed as a reflection subgroup of WG.
All elements of WZ fix t and hence Twc . Since w ∈WZ , we can write w as a word in the reflections
generating WZ . ✷

The following example shows that the sαj in Lemma 4.7 can not always be chosen
independently of the connected component.

Example 4.8. Let G = G2, and consider the element w ∈ W acting by (−)−1 on T . Then
Tw = T [2] has four elements. For each non-trivial element of t ∈ Tw there is a different, unique
pair of reflections sαt , sβt ∈ W fixing t. For each such pair, w = sαtsβt .

Corollary 4.9 of Lemma 4.7. In the situation of the lemma, we have

twC = t
sα1
C

∩ · · · ∩ t
sαl
C

and
(TwC )c ⊆ T

sα1
C

∩ · · · ∩ T
sαl
C

.

1207

https://doi.org/10.1112/S0010437X1300777X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1300777X


N. Ganter

Corollary 4.10. For cohomology and K-theory, the map ϕ of Theorem 4.6 is an isomorphism.

If the centralizers of commuting pairs in G are connected, then ϕ is also an isomorphism in

elliptic cohomology.

On global sections, ϕ gives the familiar isomorphisms

HT ⊗HG
HH

∼= HT (G/H),

studied by Borel, Demazure and others, and

R(T )⊗R(G) R(H) ∼= KT (G/H)

[McL79].

Remark 4.11. The condition that the centralizers of commuting pairs be connected, should be

compared to [Gro07, 3.2].

Example 4.12. Let G = U(n). Then all the groups Tw are, in fact, connected, so that the word

in Lemma 4.7 depends only on w, so that the map ϕ of the theorem is also an isomorphism in

the elliptic case.

5. The Ginzburg–Kapranov–Vasserot characteristic class

5.1 Properties of XAG

We are now ready to discuss some basic properties of the scheme XAG
introduced in § 4.1. In

the cases of cohomology and K-theory, these are well known. In the elliptic case, they were

conjectured in [GKV95]. While the elliptic case in its full generality remains conjectural, we will

prove the special cases relevant to us.

Change of groups. Let φ: H → G be a map of groups, and let X be a finite G-CW-complex.

Then we have the following commuting square.

XAH
//

πAH

��

XAG

πAG

��
AH

Aφ

// AG

We write XAφ
for the top map. The assignment (−)Aφ

is natural in X.

Induction axiom. Let K ⊳ G be a normal subgroup, and let X be a G-space such that the

action of K on X is free. Write p: X → K\X and φ: G → G/K for the quotient maps. Then we

have a commuting square, natural in the space X,

XAG

∼

��

(K\X)AG/K

��
AG

Aφ

// AG/K

where the vertical maps are the respective structure maps, and the top map is (K\X)Aφ
◦ pAG

.
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Homogeneous spaces. Let j : H →֒ G be the inclusion of a closed subgroup. Let ι: pt → G/H
denote the inclusion of the point 1H. Then we have an isomorphism

IGH : (G/H)AG
∼= AH ,

fitting into the following commuting diagram.

(G/H)AH
(G/H)Aj

xx
(G/H)AG

πAG ''

∼

IGH
AH

ιAH

dd

Ajyy
AG

Künneth. For a G-space X and an H-space Y , we have a commuting square, natural in all
ingredients,

(X × Y )AG×H

∼

��

XAG
× YAH

��
AG×H

∼
AG ×AH

whenever the corners are defined. In the special case that G = H = T is a compact torus, we
have an isomorphism over AT

(X × Y )AT
∼= XAT

×AT
YAT

.

Each of these properties can be reformulated in terms of the sheaves FG(X), where the
obvious generalization for pairs can be stated (see [GKV95]). The last property that we need is
stated most naturally in terms of the reduced theory.

Odd coefficients. Let ̺ be an odd-dimensional orthogonal representation of G. Then F̃G
vanishes on the corresponding representation sphere

F̃G(S
̺) = {0}.

For elliptic cohomology, the change of groups property, the Künneth property and the vanishing
of the odd coefficients follow immediately from the construction of E llG and the corresponding
properties of HG.

Proposition 5.1. Assuming the change of groups and Künneth properties, the homogeneous
spaces property and the induction axiom are equivalent.

Proof. It is shown in [GKV95, (1.7.5)] that the induction axiom implies the homogeneous spaces
property. The other direction is proved by cellular induction: if K acts freely on the orbit G/H
then the composite

H →֒ G→ K\G

is still injective, and we have

(K\G/H)Aφ
◦ pAG

◦ IGH = I
K\G
H .

Hence (K\G/H)Aφ
◦ pAG

is an isomorphism. ✷
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We saw in (1) that the homogeneous spaces property holds if G is a compact torus. It follows
that the induction axiom holds for the inclusion H ⊆ T of any closed subgroup of a compact
torus. In particular, GAT

= (T\G)A1 , and hence

GAG
= spec(C). (7)

Further, we saw in Theorem 4.6 that the homogeneous spaces property holds if H ⊆ G are
compact and connected of equal rank and π1(G) is torsion free.

Proposition 5.2. Let G and K be compact connected Lie groups. Then the induction axiom
holds for the inclusion

K ⊳ G×K.

Proof. Write T and T ′ for the maximal tori of G and K. Using Künneth, (1) and (7), we see
that the homogeneous spaces property holds for any inclusion of the form

j × 1: H × {1} −→ TG ×K.

The case G = TG now follows from the proof of Proposition 5.1. In the general case, we have

XAG×K
∼= (XAT×T ′ )/(WG ×WK)
∼= (XAT×K

)/WG

∼= ((K\X)AT
)/WG

∼= (K\X)AG
.

This completes the proof. ✷

5.2 Classifying maps
Let X be a compact G-manifold, and let

ξ : P −→ X

be a G-equivariant principal K-bundle on X. We make the convention that both groups act from
the left and that the actions commute.

Write G⋉X for the translation groupoid with objects X, arrows

x
g

−−→ gx

and composition given by composition in G. Similarly, we have the translation groupoids
(G×K)⋉ P and K ⋉ pt.

Definition 5.3. The classifying map of ξ is the generalized map of Lie groupoids

fξ : G⋉X
≃

←−−−−−− (G×K)⋉ P −−−−−→ K ⋉ pt .

