
The Embedded Java Benchmark Suite JemBench

Martin Schoeberl
Department of Informatics and

Mathematical Modeling
Technical University of

Denmark
masca@imm.dtu.dk

Thomas B. Preußer
Department of Computer

Engineering
Technische Universität

Dresden, Germany
thomas.preusser@tu-

dresden.de

Sascha Uhrig
Department of Computer

Science
University of Augsburg,

Germany
uhrig@informatik.uni-

augsburg.de

ABSTRACT
Requirements to embedded systems increase steadily. In parallel,
also the performance of the processors used in these systems is
improved leading to multithreaded and/or multicore architectures.
Depending on the type of the embedded system, using Java is a
more and more popular way for software development. In this pa-
per, we present a Java benchmark suite that enables the comparison
of different embedded Java platforms while solely assuming the
availability of a CLDC API, the minimal configuration defined for
the J2ME. The core of the benchmark suite consists of adapted real-
world applications. Furthermore, the suite contains benchmarks to
explore multi-core/multi-threaded systems. Hence, it is possible
to determine the gain of a parallel execution platform compared to
sequential execution. Additionally, the penalty of a sequential pro-
gram running on a parallel platform can be measured. Our bench-
marks are structured in micro, kernel, application, parallel, and
streaming benchmarks.

1. INTRODUCTION
Benchmarks are important for the development of embedded

systems. While benchmarks for standard Java, server-oriented
Java, and Java on mobile phones are available, no Java benchmark
suite is available for classic embedded control systems. The pre-
sented benchmark suite JemBench fills this gap.

Embedded systems are often resource-constrained. A full JDK is
usually too big for the embedded target. Our benchmark suite is de-
signed to run with minimal JDK support. Furthermore, the bench-
marks are designed to run with a small memory footprint (less than
1 MB) and do not require any file I/O. All benchmarks conform to
the CLDC 1.1 [26]1 standard. Additionally, they can be executed
on RTSJ and Safety-Critical Java (JSR 302) platforms.

Realistic benchmarks include real applications and not only toy
kernels. For JemBench, we have adapted several embedded Java
applications that are in industrial use [20]. Besides sequential
benchmarks, we also developed several multithreaded benchmarks,

1See also: http://java.sun.com/javame/reference/apis/
jsr139/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES’10 August 19–21, 2010 Prague, Czech Republic
Copyright 2010 ACM 978-1-4503-0122-0/10/08 ...$10.00.

which perform data-parallel and pipelined execution.
As the benchmark suite does not target consumer electronics, but

embedded control systems, the benchmarks are mainly designed in
a WCET (Worst Case Execution Time) analyzable way. Hence, a
target platform can be examined concerning their real-time capabil-
ity by performing a static WCET analysis and compare the results
to the actual execution. Of course, the real-time capability of the
used platform cannot be proven but an estimation of the WCET
analysis’ tightness can be obtained.

Depending on the platform, the execution time of an application
may vary dramatically. To reach a feasible accuracy in combina-
tion with a reasonable execution time independent of the system’s
performance, the benchmarks adapt themselves to the capability of
the target platform.

The provided benchmark suite contains sequential and mul-
tithreaded benchmarks, organized in five categories that can be
started all together or individually. The first category includes
simple micro benchmarks testing individual bytecodes of different
complexity. Two typical kernel algorithms are packed together into
the kernel category. Three applications from industrial use form the
third category. These application benchmarks are the main bench-
marks to measure single threaded performance. The multithreaded
benchmarks consist of two groups: data parallel applications and
a streaming benchmark. The number of threads to be used by the
multithreaded benchmarks is defined in a utility class that is part of
the benchmark suite.

The presented benchmark suite is freely available as open source
under the GNU GPL license. Instructions how to access the source
and run the benchmarks can be found in the abstract.

In the remainder of this paper, an overview over embedded Java
systems is given first by Section 2 before Section 3 existing bench-
marks are discussed. Section 4 introduces our JemBench bench-
mark suite whose characteristics are then be evaluated in Section 5.
Finally, Section 6 concludes this paper.

2. EMBEDDED JAVA
In this section, we provide an overview of different Java runtime

systems for the embedded domain, the domain JemBench was de-
veloped for. A Java virtual machine (JVM) can be implemented as
a software environment executed on an arbitrary (embedded) pro-
cessor or as a hardware solution using a processor that is able to
execute Java bytecode natively.

2.1 Embedded JVM Implementations
A JVM implemented in software contains the Java library

classes, several methods to connect the Java application to the un-
derlying operating system and a bytecode interpreter and/or a just-
in-time (JIT) compiler. Obviously, an operating system is required

http://java.sun.com/javame/reference/apis/jsr139/
http://java.sun.com/javame/reference/apis/jsr139/

that is responsible for the native I/O, such as file and network ac-
cess. The supported Java standard depends on the available re-
sources and the actual JVM implementation.

