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Abstract: We show that the absolute Galois group of a countable Hilbertian P(seudo)-

A(lgebraically)C(losed) field of characteristic 0 is a free profinite group of countably infinite

rank (Theorem A). As a consequence, G(Q̄/Q) is the extension of groups with a fairly simple

structure (e.g.,
∏∞

n=2 Sn) by a countably free group. In addition, we characterize those PAC

fields over which every finite group is a Galois group as those with the RG-Hilbertian property

(Theorem B).

INTRODUCTION

All fields occurring in this paper are assumed to have characteristic 0. A field P is called P(seudo)-

A(lgebraically)C(losed) if every absolutely irreducible variety defined over P has a P -rational point. We

use the methods of [FrVo]—to which this paper is a sequel—to prove a long-standing conjecture on Hilber-

tian PAC-fields P : Every finite embedding problem over P is solvable (Theorem A). For countable P this,

combined with a result of Iwasawa, implies that the absolute Galois group of P is ω-free; that is, G(P̄ /P ) is

a free profinite group of countably infinite rank, denoted F̂ω.

By a result of [FrJ; 2], every countable Hilbertian field k has a Galois extension P/k with P Hilbertian

and PAC, and G(P/k) ∼=
∏∞

n=2 Sn (where Sn is the symmetric group of degree n). From the above,

G(k̄/P ) = G(P̄ /P ) ∼= F̂ω, and we get the exact sequence

1 → F̂ω → G(k̄/k) →
∞∏

n=2

Sn → 1.

∗Supported by NSA grant MDA 904-91-H-0057. and BSF grant #87-00038
∗∗Supported by NSA grant MDA 904-89-H-2028

1

michaelf
Text Box
Annals of Math. 135 (1992), 469–481 



This holds in particular for k the rational field Q (or any algebraic number field). In this case it can

be seen as a counterpart to Shafarevich’s conjecture, which says that the abelian closure of k has an ω-free

absolute Galois group: This would imply that G(k̄/k) is the extension of an abelian group by F̂ω.

Now suppose that the countable Hilbertian field k has in addition projective absolute Galois group.

(This holds, for example, for the abelian closure of a number field.) Then G(k̄/k) is the semi-direct product

of an ω-free normal subgroup and a subgroup isomorphic to the universal frattini cover of the group
∏∞

n=2 Sn

(Corollary 2).

In [FrVo] it was proved that each PAC-field P of characteristic 0 has the following property: Every

finite group is the Galois group of a regular extension L/P (x), where x is transcendental over P , and

“regular” means —following common abuse—that P is algebraically closed in L. In order to conclude that

each finite group is a Galois group over P , it suffices to know that Hilbert’s irreducibility theorem holds

for regular Galois extensions of P (x). This led to the concept of RG-Hilbertian: We define a field P to

be RG-Hilbertian if Hilbert’s irreducibility theorem holds for regular Galois extensions of P (x). We prove

that a PAC-field P of characteristic 0 is RG-Hilbertian if and only if every finite group is a Galois group

over P (Theorem B)—a parallel to our Theorem A, which says that a PAC-field P of characteristic 0 is

Hilbertian if and only if all finite embedding problems over P are solvable. By example we demonstrate that

the RG-Hilbertian property is actually weaker than the full Hilbertian property: the field P can be chosen

such that every finite group is a Galois group over P , but not every finite embedding problem over P is

solvable.

The main theme of the paper [FrVo] is to show that for a fixed finite group G with trivial center, G is

the Galois group of a regular extension of k(x), for some field k, if and only if there exist k-rational points

on certain algebraic varieties. Here we use an extension of this, namely that also the solvability of certain

embedding problems over k is implied by the existence of k-rational points on certain varieties.

AMS Subject classification: 11G35, 12F10, 14D20, 14E20, 14G05, 20B25, 20C25

Keywords: Embedding problems; Galois groups; PAC-fields; Hilbertian fields; ω-free profinite groups;
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Comments on PAC fields: PAC-fields first appeared in [Ax]. They have been studied since then by many

authors (cf. [FrJ]). PAC fields have projective absolute Galois group—a result of Ax [FrJ; Theorem 10.17].