Definition 5.4. The universal principal K-bundle is the K-equivariant principal bundle

ξuniv : K ⋉K −→ K ⋉ pt,

where the two left-actions of K are as follows: as an K-equivariant space, K carries the action
of K on itself by left-multiplication. It is a principal K-bundle over the one point space via the
action (k1, k2) 7→ k2k

−1
1 .
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The nomenclature is justified by the following lemma, which follows directly from the
definitions.

Lemma 5.5. We have an isomorphism

f∗
ξ (ξuniv)

∼= ξ.

More can be said here: the assignment

ξ 7−→ fξ

wants to be an equivalence from the category of principal K-bundles over G⋉X to the category
of generalized maps (i.e., zig-zags like the one in Definition 5.3), and in fact, the former has been
used to define the latter, see [HS87] and [Ler10].

Corollary 5.6. In the situation of Definition 5.3, assume that G is trivial. Then the Borel
construction functor, applied to fξ, returns the zig-zag

X
≃
←−− EK ×K P −−−−−→ BK.

Choosing a homotopy inverse to the first map, we obtain the more familiar classifying map from
X to the classifying space of K.

Proof. This follows, since Borel construction commutes with pull-backs. ✷

Example 5.7 (Representations). Let ̺: G → U(n) be a complex representation of G, and let ξn
be the universal principal U(n)-bundle as in Definition 5.4. Consider the action of G on U(n)
by left-multiplication with ̺(g). This makes ξn into a G-equivariant principal U(n)-bundle over
the one point space. The equivalence

G⋉ pt
≃
←− (G× U(n))⋉ U(n)

of Definition 5.3 has the quasi-inverse

g 7−→ (g, ̺(g)) ∈ Stab(1).

Hence the classifying map fξn is equivalent to

̺: G⋉ pt −→ U(n)⋉ pt.

Example 5.8 (The splitting principle). Assume that K is a compact connected Lie group and
i: T →֒ K the inclusion of its maximal torus. Then ξ may be factored as the composite

ξ : P
ζ

−−→ T\P
q

−→ X,

where ζ is the quotient map by the T -action. So, ζ is a principal T -bundle, while the fiber of q
is the flag variety T\K. Over the total space T\P of this flag bundle, the structure group of ξ
can be reduced to T . Let

ζ[K]: K ×T P −→ T\P

be the principal K-bundle obtained from ζ by associating the fiber K. Then

q∗(ξ) ∼= ζ[K].

This fact is known as the splitting principle.
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In terms of classifying maps, the splitting principle amounts to the commutativity of the
following diagram.

fζ : G⋉ (T\P )

q

��

(G× T )⋉ P
≃oo //

��

T ⋉ pt

i

��
fξ : G⋉X (G×K)⋉ P

≃oo // K ⋉ pt

Definition 5.9 (Compare [GKV95, (1.8)]). Let ξ : P → X be a G-equivariant principal K-
bundle with classifying map fξ. Then Proposition 5.2 yields a map of schemes

cξ : XAG
PG×K

// AK .

We will refer to cξ as the Ginzburg–Kapranov–Vasserot characteristic class of ξ.

6. Thom sheaves

The idea of the Thom sheaf goes all the way back to Grojnowski. We thank the referee for
pointing out that the material of this section has substantial overlap with the discussion of
Thom sheaves in [AHS04], see also [And03].

Let ξ : V → X be a G-equivariant complex vector bundle. We will write Xξ for the Thom
space of ξ and z : X+ →֒ Xξ for the zero section. Applying the reduced theory, we obtain a
locally free rank one5 module sheaf F̃G(X

ξ) over FG(X).

Definition 6.1. The Thom sheaf of ξ is the line bundle L
ξ
G over XAG

characterized (up to
isomorphism) by

πAG∗(L
ξ
G)

−1 ∼= F̃G(X
ξ).

Note that our convention differs from that in [GKV95, 2.1], where the inverse of LξG is referred
to as the Thom sheaf. The Euler map is the map

ηξG : OXAG
−→ L

ξ
G

induced by the zero section z : X → Xξ (compare [GKV95, (2.6)]). If the group G is understood,
we drop it from the notation.

6.1 Properties of the Thom sheaf
The following properties of the Thom sheaf are reformulations of well-known facts about Thom
classes in cohomology and K-theory. We deduce the elliptic case, whenever the groups involved
have been defined.

Naturality. Let f : X → Y be a G-equivariant map, and let ξ be a complex G-vector bundle
over Y . Then we have the following commuting diagram of sheaves over XAG

.

OXAG
f∗AG

ηξ

||

ηf
∗ξ

##

L
f∗ξ
G

∼
f∗
AG

L
ξ
G

5 For cohomology and K-theory this is a classical result. In the elliptic case it is an immediate consequence
of [Gro07, 2.6] and the W -equivariance of the cohomology Thom isomorphism.
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Proof. The map

F̃G(f
ξ): F̃G(Y

ξ) −→ F̃G(X
f∗ξ)

is a map of FG(Y )-module sheaves. Hence it corresponds to a map

(Lξ)−1 −→ fAG∗(L
f∗ξ)−1,

whose adjoint

f∗
AG

(Lξ)−1 −→ (Lf
∗ξ)−1

is an isomorphism. In the elliptic case, the last statement follows from [Gro07, 2.6] and the

W -equivariance of the Thom isomorphism in cohomology. ✷

Change of groups. Let φ: H → G be a map of Lie groups, and let ξ : V → X be aG-equivariant

complex vector bundle. Then we have the following commuting diagram of sheaves over XAH
.

OXAH

ηξH

}}

A∗
φη

ξ
G

$$

L
ξ
H

∼
X∗
Aφ

L
ξ
G

Proof. Consider the map of locally free rank one FH(X) module sheaves

FH(X)⊗A∗
φFG(X) A

∗
φF̃G(X

ξ) −→ F̃H(X
ξ).

For [a] ∈ AH , we have an equality of fixed point sets

XT (a) = XT (φ(a)).

Hence [Gro07, 2.6] implies that the above map is an isomorphism at the stalk [a]. ✷

Induction. Assume that the induction axiom holds for the inclusion of a normal subgroup

K ⊳ G and that X is a G-complex on which the action of K is free. Then the change of groups

isomorphism XAG
∼= (K\X)AK

is covered by an isomorphism of line bundles identifying L
ξ
G with

L
K\ξ
G/K and ηξG with η

K\ξ
G/K .

