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Abstract—Given two independent point processes and a certain
rule for matching points between them, what is the fraction of

matched points over infinitely long streams? In many application

contexts, e.g., secure networking, a meaningful matching rule is
that of a maximum causal delay, and the problem is related to

embedding a flow of packets in cover traffic such that no timing

analysis can detect it. We study the best undetectable embedding
policy and the corresponding maximum flow rate—that we call the

embedding capacity—under the assumption that the cover traffic

can be modeled as an arbitrary renewal process. We find that
computing the embedding capacity requires the inversion of a very

structured linear system that, for a broad range of renewal models

encountered in practice, admits a fully analytical expression in
terms of the renewal function of the processes. This result enables

us to explore the properties of the embedding capacity, obtaining

closed-form solutions for selected distribution families and a suite
of sufficient conditions on the capacity ordering. We test our

solution on real network traces, which shows a remarkable match

for tight delay constraints. A gap between the predicted and the
actual embedding capacities appears for looser constraints, and

further investigation reveals that it is caused by inaccuracy of the

renewal traffic model rather than of the solution itself.

Index Terms—Embedding capacity, information flow, in-

trusion detection and security, point processes and inference,
Riemann–Hilbert problem.

I. INTRODUCTION

C ONSIDER the pair of timing sequences represented by

the point processes and in Fig. 1, where points are

matched according to some prescribed rule. What is the max-

imum achievable fraction of matched points (embedding ca-

pacity) given the two processes and the matching rule? How do

Manuscript received March 10, 2011; revised April 02, 2012; accepted
September 24, 2012. Date of publication November 15, 2012; date of current
version February 12, 2013. L. Tong was supported in part by the Army
Research Office MURI Program under Award W911NF-08-1-0238 and in part
by the National Science Foundation under Award CCF 1018115. This paper
was presented in part at the Annual Asilomar Conference on Signals, Systems,
and Computers, Pacific Grove, CA, in 2010, and in part at the 2011 IEEE
Information Theory Workshop.
S.Marano andV.Matta arewith theDepartment of Information and Electrical

Engineering, andAppliedMathematics, University of Salerno, I-84084 Fisciano
(SA), Italy (e-mail: marano@unisa.it; vmatta@unisa.it).
T. He is with IBM T. J. Watson Research Center, Yorktown, NY 10598 USA

(e-mail: the@us.ibm.com).
L. Tong is with the Department of Electrical and Computer Engineering, Cor-

nell University, Ithaca, NY 14853 USA (e-mail: ltong@ece.cornell.edu).
Communicated by M. Franceschetti, Associate Editor for Communication

Networks.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2012.2227672

Fig. 1. Notional sketch of the addressed problem, with arrival epochs of the
processes and matched according to a delay constraint . Matched points
are marked by circles, and unmatched by diamonds.

statistical properties of the point processes affect the maximum

fraction of matching?

The point processes and represent sequences of events

generated by two different entities that are externally observ-

able. The matching rule describes the expected relationship be-

tween the events if an event at one entity is caused by another

event at the other entity, and this nexus of cause and effect can

be inferred by the fraction of events satisfying the matching

rule over the entire sequences. For instance, the aforementioned

problem arises in intelligence applications aimed at tracing re-

lationships among individuals in social networks (see [1] for a

recent survey), where the point processes model specific observ-

able activity patterns (e.g., tags, shared links, favorite games,

preferences or attitudes, and so on) of network members; or

in the problem of discovering neuron connections by measure-

ments of firing sequences [2], [3], where the point processes

model the spike trains produced by neural activities.

Closer to the communication area is the network security ap-

plication concerning the detection of clandestine information

flows, see, e.g., [4], where nodes relaying packets for each other

try to hide the fact of relaying, which is often an indicator of

network attacks (such as stepping-stone attacks [5], [6]). In the

last decades, a prominent role against clandestine communica-

tion has been played by traffic analysis aimed at discovering

source–relay pairs by analyzing timing information in the net-

work traffic [7], [8]. In this context, the two processes represent

the sequences of time epochs (traffic patterns) at which succes-

sive packets leave two nodes of the network and, for security

requirements, packets are encrypted so that they do not reveal

special characteristics. Still, the act of transmission itself cannot

be kept secret, and timing analysis can be performed.

Given that nodes are unable to hide the act of transmission,

they must hide the information flow packets into their normal

transmission scheduling, which provide cover traffic for the

desired flow. The nodes can mask the timing relationships

by properly delaying the transmission of information packets

and/or multiplexing information packets with dummy packets
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or packets from other flows. With a sufficient amount of per-

turbation, an information flow can be disguised as traffic of

arbitrary patterns.

However, network protocols must be faced with physical con-

straints that pose some limitations on the admissible scheduling

patterns. A sensible constraint is that of causal bounded delay

[5], meaning that the relaying of (information flow) packets

must occur within a maximum allowed latency (see Fig. 1).

Thus, every transmission schedule (or cover traffic) has a certain

capacity of being utilized to transmit informationflows covertly.

The matching capability of a particular schedule takes the op-

erational meaning of an embedding capacity, that is, the max-

imum fraction of information packets that can be embedded in

the cover traffic following this schedule, leaving no chances of

discovering the presence of the flow itself. The embedding ca-

pacity establishes a fundamental limit on the sensitivity of infor-

mation flow detection, i.e., a smart attacker can send informa-

tion flows with a normalized rate up to the embedding capacity

without being detected by any flow detector [9], [10].

In this respect, the intruder might embed information packets

into traffic streams corresponding to noninteracting nodes, i.e.,

statistically independent point processes. Thus, while general

processes containing a common information flow will not be

statistically independent, this specific embedding procedure

would guarantee that an information flow can be embedded

into realizations from strictly independent processes, and the

embedding capacity quantifies the maximum delivering rate.

A closely related application is in the area of anonymous net-

working [7], [11], [12]. As the dual of information flow detec-

tion, the goal of an anonymity-supporting relay is to maximize

the rate of information flow without revealing the act of re-

laying. Again, although encryption can hide the correlation in

traffic content, hiding the correlation in traffic timing generally

incurs loss in efficiency (dropped packets, dummy packets, see,

e.g., [13]). Here, the embedding capacity characterizes the max-

imum efficiency of the relay in hiding the correlation between

the timing of the incoming and the outgoing traffic.