Examples of software implemented JVMs that can run in an em-
bedded setting (among others) are the JamaicaVM [22], IBM J9
VM,2 PERC Pico [2], KertasarieVM,3 KVM [25], Squawk [23],
CACAO [14], and Fiji VM [18].

2.2 Java Processors
In contrast to the software implementations, Java processors do

not require any interpreter or compiler. In general, the operating
system functionalities are also implemented in Java leading to a
homogeneous control flow from the application to the I/O. Addi-
tional abstraction layers are not required. Moreover, the exception
concept can be used also at the I/O level that means an explicit er-
ror handling in every hierarchy level is not required (try/catch
blocks do not need extra bytecode instructions in the normal pro-
gram flow).

Regarding the real-time capability, Java processors benefit from
the omitted software JVM and operating system. Hence, it is suf-
ficient that the processor and the JVM libraries are designed in a
real-time capable way. JOP [17], SHAP [29], jamuth [28], aJile [1],
and picoJava [9] are some examples of Java processors.

2.3 Real-Time and Safety-Critical Java
The Real-Time Specification for Java (RTSJ) [6] is an approach

to enable Java for embedded systems. With a stricter definition of
the scheduling algorithm and a memory model that avoids garbage
collection, the RTSJ targets embedded real-time systems. RTSJ is
defined under Java 2 ME with the restricted library of the CLDC.
Therefore, JemBench shall be executable on all confirming RTSJ
implementations. It has to be noted that most vendors of RTSJ
implementations provide the JDK of the Java SE in version 1.5 or
1.6.

The Safety-Critical Java (SCJ) specification [12] is under devel-
opment within the Java Community Process (JSR 302). A first draft
for public review is expected this year. SCJ is intended for safety-
critical applications that need to be certified. SCJ defines three lev-
els of compliance: level 0 represents a cyclic executive, level 1 a
static defined mission with preemptive scheduling, and level 2 al-
lows dynamically created submissions. To simplify the certification
process SCJ defines a very small subset of the standard library. As
one of the authors is member of the SCJ expert group, we have ac-
cess to early drafts of the specification. We developed JemBench
according to the library definition of SCJ. All JemBench bench-
marks shall be able to execute on all levels of SCJ.

SCJ implementations are currently under development, e.g., on
top of the research JVM OVM [3]. A reference implementation of
SCJ that executes on top of the RTSJ is under development by the
SCJ expert group and will be freely available with the SCJ specifi-
cation.

3. RELATED WORK
Several benchmarks for server and desktop JVMs are available,

as described in this section. Benchmarks for embedded Java are not
so common, and the few available target the mobile phone platform
Java ME.

2http://www.ibm.com/developerworks/java
3http://www.kertasarie.de

3.1 Java Standard Edition
DaCapo [4] is an open-source benchmark for Java that is in-

tended to better serve the Java community than SPEC JVM98.
The collection of benchmarks includes more complex code, more
object-oriented applications, and puts more stress on the dynamic
memory management. DaCapo has become the standard bench-
mark for the GC research community. DaCapo uses open-source
tools and applications such as a parser generator, bytecode opti-
mizer, graph plotting, Eclipse, an SQL database engine, a python
interpreter, text index and search, source code analyzer, and an
XSLT processor. The authors also argue for investing more effort
in sound benchmarking methodologies [5]. The proposed embed-
ded benchmark suite is our contribution to this field for a specific
application domain, which is still underrepresented.

The SPECjvm20084 focuses on kernel applications for both
client and server side Java systems. The benchmark results are
obtained by single-threaded as well as multi-threaded applications
using multiple logical processor cores (physical cores or hardware
threads). Even though the benchmarks require little I/O and no off-
chip network communication they are not well-suited for embedded
devices because the full J2SE standard API is required. The SPEC
website highlights that the SPECjvm2008 uses real-world applica-
tions and also domain specific benchmarks (e.g., XML processing,
cryptography). Furthermore, the benchmark results are influenced
by the operating system and the hardware platform where the JVM
executes.

The SPECjbb20054 benchmark emulates a three-tier business
application. Multiple warehouse databases are implemented as
Java Collection objects containing about 25 MB of data. So-called
customer threads place new requests or status updates. Addition-
ally, internal stock updates and payment reports are generated. The
focus of this benchmark is the performance and the scalability of
the middle-tier, which is stressed by the customer threads with new
requests. Besides the JRE, no additional libraries or system capa-
bilities are required.

