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ABSTRACT

The Elmore delay is an extremely popular delay metric, par-
ticularly for RC tree analysis. The widespread usage of this met-
ric is mainly attributable to it being the most accurate delay
measure that is a simple analytical function of the circuit param-
eters. The only drawbacks to this delay metric are the uncertain-
ty as to whether it is an optimistic or a pessimistic estimate, and
the restriction to step response delay estimation.

In this paper, we prove that the Elmore delay is an absolute
upper bound on the 50% delay of an RC tree response. More-
over, we prove that this bound holds for input signals other than
steps, and that the actual delay asymptotically approaches the
Elmore delay as the input signal rise time increases. A lower
bound on the delay is also developed using the ElImore delay and
the second moment of the impulse response. The utility of this
bound is for understanding the accuracy and the limitations of
the Elmore delay metric as we use it for design automation.

|. INTRODUCTION

These bounds were improved in [18], and later extended to a two
time constant approximation in [3]. Some time later higher order mo-
ment matching techniques were developed for RLC circuits [16] for
which RC trees are an important subset.

But even with higher order approximations with accuracy compa-
rable to SPICE, the Elmore delay remains a popular metric merely
for its simplicity. It is used during logic synthesis to estimate wiring
delays for approximate tree routes. It is used during performance
driven placement and routing because it is the only delay metric
which is easily measured in terms of net widths and lengths. The lim-
itations of this model are the uncertainty as to whether it is an opti-
mistic or a pessimistic estimate, and the restriction to it being an
estimate only for the step response delay.

In this paper we prove that the Elmore delay value is an absolute
upper bound on the 50% delay of an RC tree. Moreover, we demon-
strate that this proof applies not only to the step response, but also to
any input forcing function which has a unimodal derivative (e.g. a
saturated ramp with finite rise time). With a calculation of the mean
and the variance of the impulse response, we also specify an absolute
lower bound on the 50% delay. In addition, we will show that the ex-

RC trees are commonly used to model digital logic gates and thact delay approaches the Elmore bound as the variance of the input-
associated interconnect paths at various stages of the design procsignal derivative increases.

During the early phases of design, simple approximations or del
bounds are often applied since exact solution of an approximate

fluctuating circuit model is superfluous.

II. RC TREES ANDTHEIR APPROXIMATIONS

A. Interconnect Models

The omnipresent EImore delay [6], or first moment of the impuls

RC trees, such as the one shown in Fig.1, have been widely used
60Q

response, is the delay approximation of choice for RC trees beca
of the ease with which it is calculated. In the original work of 194¢
Elmore attempted to estimate the 50% delay of a monotonic step
sponse by the mean of the impulse response. Penfield and Rubins
[15] proved that RC tree step responses are indeed monotonic, .
thereby discovered the popular EImore delay metric for analyzir
gate and interconnect delays. However, because the median of
impulse response is the exact 50% delay, and Elmore is approxin
ing the median by the mean, Penfield and Rubinstein developed t
and worst case bounds on the step response waveform [15].
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FIGURE 1: A simple RC tree.

for modeling equivalent gate and interconnect circuits. For modeling
§ Formerly Lawrence T. Pillage. simplicity, nonlinear drivers are linearized as shown in Fig.1. A great
* Byron Krauter is with IBM, Austin, TX 78758. deal of work has been compiled over the last several years regarding

T This work was supported in part by the Semiconductor Research Corpcthese linearized gate models [1,8,13,19]. In this paper, however, we
tion under contract 94-DJ-343 and the National Science Foundation undeyi|| focus on estimating the linearized RC tree delay.
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B. The Elmore Delay

The step and unit impulse responses for the node at cap@gitor
of the RC tree in Fig.1 is shown in Fig.2. Since the zero-state step re-
sponse is the integral of the impulse respdrigethe 50% point de-
lay of the monotonic step response (nonnegative transfer function) is
the timet at WhiChJ’Bh (t)dt = 0.5 . Referring to Fig.2, ElImore pro-
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posed to approximateby the mean of thie(t) distribution. These coefficients are related to the moments of a distribution func-

1.0 T tion h(t) (from distribution theory) tg]y theg-1) q/q! term. That is,
then-th moment is defined to bg t h(t)dt . Hereafter, however,
we shall refer ton, as theg-th moment oh(t).