The main theme of this paper is that of providing analytical

tools for computing the embedding capacity of two independent

and identically distributed (i.i.d.) processes, when the coupling

rule is formulated in terms of a causal delay constraint, and the

network traffic is modeled as an arbitrary renewal process.

It is important to stress that the network traffic characteris-

tics depend upon the specific protocol used. Since protocols are

part of the network design, a relevant question is what kind of

traffic pattern offers better anonymity. In this connection, avail-

ability of simple formulas for the embedding capacity allows

comparison of different traffic models in terms of their “voca-

tion” to anonymity, and is key to the design of anonymity-com-

pliant protocols.

A. Summary of Results

The embedding capacity for a Poisson process under causal

delay constraint is known, see [4]. The Poisson assumption,

however, rarely fits real traffic and, to date, analytical formulas

for arbitrary renewal traffic are still missing. In the following,

this gap is filled.

Indeed, we find that the embedding capacity for renewal

cover traffic is related to the invariant distribution of a suitable

Markov chain. First, we prove the existence of such distri-

bution, so that capacity evaluation requires the solution of

an integral equation. We attack this problem by exploiting

the powerful tools offered by the Riemann–Hilbert theory,

which allows us to derive the following approximation for the

embedding capacity:

where is the rate of the processes, is the delay constraint,

and is the renewal function of the (scaled to unit rate)

underlying process. The accuracy of this formula is excellent

for a very broad range of renewal processes of interest for the

applications, see Section VI-A. We also show how can be

computed to any degree of approximation by inverting a very

structured linear system.

It is important to stress that the previous formula for de-

pends only on the renewal function which is the key quantity

in renewal theory and, as such, is well studied and understood.

Therefore, our formulas for provide a simple way to com-

pute the maximum fraction of information flow packets that

can be anonymously embedded. In many cases of practical in-

terest, the integral involved can be also evaluated explicitly,

from which physical insights can be gained even easier.

The aforementioned expression is then used to relate the char-

acteristics of the renewals to the embedding performance. This

highlights how the maximum amount of embedded flow de-

pends upon the cover traffic parameters, and gives insight to

compare and design different anonymous-oriented traffic pro-

tocols. In particular, when the rate and/or the maximum delay

is large (loose delay bound), the distribution of cover traffic af-

fects the embedding capacity only through the dispersion index

, namely, as , the minimum fraction of unmatched

points decays as . Stochastic variability is instead the

key (for any ) to compare different interarrival distributions:

less variable interarrivals yield a larger embedding capacity, and

in particular it is seen that the Poisson case represents a wa-

terfall between the classes of new better than used in expecta-

tion (NBUE) and new worse than used in expectation (NWUE)

cover traffic (see Corollary 2).

B. Related Work and Organization

The roots of packet embedding into cover traffic can be traced

back to the early 1980s. The problem of avoiding traffic analysis

using special relay policies was first considered in [11], with the

adoption of the so-called MIX relays that perform multiplexing,

scrambling, and encryption of the incoming traffic in order to

eliminate the correlation with the outgoing traffic. Since then,

several studies have been made in order to improve relay per-

formances, see, e.g., [13] and [14]. More recently, it has been

shown how statistically independent transmission schedules can

achieve perfectly anonymous relaying, with emphasis on the

maximization of the carried information capacity [12].

Also related to our problem is the network security issue re-

ferred to as stepping-stone attack [5], [6], in which an adversary
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launches an attack through a sequence of compromised servers,

and one would like to trace the sequence to the origin of the

attack. For wireless networks, an ad hoc network may be sub-

ject to the worm-hole attack [15], where the attacker hijacks the

packets of a node and channels them through a covert tunnel. In

such scenarios, the maximum information rate sustainable by

the attackers is related to the embedding capacity of the node

traffic patterns.

From an information-theoretic perspective, the problem of se-

cure communications, in terms ofmaximizing the reliable rate to

a legitimate receiver with secrecy constraints with respect to an

eavesdropper, has been extensively studied, since the pioneering

works [16]–[18], up to recent extensions, including multiaccess

[19], fading [20], feedback [21], and broadcast [22] channels,

among many others. We stress that the specific scenario of in-

terest for this paper is instead secure networking with focus on

anonymous relaying of information, according to themodel pro-

posed in [4] and [12].

Formal studies of the embedding properties of renewals have

been carried out in [4] and [12], with extensions to distributed

detection with communication constraints [23], [24]. In [4], the

problem is settled up from the traffic analyzer’s perspective,

where the role of the embedding capacity is replaced by that of

undetectable flow, and a closed formula for the capacity under

the Poisson regime is found. In many applications (inside the

communication area as well as outside that), general renewal

traffic models are far from being approximated as Poisson, such

that several extensions of the aforementioned studies in this

direction have been proposed, see [25] and [26]. However, a

tractable analytical formula for the embedding capacity under

arbitrary renewal traffic is still missing.

The remainder of this paper is organized as follows: Section II

formalizes the problem; the main results of the paper are pre-

sented in Section III, and Section IV is devoted to the main

mathematical derivations. Section V addresses the problem

of classification and ordering of renewal processes in terms

of their embedding capacity, while Section VI concerns the

application of the main theoretical findings to simulated data

and experiments on real network traces. Conclusions follow in

Section VII.

II. PROBLEM FORMULATION

Capital letters denote random variables, and the corre-

sponding lowercase the associate realizations, while and

denote probability and expectation operators, respectively.

A point process on the positive real axis is a collection

of nonnegative random variables such

that, for , almost surely (a.s.), and

a.s.

Consider two point processes and

defined over . Points that are

matched over the two processes form an information flow in

the sense that one point in a matched pair can be thought of as

a relayed copy of the other. We are interested in delay-sensitive

directional flows, for which matched points obey a causal

bounded delay constraint as follows [4].

Definition 1 (Information Flow): Point processes and

form a -bounded-delay information flow, in the direction

, if for every realization, there is a one-to-one mapping

between sets and , satisfying the

causal bounded delay constraint , .

Here, is a known constant representing the maximum

tolerable delay during relaying.

Given point processes and , an information flow can be

selected by finding, for each realization of the processes, sub-

sequences that admit a valid one-to-one mapping. This is con-

trolled by an embedding policy.