Multiplicativity. Given equivariant complex vector bundles ξ over a G-space X and ζ over an

H-space Y , the Künneth isomorphism (X×Y )AG×H
∼= XAG

×YAH
is covered by an isomorphism

of line bundles identifying L
ξ⊕ζ
G×H with the external tensor product L

ξ
G ⊗ L

ζ
H and ηξ⊕ζG×H with

ηξG ⊗ ηζH . In the special case where G = H, we get the following commuting square of sheaves

over AG.

OXAG

ηξ⊕ζ
G

||

ηξG⊗ηζG

&&

L
ξ⊕ζ
G

∼
L
ξ
G ⊗OAG

L
ζ
G
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Proof. The induction and (external) multiplicativity properties follow directly from the induction
axiom and the Künneth property of FG in their formulation for pairs. The internal Künneth for
L
ξ⊕ζ
T follows from the external Künneth and the change of groups property. ✷

Universal bundles. The Thom sheaf of the universal complex line bundle ξ1 over pt (compare
Definition 5.4) is the line bundle

L
ξ1
U(1)

∼= L(0)

of the divisor (0) on AU(1). Recall that AU(1) equals C or C×, in which case we replace 0 by 1,
or C/〈τ, 1〉. The Euler map of ξ1 is the canonical inclusion

OAU(1)
−→ L(0).

Consider the universal complex n-vector bundle ξn over pt. Let T be the maximal torus of
U(n). Then

L
ξn
T

∼=

n⊗

i=1

p∗iL(0)

where

pi : A
n
U(1) −→ AU(1)

is the projection to the ith factor. This is the line bundle associated to the divisor

n∑

t=i

ker(pi),

and the Euler map ηT (ξ) is its canonical inclusion of OAn
U(1)

inside it. The U(n)-equivariant
Thom sheaf and Euler map are obtained by taking the Sn-invariant parts of LT and ηT . We will
write ηn for the nth universal Euler map.

The following result, which determines all Thom sheaves up to isomorphism, follows
immediately from the list of properties above.

Theorem 6.2. Let ξ : V → X be a G-equivariant vector bundle, and let cξ be its Ginzburg–
Kapranov–Vasserot characteristic class (c.f. Definition 5.9). Then we have the following
commuting square.

OXAG

η(ξ)
��

cξ
∗OAn

U(1)
/Sn

c∗ξ(ηn)

��
L
ξ
G

∼
cξ

∗Lξn

Example 6.3. Let λ 6= 0 be a weight of T , and let j : Kλ →֒ T be the kernel of e2πiλ. Consider
the T -equivariant line bundle ξλ : Cλ → pt. By Example 5.7, we have a short exact sequence

AKλ

Aj
−−→ AT

cξλ
−−−→ A.

Hence the Thom sheaf of ξλ is

Lξλ ∼= L(AKλ
),

the line bundle on AT associated to the divisor Aj .
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Example 6.4. Let ̺: G → U(n) be a complex representation, viewed as a G-equivariant complex
vector bundle over the one point space. By Example 5.7, we have an isomorphism

L
̺
G
∼= A∗

̺L
ξn
U(n)

of sheaves over AG.

Example 6.5. If ̺: G → U(1) is the one-dimensional trivial representation, then A̺ factors
through the inclusion of zero i0 : A1 → AU(1). Hence

F̃1(S
2) ∼= i∗0I(0)

is identified with the sheaf of invariant differentials on AU(1),

ω := I(0)/I(0)2|0.

Writing ω also for its pull-back to AG, we obtain

F̃G(S
2n) ∼= ω⊗n.

This shows that the periodicity axiom (1.5.5) in [GKV95] is, in part, redundant. We will come
back to this in § 6.2.

Example 6.6. Let
χ̺ = e2πiλ1 + · · ·+ e2πiλn

be the character of ̺, with λk ∈ Λ\{0} for all k. By Example 6.3, we may identify the G-
equivariant Thom sheaf L̺G over AT /W with the sheaf of Sn-invariant sections of

n⊗

i=0

L(AKλi
).

Corollary 6.7. Let ̺: T → U(n) be a complex representation of T with character

χ̺ = e2πiλ1 + · · ·+ e2πiλn,

λi 6= 0, and write S2n−1
̺ for its unit sphere inside Cn. Then we have an isomorphism

(S2n−1
̺ )AT

∼=

n⋂

i=1

AKλi
,

where the right-hand side stands for the scheme theoretic intersection over AT .

Proof. We have a cofiber sequence

(S2n−1
̺ )+ −→ S0 −→ S̺,

whose second map is the zero section z in the definition of η̺T . Applying F̃T , we obtain the short
exact sequence

n⊗

i=1

I(AKλi
) −→ OAT

−→ FT (S
2n−1
̺ ),

where the first map is the canonical inclusion. ✷
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Example 6.8. Consider the representation

kξ1 := ξ1 ⊕ · · · ⊕ ξ1

of U(1). Then
(S2k−1
kξ1

)AU(1)
= (0)[k]

is the kth infinitesimal neighbourhood of 0 inside AU(1).

We are now in a position to give the promised proof of the completion theorem from the
formal properties of XAT

.
Proof of Theorem 3.1. We follow the outline in [GKV95, (1.7.2)]. Writing T as the product

of r copies of U(1), we may build ET from the equivariant skeleta

ET (2k−1) := S2k−1
kξ1

× · · · × S2k−1
kξ1

,

where the notation is as in the last example. The induction axiom gives the following commuting
diagram.

(ET (2k−1) ×T X)A1

∼

��

(ET (2k−1) ×X)AT

��
A1 AToo

A combination of the internal and external Künneth properties, together with the last example,
yields an isomorphism of schemes over AT

(ET (2k−1) ×X)AT
∼=

( r∏

j=1

(0)[k]
)
×AT

XAT
.

Letting k vary, the right-hand side becomes an ind-scheme over A1, isomorphic to the formal
completion (XAT

)̂0.

6.2 RO(G)-grading and periodicity
We are now ready to define the full theory E ll∗G(−), graded by the set of orthogonal
representations contained in an indexing universe and their formal differences (see [May96, p. 154]
and [Lur]). For any such universe, there is a cofinal system of representations of the form

̺: G −→ U(n) −→ O(2n).