Conversely, if H is a projective profinite group, then there exists a PAC field P such that H is the absolute

Galois group of P—an observation of Lubotzky and van den Dries [LD]. New examples of Hilbertian PAC-

fields (besides those constructed in [FrJ,2]) have recently been found by F. Pop. For example, one obtains

such a field when adjoining
√
−1 to the field Qre of all totally real algebraic numbers. Then our Theorem A

implies:

G(Q̄/ Qre(
√
−1)) ∼= F̂ω

On the other hand, the abelian closure of any number field has projective absolute Galois group, and

it is Hilbertian [FrJ; Theorem 15.6]. But Frey noted that such a field isn’t PAC ([Fy] or [FrJ; Corollary

10.15]). Shafarevich conjectured that the abelian closure of a number field has an ω-free absolute Galois

group. We know of no counterexample to the following:

Conjecture: If the absolute Galois group of a countable Hilbertian field is projective, then it is already

ω-free.
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Our proof of the corresponding result for PAC-fields would also prove this conjecture if one could

show that each finite group G satisfying the hypothesis of Lemma 2 has this property: One of the infinitely

many absolutely irreducible Q-varieties associated to G in [FrVo, Prop. 1] has a nonempty Q-subvariety that

is unirational over Q̄ (and therefore has a point over each field with projective absolute Galois group).

We remark that the following consequence of the above conjecture holds [FrJ; Thm. 24.50]: If k is

countable Hilbertian with projective absolute Galois group, then G(ksol/k) is the free pro-solvable group of

countably infinite rank, where ksol denotes the solvable closure of k. (Originally proved by Iwasawa [Iw] for

k the abelian closure of a number field.)

Notations: As above, all occurring fields are assumed to have characteristic 0. The algebraic closure of a

field k is denoted by k̄. The absolute Galois group G(k̄/k) of k is denoted by Gk. In expressions like k(x) or

P (x) always x denotes an indeterminate, transcendental over the fields k and P . The semi-direct product

of groups A and B is written as A ×sB (where A is normal). The normalizer (resp., centralizer) of A in B

is denoted NB(A) (resp., CB(A)). Finally, Aut(A) (resp., Inn(A)) is the automorphism group of A (resp.,

the group of inner automorphisms of A). Other notations as introduced above.
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1. THE EMBEDDING PROBLEM OVER A HILBERTIAN PAC- FIELD

We are going to show that all finite embedding problems over a Hilbertian PAC-field P are solvable (Theorem

A). Our first lemma is a geometric form of the “field crossing argument” from [FrJ; §23.1]; the same idea

occurs also in [Se, 2.1].

Lemma 1: Let H′ → H be an unramified Galois cover of absolutely irreducible varieties defined over a

PAC-field P of characteristic 0. Assume all automorphisms of the cover are defined over P . If P ′/P is any

Galois extension (inside a fixed algebraic closure of P ) with Galois group isomorphic to a subgroup F of

Aut(H′/H), then there exists a P -rational point ppp of H and a point ppp′ ∈ H′ lying over ppp with the following

property: P (ppp′) = P ′, and the GP -orbit of ppp′ coincides with the F -orbit of ppp′.

Proof: By hypothesis there is a homomorphism β : GP → Aut(H′/H) with kernel G(P̄ /P ′) and with image

F . Since GP acts trivially on Aut(H′/H), we can view β as a 1-cocycle of GP with values in Aut(H′). By

Weil’s cocycle criterion [W], such a cocycle corresponds to a twisted form of H′ over P . We identify the

P̄ -points of the twisted form and of the original variety H′. Then the twisted form defines a new action of

GP on these P̄ -points ppp′: If we denote the old action of g ∈ GP by ppp′ �→ gppp′, then the new action of g sends

ppp′ to gβ(g)ppp′.