Definition 2 (Embedding Policy): An embedding policy se-

lects two (possibly path dependent and random) subsequences

and such that the thinned

point processes and

form a -bounded-delay information flow in the di-

rection .

The term “embedding” is due to the fact that to an outsider

who cannot observe the selection, it is not known which points

belong to an information flow or even if there is a flow, and thus

the flow is embedded in the overall processes . For the

same reason, is called cover traffic.

Let be the set of the embedding policies. Given , the

cover traffic is decomposed into

where forms an information flow (in the direction

). Here, is the superposition operator for point pro-

cesses: means that is the th element in the se-

quence made of all elements of and , arranged in increasing

order, namely, with

Definition 3 (Efficiency): Given cover traffic , the ef-

ficiency of an embedding policy is measured by

where and are the counting processes (up to )

for the embedded information flow, so are and for

the cover traffic.

In words, the efficiency is the asymptotic fraction of matched

points in the cover traffic, and we are clearly interested in the

highest efficiency, which we call the embedding capacity.

Definition 4 (Embedding Capacity):

The embedding capacity is a function of the cover traffic and

of the flow constraint (i.e., ), omitted in the notation for sim-

plicity.We shall focus on the case that the cover traffic processes

and are i.i.d. renewal processes, with interarrivals modeled

as absolutely continuous (with respect to the usual Lebesgue

measure) random variables and , respec-

tively,1 whose common probability density function (PDF) is

1For simplicity, we consider nondelayed renewal processes, even thoughmost
results obviously extend to delayed renewals.
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Fig. 2. Three situations arising from applying the BGM procedure to point processes and . Chaff points are denoted by “ .” (Left) Point at is unmatched,
and it is a chaff point in the process . (Center) All points are matched (no chaff). (Right) Chaff point is present in the process .

denoted by , and whose cumulative distribution function

(CDF) by . Throughout the paper, it is assumed that the

rate of the processes, denoted by , is finite and nonzero, i.e.,

; when the second moment is

finite, we define the dispersion index as

(1)

III. CHARACTERIZATION OF THE EMBEDDING CAPACITY

In order to characterize the embedding capacity, we proceed

by first finding an optimal embedding algorithm, given any re-

alization of the two point processes and . Then, associated

with this algorithm, we define a Markov chain whose steady-

state probability of staying in a certain region is directly related

to the asymptotic fraction of matched points, which is the sought

capacity . Finally, we elaborate to compute analytically the

mentioned steady-state probability.

A. Optimal Embedding Policy

As a first step toward capacity evaluation, we now show

that an optimal embedding policy exists, which maximizes the

number of matched points for any given cover traffic. This is

achieved by an algorithm called the bounded greedy match

(BGM) [27], which works as follows.

For a given realization of the two point processes and

(all the points initially marked as “undetermined”), the BGM

algorithm repeats the following steps (see Fig. 1).

1) Consider the first (in the direction of increasing time) un-

determined point in the process , say .

2) Find the first undetermined point in the process in the

interval , if any, denoted by .

3) If such a point exists, mark both and as “matched”;

otherwise, mark as “unmatched”; in either cases, mark

all undetermined points in the process before as

“unmatched.”

Matched and unmatched points are also referred to as “flow”

and “chaff,” respectively.

The BGM algorithm is optimal in the sense that, given two

arbitrary realizations of point processes and an arbitrary value

of , the algorithm finds the maximum number of matched

points satisfying the delay bound [27]. This result is contained

in Theorem 8 of [27], which is actually given in terms of coin

flips generated by two independent binomial processes. It can be

seen, however, that the proof holds for any realizations of point

processes,2 as already noticed in [4] and [12]. By Definition 4,

this implies the key fact that the embedding capacity is always

achieved by BGM, regardless of the characteristics of the cover

traffic.

B. Embedding Capacity in Terms of a Markov Chain

Our second step in deriving the embedding capacity con-

sists of modeling the behavior of BGM by a Markov chain,

whose stationary distribution is directly related to . Let be

the th sample of such chain: is the time difference between

the “candidate” matching points at the th iteration of BGM, as

we now detail.

With reference to Fig. 2, let us consider the time difference

between the first points in the two point processes and , that

is, . According to the BGM algorithm,

we have the following three possibilities.

1) If , the points cannot be matched, and the one in

is labeled as chaff. To decide the nature (chaff/nonchaff) of

the point in , we must check whether it can be matched

to the next arrival in , thus computing [see Fig. 2(a)]

where is the second interarrival of the process .

2) If , the points match. To check the nature

of the next incoming points, we update the process as [see

Fig. 2(b)]

where is the second interarrival of the process .

3) If , the points cannot be matched, and the one in

is labeled as chaff. To decide the nature of the point in

, we must check whether it can be matched to the next

arrival in , thus computing [see Fig. 2(c)]

2Specifically, the proof shows that for any pair of realizations of point pro-
cesses and any embedding policy , every unmatched point under BGM
must have a corresponding unmatched point (looking backward in time) under
. Note that the reference policy does not have to be sequential, i.e., it is al-
lowed to make decisions based on the entire realizations.
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By repeating for the successive points in the two streams, we

see that a Markov process can be compactly defined in terms of

the original renewals by the following rule

if

if

if

(2)

In the above, and are

the interarrivals of the processes and , respectively, whose

common PDF is . Given the sequential nature of the afore-

mentioned recursion, the independence of the interarrivals and

the independence between and ensure Markovianity of

.

The chain defined in (2) by running the

BGM algorithm over a realization of the two point processes is

schematically illustrated in Fig. 3, and the physical interpreta-

tion of the variables ’s is easily understood. From (2), a little

thought reveals that the step of the chain at time simply mea-

sures the time difference between the two points and ,

i.e., . Now, when (say, in the

figure), this is the distance between , which is not clas-

sified yet at step , and the chaff point ; similarly, when

, this negative value measures how , which is a chaff

point, is far from , which is not classified yet (for instance,

or ). When stays inside the

barriers, it measures the distance between the two flow points

and (e.g., ).

