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Abstract. The Meteorological Synthesizing Centre-West

(MSC-W) of the European Monitoring and Evaluation Pro-

gramme (EMEP) has been performing model calculations in

support of the Convention on Long Range Transboundary

Air Pollution (CLRTAP) for more than 30 years. The EMEP

MSC-W chemical transport model is still one of the key tools

within European air pollution policy assessments.

Traditionally, the model has covered all of Europe with a

resolution of about 50 km × 50 km, and extending vertically

from ground level to the tropopause (100 hPa). The model

has changed extensively over the last ten years, however, with

flexible processing of chemical schemes, meteorological in-

puts, and with nesting capability: the code is now applied on

scales ranging from local (ca. 5 km grid size) to global (with

1 degree resolution). The model is used to simulate photo-

oxidants and both inorganic and organic aerosols.

In 2008 the EMEP model was released for the first time

as public domain code, along with all required input data for

model runs for one year. The second release of the EMEP

MSC-W model became available in mid 2011, and a new

release is targeted for summer 2012. This publication is in-

tended to document this third release of the EMEP MSC-W

model. The model formulations are given, along with details

of input data-sets which are used, and a brief background on

some of the choices made in the formulation is presented.

The model code itself is available at www.emep.int, along

with the data required to run for a full year over Europe.

1 Introduction

The European Monitoring and Evaluation Programme for

Transboundary Long-Range Transported Air Pollutants

(EMEP) started in 1977, a successful initiative between

almost all European countries to pool efforts in tackling

the major environmental problem of the day, acid deposi-

tion. When the Convention on Long-range Transboundary

Air Pollution (CLRTAP, www.unece.org/env/lrtap) was es-

tablished in 1979, EMEP became an integrated part of the

Convention, and has since played an important part in the

development of emission reduction scenarios, for both the
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Convention (now comprising 51 Parties, including USA and

Canada) and the European Commission.

The Meteorological Synthesizing Centre-West (MSC-W),

based in Oslo, is one of two modelling centres established

by EMEP, with main responsibility for photo-oxidant and

aerosol modelling. The other modelling centre, MSC-East,

is based in Moscow and focuses on heavy metals and per-

sistant organic pollutants. A third Centre, EMEP Chemical

Coordinating Centre (CCC) takes care of the EMEP mea-

surement network, and provides the main source of data

against which the chemical transport models (CTMs) of

EMEP are evaluated (Tørseth et al., 2012). The CTM used

at EMEP MSC-W is a 3-D Eulerian model, typically used

to tackle problems within the fields of acid deposition, tro-

pospheric ozone, and particles. Results from this model are

provided to the International Institute for Applied Systems

Analysis (IIASA), providing the atmospheric chemistry re-

sults that underpin the GAINS integrated assessment model

(http://www.iiasa.ac.at/rains/gains.html).

The last full documentation of the model was Simpson

et al. (2003a). Since that time there have been numerous

changes, sometimes involving a complete revision of the

methodology used (e.g. dry deposition for particles, emis-

sions of hydrocarbons from vegetation, NO emissions from

soils, co-deposition of SO2 and NH3, calculation of mix-

ing heights, or introduction of pH response during sulphate

formation), and sometimes involving smaller changes in the

equations or parameters values. Further, the scope of appli-

cation of the model has increased enormously. Traditionally,

the EMEP model covered all of Europe with a resolution of

about 50 km × 50 km, and extending vertically from ground

level to the tropopause (100 hPa). The model is now applied

on scales ranging from local (ca. 5 km grid size) to global

(with 1 degree resolution). The model can now be driven

by several different numerical weather prediction or climate

models, and has a nesting capability, allowing for example

the zooming from 50 km to 5 km scale in the EMEP4UK

work of Vieno et al. (2009, 2010).

Some of the background for these changes (and some ex-

perimental ones) can be found in several recent papers. These

include testing of organic aerosol schemes (Bergström et al.,

2012), sea-salt modelling (Tsyro et al., 2011), water-content

of aerosols (Tsyro, 2005), ozone deposition (Tuovinen et al.,

2004, 2009; Tuovinen and Simpson, 2008), aerosol deposi-

tion schemes (Flechard et al., 2011), boundary layer physics

(Jeričevič et al., 2010) or soil water modelling (Büker et al.,

2011). The chemical schemes mentioned in section Sect. 7

have been compared and a write-up is in progress (Hayman

et al., 2012).