step response 1 To understand the connection between the first moment and the
dominant pole, the ternts, aad  can be shown [7] to be the sum
of the reciprocal poles and zeros respectively:
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FIGURE 2: The unit step and the unit impulse (scaled by 1e-09) respons
for the voltage acrossgin Fig.1.
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n
2 5 ®=23
j=1") =17 (5)
ff there are no low frequency zeros, the numerator coefficients, in-

b, =

N

] o o . _cluding a, , are small and Ob, . Now, if one of the time con-
Treating the nonnegative impulse response in Fig.2 as a distrilyis 15 (of poles) is assumed to be the dominant one, i.e.
tion function, the mean is defined by its first momemt, EImore’s
approximation for the unit step response de]léé{, ,is: 1 » l, j=1,2...m jzd
Py P
Ty =m = [Sth(ydt ) e - ®
0 thenT, O01/p, . This dominant time constant approximation is then

Where,f”h (t)dt = 1 . This approximation is valid for a symmetri-ysed to fit a single pole approximation so that:

cal func?ion, where the mean is equal to the median, however it is ot

somewhat erroneous for the real impulse response in Fig.2, which is v(t) = 1-e Pa (7
skewed asymmetrlcally. It is this skew, however, which will allow Ugowing (7) for the 50% point de|ay effective|y scales the Elmore de-
to bound the delayr) by the meanTp). lay approximation byin (2) , or abo@x7

C. Calculating the Elmore Delay We should point out that this dominant time constant delay pre-

The Elmore delay is a fitting metric for RC trees because it can giction can be pessimistic at one node while optimistic at another for
calculated very efficiently for this circuit topology[15,19]. Two the same RC tree. For example, column (5) of TABLE 1 shows the

O(N) traversals of the tree, wheke s the number of nodes in t@lues of In (2) OT,  at nodes CCs and G for the circuit in

tree, yield the Elmore delay for node Fig.1. Notice that, when compared yvith the .a(?tual delay .values in
N column (1), the response & is optimistically predicted by

T = R C @) In(2) oy while that atC1 is pessimistically predicted. One way

D, ~ kZ 1 ki~k to explain this is by the excessive skew in thét) distribution for

. . . . , Which is sh ith th for thi in Fig.3,
whereRy; is the resistance of the portion of the (unique) path betwe%cn1 which is shown with the step response for this node in Fig.3, as

i ” i . . ompared with the skew for the respons@glt(shownin Fig.2). It
the input and nodie that is common with the (unique) path between : . .
the input and nodk, andCy is the capacitance at nok¢18]. The ¢an be expected that usifig(2) tMean _ to approximat an

e ilb tly different for these two distributions.
Elmore delay values at nodeg, ©5 and G for the circuit in Fig.1 Wil be vastly cilierent for these two disTributions

. . 1.0
are given in column (3) of TABLE 1.
0.8
@) @ ©) 4) ®) (6) @)
RPH RPH o 06 step response
Actual | Elmore | Lower |[Singlepole| upper lower g |
delay |delay,Tp| bound, | Tp.In(2) | bound, | bound, 0.4 )
Node | (ns) s) [Tp-os)|  (S) | tmax(NS)] tmin (NS) o2 impulse response
C, 0.196 0.55 0 0.383 0.55 0
Cs | 0.919 1.2 0.2 0.83 1.32] 051 00 E———Te 20
G 0.45 0.75 0 0524 1.02 0.059 FIGURE 3: The unit step and the unit impulse response (scaled by 4e-09)
TABLE 1: Delay bounds for circuit in Fig.1. for the voltage across,Gn FIGURE 1.
D. The First Moment of the Impulse Response It is difficult to know when a single pole dominates the low fre-

The Elmore delay has also been used as a dominant time con

s?é{%ncy behavior of an RC tree. For this reason, Rubinstein and Pen-
approximation. Consider the RC tree transfer function el

established bounds for the RC step response delay.