Hence it suffices to define the groups

Ẽ ll
̺−σ

G (X) := L̺ ⊗OMG
Ẽ ll

0

G(S
σ ∧X),

where ̺ is as above and σ is in our universe. The resulting theory satisfies the axioms of a
sheaf-valued RO(G)-graded cohomology theory: E llG is a contravariant functor of X and σ and
a covariant functor of ̺. Each E ll̺−σG (−) is exact on cofiber sequences and sends wedges to
products. There are suspension isomorphisms

s̺ : Ẽ ll
∗+̺

G (S̺ ∧X)
∼=
−→ Ẽ ll

∗

G(X),

natural in X and the orthogonal representation ̺, and satisfying

s̺⊕σ = sσ ◦ s̺.
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Remark 6.9. These axioms are immediate from the definitions. Note that exactness is checked
on stalks, and we cannot expect sections over an open Γ(U, E ll∗G(−)) to be exact. In other words,
a sheaf-valued cohomology theory is not the same thing as a sheaf of cohomology theories.
The latter has an extensive literature beyond [Lur], for example the work of Hopins et al. on
topological modular forms, but it will not play a role here.

The theory of Thom sheaves is extended to virtual equivariant complex vector bundles, and
we set

E ll∗+ξG (X) := Ẽ ll
∗

G(X
−ξ).

Finally, we have periodicity isomorphisms

Ẽ ll
∗

G(S
̺ ∧X) ∼= L−̺ ⊗EllG Ẽ ll

∗

G(X)

∼= Ẽ ll
∗−̺

G ⊗Ell∗G
Ẽ ll

∗

G(X)

for complex representations ̺.

6.3 The Looijenga line bundle and twisted coefficients
I learned a lot of the material in this section from Matthew Ando. Let G be a simple and
simply connected compact Lie group, and let ̺ be a representation of G. In [And03], Ando
defines equivariant elliptic cohomology with twisted coefficients, where the twist comes from
a degree four characteristic class of G. We recall some facts about such classes, see [And03,
§ 5.2] and [KN97, KNR94]. For a lattice Λ with dual Λ∨, we consider the group of homogeneous
polynomials of degree 2 in Λ,

S2
Z(Λ) = (Λ⊗ Λ)/S2

(second symmetric power) and its dual, the group of symmetric bilinear forms on Λ,

B(Λ,Z) = HomZ(S
2
Z(Λ),Z) = (Λ∨ ⊗ Λ∨)S2 ,

(second divided power of Λ∨). The latter is the target of the universal quadratic map out of Λ∨,

γ2 : Λ
∨ −→ (Λ∨ ⊗ Λ∨)S2

x 7−→ x⊗ x

(see [And03, 5.2]). Hence its dual is canonically identified with the group of quadratic forms on
Λ∨. To be specific, the isomorphism

S2
Z(Λ) −→ Q(Λ∨,Z) (8)

sends the monomial λµ to the quadratic form

x 7−→ λ(x)µ(x).

Lemma 6.10. The shuffle product

s: S2
Z(Λ) −→ B(Λ∨,Z)

λµ 7−→ λ⊗ µ+ µ⊗ λ

is injective. Its image consists of the bilinear forms satisfying

I(x, x) ∈ 2Z (9)

for all x ∈ Λ∨.
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Proof. The isomorphism (8) identifies s with the map

Q(Λ∨,Z) −→ B(Λ∨,Z)

sending the quadratic form φ to the bilinear form

I(x, y) = φ(x+ y)− φ(x)− φ(y). ✷

If T is a torus with weight lattice Λ, then we have a canonical isomorphism

H∗(BT ;Z) = S∗
Z(Λ).

So, elements of H4(BT ;Z) may be viewed as bilinear forms on Λ∨ satisfying (9). Now let G be
a simple and simply connected compact Lie group with highest root α̃. Let

iα̃ : SU2(α̃) →֒ G

be the inclusion of the copy of SU(2) inside G corresponding to α̃. Then iα̃ generates6

π3(G) ∼= Z,

and this is the first non-trivial homotopy group of G. As a consequence, one obtains a canonical
isomorphism H3(G;Z) = Z, and an isomorphism

τ : H3(G;Z)
∼=

−−→ H4(BG;Z)

(transgression in the Leray–Serre spectral sequence for EG). Further, one has an integral
Chevalley Restriction Theorem in degree four.

Lemma 6.11. For a simple and simply connected compact Lie group G, the restriction map

r : H4(BG;Z) −→ H4(BT ;Z)W

is an isomorphism.

Proof. This follows from the proof of Proposition 29.2(b) in [Bor53] combined with the fact that
G/T is without torsion [Bot54]. Alternatively, establish that the target of r is infinite cyclic (e.g.,
by the real Chevalley restriction theorem), and use the commuting square

H4(BG;Z)
r //

i∗α̃

H4(BT ;Z)W

(α̃ )̌∗

H4(B SU(2);Z)
r // H4(BS1;Z)S2

to reduce to the case of SU(2). There, the claim holds by [Bor53, Proposition 29.2(b)]; in fact,
r is just the pull-back along the S2-fibration

HP∞ −→ CP∞.

Here α̃ˇis the short coroot dual to α̃, and we have used that the smallest positive definite element
Imin of B(Λ∨,Z) is characterized by Imin(α̃ ,̌ α̃ )̌ = 2, see for instance [Loo77]. ✷

6 The isomorphism π3(G) ∼= Z is due to Borel for the classical groups and a famous application of Bott–Morse
theory in the general case [Bot54]. A detailed exposition of this result can be found in [MT91]. The fact that iα̃

is a generator is [BS58, Proposition 10.2.(A)].
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The inverse of r ◦ τ sends the invariant bilinear form

I ∈ B(Λ∨,Z)W ⊂ S2(t)W ∼= S2(g)ad,

to the Cartan 3-form
ωI(x, y, z) = I([x, y], z).

Indeed, ωI defines an element of

H3(G;Z) ⊆ H3
dR(G;R) = H3(g)

if and only if I satisfies (9) [PS86, Proposition 4.4.5].