As P is PAC, there is a point ppp′ ∈ H′ that is rational over P with respect to the twisted form. This

means that β(g)ppp′ = g−1ppp′ for each g ∈ GP . Thus ker(β) is the stabilizer of ppp′ in GP . Hence P (ppp′) = P ′.

Furthermore, the GP -orbit of ppp′ equals the F -orbit of ppp′.
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In Lemma 2 and 3 we assume P is a Hilbertian PAC-field (of characteristic 0). Lemma 2 invokes the

main results of [FrVo]; this is the heart of the proof of Theorem A. The hypothesis on the Schur multiplier

comes in because our application of [FrVo] is based on the Conway-Parker theorem (cf. [FrVo, §2.2]) which

requires this hypothesis.

Lemma 2: Let H be a finite group and G a normal subgroup of H, such that CH(G) = {1}. Assume the

Schur multiplier of G is trivial. Then each Galois extension P ′/P with Galois group isomorphic to H/G

can be embedded in a Galois extension P ′′/P for which there is an isomorphism G(P ′′/P ) → H sending

G(P ′′/P ′) to G.

Proof: By [FrVo, Proposition 3], under the given hypotheses on G there exists an unramified Galois cover

H′ → H of absolutely irreducible varieties defined over Q, and an identification of the automorphism group

Aut(H′/H) of this cover with the group Out(G) = Aut(G)/ Inn(G), such that the following hold. First: all

automorphisms of the cover H′ → H are defined over Q. Furthermore, for each point ppp ∈ H, rational over

some field k, and for each point ppp′ ∈ H′ lying over ppp, there is a regular extension L/k′(x), where k′ = k(ppp′),

with the following properties: L is Galois over k(x), and the group G(L/k(x)) is isomorphic to the group

of all g ∈ Aut(G) for which the image of g in Out(G) = Aut(H′/H) maps ppp′ to a G(k′/k)-conjugate of ppp′.

Under this isomorphism, the subgroup G(L/k′(x)) is mapped onto Inn(G).

Now assume k = P is a Hilbertian PAC-field, and consider the given Galois extension P ′/P with

G(P ′/P ) ∼= H/G. Since CH(G) = {1}, the conjugation action of H on G induces an isomorphism from H

to a subgroup H̄ of Aut(G). Hence G(P ′/P ) ∼= H/G ∼= H̄/ Inn(G), and F
def= H̄/ Inn(G) is a subgroup of

Out(G)= Aut(H′/H). Thus by Lemma 1 we may choose ppp and ppp′ so that P (ppp′) = P ′, and the G(P ′/P )-

orbit of ppp′ equals the F -orbit of ppp′. For the associated Galois extension L/P (x), it follows that G(L/P (x))

is isomorphic to the group of all g ∈ Aut(G) for which the image of g in Out(G) lies in F . But this group is

just H̄. Thus G(L/P (x)) is isomorphic to H̄, under an isomorphism that identifies G(L/P ′(x)) with Inn(G).

Hence G(L/P (x)) is isomorphic to H, under an isomorphism that maps G(L/P ′(x)) to G.

Since P is Hilbertian, we can specialize x to get an extension P ′′/P which is still Galois with Galois

group isomorphic to H, and this isomorphism identifies G(P ′′/P ′) with G (cf. [FrJ, Lemma 12.12]).
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Now we are ready to tackle the general embedding problem over P . The projectivity of GP allows us to

reduce to the case of split embedding problems, and these are reduced group-theoretically to the special case

of Lemma 2. Only then does the PAC-assumption on P come into play.

Lemma 3: Let A be any finite group, and B a normal subgroup. Then each Galois extension P ′/P

with Galois group isomorphic to A/B can be embedded in a Galois extension P ′′/P for which there is an

isomorphism G(P ′′/P ) → A sending G(P ′′/P ′) to B.