E. The Rubinstein, Penfield and Horowitz Bounds

2 . . . .
> —=my tms+ms + ... 3) Penfield and Rubinstein were the first to use the Elmore delay to
1+ b1S+ bzs Fot bmS analyze RC trees [15]. Calculating these bounds requires calculating
wherem2 n andmy is theg-th coefficient of the impulse re- two additional terms in addition to the Elmore delay. All of these

2 n
1+als+ s t...tass

H(s) =

sponse defined 4s6]: terms, however, are obtained wi(N) complexity. The upper
q and lower boundd,, 5 andt,;,, at the 50% point for our example in
m = (=1 =0 (1) dt @) Fig.1 are given in columns (6) and (7) of TABLE 1. Note that
q ql Jo tnax” TD at the loads, £and G, andtmax = TD at the driving



point, C,. Also note the values tf,;, as a lower bound on delay. it) i), - — —

In general, one can calculate more moments for the RC tree, and @ r — 1 @ ' @ |
generate a 2-pole [3] orcgpole [16] approximation. Higher order | |+ R +
moments are obtained wit® (N)  complexity too. But for certair¥in(t) I Yi|vy(t) Vin(t) | Y2 [ vy(t)
applications the Elmore expression is invaluable, and this paper is to- | | - | | -
wards a better understanding of this approximation. @@L _— 2 ® ,

FIGURE 4: (a) Input node of an RC tree with admitteFquTt node 1.
IIl. THE ELMORE DELAY AS A BOUND (b)AdmittanceY; of an RC tree at the first capacitor node - node 2.

Referring back to Fig.2 and Fig.3, it is apparent that with such ?N?OV\Z(SO(I;IES” ait th(?) ﬂfti (?;)W?rs;:ﬁ?:q] Z(C:Se.l_lge:;%rzc tree, in
asymmetrical distribution for the impulse response, the mean would? Yl12 9-48). '

not coincide with the median. In this section, we will show that these Vo (1) = vy () =Ryig5 (1) (13)

asymmetric distributions have a “long tail” on the right side of the vy(t) is an impulse, thew(t) is theimpulse responsat node 2:
mode (roughly the maximum value point). Such distributions are

said to havepositive skewWe will prove that the impulse response h (1) = 5(t) +R z|k.|e_pit 1)
for an RC tree is unimodal and positively skewed, then use these two 2 1 T
properties to prove that: Following Definition 4,it is clear thahy(t) is unimodal.
Mode< Mediare Mean (8) t® - — —
We will further show that (8) holds for any input that has a unimo- @ | +
dal derivative and that the mean becomes a better approximation of Re | [V (t
vil(t) k1 (D)

the median as the rise-time of the input-signal increases. Further in
the section, we will also provide a lower bound on the 50% delay for L g
an RC tree. But first a few definitions: FIGURE 5: AdmittanceY,, of an RC tree at an arbitrary node k+1.

Definition 1:Themode M, of a continuous distribution function ~ Now consider Fig.5 which shows no#teand everything “down-
f(x) is the maximum point of the distribution[4]. A unique mode stream” of it. To complete our induction argument, we assume that

| Y1 -

exists only iff is unimodal and is the solution of h(t) is unimodal, and
2 \% ) = v, (t) =Ry (1) (15)
o) =950 =0 (x =35 <o ©) ke kT Kkked .
dx dx If vi(t) is an impulse, thehy ,.4(t) is the transfer function at node

k+1 w.r.t. input at nodé&. This has the same form as in (14) and is
unimodal. Thus, the transfer function at nddel w.r.t. nodel,
he+1(t), is given by:

P 1 (D = By geq 1 (O 2 0D (16)
where ¢ is the convolution operator. Since the convolution of two
unimodal density functions is also a unimodal density function [17],

we have thah¢(t) is also unimodal. Thu$\(t) at any node of an
RC tree is a unimodal function. THa(t) is a positive density func-

Definition 2: Themedian m, of a distribution functior is that
value of the variate which divides the total frequency into two
equal halves[9], i.e.

) dx = (71 () dx = % (10)

Definition 3: Themean y, of a distribution functiof about the
pointx = a is defined by

W= (x—a)f(x)dx (11)  tion has been shown in [18].
Definition 4 A density functiorh(t) is calledunimoda) if and LEMMA 2: For the impulse response h(t) at any node of an RC
only if, there exists at least one vatuety, such thah(t) is non- tree, thecoefficient of skewnesy, is always nonnegative.
decreasing fot < t,, and nonincreasing far> t, [17]. Proof: The proof follows an induction-based argument. Following

Definition 5 we need to show that fb(t) at any node of an RC tree,
Hy2 0 andp, =0 . First we show that the coefficient of skewness,
Y, Is positive at the first node of an RC tree, and then use the additive
property ofcentral momentever convolution to motivate our induc-
tion argument.

Definition 5 Coefficiegt of skewne$ar a distribution function

is given byy = u3/0 , Wherey = H, ,and a are
the second and third central moments of the distribution func-
tion respectively[4].