Doherty [8] extended the SPECjbb2005 to the so-called
SPECjbb2005rt. The modified benchmark measures the response
times of the requests to the middle-tier and delivers a histogram.
Besides the average time also the maximum observed response time
is reported. This benchmark is intended to be used by JVM suppli-
ers to demonstrate the real-time capabilities of their products. Of
course, this benchmark is neither suitable for embedded systems
with restricted resources nor can it be used to proof any hard real-
time capability of a system.

All described Java SE benchmarks are too heavy for embedded
Java. They need a full Java environment with file I/O and usually
several MB of heap memory, which both is seldom available in
embedded systems.

3.2 Embedded Java
The Embedded CaffeineMark [16] was introduced by the Pen-

dragon Software Corporation. It is an adopted version of the com-
plete CaffeineMark suite reduced to the following benchmarks:
Sieve, Loop, Logic, Method, String and Float. The Graphics, Im-
age, and Dialog benchmarks are omitted because they require a
complex graphical interface that is not present on most small em-
bedded systems. Embedded CaffeineMark is a typical collection of
kernel benchmarks, which can give some guidance in performance
improvement, but shall not be used for system comparisons.

GrinderBench5 targets the mobile phone platform. It contains

4http://www.spec.org/jbb2005/docs/WhitePaper.html
5http://www.grinderbench.com/

http://www.ibm.com/developerworks/java
http://www.kertasarie.de
http://www.spec.org/jbb2005/docs/WhitePaper.html
http://www.grinderbench.com/

five different kernel benchmarks: Chess, Crypto, KXML, Paral-
lel, and Png. Because the benchmark suite focuses on CLDC and
CDC devices, only kernel algorithms are tested. Any kind of I/O
is not considered. The algorithms are taken from typical mobile
phone applications i.e., they are based on entertainment and not on
industrial/real-time requirements.

Another benchmark suite targeting devices with restricted re-
sources is the PennBench [7]. It offers 12 benchmarks that mainly
represent complete applications like a calculator, an email viewer, a
jpeg viewer, a video stream viewer, and a web browser. The MIDP
capability of the target platform is required.

The Mälardalen Real-Time Research Center provides open-
source C benchmarks as WCET analysis tool challenges [15].
Those benchmarks have been ported to Java by Trevor Harmon
[10]. The benchmarks are basically kernel benchmarks to stress
WCET analysis tools and not real applications. Many of them con-
sist just of a single function. Furthermore, as the original code is in
C the benchmarks are not object oriented.

The benchmark that is closest related to JemBench is CDx [13].
CDx is a collision detector implemented as test case for the RTSJ.
Besides targeting the RTSJ, CDx is also available for standard Java.
However, in both cases the JDK of Java SE is assumed. CDx con-
tains a single periodic task that implements the collision detection.
Another thread that generates the radar frame can be started to gen-
erate garbage to test real-time garbage collection.

4. THE JemBench SUITE
The JemBench benchmark suite is implemented in plain Java

against a J2ME API, considering also the restrictions of CLDC 1.0
and the available library in SCJ. The classfiles of the benchmark are
generated by a standard Java source compiler. It does not contain
classfiles assembled or manipulated manually.

4.1 Benchmark Architecture
The performance of embedded systems can vary in the order of

several magnitudes. As to extract valid results in a reasonable time
with reasonable accuracy, the benchmark needs to adapt dynam-
ically to the underlying platform. JemBench performs this adap-
tation by exponentially increasing the number of iterations of a
benchmark until a minimum execution time threshold is exceeded.
The performance is then reported based on this conclusive run and
normalized to iterations per second. The greater the reported num-
ber is, the higher is the performance.

The JemBench suite includes several types of benchmarks. On
a first level, sequential benchmarks can be distinguished from par-
allel ones. While the former focus on the evaluation of a single
execution engine, the latter target systems with hardware support
for parallel thread execution. Both groups of benchmarks are fur-
ther subdivided by the structure of the workloads of the comprised
individual benchmarks.

4.2 Sequential Benchmarks
The sequential benchmarks measure the performance of a single

execution engine on different levels of abstraction:

Micro Benchmarks
target individual bytecodes or short typical bytecode se-
quences;

Kernel Benchmarks
comprise a tight computational kernel; and

Application Benchmarks
execute a small application that is structured into multiple
methods of several classes.

4.2.1 Micro Benchmarks
The micro benchmarks target the evaluation of the execution

performance of single bytecodes or short bytecode sequences that
cover all features of Java execution individually. The obtained re-
sults allow the comparison of the implementations of the same fea-
ture across different platforms. It is important to note that these
benchmarks do not measure a workload that comprises any realistic
instruction mix. Quite on the contrary, the employed measurement
approach is particularly designed to extract the performance figures
for the targeted bytecode sequence only. Even the necessary bench-
mark overhead is explicitly discounted from the measurement.