Proof: By induction on the order of B we may assume that B is a minimal normal subgroup of A. Thus

B ∼= Sm, the direct product of m copies of a simple group S. The remainder of the proof falls into two

parts. The first observes that we may assume that A splits over B (a version of “Jarden’s Lemma” from

[Ma, p. 231]).

Part 1: Application of the projectivity of GP . Since GP is projective there exists α : GP → A such that

the composition of α with the natural map from A to A/B has kernel GP ′ (see [FrJ, Th. 10.17]). This

composition is surjective, so the image C1 of α satisfies A = BC1. Then A is a homomorphic image of the

outer semi-direct product A1 = B ×sC1, under the natural map π that sends (b, c) to bc. Suppose that the

lemma holds with A1 in place of A and for the fixed field P ′
1 of ker(α) in place of P ′ (but for the same B).

Then we may embed P ′
1 in an extension P ′′

1 with group G(P ′′
1 /P ) ∼= A1, such that G(P ′′

1 /P ′
1) corresponds to

B. The fixed field of ker(π) in P ′′
1 is the desired P ′′. This shows that it suffices to consider split extensions

with kernel B.

Part 2: Reduction to the special case of Lemma 2. From now on assume A = B ×sC, for some C. Every

finite split embedding problem with abelian kernel over a Hilbertian field is solvable ([Ma; Folg. 1, p. 231] or

[FrJ; Thm. 24.50]). Thus we may further assume that S is non-abelian (simple). Then B = Sm is perfect,

and so it has a universal central extension B̃. Furthermore, B̃ has trivial Schur multiplier (see [Ka; p. 152–

153]). By the universal property of the universal central extension, the action of C on B lifts uniquely to an

action of C on B̃. Form accordingly the semi-direct product Â = B̃ ×sC.

Let T be a non-abelian finite simple group with trivial Schur multiplier (e.g., T = SL2(8) [Hu, Satz

25.7]). Consider the regular wreath product H of Â with T (e.g., [Hu, Def. 15.6]). Thus H = T j ×s Â,

with j = |Â|, and Â acts on T j by permuting the factors in its regular permutation representation. Then

H = (T j ×sB̃) ×sC = G ×sC, with G = T j ×sB̃. Clearly, CH(T j) = {1}, hence also CH(G) = {1}.

7



Since T and B̃ are perfect groups with trivial Schur multiplier, every central extension of these groups

splits. From this one concludes easily that also every central extension of G = T j ×s B̃ splits. Thus also G

has trivial Schur multiplier.

We have now shown that G and H satisfy the hypotheses of Lemma 2. It follows that the given

Galois extension P ′/P with group isomorphic to A/B ∼= H/G can be embedded in an extension K/P with

G(K/P ) ∼= H, such that G(K/P ′) corresponds to G. Then the fixed field in K of the kernel of the natural

map from H onto A (which sends G onto B) is the desired P ′′.

Lemma 4: For every surjection h : E → C of finite groups there exists a surjection g : A → E of finite

groups such that every automorphism γ of C lifts to an automorphism α of A: h ◦ g ◦ α = γ ◦ h ◦ g.

Proof: Let H be the semi-direct product of C with its automorphism group Aut(C). Choose a surjection

F → H with F a free group (of finite rank), and let F0 be the inverse image of C in F . Then F0 is again

a free group, of rank greater or equal to that of F (by Schreier’s subgroup formula; e.g. [FrJ; Prop. 15.25]).

Thus by choosing F of suitably large rank we can assure that the map F0 → C can be factored as h ◦ f for

some surjection f : F0 → E. Let R0 be the intersection of all F-conjugates of the kernel of f .

Every automorphism γ of C is induced from an inner automorphism of H, hence from an inner auto-

morphism of F , and thus from an inner automorphism of the finite group F/R0. This inner automorphism

restricts to an automorphism of A = F0/R0 that still induces γ. By construction, the natural map A → C

factors as h ◦ g for some surjection g : A → E.

One says that all finite embedding problems over a field P are solvable if for every surjection h : E → C

of finite groups and for every surjection λ : GP → C there exists a surjection ε : GP → E with h ◦ ε = λ.