LEMMA 1: The impulse response h(t) at any node of an RC tree r— Ry @ R, @
is a unimodal, positive density function. R | @|
Proof: The proof is by induction. For a general RC circuit, it is well, ® L |
known that the poles and zeros of the driving point admittaf{sy, Yl(S)‘_'-> | Vin(?) Gy Gy
are simple, interlaced and are located on the negative real axis of the @ ! (b);r I
; L — 4
s—plane[ZQ]. Furthermore, the_ regldues gt th_e poI_e‘S(s)‘are_ real FIGURE 6: (a) Driving point admittanc¥,(s) of an RC tree at the first
and negative[20]. Therefore, in Fig.4(a)vijf(t) is an impulse input, capacitor node. (b)A reduced ordemodel for theY;(s) in Fig.6(a).
) -t In Fig.6(a), consider a general RC tree for which the first three mo-
I(s) =Y(9 and, () =-3|kle (12)  ments of the driving point admittandg(s) at node 1, can be used to
|

synthesize a&-model as shown in Fig.6(b)[12]. Note that tivisnod-



el exactly matches the first three moments of the driving point admit- — — 9

-

tance of the original RC circuit. Thremodel parameters are: @ [ |

R¢

(1)’ wO ™ ]

Rz__(m v)?® Yeal® | v
2V 1 2 2 FIGURE 7: AdmittanceY)., of an RC tree at an arbitrary node k+1.

c ) (mz(Yl)) (mz(Yl)) nessy=0.0
= m — —— e —
1 1V'1 m3 (Yl) 2 m3 (Yl)

(17)  Now, in the following we use the above two lemmas to prove that the
where,my (Y1), my(Yq), mg(Yq) are the first three moments 6f(s). Elmore delay is indeed a bound on the 50% delay for an RC tree.

~ From o_Iistributio_n theory [4], central momentg  of a distribu- THEOREM: For the impulse response h(t) at any node in an RC
tion function are given by: tree,

" o n—k 18 Mode< Mediare Mean (24)

Hp = kZOEkDmk(‘“) (18) Proof: For a unimodal “skewed” distribution function, the mean,
where,) = m, andn, is thek-th moment of the distribution func- med!an, mode |.nequallty states that these three. quantities occur ei-
. 1 L er in alphabetical order or the reverse alphabetical order [9], i.e. ei-
tion. Thus, for the impulse response of a circuit, we can express %r Mean< Mediare Mode or Mode< Mediarge Mean From
central momentg, as a function of the circuit momentg: Lemma landLemma 2we have that each node in an RC tree has a
i and My = —6m3 + 6m1m2_2mi unimodgl _distribution function for whicly= 0 i We now prove, by
(19) contradiction, that for an RC treklode< Mediars Mean

It can be shown that[7] the momenmtg throughm, of the impulse For our contradiction argument, lftean< Mediars Mode hold
response;(s) at node 1 in Fig.6(a) are a function only of the mofor any nodeg, in an RC tree. In a symmetrical distribution, for
mentsmg throughmg of the driving point admittancé,(s) at node 1. \hich the coefficient of skewnesg, is exactly zero, the mean, the
Therefore, thermodel in Fig.6(b) provides the exact momemgs  median and the mode coincide [9,11]. Thus a natural measure of

M, = 2m2—m

throughms of the impulse respons#(s). skewness for an asymmetrical distribution is the deviation of the
For the RC circuit in Fig.6(b), we have [16], meanfrom themedian or themeanfrom themode Thus,
D) - o 0 OF _ Mean- Median
Wy =2m,” —gm T g Sk (25)
_.20.2 20 2 2 where, o = Hy - Thus, at the nodea, since
= R0y + G0+ 2R C1C, + 2R R,C, 20 (20) Mean< Mediare Modeholds, the skewnessSk<0 . But, from
Lemma-2we have that the coefficient of skewneg,0 . Thus, at
a, eitherSkew= 0 or we have a contradiction. In the former case,
uél) =—6m3(,1) + 6m{1) mz(l)—2gml(1)5p Mean = Median= Mode i.e. the distribution is symmetric and
_ 2 3 the mean and median coincide. And in the latter case,
= 6R1R,C) (Ry(C1+CY +R,C +2(Ry(C1+Cy)) 20(21) Mode< Mediare Mean
where,mk(p) denotes th&th moment at nodp. Since the choice of the nodeis arbitrary, the proof is com-

Thus, for the impulse responbg(t) atnode 1in Fig.6(b), from Pletes
(20) and (21) an®efinition 2 we havey=0 . . .
der Fi hich sh and its “d ) We should note at this point that the Elmore Delgy, or the
Next consider Fig.7 which shows nollend its “downstream mean, of the impulse response approaches the 50% delay point at

part of the tree. To complete our induction argument, we assume tghe s’ further downstream from the source in an RC tree, as dis-
atnode kwe havep3 >0 an([h2 20 fdm(t), and hencey=20 .If cussed further in Section IV.