The micro benchmarks are useful for evaluation of Java proces-
sors or interpreting JVMs. A compiling JVM will optimize the
loop kernel in a way that the results will be meaningless. The main
motivation for the micro benchmarks stems from the intention to
evaluate the optimization of individual bytecodes of the author’s
Java processors.

The micro benchmarks contained in the JemBench suite cover
all relevant aspects of Java execution:

• arithmetic operations,

• array access,

• class and instance field access,

• branching (taken and not taken),

• static, instance and interface method invocations,

• type checking, and

• synchronized block and method executions.

Aiming at a measurement on the level of individual bytecodes,
the micro benchmarks require a sophisticated measuring approach.
In particular, this must discount the control overhead induced by
the benchmarking itself, which would otherwise dominate the ex-
ecution time. Thus, JemBench cannot simply execute the target
bytecode within a loop but rather employs a full measurement loop
and an overhead loop. The bodies of these merely differ in a min-
imal bytecode sequence containing the targeted instruction. The
relevant measurement is then obtained as the difference of the ex-
ecution times of these two loops. A small example illustrating this
approach is shown in Figure 1 for the GETFIELD bytecode instruc-
tion.

The benchmarks calculate a result within the benchmark loop
and the overhead loop that is returned from the method. Local op-
timization cannot optimize away the instructions in the loop. This
is the very reason why the example of Figure 1 must also contain
a GETFIELD bytecode in the overhead loop. While a plain assign-
ment of t=t would certainly suffice, it would establish a rather ob-
vious empty operation and, thus, an easy optimization target. This
is prevented by the indirection through a heap object.

The micro benchmarks are very concise. Their execution ex-
poses a great degree of locality. Therefore, the obtained measure-
ments typically resemble best cases benefitting from code and data
caching. We currently do not consider hotspot execution with dy-
namic code recompilation as a relevant technique for small embed-
ded devices. It is, nonetheless, important to be aware of the fact
this technique may not only introduce execution jitter but that very
aggressive optimizers might even fail these simple benchmarks.

It has to be noted that the synchronized block and method bench-
marks are executed in a single thread setting. A common technique
in JVMs is to optimize the common case (no lock contention) and
defer the full implementation of synchronization either when the

aload_2
getfield "field"
getfield "field"
astore_2

while(−−cnt >= 0) {

 t = t.field.field;
}

// Disguised no−op by setting: t.field = t

Full Loop:

aload_2
getfield "field"
astore_2

 t = t.field;

while(−−cnt >= 0) {

}

Overhead Loop:

tget f ield = t f ull - tovhd

Score = Iterations
Second

Figure 1: Discounting of the overhead in the measurement of a micro benchmark for the bytecode GETFIELD

lock is contended or when thread switching occurs. In that case,
only the best case is measured.

4.2.2 Kernel Benchmarks
The workloads of these benchmarks consist of compact compu-

tational kernels. In contrast to the micro benchmarks, these kernels
already implement full algorithms. Their focus of measurement is,
however, the plain computational power observed for very basic al-
gorithmic workloads. There is no noteworthy workload diversity
within a particular benchmark. The kernel benchmarks are also
structurally simple with a self-contained algorithmic loop. Lack-
ing complex class hierarchies and invocation patterns, these kernel
workloads are still far away from real object-oriented applications.

The performance measurement for the kernel benchmarks is im-
plemented straightforward. The loop of the benchmark iteration
counter is simply included in the time measurement as the isolated
execution time of the contained kernel is of no particular interest.

The current JemBench suite contains two kernel benchmarks:

Sieve
which computes all the primes below 100 using the Sieve of
Eratosthenes, and

BubbleSort
which initializes an integer array bitonically before sorting it
by the bubble sort algorithm.

It has to be noted that kernel benchmarks shall only be used for
some initial performance measurement. They are no substitute for
complete application benchmarks. The issues with kernel bench-
marks, such as Dhrystone or Whetstone, are discussed in a fallacy
at p. 63 in [11].

4.2.3 Application Benchmarks
The application benchmarks aim at a realistic approximation of

real-world workloads. Two of them are adapted versions of ap-
plications that are in industrial use [20]. They implement simple
but already structured tasks. This is reflected in the executed code
base, which is factored into several methods distributed over a few
classes. Their overall complexity remains, however, far below that
of standard desktop applications. As for the kernel benchmarks, the
performance measurement is again based on the full runtime of the
benchmark iteration loop.

The current JemBench suite contains the following application
benchmarks:

Kfl
In rail cargo, a large amount of time is spent on loading

and unloading of goods wagons. The contact wire above the
wagons is the main obstacle. Balfour Beatty Austria devel-
oped and patented a technical solution, the so-called Kipp-
fahrleitung, to tilt up the contact wire. Each mast contains
a tilt mechanism and a motor that is controlled by an em-
bedded Java system. This was the first commercial project
where JOP had to prove that a Java processor is a valuable
option for embedded real-time systems. A simulation of both
the environment (sensors and actors) and the communication
system (commands from the master station) forms part of the
benchmark, so as to simulate the real-world workload. The
application is written in a very conservative, static program-
ming style. That means, all methods and fields are static – no
objects are allocated.