Example 6.12. If the representation ̺ has character

e2πiλ1 + · · ·+ e2πiλn

then the first Pontryagin class of ̺ is

p1(̺) =

n∑

k=1

λ2
k.

This corresponds to the bilinear form

2

n∑

k=1

λk ⊗ λk

on Λ∨. If G is simply connected, then ̺ admits a spin structure. In that case, one half of this
form still satisfies (9). The corresponding cohomology class of BG is called (p1/2)(̺).

Example 6.13. Let ̺ad be the adjoint representation of a simply connected group G. Then the
class p1(̺ad) corresponds to the canonical form

B =
∑

α∈R

α⊗ α,

and (p1/2)(̺ad) corresponds to 1

2
B =

∑

α∈R+

α⊗ α

(sum over the positive roots).

Definition 6.14 ([Dyn52, § 2] or [KN97, (4.1)]). The Dynkin index of a homomorphism

ϕ: G −→ H

between simple and simply connected compact Lie groups is the degree of the map

Z = π3(G)
ϕ∗

−−→ π3(H) = Z.

Equivalently, the Dynkin index of ϕ may be defined as the degree of the map

ϕ∗ : H4(BH;Z) −→ H4(BG;Z)

or a ratio of bilinear forms.
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Definition 6.15. Let G be a simple and simply connected compact Lie group. Then the dual
Coxeter number of G is the integer

g :=
p1
2
(̺ad) =

−c2(̺
C
ad)

2

in H4(BG;Z) = Z.

In other words, g is defined by the identity

2gImin = B,

where Imin is the minimal positive definite and W -invariant bilinear form on Λ∨ satisfying (9).
The Dynkin index of

̺Cad : G −→ SU(gC)

equals 2g (see [KN97]), and for dim(G) > 5, the Dynkin index of

̺ad : G −→ Spin(g)

equals g. The last statement follows from the fact that p1/2 generates H4(BSpin(n);Z) for n > 5,
see [McL92, Lemma 2.2].

Example 6.16. The dual Coxeter number of Spin(3) equals 2.

Definition 6.17. Let I be a positive definite symmetric bilinear form on Λ∨, and assume that
I satisfies (9). Then the Looijenga line bundle associated to I is the invertible sheaf LI on Mh

T

with sections
LI(U) = {f ∈ ΓOh

y−1U | f(qxz) = q−
1
2
I(x,x)z−I

♯(x)f(z)}.

Here x ∈ Λ∨, and qx stands for the image of τx under exp: tC → TC, while

y : TC → MT

is the quotient map. So, if T = U(1), then qx = e2πiτx.

A generalization of Definition 6.17 can be found in an older, unpublished version of [And03],
where Ando credits Hopkins and the referee: let E be an elliptic curve, and consider the following
diagram.

B(Λ∨,Z)

∃!L

''
Λ

γ2
;;

λ 7→ (λ⊗id)∗[L(0)]
// Pic(Λ∨ ⊗ E)

The theorem of the cube implies that the bottom map is quadratic. Hence the dotted map exists
by the universal property of γ2. Note that this generalized construction only determines [LI ] up
to isomorphism.

Ando has used the constructions described in this section to consider equivariant elliptic
cohomology with twisted coefficients, where the twist comes from an element of H4(BG;Z).

7. Euler classes

Since the elliptic Thom sheaves are in general non-trivial, the notion of Euler class does not have
an immediate generalization to elliptic cohomology, and different authors make different choices
on this matter, see [And03, 5.3], [GKV95, (2.6)] and [Roş01, p. 10].
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7.1 Thom isomorphisms
Let ξ1 be the universal complex line bundle of Definition 5.4, and recall that its Thom sheaf is
the invertible sheaf

L
ξ1
U(1)

∼= L(0)

over AU(1). For the additive or multiplicative group this divisor is principal:

(0) = div(x) on C and

(1) = div(1− z) on C×.

The universal Euler classes in cohomology and K-theory are the functions

e(ξ1) =

{
x on C and

(1− z) on C×,

and the universal Thom isomorphisms are

ϑ : OAU(1)

∼=
−→ L(0)

f 7−→
f

e(ξ1)
(replace (0) by (1) for K-theory). As a consequence, all Thom sheaves in these theories are
trivialized, and the theories possess Chern classes for complex vector bundles.

We will be particularly interested in the case where the complex vector bundle ξ : V → X
comes equipped with a spin structure on the underlying real bundle.7

The Ginzburg–Kapranov–Vasserot characteristic class of a U [2] bundle ξ factors as

AU [2](n)

v

$$
XAG cξ

//

c̃ξ
::

AU(n)

where AU [2](n) is the pull-back in the following cartesian square.

AU [2](n)
u //

v

��

AU(1)

·2

��
AU(n) Adet

// AU(1)

Example 7.1. In the multiplicative case, a point in AU [2](n) consists of

(z1, . . . , zn) ∈ (C×)n/Sn

together with a choice of square root
(z1 · · · zn)

1
2 .

7 The existence (and choice) of such a spin structure is equivalent to the existence (and choice) of a square root
of the determinant bundle

det(V ) = Λtop(V ).

Manifolds with this kind of structure or, more generally, with a choice of Nth root of det(−τM ), played an
important role in the early constructions of elliptic cohomology, based on Hirzebruch’s level N -genera, see [Lan88,
Fra92, HBJ92]. Their cobordism ring is introduced in [Hoe91], where Höhn uses the terminology U-manifold with

N-structure. We will refer to U -bundles with 2-structure as U [2]-bundles.
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Definition 7.2. We write

L
ξn
U [2](n)

:= v∗LξnU(n)

for the universal Thom sheaf for n-dimensional complex bundles with spin structure.

In K-theory L
ξn
U [2](n)

is the target of the Atiyah–Bott–Shapiro Thom isomorphism

ϑABS : OA
U [2](n)

∼=
−→ L

ξn
U [2](n)

f 7−→
f

e′(ξn)
,

with

e′(ξn) = (z
1
2
1 − z

− 1
2

1 ) · · · (z
1
2
n − z

− 1
2

n ).

7.2 Theta functions and elliptic Euler classes

On the elliptic curve E = C/2πi〈τ, 1〉 the divisor (0) is no longer principal. In this case, the
Thom isomorphisms above are replaced by the theta function formalism.