Vi(t) is an impulse, thehy ,,4(t) is the transfer function at noble1

w.r.t. the input at nodk. This has the same form as in Fig.6(a) forA. A Lower Bound on Delay

which the above argument shows tP§'2 0 f’E‘* 0 (from (20) COROLLARY 1: A lower bound on the 50% delay for an RC
and (21)). Now, the transfer function at nddel w.r.t. nodel, tree is given by

he+1(t), is given by:

A1 =h (t) = h (1) (22)
k+1 kk+1 k wherep is the mean and = [u,.

From [4,7], wherm,, = 1 , we have the property that the second agyof: Consider a positively skewed impulse responé with
third central moments add under convolution. Thus, mean at = p . We define another functidft) as:

max (H-o,0) (26)

Ho (M 1) = Hy(h ) tH,y(hy) 20 t
2Wk+1 2k k+ 1) T H2 UK H() = [ h(QA& (27)
Mg (Mern) = (N ig) +Hg (M) 20 (23)  With a simple change in the x-coordinate such that t—p , we
Thus, forh,1(t), from Definition 5 y= 0 at all nodes. haveh (1) suchthatitsmeanistat 0  inthe new coordinate sys-

This proves that for every node in an RC treectiefficient of skew- tem. Then, using the following inequality from [4](page 256):



02 the property of addition under convolution, it can be shown that[7]:

=53 <0 (28) by (Y (1) = By (N (D) +py (U (1)
Fort = —o , equations (27) and (28) show that Mz (Y (1) =z (h()) +uz(u () (32)
2 1 From Lemma 2, we know that, (h(t)) 20 and,(h(t)) =20
H(-o) = I:Zh(Z) az < % =5 (29)  From hypothesis, we also have,
g + () Ho (U (D) 20 and pg(u () =0 (33)

Equation (29) states that in the new coordinate system,—c

is
less than the median. Thus, in the original coordinate systamgtfor From (32) and (33), thugi, (y' (1)) 20 and; (y' (1)) 20, and
we have thapl — o < Median . from Definition 5 y(y' (t)) 2 0. Fory(t), 0 Median< Mean.Ol

When <o , since the RC tree system is causal and I’e'axed[ZLZOROLLARY 3: For a finite sized RC circuit with a monotoni-
and u(t) =0 for t<0, we haveMedian=0 , and hence )

1~ 0 < 0< Median. This completes the proof] cally increasing, piecewise-smooth input u(t) with rise-time t

such thatu' (t) is a unimodal symmetric function,tla& 0 ,

g 0 .. . g i .
Referring back to the example in Fig.1 and the delay bounds Ii‘nrggf' Frsoonf) Delay, i.e. Mean - Median

TABLE 1, thep—o lower bound at =qualst,,i[18], whereas at hypothesis, we have that(t) Is @ symmetric func-
Cs and G, tyin is a tighter lower bound thap—o . However, as v o~ — — _uo

observed in Section lll, the ElImore delay upper bountecomes a Ut 7

tighter upper bound (as compared to the 50% bounds in [18]) at the <

leaf-nodes of an RC tree as is evident@aad G in TABLE 1. o |

B. Approximating the Output Signal Transition Time FIGURE 8: Input signalu(t) with rise-timet, and its derivativey’(t).

Another measure of practical importance for RC circuits, other

than the 50% delay point, is the rise-tirfig, which may be defined 10N Uz (U" (1)) = 0. Also, sincau, (u' (1)) Ot

as the 10 to 90 percent transition time[6]. A good measurg & too O py(u(t)) - (34)
T,=0= Jp_ (30)  Since the circuit is finite sizeqiu (h(t))| <o . Thus, for the out-
R 2 ut responsg (t) = h(t) ¢ u(t)3 at any node of an RC tree
wherell, is the second central moment of the distribution functid% P y '
y' () . EImore proposed this value, which he termgaaéus of gy- Ha (Y (1)
: ot yly'()) =—————55-0 ast o (35)
ration, as a rise-time measure for step-responses [6]. 2