Recall that a profinite group is called ω-free if it is isomorphic to the free profinite group F̂ω of countably

infinite rank [FrJ, §15.5].

Theorem A: A PAC-field P of characteristic 0 is Hilbertian if and only if all finite embedding problems

over P are solvable. In particular, a countable PAC-field of characteristic 0 is Hilbertian if and only if its

absolute Galois group is ω-free.

Proof: By a result of Iwasawa [Iw, p. 567] (see [FrJ; Cor. 24.2 and Ex. 15.13(b)]), it suffices to prove the

first assertion. The “if” part is a result of Roquette [FrJ; Cor. 24.38]; we give a new proof in Lemma 5 below,

using the methods of this paper.
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Now assume P is Hilbertian. We have to show that all finite embedding problems over P are solvable.

So suppose we have a surjection h : E → C of finite groups and a surjection λ : GP → C. Let g : A → E be

as in Lemma 4. It follows from Lemma 3 that there is a surjection θ : GP → A with ker(h ◦ g ◦ θ) = ker(λ).

Thus γ ◦ h ◦ g ◦ θ = λ for some automorphism γ of C. By choice of A, we can lift γ to an automorphism α

of A. Then ε
def= g ◦α ◦ θ is a surjection GP → E with hε = h ◦ g ◦α ◦ θ = γ ◦ h ◦ g ◦ θ = λ, as desired.

By a result of [FrJ, 2] (c.f. [FrJ; Th. 16.46]), every countable Hilbertian field k has a Galois extension

P/k with P Hilbertian and PAC, and G(P/k) ∼=
∏∞

i=1 Sni . In the above references, there are certain special

conditions on the sequence (ni), but the construction can easily be modified to yield ni = i. For the

convenience of the reader, we sketch the argument in Remark 1 below. From the Theorem we get GP
∼= F̂ω.

Corollary 1: Suppose k is a countable Hilbertian field of characteristic 0. Then there is an exact sequence

1 → F̂ω → Gk →
∞∏

n=2

Sn → 1

The field P with G(P/k) ∼=
∏∞

n=2 Sn has the nice property that it is a rather small extension of k

with ω-free absolute Galois group GP . Its construction, however, is not canonical (see Remark 1 below).

In particular, GP is not necessarily a characteristic subgroup of Gk. To have a more canonical example,

consider the composite of all Sn- extensions of k, for all n. This yields an analog to the consideration of

Qab (the composite of all abelian extensions of Q) in Shafarevich’s conjecture (Introduction). Actually, not

much is changed if one excludes any finite number of values of n in the above. For simplicity, we consider the

composite K of all Sn- extensions of k with n ≥ 5. Remark 1 shows that K is PAC. In the next paragraph

we show that K is also Hilbertian. Therefore, from Theorem A, GK is ω-free.

By definition of K, the group Γ = G(K/k) embeds as a subgroup of the product of (countably many)

symmetric groups Sni , and projection from Γ to any one of the factors is surjective (i.e., Γ is a subdirect

product of the Sni). Thus the closure Γ′ of the commutator subgroup of Γ is a subdirect product of the

alternating groups Ani . As ni ≥ 5 these groups Ani are simple. Hence Γ′ ∼=
∏

Amj for some subsequence

(mj) of (ni) (see [M; Lemma 1.3]; in fact Γ′ is the product of countably many copies of
∏∞

n=5 An). The

fixed field of Γ′ in K is Hilbertian since it is an abelian extension of the Hilbertian field k [FrJ; Thm. 15.6].

Thus K is Hilbertian by Weissauer’s theorem (see Remark 2 below) because Γ′ has non-trivial finite normal

subgroups.