The model performance compared to EMEP and other

measurements is presented annually in EMEP validation re-

ports, available from www.emep.int, e.g. Gauss et al. (2011).

More in-depth discussion can be found in a number of pa-

pers. Comparisons for sulphur and nitrogen compounds can

be found in Simpson et al. (2006a,b) and Fagerli and Aas

(2008). Comparison against trends of inorganic species and

EC can be found in Fagerli et al. (2007) and for ozone in

Jonson et al. (2006a). Aas et al. (2012) present comparison

against AMS and other data-sets during the first so-called

EMEP intensive measurement period. Comparisons for large

scale CO (and to a lesser extent C2H6) have been presented in

Angelbratt et al. (2011). The regional forecasts of the EMEP

MSC-W model are also constantly under evaluation within

the MACC project (Valdebenito and Benedictow, 2011). A

discussion of the fine-scale applications and performance of

the model can be found in Vieno et al. (2009) and Vieno et al.

(2010). Further, the EMEP model has been taking part in a

large number of inter-comparisons in recent years (e.g. Cuve-

lier et al., 2007; Fiore et al., 2009; Huijnen et al., 2010; Jon-

son et al., 2010a; Colette et al., 2011, 2012; Langner et al.,

2012).

Given that the EMEP model is being used in a wide range

of scientific and policy contexts, there is an urgent need to

provide a full description of the model as it is now, and in-

deed as used in many of the above papers. A short summary

of the changes from the 2003 to 2012 model versions can be

found in the Supplement, Sect. S1, but the intention of this

paper is to present a detailed documentation of the EMEP

MSC-W modelling system as it is now. The formulations

used by the model are given, along with some details of in-

put data-sets. The aim of this paper is to provide a concise

description, rather than discussion, of the model – the latter

is left for more extended reports and publications on specific

subjects. However, the background to a few of the more re-

cent changes to the model is presented briefly.

Some of the more technical descriptions and tables are

provided as a Supplement. For convenience, Table 1 provides

an overview of some of the main symbols and abbreviations

used in this article.

1.1 Short history

Eliassen et al. (1982) and Eliassen and Saltbones (1983) pre-

sented the first long-range transport model within the EMEP

framework. The model was Lagrangian, developed for mod-

elling sulphur compounds, and covered the whole of Europe

using a 150 km × 150 km grid. This model was further de-

veloped for nitrogen compounds (Hov et al., 1988; Iversen,

1990), and ozone (Simpson, 1993, 1995). Eulerian models

were subsequently developed for acidification (Berge and

Jakobsen, 1998), and photo-oxidants (Jonson et al., 1997,

1998, 2001). In Simpson et al. (2003a) the first “unified”

EMEP model was presented, in which one Eulerian model

code was developed for both acidification and photo-oxidant

activities.

In 2008 version rv3.0 of the EMEP model was released

as public domain code, along with all required input data for

model runs for one year. The second release of the EMEP

MSC-W model, denoted EMEP MSC-W version rv3.7 be-

came available in mid 2011, and a new release, rv4.0, is

Atmos. Chem. Phys., 12, 7825–7865, 2012 www.atmos-chem-phys.net/12/7825/2012/
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targeted for summer 2012. Recent changes have included the

addition to the standard EMEP model of a number of new

aerosol components, including organic aerosol (OA), dust

and sea-salt. Other major changes are given in Table S1 of

the Supplement.

This publication is intended to document this third re-

lease of the EMEP MSC-W model, denoted rv4.0, although

most of the material is also relevant for the rv3.7 and

later codes. The model code itself can be obtained through

www.emep.int.

2 Physical description

2.1 Domain and model-coordinates

The basic physical formulation of the EMEP model is de-

rived from that of Berge and Jakobsen (1998), although it

is now rather flexible in its horizontal grid specification.

The model derives its horizontal and vertical grid from the

input meteorological data (Sect. 3). A polar-stereographic

projection, true at 60◦ N, has commonly been used, with

grid-size of 50 km × 50 km at 60◦ N. The standard domain

has changed somewhat over the years, and was enlarged

from 2007; details of this projection and the conversion to

and from latitude-longitude are given elsewhere (http://www.

emep.int).