Lift
Lift is a lift controller software that is installed in an automa-
tion factory in Turkey. The hardware is based on a JOP in
a Cyclone FPGA device and an I/O print that was originally
developed for the SCADA device TeleAlarm. The controller
has just a few inputs (command buttons and input sensors for
the hight measurement) and a simple motor control. The I/O
devices are simulated in the benchmark environment. Com-
pared to the Kfl benchmark, Lift is written in a more object
oriented style, but still avoids to generate garbage at the mis-
sion phase.

UdpIp
The third application benchmark uses an embedded UDP/IP
stack that is in use in two industrial applications. The UD-
P/IP stack was developed to be time-predictable, to avoid
garbage generation, and to consume minimal resources. In
the version that is included in JemBench the UDP/IP stack is
small enough to be executed on leJOS [24], a tiny interpret-
ing JVM for the RCX robot controller from the LEGO Mind-
Storms series. (The packet buffers and their size need to be
reduced to fit into the 32 KB memory of the RCX controller.)
In the benchmark setting, a client and a server exchange UDP
messages via a loopback driver. UdpIp is, similar to the Lift
benchmark, written object oriented, but avoids garbage gen-
eration. A pool is used to manage the packet buffers. As most
code in the UDP/IP stack manipulates the packet buffer, the
benchmark stresses integer array accesses.

All three benchmarks contain loop bound annotations and are
WCET analyzable. Therefore, they are also used as test cases for
WCET analysis of Java programs [21].

The application benchmarks of the current JemBench suite are
all inherited from JBE6 (version 1.1). JBE was first presented
in [19], where JOP was compared with several embedded Java so-
lutions. Since then, it has been used for performance evaluations in
several papers by the authors and others. The results obtained for
Kfl, Lift, and UdpIp are comparable with JemBench. It is the inten-
tion that future versions of JemBench will contain the unchanged
source of all former benchmarks, so published results from differ-
ent versions are comparable.

4.3 Multithreaded Benchmarks
There is an increasing support of multiple threads in hardware,

either with chip-multithreading (CMT) or chip-multiprocessing
(CMP). Therefore, multithreaded benchmarks for embedded sys-
tems are needed. Even small embedded Java processors provide
support of real concurrency. The three Java processors JOP [17],
SHAP [30], and jamuth [27] are all able to work in a multiprocessor
configuration. To hide memory latency cycles, jamuth is addition-
ally designed as a multithreaded processor.

All of the multithreaded benchmarks are new to the JemBench
suite. Two classes of multithreaded benchmarks are distinguished:

Parallel Benchmarks
with a homogeneous workload, which is processed by a num-
ber of concurrent worker threads executing the same algo-
rithm (data partitioning), and

Streaming Benchmarks
with a heterogeneous workload, in which each thread imple-
ments a different processing step on the same original data
(process partitioning, pipelining).

4.3.1 Parallel Benchmarks
The homogeneous workloads of the parallel benchmarks are

computations that can be parallelized easily. With a suitably fine
granularity of subproblems, these benchmarks scale very well to
an arbitrary number of worker threads. This allows the JemBench
framework to spawn the computation to exactly one thread of exe-
cution for each execution engine7. These benchmarks, thus, enable
the measurement of the performance of the complete system and
its scalability and efficiency under full parallelization.

The parallel benchmarks of the JemBench suite are designed to
stress the parallel processing. Nonetheless, they involve some syn-
chronization and inter-thread communication in the distribution of
the workload.

The measurements obtained from the parallel benchmarks are
necessarily associated with a quantization error, which results from
the subdivision into atomic serial subproblems. This error is
bounded by the execution time of the subproblem completed last
– potentially by the lone work of a single core. As to produce
valid results, the fine-granular subproblem division is, therefore,
an imperative countermeasure also taken by the benchmarks of the
JemBench suite.

Currently, the JemBench suite comprises three parallel bench-
marks:

Matrix Multiplication
which implements the multiplication of two integer matri-
ces where the computation of each result row represents one
subproblem.

NQueens
which computes all the solutions of the N-Queens Puzzle for

6http://www.jopwiki.com/JavaBenchEmbedded
7as reported by Runtime.availableProcessors()

N = 13. The search tree is divided into separate exploration
problems after the successful placement of queens within the
first four columns.