Definition 7.3. We write

Θ̺ = ΓL(p1/2)(̺)

for the global sections of the Looijenga line bundle L(p1/2)(̺) and refer to elements of Θ̺ as
Looijenga theta functions (of level (p1/2)(̺)).

Definition 7.4. Let ̺: G → U [2](n) be a representation with character

e2πiλ1 + · · ·+ e2πiλn .

Then the elliptic Euler class of ̺ is the function on TC defined by

eell(̺) := (−1)n
n∏

i=1

σ(q, zλi),

where

σ(q, z) = (z
1
2 − z−

1
2 )

∏

n>1

(1− qnz)(1− qnz−1)

(1− qn)2

is the Weierstrass sigma function, and for z = exp(x) ∈ TC and λ ∈ Λ we are using the notation

zλ := e2πiλ(x).

In elliptic cohomology, the role of the Thom isomorphism is replaced by the isomorphism of
line bundles over MG

ϑ : LW(p1/2)(̺)
∼=

−→ L
̺
G

f 7−→
f

eell(̺)
.

Presumably, these notions generalize to yield a theta function description for the elliptic
Thom sheaf of any equivariant U [2](n)-bundle over a nice enough base (for instance, an
equivariantly formal space). We do not pursue this here.
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The discussion of this section can be summarized as follows: for simple and simply connected
G, we have a commuting diagram

R(G)
L //

��

Pic(Mh
G)

��
RO(G)

ẼllG(S(−)) //

p1/2 &&

PicW (Mh
T )

H4(BG;Z)

L

77

where L is the Ando–Looijenga construction (see Definition 6.17). It follows that, for such G, the
RO(G)-graded coefficients are contained in Ando’s picture of twisted coefficients. This diagram,
together with [BK05, Theorem 2.2], [BK05, § 3] and [KN97] also suggests the following conjecture.

Conjecture 7.5. If G is simple and simply connected, the Thom sheaf construction

L: R(G) −→ Pic(Mh
G)

agrees with the Kumar–Narasimhan–Ramanathan map, the protagonist of [BK05, KN97,
KNR94]. In particular, the map L is surjective, sections of the line bundle L(V ) have an
interpretation as conformal blocks, and the W -invariant sections of L2g

Lo form the dualizing sheaf
ωMG

.

We will come back to this at a different occasion.

7.3 The ring T̃ h
W

∗

Let G be a simple and simply connected compact Lie group with weight lattice Λ and Weyl
group W . In [Loo77], Looijenga considers two graded rings (see also [And00]).

(1) For a fixed complex elliptic curve E = C/〈τ, 1〉, the ring of Looijenga theta functions is

Θ∗ =
⊕

k>0

ΓLkLo,

where
LLo = L(Imin)

is the bundle denoted L−1 in [Loo77]. Elements of the kth summand Θk are referred to as
elements of level k. The ring Θ∗ is denoted S(E) in [Loo77].

(2) The ring of formal Looijenga theta series is the graded ring

T̃ h∗ ⊆ Z[T̂ ]((q)),

whose elements of level k > 0 are formal Laurent series

θ =
∑

n>m

∑

λ∈Λ

cλ,n e
λqn

satisfying, for all x ∈ Λ∨,
x∗θ = q−(k/2)I(x,x)e−kI

♯(x)θ.

Here I = Imin and x∗θ stands for θ with eλ replaced by eλqλ(x).
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Looijenga studies the W -invariant sections of Θ∗ via a graded map

T̃ h∗ −→ Θ∗,

[Loo77, § 4]. He gives an explicit basis of T̃ h∗ as a free Z((q))-module ([Loo77, (2.5)] see

Definition 8.5 below) and proves that T̃ h
W

∗ is a polynomial algebra over Z((q)). He then deduces
the analogous results for Θ∗, where Z((q)) is replaced by C. One could hope to interpret

homogeneous elements of T̃ h∗ as sections of Looijenga bundles [L(kImin)] for the Tate curve
Tate(q) over Z((q)), but we will not pursue this here.

Instead, let D× be the punctured open disk

D× = {z ∈ C | 0 < |z| < 1}.

Over D×, we have the analytic Tate curve

CTate = (C× × D×)/(z, q) ∼ (zq, q),

whose fiber at q is
Eq = C×/qZ,

and we have the family MG(CTate) whose fiber over q is the moduli spaceMG(Eq) of holomorphic
principal GC-bundles over Eq. Let LGC be the group of holomorphic loops

γ : C× −→ GC

and let LGC ⋊C×
rot be its rotation extension. Write ∼ for the conjugation relation.

Theorem 7.6 (Looijenga, unpublished). Assume that GC is connected. Then there is an
embedding

MG(CTate) →֒ (LGC ⋊C×
rot)/ ∼

whose image consists of the conjugacy classes [(γ, q)] with q ∈ D×.

Sketch of proof (following [BG96, Proposition 1.3]). Fix q ∈ D×. Any holomorphic principal
bundle over C×/qZ becomes trivial over C×. Hence it is isomorphic to a quotient

Pγ = (C× ×GC)/(z, g) ∼ (qz, γ(z)g),

with holomorphic ‘multiplier’
γ : C× −→ GC.

The bundles Pγ and Pβ are holomorphically isomorphic if and only if there exists a holomorphic
function f : C× −→ GC such that, for all z ∈ C×,

f(qz)γ(z)f(z)−1 = β(z). (10)

✷

Corollary 7.7. If G is simply connected, then the multipliers may be chosen as constant loops
with values in the maximal torus TC of GC, and

MG(Eq) ∼= (Λ∨ ⊗ Eq)/W

is the space we called Mh
G above.8

8 This should be compared to [FMW98, § 2].
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Proof. If G is simply connected, then LGC ⋊ C×
rot is connected, and its conjugacy classes with

|q| < 1 are identified with

MG(CTate) ∼= (TC × D×)/Waff

∼= ((TC × D×)/Ť )/W.

Here
Waff = Ť ⋊W

is the affine Weyl group, and an element γ of

Ť = Hom(C×, TC) ⊂ Waff

acts on the maximal torus TC × C×
rot of LGC ⋊C×

rot via

(z, q) 7−→ (γ(q)z, q).