What is key for the forthcoming arguments is the operational

meaning of the chain in terms of counting

the matched points in the two streams and . From the afore-

mentioned discussion, note that to each step such that

, there corresponds a pair of flow points (one be-

longing to and one to ) matched by the BGM. Instead, to

each such that , there corresponds a single

chaff point (belonging to if , and belonging to

if ). Therefore, the number of steps of the Markov

chain lying inside (resp. outside) the barriers 0 and defines

the number of flow (resp. chaff) points marked by the BGM al-

gorithm. Thus, a simple relationship exists between the asymp-

totic distribution of the chain and the fraction of flow points de-

Fig. 3. Construction of a sample path of the Markov process (lower panel)
from a realization of the two point processes (upper). In the upper panel,

, and , while the corresponding interarrivals
are and ; The points marked with “ ” are those classified
as chaff by the BGM algorithm.

termined by the BGM algorithm, which is the embedding ca-

pacity. This is exploited in Section IV.

C. Main Results

The first theorem we present, whose proof is deferred to

Appendix A, establishes a connection between the embedding

capacity and the invariant density of the BGM Markov chain

, expressed as the solution of an integral

equation.

Theorem 1 ( by Markov Chain): Let and be two i.i.d.

renewal processes, with interarrival PDF . Let be the

delay constraint, and define a Markov chain as in (2).

1) The invariant PDF of the Markov chain exists and

solves the following homogeneous Fredholm integral

equation of the second kind [28]

(3)

where is the convolution

between and .

2) The embedding capacity can be written as

(4)

It is useful to note that the packet-matching problem pos-

sesses a scale-free property: For a given distribution of the

interarrivals, doubling the arrival rate “speeds up” the system

so that the sample paths can be redrawn on a time axis scaled

by a factor of 2, and halving leaves unchanged the number

of matches. We accordingly introduce a new Markov chain

defined by . The
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interarrivals corresponding to this modified chain are and

, motivating the following definition.

Definition 5 ( -PDF): The PDF of the interarrivals

scaled to unit mean will be called u-PDF.

It is clear that the steady-state probability that

the original chain belongs to is exactly ,

where denotes the stationary density of the modified chain

. Therefore, the piece of relevant to ca-

pacity computation is

otherwise

whose Fourier transform is

Let be the Fourier transform of the u-PDF , and define

the “kernel”

(5)

where for , and . We

are now in the position of stating the next theorem (this and the

forthcoming results of this section are proved in Section IV).

Theorem 2 (Exact Value of ): Assume that the interar-

rivals have finite second moment. The embedding capacity of

two i.i.d. renewal processes with rate , under delay constraint

, is

(6)

where is the solution of

(7)

As a check, let us specialize the aforementioned equation to

the case of exponential interarrivals, for which the embedding

capacity is available in closed form [4]. In the exponential case,

it is easily seen that , allowing direct solution

of (7), and computation of . Substituting

into (6), this yields

that matches the known result from [4].

Note that Theorem 2 still gives an implicit solution to the

problem in terms of an integral equation, which in general does

not admit a closed form. On the other hand, (7) is amenable

to approximate solutions, as described next and detailed later

in Section IV. First of all, it is possible to obtain a “discrete”

version of the integral (7), in the form

(8)

where for , and otherwise. The coefficients

—that define a matrix of infinite size— can be expressed in

terms of the renewal function of the (unit-mean) interarrivals.

Definition 6 ( -RF): Let be the number of arrivals

in of a renewal process with interarrivals scaled to unit

mean, i.e., distributed according to the -PDF . The re-

newal function

will be called -RF.

Indeed, using this definition of , the coefficients can

be written as

(9)

(10)

(11)

(12)

To obtain suitable approximations of , let be some

integer, and let us set to zero the cross terms , , for

and . In this way, the matrix involved in (8)

takes the following form

(13)

that is an infinite matrix whose nonzero entries are the central

block , of size by , and

the diagonal entries , , shown as dots in (13).

Using (13) in expression (8) is tantamount to focus on the

linear system

(14)

with coefficient matrix . The following result holds.



1730 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 3, MARCH 2013

Theorem 3 (Linear System Approximation): Assume that the

second moment of the interarrivals is finite. Then, for any size,

the matrix is positive definite, such that solving the linear

system in (14) gives

(15)

Accordingly, one introduces the following sequence of approx-

imants for

(16)

that correspond to neglect the , beyond a certain

layer.

From (9)–(12), we see that is very structured and its de-

grees of freedom grow only linearly with ; in fact, is com-

pletely specified by assigning one row and the main diagonal,

which is very convenient for numerical tractability; also, it is

expected that the approximations (16) become more and more

accurate as increases.

There is more. By exploring the regimes and

, in Section IV-C, we shall offer plausibility arguments for ne-

glecting all the off-diagonal terms , , that is to say, for

treating the matrix in (13) as exactly diagonal. This motivates

our main approximation for computing , which turns out to

be very accurate in many practical cases.

Main Approximation of : Under the assumption of finite

second moment for the interarrivals, the embedding capacity of

two i.i.d. renewal processes with rate , under delay constraint

, can be approximated as

(17)

with being the -RF.

Again, let us apply (17) in the Poisson regime. The u-RF of

an exponential random variable is that inserted in (17)

gives

implying that, in this particular case, formula (17) is exact, i.e.,

. This can be understood by considering that the cross

terms in (11) are zero in the exponential case.

As mentioned, the relevance of the aforementioned claim

stems from the fact that, for the typical interarrival distribu-

tions encountered in many applications, the accuracy of the

fully analytical approximation (17) seems to be excellent (see

Section VI-A). Accordingly, represents an accurate and

mathematically tractable expression for the embedding capacity

under arbitrary renewal traffic.

We would like to emphasize that the characterization (17) re-

lates the sought capacity to the u-RF of the underlying process.

This highlights the role of the renewal function , and re-

veals that its average is the key quantity in de-

termining . Thus, different traffic models can be classified

with respect to their embedding capabilities just in terms of that

average.

Finally, we state a corollary characterizing the asymptotic be-

havior of the approximate capacity in the limit of .

From a known property of the renewal function [29, Corollary

3.4.7], in the limit of , where

is the dispersion index defined in (1). Simply plugging that

expression in (17) would give . Indeed, we

have the following result.