Ray Tracer
which uses ray tracing to compute the projective image of
a three-dimensional scene containing two triangles and two
balls. The calculated projection screen has a size of 2x3
pixels resulting in the maximum of six parallel execution
threads. This benchmark is optional and requires the exam-
ined platform to provide floating-point arithmetic for dou-
bles including implementations for the trigonometric func-
tions sin and cos.

4.3.2 Streaming Benchmarks
Streaming benchmarks establish a more realistic scenario with a

heterogeneous workload. Inter-thread communication should not
dominate the computation but is, nonetheless, an essential part
of these benchmarks for forwarding the data from one process-
ing stage to another. The number of processing stages and, thus,
threads working on a streaming benchmark is pre-defined. Con-
sequently, these benchmarks do not scale to arbitrary numbers of
execution engines but will force some cores to execute multiple
threads or to run idle if the benchmark depth does not match the
processor count.

The streaming benchmarks are currently represented by a single
AES benchmark, which implements a four-stage pipeline:

1. The first stage generates well-defined pseudo-random data
block,

2. which are AES-encrypted by the second pipeline stage be-
fore

3. being decrypted by the third.

4. The fourth stage, finally, computes a simple checksum over
the received decrypted data.

This benchmark integrates the AESLightEngine from the Bouncy
Castle Crypto Library,8 which is available under a free open-source
license.

4.4 Release Policy
JemBench is an extension of the benchmark collection JBE,

which contains most of the micro benchmarks, one kernel bench-
mark, and the application benchmarks. JBE is available in version
1.0 and 1.1. As JemBench is a major update, the source is released
under version 2.0 with the final version of this paper. For the review
process the version 1.8 was available.

The intention of JBE and JemBench is to provide a platform and
releases that stay comparable and compatible to earlier versions
of the benchmark suite. Therefore, results with newer embedded
Java platforms can be compared against results from earlier publi-
cations. Having release versions of JemBench allows us to extend
and enhance the benchmark suite in the future.

JemBench is released in source form for easier handling and us-
age. However, to report results based on JemBench, the bench-
marks shall not be changed, except adapting the number of proces-
sors for scalability measurements. Furthermore, the release version
of the suite shall be included in the report.

We are very interested in collecting numbers for various embed-
ded Java systems and have setup a Wiki page9 to collect the results.
8See the project website: http://www.bouncycastle.org/
9http://www.jopwiki.com/JemBench

http://www.jopwiki.com/JavaBenchEmbedded
http://www.bouncycastle.org/
http://www.jopwiki.com/JemBench

Table 1: Platform support required by the JemBench suite
Basics • Integer arithmetic (int, long).

• Classes: Object, String, StringBuffer.

• System.arraycopy().

Reporting

• System.currentTimeMillis()
– may be replaced within the execution framework.

• System.out : java/io/PrintStream.

Concurrency

• Runnable.

• Thread – may be replaced within the execution framework.

Particularities

AES • java.util.Random.

RayTracer • Standard double-precision floating-point arithmetic.

• Math: sqrt(), sin(), cos(), toRadians().
• java.util.Vector.

The page is freely editable (after registering a user name to block
spam bots).

5. BENCHMARK EVALUATION
It is not the intention of this paper to provide benchmark results

of individual embedded Java platforms. We want to provide a set
of benchmarks that can be executed on a great variation of plat-
forms. Therefore, the usage of language features and the Java li-
brary needs to be restricted. As the minimum platform, we se-
lected the CLDC 1.1 [26]. For a sanity check that JemBench only
uses libraries that are available within the CLDC, we run the bench-
marks on the Squawk JVM, a certified CLDC-compliant JVM from
Sun/Oracle [23]. Furthermore, the benchmarks where tested on the
Java processors jamuth, SHAP, and JOP.

Table 1 summarizes the library requirements a platform has to
meet for the execution of the JemBench suite. Basic integer arith-
metic and simple string processing must, of course, be available.
JemBench further relies on System.currentTimeMillis() for its time
measurement and on the standard printing routines invoked on Sys-
tem.out for the result output. While the default implementation
also uses the standard Thread class to implement the concurrency
for the multithreaded benchmarks, any other thread abstraction can
be easily substituted for it as long as it can execute the Runnables
provided by the concrete benchmarks.

Some particular benchmarks require some library support in ad-
dition to these basics. None of it goes beyond the capabilities of
the CLDC 1.1. However, the floating-point support and the trigono-
metric functions required by the RayTracer benchmark were not re-
quired for the CLDC 1.0. Note that the AES and RayTracer bench-
marks are also the only ones generating continuous garbage collec-
tion work.

6. CONCLUSION AND FUTURE WORK
In this paper we presented the embedded Java benchmark Jem-

Bench. The target systems for this benchmark are classic embedded
systems, programmed in Java. As those systems are often resource
constraint JemBench needs only the minimal Java standard (CLDC
1.1) to execute.