So, the fiber of MG(CTate) over q is

MG(Eq) ∼= (TC/q
Λ∨

)/W
∼= (tC/(Λ

∨ + τΛ∨))/W
∼= (Λ∨ ⊗ Eq)/W. ✷

For any central extension of LGC ⋊C×
rot by C×, the set of conjugacy classes

{[(t, z, q)] | q ∈ D×}

maps to MG(CTate). Let L̂GC be the universal central extension of LGC ⋊C×
rot. Then, by

the discussion in [And03], the conjugacy classes in L̂GC with |q| < 1 form the total space of
(L−1

Lo )
×/W . Here

LLo = (C× TC × D×)/(t, z, q) ∼ (tz−I
♯(x)q−

1
2
I(x,x), zqx, q) (11)

is the Looijenga line bundle for the analytic Tate curve. Its fiber over q is the Looijenga bundle
for Eq (see Definition 6.17 and [And00, (10.4)]). Caution: the quotient of L−1

Lo by W may no
longer be a line bundle.

It follows that characters of L̂GC have an interpretation as W -invariant sections of LLo.
Similarly, level k characters have an interpretation as W -invariant sections of LkLo. In fact, Ando
shows in [And00, Corollary 11.5] that the characters of irreducible positive energy representations

of level k form a basis of T̃ h
W

k , see also [And00, Theorem 11.6] for the precise relationship between

T̃ h
W

∗ and loop group characters.

Remark 7.8. There is a variation of Theorem 7.6 in [EF94, p. 11], where LGC is replaced with
the group of holomorphic loops

γ : U(1) −→ GC

from the unit circle to GC. In this picture, γ is interpreted as clutching function, recording how
Pγ is obtained from a trivial bundle by glueing along the boundary of the fundamental domain

Aq = {z ∈ C | |q| 6 |z| 6 1}

of Eq. The loops β and γ yield isomorphic bundles if and only if there exists a holomorphic
function

f : Aq −→ GC

such that (10) holds for all z ∈ U(1).
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This construction is similar to Grothendieck and Krichever’s description of MG(Eq) as a
double coset space of LholGC (see [PS86] and, importantly, [KNR94]). The latter cuts Eq into
two pieces, along the boundary of a small disk, while the former cuts Eq along the circle [0, τ ]
to obtain Aq. The annulus Aq also plays an important role in [Seg04].

Example 7.9. Let G = U(1), so GC = C×. This is not simply connected, but Theorem 7.6
still holds. Isomorphism classes of holomorphic principal C× bundles over Eτ are in one-to-one
correspondence with those of holomorphic line bundles. For a ∈ C and q = e2πiτ , the line bundle
of the divisor (a) on Eτ = Eq is

L((a)) ∼= (C× C×)/(t, qz) ∼ (−te−2πiaz, z)
∼= (C×Aq)/(t, qy) ∼ (−te−2πiay, y)

for y ∈ ∂outAq. (This is not a degree zero bundle.) Hence L((a)) is classified by the multiplier

γa : C
× −→ C×

z 7−→ −e−2πiaz.

Since the multiplier of a tensor product may be chosen as the product (in LGC) of their respective
multipliers, the above argument yields a multiplier for each divisor on Eτ . In particular, the
constant loop

z 7−→ e−2πia

is the multiplier of the degree zero line bundle associated to the divisor (a)− (0). In general, the
winding number of the multiplier is minus the degree of the line bundle.

We emphasise once again that loop groups are not needed for our derivation of the Kac
character formula in § 8.3.

7.4 Push-forwards
Let X and Y be compact, closed smooth manifolds, and let f : X → Y be a complex oriented
map in the sense of [Qui71]. That means that we have a factorization

E

ξ
��

X
77

i

77

f
// Y

where ξ is a complex vector bundle and the normal bundle ν of i is equipped with a complex
structure.

Definition 7.10. For such a complex oriented map f , one defines the relative Thom sheaf as

L(f) = fAG∗L
−ν ⊗ Lξ.

This is a sheaf over YAG
. The push-forward along f is the map

f! : L(f) −→ OYAG

of sheaves over YAG
that is adjoint to the map

fAG∗L
−ν −→ L−ξ

induced by the Pontryagin–Thom collapse.
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The following lemma is immediate from the definitions.

Lemma 7.11 (Localization lemma). Let X be as above with a smooth T -action. Let i : XT
→֒ X

be the inclusion of the fixed points and assume that we are given a T -equivariant complex
structure on the normal bundle ν of i. Then we have a commuting diagram

F∗
T (X)

i∗

yy
F∗
T (X

T ) F∗−ν
T (XT )

z∗oo

i!
ff

where z is the zero section of (XT )ν .

Note that the trivial representation does not turn up as a summand inside ν.

Corollary 7.12. In the situation of the localization theorem (Theorem 4.1), assume that the
normal bundle is equipped with a T -equivariant complex structure. Let ∆(ν) ⊆ AT be the closed
subset

∆(ν) =
⋃

Cλ⊆ν

ker(Aeλ).

Then, restricted to AT \∆(ν), the map i∗ becomes an isomorphism with inverse i! ◦ (z
∗)−1.

8. Character formulas

8.1 Induced representations
Let G be a compact connected Lie group with maximal torus T , and let B ⊆ GC be a Borel
subgroup of its complexification. Such a choice of B is equivalent to a choice of positive roots of
G. It endows the flag variety

G/T ∼= GC/B

with a complex structure such that the tangent space at the coset of 1 is the complex T -
representation

g/t ∼=C

⊕

α∈R−

Cα.

Similarly, if H ⊆ G is a connected subgroup containing T and PH the parabolic subgroup
corresponding to H, we have a complex structure on the homogenous space

G/H ∼= GC/PH .

Definition 8.1. In this situation, we define the map

ind: R(H) −→ R(G)

as the following composite.

KH
∼

ϑ

KG(G/H)

ϑ

K
g/h
H

∼
Kτ
G(G/H)

π! // KG
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Here, and I apologize for this notation, h is the Lie algebra of H, not a Cartan subalgebra.
Further

τ ∼= G×H g/h

is the tangent bundle of G/H, and π is the unique map from G/H to the one point space. The
push-forward π! is as defined in § 7.4.9

The Atiyah–Singer index theorem identifies our definition of ind with the definition of
induction found in the representation-theory literature.