Other configurations are commonly used, such as

5 km × 5 km grid-sizes for the EMEP4UK project (Vieno

et al., 2010), 1◦ × 1◦ for global modelling (Jonson et al.,

2010a,c), and 0.2◦ × 0.2◦ for regional forecasts under the

MACC project (Valdebenito and Benedictow, 2011).

The input meteorological data are required to be defined

(or interpolated) at the model vertical levels. These are cur-

rently defined vertically with so-called σ coordinates:

σ = p − pT

p∗ (1)

where p∗ = pS − pT and p, pS and pT are the pressure at

level σ , at the surface, and at the top of the model domain

(currently 100 hPa), respectively. The model currently uses

20 vertical levels, as illustrated in Fig. 1. The lowest two lay-

ers in this system are shown in Fig. 2, with the σ levels from

Fig. 1 as solid lines, and the “mid”-layers for which mete-

orology is generally provided as dashed lines. Diffusion co-

efficients and vertical velocity, given by σ̇ (= d σ/d t), are

valid for the layer boundaries.

2.2 The continuity equation

If we let χ represent the mass mixing ratio (kg pollutant

per kg air) of any pollutant, the continuity equation may be

written:

Table 1. List of frequently used symbols and acronyms.

EMEP European Monitoring and Evaluation

Programme (Full name: Cooperative

Programme for Monitoring and Evalua-

tion of the Long-range Transmission of

Air Pollutants in Europe)

CLRTAP Convention on Long Range Trans-

boundary Air Pollution

LRTAP LRTAP Convention, as CLRTAP

MSC-W Meteorological Synthesizing Centre -

West

UN-ECE United Nations Economic Commission

for Europe

IIASA International Institute for Applied Sys-

tems Analysis

IAM Integrated assessment modelling

CTM Chemical transport model

NWP Numerical weather prediction

ECMWF IFS NWP model used by the European Cen-

tre for Medium Range Weather Fore-

casting.

NMVOC Non-methane volatile organic

compounds

NOx Nitrogen oxides, NO + NO2

T2 air temperature at 2m height,

k von Karman’s constant (0.4)

SGS, dSGS Start of growing season, daynumber

EGS, dEGS End of growing season, daynumber

PLA Projected leaf area

LAI Leaf area index (m2 m−2), one-sided

projected (also known as PLA)

SAI Surface area index (m2 m−2)

PAR Photosynthetic active radiation (400–

700 nm)

3c EMEP land-cover category, see Table 3

rx specific resistance term, per m2 PLA,

for pathway x

Rx bulk canopy resistance term

g,G conductance terms, reciprocal of r , R.

Two important terms are:

gsto stomatal conductance

Gns bulk canopy non-stomatal conductance

Vg deposition velocity

χ concentration (mixing ratio)

zref reference height (ca. 45 m) for deposi-

tion calculations

d displacement height

z0 roughness length

L Obukhov length

u∗ friction velocity

www.atmos-chem-phys.net/12/7825/2012/ Atmos. Chem. Phys., 12, 7825–7865, 2012
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Fig. 1. Vertical structure of the EMEP model. The troposphere is

represented in the model by 20σ layers. Sigma values for the bound-

aries of each level are shown on the left hand side of the figure. The

corresponding height above the ground, computed for a standard

atmosphere, is given on the right-hand side.

∂

∂t
(χp∗) = −mxmy

∂

∂x

(
u

my

χp∗
)

−mxmy

∂

∂y

(
v

mx

χp∗
)

(2)

− ∂

∂σ
(σ̇χp∗) + ∂

∂σ

[
Kσ

∂

∂σ
(χp∗)

]
+ p∗

ρ
S

The first three terms on the right hand side represent a flux

divergence formulation of the advective transport. u, v are

the horizontal wind components, and mx , my are the map

factors in the x and y directions (mx = my in a conformal

projection like polar-stereographic). The vertical velocity, σ̇

equals dσ /dt .

The 4th term on the right hand side of Eq. (3) represents

the vertical eddy diffusion Kσ coefficient in σ -coordinates.

Horizontal eddy diffusion is not included in the model. In

the 5th term, S includes the chemical and other (convection,

deposition etc.) source and sink terms.

The numerical solution of the advection terms is based

upon the scheme of Bott (1989a,b). The fourth order scheme

is utilized in the horizontal directions. In the vertical direc-

tion a second order version applicable to variable grid dis-

tances is employed.