The benchmark suite contains micro benchmarks for measure-
ments of JVM implementation details, kernel benchmarks that can
run even on an incomplete JVM, real-world applications, and par-
allel benchmarks. The real-world applications are the core bench-
marks to compare the performance of embedded JVMs. The paral-
lel benchmarks are intended to evaluate possible speedups gained
by multithreaded or multiprocessing platforms.

As future work, we intend to add adapted real-world applications
that are multithreaded to the parallel workload. The single-threaded
benchmarks can be execute on an RTSJ or an SCJ platform. We
plan to add the needed wrapper classes for RTSJ and SCJ to the
multithreaded benchmarks.

Furthermore, it is not yet clear how a real-time system can be
benchmarked. The outcome of a benchmark for a hard real-time
system is basically a boolean value: either all deadlines are met or
not. We are working on a benchmarking methodology for those
real-time systems. The idea is to measure the minimum available
slack time in the worst case.

7. REFERENCES
[1] aJile. aj-100 real-time low power Java processor. preliminary

data sheet, 2000.
[2] Aonix. Perc pico 1.1 user manual.

http://research.aonix.com/jsc/pico-manual.4-19-08.pdf, April
2008.

[3] Austin Armbruster, Jason Baker, Antonio Cunei, Chapman
Flack, David Holmes, Filip Pizlo, Edward Pla, Marek
Prochazka, and Jan Vitek. A real-time Java virtual machine

with applications in avionics. Trans. on Embedded
Computing Sys., 7(1):1–49, 2007.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analysis.
In OOPSLA ’06: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-Oriented Programing,
Systems, Languages, and Applications, pages 169–190, New
York, NY, USA, October 2006. ACM Press.

[5] Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner,
Chris Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer,
Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,
J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovik,
Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. Wake up and smell the coffee: evaluation
methodology for the 21st century. Commun. ACM,
51(8):83–89, 2008.

[6] Greg Bollella, James Gosling, Benjamin Brosgol, Peter
Dibble, Steve Furr, and Mark Turnbull. The Real-Time
Specification for Java. Java Series. Addison-Wesley, June
2000.

[7] G. Chen, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin.
Pennbench: A benchmark suite for embedded java. In in the
IEEE 5th Annual Workshop on Workload Characterization,
2005.

[8] Brian P. Doherty. A real-time benchmark for javaTM. In
JTRES ’07: Proceedings of the 5th international workshop
on Java technologies for real-time and embedded systems,
pages 35–46, New York, NY, USA, 2007. ACM.

[9] Sudheendra Hangal and Mike O’Connor. Performance
analysis and validation of the picojava processor. IEEE
Micro, 19:66–72, 1999.

[10] Trevor Harmon, Martin Schoeberl, Raimund Kirner, and
Raymond Klefstad. A modular worst-case execution time
analysis tool for Java processors. In Proceedings of the 14th
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2008), pages 47–57, St. Louis, MO,
United States, April 2008. IEEE Computer Society.

[11] John Hennessy and David Patterson. Computer Architecture:
A Quantitative Approach, 3rd ed. Morgan Kaufmann
Publishers Inc., Palo Alto, CA 94303, 2002.

[12] Thomas Henties, James J. Hunt, Doug Locke, Kelvin Nilsen,
Martin Schoeberl, and Jan Vitek. Java for safety-critical
applications. In 2nd International Workshop on the
Certification of Safety-Critical Software Controlled Systems
(SafeCert 2009), York, United Kingdom, Mar. 2009.

[13] Tomas Kalibera, Jeff Hagelberg, Filip Pizlo, Ales Plsek, Ben
Titzer, and Jan Vitek. Cdx: a family of real-time java
benchmarks. In JTRES ’09: Proceedings of the 7th
International Workshop on Java Technologies for Real-Time
and Embedded Systems, pages 41–50, New York, NY, USA,
2009. ACM.

[14] Andreas Krall and Reinhard Grafl. CACAO – A 64 bit
JavaVM just-in-time compiler. In Geoffrey C. Fox and Wei
Li, editors, PPoPP’97 Workshop on Java for Science and
Engineering Computation, Las Vegas, June 1997. ACM.

[15] Mälardalen Real-Time Research Center. WCET benchmarks.
Available at http://www.mrtc.mdh.se/projects/wcet/

benchmarks.html, accessed 2009.
[16] Caffeinemark 3.0 benchmark. Available at

http://www.benchmarkhq.ru/cm30/info.html, 1997.
[17] Christof Pitter and Martin Schoeberl. A real-time Java

chip-multiprocessor. Trans. on Embedded Computing Sys.,
accepted for publication, 2010.

[18] Filip Pizlo, Lukasz Ziarek, and Jan Vitek. Real time java on
resource-constrained platforms with fiji vm. In JTRES ’09:
Proceedings of the 7th International Workshop on Java
Technologies for Real-Time and Embedded Systems, pages
110–119, New York, NY, USA, 2009. ACM.