Question: Is the composite of all An-extensions of k also PAC?
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Remark 1: Construction of Hilbertian PAC-fields, after [FrJ, 2]. Let k be countable and Hilbertian. An

algebraic extension P of k is PAC if every absolutely irreducible projective curve defined over k has infinitely

many P -rational points [FrJ; Th. 10.4]. By a result of Lefschetz (see [FrJ, 2]) one can restrict to plane

curves having only singularities of multiplicity 2. There are only countably many pairs (C, M) where C is

an absolutely irreducible projective plane curve defined over k that has only singularities of multiplicity 2,

and M is a finite set of k̄-points of C. Enumerate these pairs as (C1, M1), (C2, M2), (C3, M3), . . .. We are

going to construct a Galois extension P of k such that each Ci has a P -rational point not in Mi. Then Ci

has infinitely many P -rational points, and P is PAC by the above.

For each Ci there exists a point O in the plane such that projection from O to a suitable line yields a

cover ϕi : Ci → P1 (where P1 is the projective line) with the following properties: ϕi is defined over k, and

the Galois closure of the corresponding function field extension k(Ci)/k(x) has Galois group Sni
, where ni

is the degree of the plane curve Ci [FrJ, 2]. Since k is Hilbertian, there exist infinitely many points c ∈ Ci

such that the Galois closure of the extension k(c)/k also has group Sni
; additionally, one can require that

this Galois closure is linearly disjoint from any given finite extension of k (see e.g., [Se, Prop. 4.10]).

Now we define recursively a sequence (ki) of linearly disjoint Galois extensions of k and a strictly

increasing sequence (mi) of integers with G(ki/k) ∼= Smi , such that Ci has a ki- rational point not in Mi.

Set k0 = k, m0 = 1. To construct ki and mi for i ≥ 1 choose an integer n such that mi
def= nni > mi−1 (where

again ni is the degree of Ci). A “sufficiently general” substitution of degree n (with coefficients from k) in

the equation defining Ci yields a curve C̄i of degree mi = nni that is again among the curves C1, C2, . . .. By

the preceding paragraph, there exists c ∈ C̄i such that the natural map C̄i → Ci is defined at c and does

not map c into Mi, the Galois closure ki of the extension k(c)/k has group Smi and ki is linearly disjoint

from the composite k0 · · · ki−1. This concludes the construction of the above sequence (ki). Finally, using

[FrJ; Lemma 15.8] one can “fill in” more fields during this inductive construction to get a sequence (Kj)

with ki = Kmi and G(Kj/k) ∼= Sj , such that for all j, the field Kj is linearly disjoint from K1 · · ·Kj−1.

Then the composite P of all Kj satisfies G(P/k) ∼=
∏∞

j=2 Sj . Further, P is PAC because every curve Ci has

a P -rational point, and P is Hilbertian by Weissauer’s theorem (see Remark 2 below) because G(P/k) has

non-trivial finite normal subgroups.

The above shows that the composite PN of the fields Kj with j ≥ N is still PAC and Hilbertian.

Since the intersection of all these fields PN is just k, it follows that Gk is the closure of an ascending union

of ω-free normal subgroups.
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Now we return to the set-up of Corollary 1. Assume additionally that Gk is projective. This implies

that the epimorphism ϕ : Gk → ∏∞
n=2 Sn lifts to a homomorphism ψ : Gk → E , where E is the universal

frattini cover of
∏∞

n=2 Sn: This is the minimal projective cover of
∏∞

n=2 Sn, and the map E → ∏∞
n=2 Sn

has pro-nilpotent kernel N (see [FrJ; Lemma 20.2, Prop. 20.33]). The map ψ is surjective by the defining

property of a frattini cover [FrJ; §20.6]. Further, ker(ψ) is normal in ker(ϕ) ∼= F̂ω, and the quotient is

isomorphic to the pro-nilpotent group N . Hence also ker(ψ) is ω-free (by Corollary 3 below). Finally, the

map ψ is a splitting extension since E is projective. Thus we have proved:

Corollary 2: Suppose k is a countable Hilbertian field of characteristic 0, and Gk is projective. Then Gk

is the semi-direct product of an ω-free normal subgroup and a subgroup isomorphic to the universal frattini

cover of
∏∞

n=2 Sn.