Corollary 1 (Scaling Law for ): Under the assumption of

finite second moment for the interarrivals, we have

The corollary reveals that, for large values of the product

, the key quantity in determining the capacity is the disper-

sion index: given , the ability for a type of (renewal)

traffic to hide information flows in independent realizations only

depends on the value of the dispersion index , and different

traffic models sharing the same dispersion index must behave

similarly.

IV. PROOFS BY RIEMANN–HILBERT THEORY

Let us define the normalized delay , and let us work

in terms of the unit-mean random variables with u-PDF .

Accordingly, in place of the original integral (3) involving the

stationary density , we consider the following:

(18)

where is the convolution between and .

The integral (18) involves convolutions, which suggests

working in the Fourier transform domain, following a classical

approach to such integral equations pioneered by Carleman,

Wiener, and Hopf [30], see also [31] and [32].

After transformation, the problem can be cast in the form of

a Riemann–Hilbert3 boundary value problem, which, in a nut-

shell, consists in finding two functions, analytic in the upper and

lower half planes, respectively, whose limiting values on the real

axis must obey an assigned boundary condition [30], [33]. Ac-

cordingly, the basic tool used in the next proof is that of complex

analysis.

Before, we need some basic notation and concepts about one-

sided functions and their analytic Fourier transforms, which will

be useful in the following. Let be a function

belonging to , and define

3Actually, we use the name “Riemann–Hilbert”, even though, in the topical
literature, different terminologies are found. According to Muskhelishvili [33]
“The problem formulated above is often called the Riemann problem, but the
author considers this name to be incorrect [ ], because it was first considered
by D. Hilbert essentially in the form in which it is stated.”
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implying that , . Since

, the Fourier transforms of , and exist

for all . In particular, ,

, and .

By replacing the real parameter by a complex variable

, the aforementioned integrals become

and , which

are analytic in those regions of the complex plane of the variable

in which they are absolutely convergent [30]: in particular,

is analytic for , and for .

A. Proof of Theorem 2

Consider the unknown function in (18) and let

otherwise

such that

(19)

The corresponding Fourier transforms will be accordingly de-

noted by , , and . Note that, from (4), we are

just interested in .

Transforming both sides of the integral (18) into the Fourier

domain gives

where is the conjugate of . The aforementioned equation can

be recast as

(20)

where we define4

(21)

For notational simplicity, let

where and refer to left-/right-shift operations (in the time

domain).

Multiplying both sides of (20) by , and using the fac-

torization yields

(22)

4Note that is well behaved at the origin. Indeed, given the assumption

of finite secondmoment: , having used

and .

Recalling now the properties of one-sided Fourier integrals

summarized just before Section IV-A, it is easy to see that the

function (resp. ) is analytic in the upper (resp.

lower) half plane (resp. ), continuous on

the real axis, with a single pole located at .

The asymptotic behavior of the involved functions is essen-

tially determined by Fourier transforms, such that we assume

boundedness at infinity.

Summarizing, the left-hand side (LHS) and right-hand side

(RHS) of (22) are boundary values of functions that are analytic

in the upper half and lower half planes, respectively. They are

further bounded at infinity, and coincide on the real axis ,

where there is a single pole of order one located at .

An application of the analytic continuation theorem [34, Ch.

XVI] will allow to glue together the two functions in the upper

and lower half planes, obtaining a function which is analytic in

the whole plane, except for the single pole of order one at the

origin. The (generalized) Liouville theorem [34, Th. 10.23] de-

fines the only admissible form that such a function can assume:

, where is a constant to be determined.5 Restricting to the

real-axis only, we finally get

(23)

The value of the constant is fixed by enforcing the condi-

tion that is a PDF, which, in view of (19), is equivalent

to . Evaluating (23) at yields

(recall that ), whence

(24)

If we repeat the aforementioned development by multiplying

(20) by the complex exponential , we get a similar result,

finally obtaining the following system of equations:

Solving for in and gives

(25)

Using and gives identical results.

Now, observe that corresponds to the fol-

lowing chain of operations applied to , regarded in the

time domain. First, a right shift of (suffix ); then, setting

to zero the function on the negative time-axis ( operator);

finally, a left shift of (multiplication by the complex ex-

ponential). These three steps clearly correspond to the single

5Actually, according to the generalized Liouville theorem, the overall func-
tion should be equal to . On the other hand, we are looking for a
solution in the class of the functions which vanish at infinity, implying

.
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operation of setting to zero the values of the original function

in the (time) region . Similarly,

corresponds to setting to zero the values of the original function

in the region . As a result, the LHS of (25) reduces

to select, in the time domain, the original function only in

the region , i.e., a low-pass filtering of .

Accordingly, such LHS can be rewritten as the convolution

. Using that and recalling defini-

tion (21), straightforward algebra gives the desired claim.

B. Proof of Theorem 3

First, note that at LHS and RHS of (7) appear Fourier trans-

forms of functions that vanish outside the range ,

such that we can resort to the (pointwise) sampling theorem [35,

Th. 8.4.5]. We accordingly “sample” the equation as

(26)

and further use . Substituting

into the aforementioned equation, we get the set of equations in

(8), i.e., , where

(27)

that, thanks to the results in Appendix B, can be expressed in

the time domain as shown in (9)–(12).

It remains to prove that the matrix ,

appearing in (13), is positive definite. To show this, let us con-

sider . For any , using the expres-

sion (27) and observing that ,

straightforward algebra gives

It is now easy to see that the aforementioned (nonnegative)

quantity can be zero only if , , whence positive def-

initeness of follows. This implies that is invertible,

yielding (15).

C. Main Approximation

Recall that, should the infinite matrix in (13) be diagonal, then

(15) would reduce to , thus yielding, in view

of (9), the approximation in (17). By using the analytical

expressions in (11) and (12), we now show that the off-diagonal

terms , can be in fact neglected, at least in the two

regimes and . For , this immediately follows

by triangle inequality

where the approximation exploits .

As to , from a renewal theorem for interarrivals with

finite second moment [29, Corollary 3.4.7], we know that

(28)

Thus, from (11), we write for

which follows by . Then, again by tri-

angle inequality

where the last approximation is a consequence of the Cesáro

mean theorem and (28).