[19] Martin Schoeberl. Evaluation of a Java processor. In
Tagungsband Austrochip 2005, pages 127–134, Vienna,
Austria, October 2005.

[20] Martin Schoeberl. Application experiences with a real-time
Java processor. In Proceedings of the 17th IFAC World
Congress, pages 9320–9325, Seoul, Korea, July 2008.

[21] Martin Schoeberl, Wolfgang Puffitsch, Rasmus Ulslev
Pedersen, and Benedikt Huber. Worst-case execution time
analysis for a Java processor. Software: Practice and
Experience, 40/6:507–542, 2010.

[22] Fridtjof Siebert and Andy Walter. Deterministic execution of
Java’s primitive bytecode operations. In Proceedings of the
Java Virtual Machine Research and Technology Symposium
(JVM ’01): April 23–24, 2001, Monterey, California, USA.
Berkeley, CA, pages 141–152. USENIX, 2001.

[23] Doug Simon, Cristina Cifuentes, Dave Cleal, John Daniels,
and Derek White. Java on the bare metal of wireless sensor
devices: the squawk Java virtual machine. In Proceedings of
the 2nd international conference on Virtual execution
environments (VEE 2006), pages 78–88, New York, NY,
USA, 2006. ACM Press.

[24] Jose Solorzano. leJOS: Java based os for lego RCX.
Available at: http://lejos.sourceforge.net/.

[25] Sun Microsystems. J2ME Building Blocks for Mobile
Devices, White Paper on KVM and the Connected, Limited
Device Configuration (CLDC), May 2000.

[26] Sun Microsystems. Connected Limited Device Configuration
Specification, Version 1.1, March 2003.

[27] Sascha Uhrig. Evaluation of different multithreaded and
multicore processor configurations for sopc. In SAMOS ’09:
Proceedings of the 9th International Workshop on Embedded
Computer Systems: Architectures, Modeling, and Simulation,
pages 68–77, Berlin, Heidelberg, 2009. Springer-Verlag.

[28] Sascha Uhrig and Jörg Wiese. jamuth – an IP Processor Core
for Embedded Java Real-Time Systems. In The 5th
International Workshop on Java Technologies for Real-time
and Embedded Systems - JTRES 2007, Vienna, Austria,
September 2007.

[29] Martin Zabel, Thomas B. Preusser, Peter Reichel, and
Rainer G. Spallek. Secure, real-time and multi-threaded
general-purpose embedded Java microarchitecture. In
Prceedings of the 10th Euromicro Conference on Digital
System Design Architectures, Methods and Tools (DSD
2007), pages 59–62, Lübeck, Germany, Aug. 2007.

[30] Martin Zabel and Rainer G. Spallek. SHAP — scalable
multi-core Java bytecode processor. Technical report,
Fakultät Informatik, Technische Universität Dresden, 2009.
ftp://ftp.inf.tu-dresden.de/pub/berichte/
tud09-13.pdf.

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.benchmarkhq.ru/cm30/info.html
ftp://ftp.inf.tu-dresden.de/pub/berichte/tud09-13.pdf
ftp://ftp.inf.tu-dresden.de/pub/berichte/tud09-13.pdf

APPENDIX
JemBench is available under the GNU GPL and can be downloaded
from

https://sourceforge.net/projects/jembench/.

or with following svn command:

svn co https://jembench.svn.sourceforge.net/svnroot/jembench
jembench

The driver class to execute all benchmarks is jembench.Main.
Compiling and running JemBench on a desktop JVM is basically:

javac jembench/Main.java
java jembench.Main

By default floating-point operations are excluded as they are op-
tional in CLDC 1.0. To include the floating-point benchmarks set
the constant USE_FLOAT to true in Main.java.

On a CLDC platform it is not possible to query the number
of processors. Therefore, the default configuration uses a single
thread for the multithreaded benchmarks. The number of threads
can be changed in Util.getNrOfCores().

Please help us to collect results on various embedded Java
platforms and report the results on:

http://www.jopwiki.com/JemBench

https://sourceforge.net/projects/jembench/
http://www.jopwiki.com/JemBench

	Introduction
	Embedded Java
	Embedded JVM Implementations
	Java Processors
	Real-Time and Safety-Critical Java

	Related Work
	Java Standard Edition
	Embedded Java

	The JemBench Suite
	Benchmark Architecture
	Sequential Benchmarks
	Micro Benchmarks
	Kernel Benchmarks
	Application Benchmarks

	Multithreaded Benchmarks
	Parallel Benchmarks
	Streaming Benchmarks

	Release Policy

	Benchmark Evaluation
	Conclusion and Future Work
	References