We recall that according to our conjecture from the Introduction, the group Gk should itself be ω-free

in the situation of Corollary 2. Furthermore, as a consequence of the (folklore) conjecture that every finite

group is the Galois group of a regular extension of Q(x), every finite group should be a quotient of Gk in

the situation of Corollary 1.

Remark 2: Hilbertian fields versus subgroups of F̂ω. Theorem A implies a “transfer theorem” that turns

results about algebraic extensions of Hilbertian fields into results about subgroups of F̂ω (as noted by Jarden

and Lubotzky [JaLu]). Namely, consider a countable Hilbertian PAC-field P (as above). Then GP
∼= F̂ω by

Theorem A.

Now take a result saying that certain algebraic extensions of a Hilbertian field are again Hilbertian;

e.g., Weissauer’s theorem says that any non-trivial finite extension of a Galois extension of a Hilbertian field

is again Hilbertian (see [Ws] for a non-standard proof and [Fr] for a standard proof). Theorem A then implies

that certain analogously defined subgroups of an ω-free group are again ω-free. For example, Weissauer’s

theorem translates into the result that any proper closed subgroup U1 of finite index in a normal subgroup U

of F̂ω is again ω-free (a direct proof of this was given by Lubotzky-Melnikov-v. d. Dries; see [FrJ; Theorem

24.7]). Namely, the fixed field P1 in P̄ of U1 is Hilbertian by Weissauer’s theorem. Since every algebraic

extension of a PAC-field is again PAC [FrJ; Cor. 10.7], it follows from Theorem A that U1 = GP1 is ω-free.

There are several results about extensions of Hilbertian fields similar to Weissauer’s (see [JaLu]). For

most of them, the corresponding result about subgroups of F̂ω has been proved directly. However, this is

not true for the result of Uchida [U] on pro-nilpotent extensions of Hilbertian fields, which translates into a

new result:
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Corollary 3: If N is a normal subgroup of F̂ω such that F̂ω/N is pro-nilpotent, and U is a subgroup of F̂ω

containing N , then U is again ω-free provided the index [F̂ω : U ] is divisible by at least two distinct primes

(in the sense of super-natural numbers).

A slightly different proof of this corollary is given in [JaLu], using [FrVo, Th. 2] instead of Theorem

A.

2. THE RG-HILBERTIAN PROPERTY

The Hilbertian property can be rephrased as follows in terms of Galois extensions: A field P is Hilbertian if

and only if every finite Galois extension of P (x) can be specialized to a Galois extension of P with the same

Galois group. In most applications (e.g., to the Inverse Galois Problem) it isn’t the full Hilbertian property

for P that is used, but rather a weaker version: if G is the Galois group of a regular extension of P (x), then

G is also a Galois group over P . We formalize this.

Definition: We say a field P is R(egular)G(alois)- Hilbertian if every regular (finite) Galois extension of

P (x) can be specialized to a Galois extension of P with the same Galois group.

If P is a PAC-field of characteristic 0, then every finite group is the Galois group of a regular extension of

P (x), by [FrVo, Theorem 2]. Thus if P is also RG-Hilbertian, then each finite group is a Galois group over

P . The converse is also true:

Theorem B: A PAC-field P of characteristic 0 is RG-Hilbertian if and only if every finite group is a Galois

group over P .

It remains to prove the “if” part of Theorem B. This is a simple application of Lemma 1. We refine

the argument a little to simultaneously give a new proof of the “if” part of Theorem A (originally due to

Roquette).
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Lemma 5: Let P be a PAC-field, and let L/P (x) be a finite Galois extension. Assume that either:

(A) all finite embedding problems over P are solvable; or

(B) P is algebraically closed in L and each finite group is a Galois group over P .

Then the extension L/P (x) can be specialized to a Galois extension of P with the same Galois group.