In our scheme the “air” (χair=1 kg kg−1) is also ad-

vected. After each advection step the new mixing ratios are

GROUND

Met, e.g. 202045

, 
.

+ 1 / 290

19 Met, e.g. 19

- 1 / 2180

Fig. 2. Lowest levels of the EMEP model, showing the layer bound-

aries at 90 m, 180 m (cf. Fig. 1) and the “mid”-layers for which me-

teorology is generally provided.

found by dividing the result by the new “air concentrations”:

(χx)
t+1t = (χxp∗)t+1t

χ t+1t
air

, where (χxp
∗)t+1t is the result ob-

tained with the Bott-scheme for component x after a time-

step 1t . This method ensures that, starting with a constant

mixing ratio, the result will also be a constant mixing ratio,

regardless of the complexity of the wind-fields.

The EMEP model’s advection scheme is not monotonic,

because a monotonicity filter may increase the numerical dif-

fusion. However the scheme will exclude possible negative

values of the mixing ratios. The time steps are adapted to the

choice of the grid resolution and meteorological data. This

work is described in more detail in Wind et al. (2002), and a

brief outline is presented in the Supplement, Sect. S2.2.

2.3 Convection

An optional (see below) convective mass flux scheme has

been implemented in the EMEP model, based on Tiedtke

(1989). The implementation is virtually identical to the

method used in the Oslo CTM2 model (Berglen et al., 2004),

and was originally developed by M. Prather and B. Han-

negan, University of California at Irvine (UCI). From the me-

teorological input data, convective updraft mass flux is pro-

vided at every level in each model column and the convective

transport of pollutants mass is calculated by the so called el-

evator principle. The entrainment of air to the updraft cloud

core from the surrounding air is calculated as the difference

Atmos. Chem. Phys., 12, 7825–7865, 2012 www.atmos-chem-phys.net/12/7825/2012/
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Fig. 3. Illustration of convective updrafts. Convective downdrafts

are treated similarly.

in convective mass flux through the upper and lower bound-

ary of a given grid box, and may be visualised as an elevator

stopping at each model layer for air, humidity and pollutant

mass to get on or off as illustrated in Fig. 3 (negative entrain-

ment is referred to as detrainment). Vertical transport through

convection is much faster than through large scale advection.

As illustrated in Fig. 3 the updraft core will typically gain

momentum in the lowest model layers, resulting in a net en-

trainment, visualised by the upward pointing errors to the left

in the lower part of the figure, and lose momentum higher up,

resulting in net detrainment. The downdraft core is treated

in an analogous way. Within one grid column the downdraft

flux is typically about a factor of 10 smaller than the up-

ward flux. The net difference between updraft and downdraft

fluxes is treated as a slow subsiding motion. The numerical

implementation of the convective routines is described in the

Supplement, Sect. S2.1.

Convection is an important process in atmospheric dy-

namics, but very difficult to parameterise in CTMs (Steven-

son et al., 2006). Willett et al. (2008), Zhao et al. (2009)

and Monks et al. (2009) (and references cited therein) give

examples where significant differences in precipitation and

mass transport were found between different parameterisa-

tions of convection in NWP models. Used with global-scale

IFS meteorological data, the convection module seems to

give more realistic results compared to measurements. How-

ever, we find that if used with European-scale simulations,

we obtain somewhat worse model results compared to ob-

servations. This is of course an unsatisfactory situation, but

given that all cumulus schemes in NWP models have ma-

jor uncertainties, we adopt a pragmatic approach and by de-

fault switch convection off for the European scale, and on

for global scale. The option to switch this module on and off

in any case affords some valuable information on the impor-

tance of convection, and the uncertainties associated with its

implementation.

2.4 Nesting

The EMEP MSC-W model now supports 1-way nesting, in

which the results of larger-scale runs of the EMEP (or in-

deed of any other comparable CTM) model can be used as

boundary conditions for smaller scale runs. This procedure is

most heavily used in the EMEP4UK project (e.g. Vieno et al.,

2010), where model runs with 5 km grids over the United

Kingdom are nested within larger domain runs of 10 km,

which in turn are nested within European scale runs using

50 km grids. (Other configurations are also used). Of course,

appropriate meteorological and other data are required for all

nesting levels, and for EMEP4UK the WRF (Skamarock and

Klemp, 2008) model is used to obtain the necessary data.