o ()Y

IV. GENERAL INPUT SIGNALS Sincey 0 Mean— Median,y -~ 0 0 Mean- Median. Thus, as

It has been shown above that the Elmore delay is an upper botng® ©+ Tp — 50% Delay. 00

on the 50% step response delay. However, when using the Elmore. . , i )
delay to estimate RC interconnect delays, the signal from a digital't 1S Noteworthy here that singe, (u' (t)) =0, i@.(f) isa
gate is generally modeled by a saturated ramp. Of course, sevaymetric function, its mean and median coincide. Further,
models have been developed to characterize the switching gate by a ROy () —p(u' (t)) = TD

linear resistor and a voltage step for compatibility with the Elmore- ©, o, , _

step-response model [1,8,13,19] but at the expense of accuracy. One o Jo ty' (0 dt_fo w(nd =Ty

recent work attempts to model high-speed CMOS gates with ““%F\erep (.) is thenean Thus, it can be shown that [7]:
resistors for efficiency, but time varying voltage sources to capture

the high-frequency phenomena such as resistance shielding and ef- O If)o [1-y(D)] dt—ﬁ; [1-u(t)]dt =T, (37)
fective capacitance [5]. Most timing analyzers characterize gate and .
output signal transition time empirically as a function of load, and the area between the input and the output response equals the
then drive the RC tree interconnect model with a voltage that repl%l_more DelayiTp [10].

sents this transition time. For these reasons we extend the ElmreDelay Curves

bound to consider a non-zero input signal transition time.

(36)

The estimation of the 50% delay by the EImore delay as a function
A. The Elmore Delay Upper Bound of the rise-time of the input signal, as state@amollary 3, is shown

in Fig.9 for the RC tree example in Fig.1. As the rise-time of the in-
put signal increases, the delay asymptotically approdihes

It was observed in Section Il that as one moves away from the
source,Tp (i.e. the meary) is a better approximation of the net de-
day. The proof fol,emma 2n Section Ill uses the additive property
of the central moments under convolution. Referring to equation
(23), for any node ku,(h,),u,(h) =0 . Furthermore, using

Y(9 =H(s) LU(s) (81)  equations (20) and (21§, it can_be shown thath, . ;) and
whereH(s) is the impulse response of the circuit at that node. Usin|g3 (hy 1) form decreasing and hence convergent sequences7].

COROLLARY 2: For an RC circuit with a monotonically
increasing, piecewise-smooth input u(t) such thigt) is a
unimodal symmetric functipMode< Mediare Mearholds
for the output response y(t) at any node.
Proof: The output responggt) at any node of an RC tree in respons
to an inputu(t) is given in the Laplace domain by



delay of an RC tree response. Moreover, we have proven that this
Cs ] bound holds for input signals other than steps, and that the actual de-
lay asymptotically approaches the Elmore delay as the input signal
rise time increases. A lower bound on the delay is also developed as
a function of the Elmore delay and the second moment of the impulse
response. Improved bounds may be possible with more moments, but
moment matching techniques, such as AWE, are preferable when
higher order moments are available. The utility of this bound is for
understanding the accuracy and the limitations of the Elmore delay
metric as we use it as a performance metric.

delay (ns)

80 100

0. R
0 2.0

40 60
rise-time (ns)
FIGURE 9: Delay curves show that as the rise time of the input signal REFERENCES
increases, the delay approacfigs

Thus, as nodes farther away from the source are considered, the K- L-M. Brocco. Macromodeling CMOS Circuits for Timing Simulation
ues o () andi () _Siart o converge and hence the skeyy 19 s, Massachusets tteof Feiroiogy e o,
y, converges[7]. The fact th#if is a better approximation of the net ti(-)n-s 1984 ¥ v '

delay farther away from the driving point is illustrated here using C. C,hu and M. Horowitz. Charge-Sharing Models for Switch-Level
25 node RC tree. For three nodes A, B and C, where A is near the gjyylation.IEEE Trans. on Computer-Aided Desig{6):1053-1060,
driving point, B is in the middle of the tree and C is a leaf-node, the 19g7.

impulse responses are shown in Fig.10. TABLE 2 shows the relati¥g¢ Harald CramerMathematical Methods of Statistid@rinceton Univer-
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