D. Proof of Corollary 1

We consider the limiting behavior of

(29)

Now

by simple application of the Cesáro mean theorem and of the

renewal theorem used earlier, see (28). From (29), we get the

desired result

V. ORDERING OF EMBEDDING CAPACITIES

In this section, we show how the approximate embedding ca-

pacity can be used for comparing different renewal processes

in terms of their embedding capabilities. Let and be

two nonnegative random variables with the same average value

, and with CDFs denoted by and

, respectively. The following definitions and results are

classical in the stochastic ordering literature, and can be found

in, e.g., [29] and [36].

Definition 7 (Variability or Convex Ordering): The random

variable is less variable than , written , if

(30)

provided that the expectations exist.

Known Results [36, p. 110] (Sufficient and necessary con-

ditions for convex ordering): For nonnegative random vari-

ables and , with , the condition

is equivalent to

(31)
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Intuitively, if gives less weight to the extreme

values with respect to . One way to get this is just to ensure

that for convex , as stated in (30). That

is why this kind of stochastic ordering is also known as convex

ordering. It is also obvious that

, and hence, has a dispersion index smaller than or

equal to that of , a fact that plays a major role for the capacity

in the regime of , as seen in Corollary 1.

The following theorem formally relates the classical concept

of variability ordering to the embedding capacity in a straight-

forward and intuitive way: less variable interarrivals yield larger

embedding capacities.

Theorem 4: Let and be the approximate embed-

ding capacities for i.i.d. renewal processes with interarrivals dis-

tributed as and , respectively. Then

(32)

Proof: The u-RF’s of and can be represented as [29,

Proposition 3.2.1]

(33)

where is the th epoch of the th process, , 2. Let

us focus on the single terms of the series. Since , then

for each (see, e.g., [36]), so that in view

of (31)

Applying Beppo Levi’s monotone convergence theorem [37,

Prob. 16.9], it is legitimate to exchange integration and limit,

yielding

which, in the light of (33), gives .

As a consequence of the aforementioned theorem, we have

the following results. First, it is of special interest to compare a

given renewal process to Poisson traffic. To do so, let us define

two special categories of interarrival distributions.

Definition 8 (NBUE/NWUEClasses): A nonnegative random

variable is called NBUE or NWUE if [29, p. 436]

Due to the absence of memory, the exponential distribution

is such that , and it belongs to both

classes. The following corollary offers a comparison between

the NBUE and NWUE classes, in terms of the approximate em-

bedding capacity . Recall that, in the case of exponential in-

terarrival times, the exact capacity is .

Fig. 4. Examples of traffic models for which the renewal function admits
simple closed form. Dots refer to computer simulations of the embedding
capacity and lines refer to analytical formulas.

Corollary 2 (Capacity ordering in NBUE/NWUE classes):

Consider a pair of independent renewal processes with interar-

rival times distributed according to , with . Let

be the delay constraint, and the approximate embedding

capacity. Then

(34)

Proof: Thanks to Proposition 9.6.1 in [29], the NBUE

(resp. NWUE) distributions can be shown to be less (resp.

more) variable than the exponential, implying the claimed

result as a direct consequence of Theorem 4.

VI. NUMERICAL EXPERIMENTS

A. Simulations

The analytical expression of provided by (17) turns out

to be quite accurate for virtually all the interarrival distributions

used in our simulation studies, many of which are typical of

network applications. A part of these extensive computer inves-

tigations is now summarized. In addition, we show an example

where the refinements in (16), with , provide mean-

ingful improvements over .

We start by considering some well-known interarrival distri-

butions for which the renewal function is available in closed

form, so that can be easily computed. In particular, we refer

to the Erlang and the uniform random variables, whose u-PDFs

are reported in Table I. The u-RF for the Erlang distribution can

be found in [38, p. 57], while the u-RF for the uniform can be

found in [39, Prob. 2, p. 385]. Then, follows by straight-

forward integration, and the final expressions are reported in

Table I. Comparison to numerical simulations is depicted in

Fig. 4, showing an excellent agreement.

Even when the renewal function is not known explicitly, there

exist many numerical ways to compute that. Some methods ex-

ploit the definition of the renewal function in terms of inter-

arrival distribution [29], other approaches are based on the in-

terarrival density, and even others exploit the Fourier domain.

To give an example, let us consider the Gamma family, whose
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TABLE I
EMBEDDING CAPACITY (CLOSED-FORM APPROXIMATION ) FOR TYPICAL DISTRIBUTIONS. IN THE LAST COLUMN, THE RELATIONSHIPS

BETWEEN CLASSICAL CONVEX ORDERING AND EMBEDDING CAPACITY ORDERING ARE REPORTED

Fig. 5. Examples of different traffic models. Continuous curves refer to the
approximation in Theorem 3 (17), while dots are obtained by computer
simulations.

u-PDF is equivalent to that of an Erlang distribution, but with a

shape parameter not necessarily integer, . In this case, it

is particularly convenient to use the expression for obtained

by (27). Computing numerically the involved integral, we get

the capacity plotted in Fig. 5, for the case . Again, the

match with the results of computer simulation is excellent.

A case of special interest for network applications due to its

tail behavior is the Pareto interarrival distribution, whose u-PDF

is also given in Table I. Fig. 5 shows the embedding capacity,

still obtained by deriving in (27) via numerical integra-

tion, for the Pareto distribution. This distribution exhibits finite

second moment whenever the shape parameter . We first

test the case , which hence falls in the assumptions of our

theorems (see Fig. 5). Then, we explore by simulation a case

with infinite second moment, i.e., , and Fig. 5 reveals

that the accuracy of the formula is maintained.

We note in passing that the ordering results derived in

Section V allow one to compare different cover traffic sharing

the same interarrival PDF, but with different shape parameters.

Indeed, for the mentioned traffic models, convex ordering is

directly induced by ordering of the shape parameters (see, e.g.,

[40]), which in turn induces an ordering of the approximate

embedding capacities, as stated in Theorem 4. The results of

such comparisons are summarized in the last column of Table I.

In all the cases examined so far, there is no doubt that the

expression is quite accurate for any practical purposes. We

would like to present an example in which the analytical formula

(17) is less accurate. Let us consider the following (shifted ex-

ponential) u-PDF for the interarrivals: , for

, with .