Theorem 8.2 (cf. [AS68] or [HBJ92, 5.4]). Let ̺: GL → (V ) be a complex representation. Then

ind([̺]) =
∑

(−1)iH i(G/H,O(G×H V ))

is the induced representation of ̺. Here O(G ×H V ) is the sheaf of holomorphic sections of
G×H V .

8.2 The Weyl character formula
We will now compute the character of these induced representations. As in Theorem 4.6, we let
WH and WG be the respective Weyl groups, and we let

i: F −→ G/H

be the inclusion of the T -fixed points F := (G/H)T . Recall that F can be identified with the set
WG/WH , and that we have

i∗τ ∼=T

∐

[w]∈F

(g/h)w

(conjugation by w on the right-hand side). We have a commuting diagram,

KH
∼

KG(G/H)
ϑ

res

��

Kτ
G(G/H)

π! //

res

��

KG

char

��
KT (G/H)

ϑ

��

i∗

��

Kτ
T (G/H)

π! //
��

i∗

��

KT

⊕
[w]∈F KT

ϑ ⊕
[w]∈F K

(g/h)w

T

⊕
[w]∈F KT

oo
z∗

oo

i!

ee

∑
[w]∈F (−)w

OO (12)

where

z : F −→ F i∗τ

is the zero section.

9 A more common definition of the push-forward π! in K-theory or cohomology is the composite of our π! with ϑ.
The reason for our convention is that it generalizes to elliptic cohomology in a canonical way.
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The top row of (12) is the map ind of Definition 8.1. The composite of the vertical arrows on

the left sends an H-representation ̺ to (χw̺ )[w]∈F (the character of ̺ and its conjugates under

WG). The composite at the bottom is multiplication by the Euler class of i∗τ . On the [w]th

summand, this is

e(i∗τ)[w] =
∏

α∈R

(1− ew(α)).

Here

R := RG
−\R

H
−

consists of the negative roots of G that are not roots of H. Using the localization lemma (see

Corollary 7.12), we can deduce Weyl’s character formula.

Theorem 8.3 (Weyl). Let ̺ be a representation of H. Then the character of its induced
representation equals

χind(̺) =
∑

[w]∈F

χw̺∏

α∈R

(1− e2πiw(α))
. (13)

To be precise, the localization lemma implies the equality (13) in the localized ring

R(T )[e(g/h)−1].

Since R(T ) maps injectively into this localization, and χind(̺) is an element of R(T ), it makes

sense to interpret (13) as a formula in R(T ).

Replacing K-theory by cohomology, we obtain a formula for the composite

(Bj)∗ ◦ (Bk)!,

where j and k are the respective inclusions of T and H in G. Namely, it sends a regular function

f on AH to

Bj∗(Bk!(f)) =

∑
[w]∈f det(w)f

w

∏
α∈R αC

(compare [AC83]).

8.3 The Kac character formula

We now turn our attention to the elliptic case, making the additional assumption that the partial

flag variety G/H carries a U [2]-structure. For simplicity of notation, we write

Ell∗G(X) := ΓE ll∗G(X)h

for the analytic global sections, noting that the statement holds on the level of sheaves with all
sheaves pushed forward to MG. Let ̺ be a G-representation. The diagram (12) is replaced by
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the following diagram.

ΘWH

̺+g/h
∼

Ell̺+τG (G/H)
π! //

res

��

Ell̺G

char

��

ϑ
ΘWG
ρ

��
Ell̺+τT (G/H)

π! //
��

i∗

��

Ell̺T
ϑ

Θρ

⊕
[w]∈F

Θ̺+(g/h)w
ϑ ⊕

[w]∈F

Ell
̺+(g/h)w

T

⊕
[w]∈F

EllT
̺oo

z∗
oo

i!

dd

∑
[w]∈F (−)w

OO (14)

As before, we will write ‘ind’ for the composite of the arrows in the top row. The Thom sheaf
L
g/h
T is the line bundle over MT associated to the divisor

∆ =
∑

α∈R

(AKα)

on MT . Here Kα = ker(e2πiα). The T -equivariant Euler class of g/h is the theta function

eell(g/h) = ±
∏

α∈R

(zα/2 − z−α/2)
∏

n>1

(1− qnzα)(1− qnz−α)

(1− qn)2
,

where the sign equals (−1)|R|. Set

Φ = Φ(q) :=
∏

n>1

(1− qn)2.

Theorem 8.4. Let f be an element of ΘWH

̺+g/h. Then we have

ind(f) = (−Φ)d
∑

[w]∈F det(w)w(f)
∏
α∈R(z

α/2 − z−α/2)
∏
n>1(1− qnzα)(1− qnz−α)

.

Here d is the complex dimension of the partial flag variety G/H. Consider now the special
case where G is simple and simply connected, and H = T is the maximal torus. By [Loo77,
(3.4)], we have

p1(g/t) = g · Imin,

and hence
LIg/t = LgLo.

Here g is the dual Coxeter number. Assume that we have (p1/2)(̺) = kImin with k ∈ Z. Then
the top row of (14) becomes a map

ind: Θk+g −→ ΘWG
k ,

where Θk are the Looijenga theta functions of level k.
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Definition 8.5 (Looijenga basis). Let k ∈ N, and let λ ∈ Λ. The element θk,λ ∈ Θk is defined
by

θk,λ :=
∑

x∈Λ∨

q(kφ+λ)(x)e2πi(kI
♯(x)+λ).

Here
φ(x) := 1

2Imin(x, x)

and I♯ : Λ∨ → Λ is the adjoint of Imin.

As λ varies over a set of representatives for Λ/kI♯(Λ∨), the images of the θk,λ in Θk form a
basis for Θk.

Corollary 8.6 (Kac character formula). In the situation of Theorem 8.4, assume that G is
simple and simply connected, and let H = T be the maximal torus. Then we have

ind(θk+g,λ) =
(−Φ)d ·

∑
w∈WG

det(w) · θk+g,w(λ)∏
α∈R−

(eπiα − e−πiα)
∏
n>1(1− qne2πiα)(1− qne−2πiα)

.

Up to the factor ±Φ(q)d+r, which is constant in z, this agrees with the Kac character formula
for the positive energy representation of the loop group LG of level k and highest weight

λ+
1

2

∑

α∈R+

α.

For a presentation of the Kac character formula in this form see [PS86, (14.3.4)] or [And00, 11.4].
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