Proof: There is a non-singular curve Γ defined and irreducible over P with function field L. The extension

L/P (x) corresponds to a cover ϕ : Γ → P1 defined over P . We identify the group H = G(L/P (x))

canonically with the automorphism group of this cover. The absolutely irreducible components Γ1, . . . ,Γs of

Γ are defined over the algebraic closure P1 of P in L, and G = G(L/P1(x)) is the subgroup of H stabilizing

Γ1, . . . ,Γs. The group H/G permutes Γ1, . . . ,Γs sharply transitively.

Both H and GP act naturally on the P̄ -points of Γ. Since the automorphisms from H are defined

over P , the group GP centralizes H. The groups H/G and GP /GP1
∼= G(P1/P ) act sharply transitively on

Γ1, . . . ,Γs, and they centralize each other. Thus there exists an isomorphism ᾱ : GP /GP1 → H/G such that

ḡᾱ(ḡ) fixes Γ1 for each ḡ ∈ GP /GP1 . This yields a surjection α : GP → H/G such that gα(g) fixes Γ1 for

each g ∈ GP .

Now let β : GP → H be a surjection such that β composed with the natural map H → H/G equals

α. Such β exists in case (A) by the definition of an embedding problem, and it exists in case (B) because

there H = G, and H is a quotient of GP .

As in the proof of Lemma 1 we view β as a 1-cocycle of GP in Aut(Γ). Hence β defines a twisted

form of Γ, such that each g ∈ GP acts via this twisted form as gβ(g) on the P̄ -points of Γ (cf. the proof of

Lemma 1). Since gβ(g) fixes Γ1 (because of the corresponding property of α), it follows that Γ1 is defined

over P in the twisted form. By the PAC property, Γ1 has a P -rational point c relative to the twisted form

that does not lie over a branch point of ϕ. Now, as in Lemma 1, ϕ(c) is a P -rational point of P1 which yields

the desired specialization P (c)/P of the extension L/P (x) with the same Galois group H.

Remark 3: By Theorems A and B, for a PAC-field P the RG-Hilbertian and Hilbertian properties are

equivalent to purely group-theoretic properties of the absolute Galois group GP : P is RG-Hilbertian if and

only if each finite group is a quotient of GP ; and P is Hilbertian if and only if each finite embedding problem

for GP is solvable.

We conclude with an example showing that the RG-Hilbertian property is actually weaker than the

full Hilbertian property.
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Example: A PAC-field that is RG-Hilbertian but not Hilbertian. Let G1, G2, G3, . . . be a listing that

includes each nontrivial finite group just once (up to isomorphism), and suppose |G1| = 2. The profinite

group H =
∏∞

i=1 Gi has countably infinite rank [FrJ, Ex. 15.13]. Hence H is a quotient of F̂ω [FrJ, Cor. 15.20].

As in the proof of Corollary 2 it follows that the universal frattini cover H̃ of H is also a quotient of F̂ω.

Since H̃ is projective, it embeds as a subgroup of F̂ω.

Let again be P a countable Hilbertian PAC-field. Then H̃ embeds into GP
∼= F̂ω. Let K be the fixed

field of H̃ in P̄ . Then K is PAC (since it is an algebraic extension of the PAC-field P ) and every finite group

is a Galois group over K. Hence K is RG-Hilbertian by Theorem B. We now show that K is not Hilbertian.

Let λ : H̃ → H be the natural map. Then λ−1(G1) is an extension of the group G1 (of order 2) by the

kernel of λ, which is pro-nilpotent [FrJ, Lemma 20.2]. Hence each surjection from H̃ to the symmetric group

S5 maps λ−1(G1) to a solvable normal subgroup of S5, which must be trivial. Thus the map H̃ → G1 that is

the composition of λ with projection to G1 does not factor through a surjection H̃ → S5. This means that

not all finite embedding problems over K are solvable. Hence K is not Hilbertian (by Theorem A).

Bibliography

[Ax] J. Ax, The elementary theory of finite fields, Annals of Math. 88 (1968), 239–271.
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