The approximate embedding capacity is displayed, along

with the simulated data in Fig. 6. As a first remark, note that

the agreement is perfect in the range , where a linear

shape is observed. This can be explained by observing that, for

any random variable with u-PDF which is zero in the range

, we have for . This implies that, in

the range , the terms in (11) vanish, so that the

approximation (17) is exact, and gives the linear relationship

in the considered range.6 This is also consistent with

earlier approximations and simulation results in [26].

Let us come back to the analysis of Fig. 6. It can be seen that

the accuracy of is also very good for large , while, for

intermediate values of the product , it is not satisfying. Thus,

using (16), we compute the refined approximations and .

In particular, is still conveniently expressed in simple closed

form

(35)

a shape which highlights its role of a first-order correction to

. As can be seen in Fig. 6, the partial inac-

curacy of the approximation is remediated with the adop-

tion of . The higher order approximant gives negligible

improvements.

6The same conclusion can be also argued as follows. For delay smaller
than the minimum allowed interarrival time, , such that the
probability that matches is the probability that the first arrival after in
occurs before and it can be computed, due to independence between the
processes, by using the residual lifetime distribution [29]:

. This implies , for . By
ergodicity, in the considered range.
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Fig. 6. Example of a shifted exponential distribution, with . Dots are
obtained by computer simulations, while continuous curves refer to the different
analytical approximations for in Theorems 3 and 4. Specifically, we display
1) , 2) , namely the linear system solution with , see (35), and 3)
the linear system solution for . The latter two curves are superimposed.

B. Experiments With Real Network Traces

In this section, we present some numerical tests run on the

real-traffic traces lbl-tcp-3.tcp and lbl-pkt-4.tcp, made of TCP

packet arrival times, gathered at the Lawrence Berkeley Na-

tional Laboratory, Berkeley, CA, which were originally used in

[41]. As done in [4] and [41], we extract packets corresponding

to Telnet (port 23) connections. The experimental setup is as fol-

lows: suppose that trace lbl-tcp-3.tcp corresponds to the source

node, while trace lbl-pkt-4.tcp refers to the relay node. Oth-

erwise stated, the timestamps of lbl-tcp-3.tcp must be used as

transmission epochs of the source node, and, similarly, those

of lbl-pkt-4.tcp are the transmission epochs of the relay node.7

Given a prescribed delay constraint , we are interested in com-

puting the maximum number of packets which can be relayed

using these assigned scheduling patterns. Accordingly, for dif-

ferent values of , we run the BGM algorithm over these real-

traffic patterns, which therefore yields the corresponding (em-

pirical) embedding capacity.

Let us describe more in detail how we process the real data.

First, since traces lbl-tcp-3.tcp and lbl-pkt-4.tcp contain approx-

imately 1 h of traffic, we extract smaller tranches, each made of

packets, and the BGM algorithm will be accordingly run

over pairs of source/relay tranches of such length.

In order to ensure that the source and relay scheduling pat-

terns work with (approximately) the same transmission rate, we

inspect both traces lbl-tcp-3.tcp and lbl-pkt-4.tcp by means

of a moving average filter over packets; divide the in-

terval between the smallest and the largest empirically estimated

averages in equal-length bins of sufficiently small size, having

verified the stability of the analysis with respect to different res-

olution cells; and judge a source/relay pair admissible when

their empirical averages fall into the same interval. With this

selection procedure, the tranches extracted from a given trace

might also overlap, which does not alter our analysis, in that we

7The two traces correspond to traffic patterns collected in two different days,
such that the assumption of mutually independent point processes is met.

Fig. 7. Embedding capacity curve of Telnet data, for a pair of tranches selected
as described in the main text. In the lower part of the plot, the absolute error
between empirical and theoretical capacity is displayed, for a broader set of
different tranches.

only need independence between the source and the relay. Fi-

nally, the BGM is run over all selected source/relay pairs, for

different values of the delay constraint (after scaling, without

loss of generality, the traces to unit rate). This procedure finally

gives an empirical embedding capacity curve for each selected

source/relay pair.

To compare these empirical curves with the theoretical ca-

pacities, we first need a candidate marginal distribution for the

interarrivals. To this aim, we fit the empirical interarrival CDF

of each tranche, finding in general a good agreement with the

Weibull distribution, that is perhaps not unexpected, see, e.g.,

[42] and [43]. The theoretical formula for in theWeibull case

can be obtained by resorting to a known analytical expression

for the Weibull renewal function [44], and is given in Table I.

The value of the shape parameter is estimated from the data.

The results of our investigations are summarized in Fig. 7,

where the experimental points refer to one pair of selected

tranches. A first evidence is that, up to values of in the

order of 1, the experimental points match well the theoretical

approximation. On the other hand, a discrepancy emerges for

larger values of the product .

Let us elaborate on this point. Were the real data exactly

renewal processes, the marginal distribution of the interarrivals

would provide their complete statistical characterization. Since

the empirical CDF of the interarrivals is well fitted with a

Weibull and the theoretical approximation for the Weibull

in Table I has been verified to be excellent by independent

computer experiments, we are driven to the following conclu-

sion: The discrepancy between theoretical and empirical curves

is to be ascribed to a deviation from the idealized renewal

assumption.

This is confirmed by a further experiment. We run the BGM

algorithm after scrambling the interarrivals, in order to mitigate

statistical dependences. For these scrambled data, the theoret-

ical approximation is now excellent, as shown by the squares

in Fig. 7.

In the above, we illustrated the results concerning a single,

specific pair of tranches. A more complete picture is obtained
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by applying the aforementioned procedure to different tranches,

irrespectively of the goodness of the Weibull fit, and of the

similarity between the empirical distributions at the two nodes.

The results of this latter analysis are summarized in the bottom

part of Fig. 7, where the absolute error between the theoret-

ical formula and the empirical capacity is displayed. (Again, in-

terarrival scrambling dramatically reduces the error; this is not

shown in the plot.) The points marked with darker filled circles

refer to the pair of tranches used for computing the empirical

capacities displayed in the main part of the plot (i.e., the circles

examined earlier). As can be seen, the theoretical approximation

follows the empirical capacity closely at small ; a discrep-

ancy is observed for moderately large values of , with an

absolute error in the order of .

Summarizing, the analysis carried over the real traces high-

lights to what extent the deviations from the idealized renewal

assumption, unavoidably present in practice, impact the embed-

ding capacity. A main behavior seems to emerge—that for tight

delay constraints, up to delay values in the order of the mean

interarrival time, these deviations have in fact a negligible ef-

fect, which corroborates the theoretical study of the embedding

capacity.

VII. CONCLUSION

We consider the problem of matching two i.i.d. renewal pro-

cesses, according to a bounded delay criterion, with applica-

tions to communication network scenarios. We introduce the

concept of embedding capacity, and provide fully analytical

tools and approximations to evaluate it, relying upon the Rie-

mann–Hilbert theory. An exact evaluation of the capacity is re-

duced to a manageable integral equation, which can be solved

to any degree of approximation by inverting a highly structured

linear system.

One main finding is a simple approximate formula of the

embedding capacity that involves the renewal function of the

underlying processes. The approximation is excellent for virtu-

ally all the cases of practical interest that we have investigated,

part of which are reported in the paper. Even when this is not

strictly true, we provide closed-form solutions for higher order

corrections.

The analytical formula of the embedding capacity also high-

lights the role played by the traffic parameters: the amount of

stochastic variability of the underlying interarrivals induces an

ordering of the related embedding capacities, while for large

values of , only the dispersion index matters.

The experimental analysis carried on real network traces re-

veals that the accuracy of the analytical expression is good for

tight delay constraints, up to in the order of 1. For larger

delays, a partial inaccuracy is observed, and we show that this

is to be ascribed to statistical dependences unavoidably present

in real traffic patterns: the renewal model is failing, rather than

the proposed analytical approximation.

The abstract concept of matching between point processes

arises in a very large number of contexts, and we feel that our

findings can represent a contribution to these disparate fields.

To broaden further the horizon of potential applications, refine-

ments and improvements of the approach can be considered.

These include: the case of different renewal processes at the two

nodes, the extension to nonrenewal point processes, to multihop

flows, and to the case of multiple input/multiple output relays.

APPENDIX A

PROOF OF THEOREM 1

Consider the Markov chain defined in

(2). By Theorem 17.1.7 in [45], if is positive

Harris recurrent, then we have the following:

1) exists a.s., where

is the indicator function.

2) An unique invariant probability measure exists, solving

where is any Lebesgue measurable set and is the

transition kernel of the chain. Note that in our case, the in-

variant measure admits a density. Indeed, the transition

kernel is absolutely continuous, since so are the in-

terarrivals; therefore, for any set of zero Lebesgue mea-

sure, the aforementioned integral gives as well.

In addition, by application of the Fubini theorem, one ver-

sion of the density, say , is the solution to (3), see, e.g.,

[46].

3) The asymptotic frequency can be computed as

.

Suppose hence that is positive Harris re-

current. We first justify the embedding capacity formula (4):

Since each outside represents a chaff point, whereas

each inside the interval represents a pair of flow points, we

see that the fraction of flow points embedded by BGM con-

verges a.s., and the limit, i.e., the embedding capacity, is given

by .

It remains to prove the property of positive Harris recurrence.

First, we show that the Markov chain is

-irreducible [45] (all the sets mentioned in the sequel are

Borel). Since the interarrivals are absolutely continuous, the

BGM can match one pair a.s., implying that the interval

is accessible from any state a.s., say [45,

p. 64]. This rules out the cases where the asymptotic fraction

of matched points depends on the initial state, and those where

the embedding capacity is trivially zero.

Let be the Lebesgue measure constrained to , i.e.,

, where is the Lebesgue measure over

the real line. Given the PDF , there must exist such

that for all within some interval , and

thus

for all , where is a constant in . Let

. Partition into segments

of length , as illustrated in Fig. 8, such that the transition

density from any to any point in an adjacent segment

is greater than . For any set with , let be the

Lebesgue measure of the minimum intersection between and

the -segments. Let be an arbitrary point in that is
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Fig. 8. Access from by hoping through -segments in .

segments away from and be

the th segment from to , where intersects with . The

-step transition satisfies

(36)

This implies for all . Moreover, since

for all , we have for all . That

is, any set with positive measure is accessible from anywhere

within the state space with positive probability, implying that

the chain is -irreducible and hence -irreducible for a maximal

irreducibility measure , according to [45].

Second, we show that is Harris recurrent.

Since it is -irreducible and for all , by The-

orem 5.2.2 in [45], there exist , a nontrivial measure ,

and a nontrivial set such that is -small, and

hence -petite. For sampling distribution

, the transition kernel of the sampled chain from any

satisfies

(37)

where we apply (36) for . Since ,

, independent of for . There-

fore, is uniformly accessible using from . By Propo-

sition 5.5.4 in [45], we prove that is -petite. The fact

that a petite set satisfies for all for

a -irreducible chain implies Harris recurrence in the light of

Proposition 9.1.7 in [45].

Finally, we show positivity by drift analysis. Define the

function

if

if

if

where is the mean interarrival time, and consider the mean

drift defined in [45] as

where we recall that is the transition kernel of the

chain, i.e., , for

, and . Define a set for

sufficiently large such that

. For any , we have after some straightfor-

ward manipulations

The same holds for . It is easy to see that, inside the set

, can be bounded by a constant, such that we can write

(38)

with a suitable choice of . Since the petite set is uni-

formly accessible8 from , we can conclude that is petite,

and (38) coincides with the drift condition (iv) of Theorem

13.0.1 in [45], whence, further observing that aperiodicity

holds, we conclude that is positive Harris.

APPENDIX B

LINEAR SYSTEM COEFFICIENTS

Let us introduce the so-called renewal density associated with

the renewal function , i.e., . It is conve-

nient to consider a symmetric version thereof, namely

. It holds true that is the Fourier

representation of , see [47] and [48].

Let us first consider the term in (27). We have

where we simply notice that the Fourier transform of the trian-

gular window of width is . Integration by parts

then gives , or

As to the evaluation of in (27), , it suffices to use

the shift property of the Fourier transform, yielding

8This can be easily shown with the same technique used to prove uniform
accessibility of from .
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that integrated by parts gives

Finally, focusing on the terms in (27), , it suffices

to consider the even part of , whose

inverse Fourier transform is

where for , and zero otherwise. The

integral is zero for . For , we have

This gives

where the latter expression is obtained integrating by parts. This

proves (12), while (11) follows as a special case.
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