3 Meteorology

During the last few years the EMEP model has been adapted

to run with meteorological fields from a number of numerical

weather prediction models (NWPs), including PARLAM-PS

(Lenschow and Tsyro, 2000; Bjørge and Skålin, 1995; Bene-

dictow, 2003), HIRLAM version version 7.1.3 (Undén et al.

2002, http://hirlam.org/) and ECMWF-IFS Cycle36r1 (http:

//www.ecmwf.int/research/ifsdocs/). In 2009 the ECMWF-

IFS became available to run with the T799 0.22◦× 0.22◦ hor-

izontal spectral resolution and 60 vertical levels on a global

domain, and from 2011 we have adopted this model as the

default meteorological driver.

For higher resolution modelling, both the EMEP4UK and

EMEP4HR projects make use of EMEP model’s nesting

capabilities (Sect. 2.4) together with the WRF and Aladin

models as meteorological drivers – see Vieno et al. (2010),

Jeričevič et al. (2010), and associated references for more

details.

Regional pollution forecasts under the MACC project

are driven by ECMWF-IFS operational forecasts (http:

//www.ecmwf.int/products/data/technical/model id/). As of

Nov. 2011, these data are available for forecasts with

T1279 0.14◦× 0.14◦ horizontal spectral resolution and 91

vertical levels (currently Cycle37r3; 15 November 2011).

Meteorological data are normally required at 3-hourly in-

tervals for the EMEP model. Given the wide range of meteo-

rological drivers, which do not all provide all desired model

inputs, the EMEP model has systems for deriving parame-

ters when missing, or can do without some meteorological

fields. Table 2 summarises the meteorological fields currently

used in the EMEP model, and indicates optional fields (one

of these, soil moisture index, is briefly discussed in Sect. 3.3).

Most 3-D fields are provided at the centre of each model

layer, as illustrated in Fig. 2. The horizontal wind compo-

nents (u and v), and the vertical wind component σ̇ , are given

www.atmos-chem-phys.net/12/7825/2012/ Atmos. Chem. Phys., 12, 7825–7865, 2012
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on a staggered Arakawa C-grid (Arakawa and Lamb, 1977).

The vertical velocity, given by σ̇ , is provided at the layer

boundaries. All other variables are given in the centre of the

grid cells. If the vertical wind velocity is not directly avail-

able, it is derived from the horizontal wind components and

the continuity equations.

Linear interpolation between the 3-hourly values is used to

calculate values of these parameters at each advection step. A

number of other parameters are derived from these, for exam-

ple air density, ρ, and the stability parameters and boundary

layer heights described below.

Solar radiation is also calculated at every time-step for the

deposition calculations, and for photolysis rates, based upon

instantaneous values of the solar zenith angle and the model’s

cloud cover, see Sect. 4.

3.1 Boundary layer height (ZPBL)

In general, we characterise the thermal stability of the atmo-

sphere by the bulk Richardson number, which is defined for

the layer between any two model levels at heights zj and zk

as

Rij,k = g1zj,k 1θj,k

θj,k 1V 2
H,j,k

(3)

where g is the acceleration due to gravity, 1zj,k = zj − zi ,

θ is the potential temperature, 1θj,k = θ(zj )− θ(zk), θj,k =
(θ(zj )+θ(zk))/2, and 1VH,j,k = VH(zj )−VH(zk) is the dif-

ference in horizontal velocity vectors.

Following Jeričevič et al. (2010), the mixing height cal-

culation uses a slightly modified bulk Richardson number,

RiB,j , in which zk is always the lowest level (ca. 45 m, cf.

k20 in Fig. 2), but the wind-velocity gradient is referred to

ground-level (where VH(0) = 0), thus 1VH,j,0 = VH,j . The

mixing height is defined as the lowest height zPBL = zj at

which RiB,j > 0.25. This formulation is significantly sim-

pler than that used in previous EMEP model versions, and

has been shown to provide results which are at least as good

(Jeričevič et al., 2010). The method is also very similar to

the bulk Richardson number approach used in Seibert et al.

(2000), which compared favourably with other methods.

Finally, the PBL height is smoothed with a second order

Shapiro filter in space (Shapiro, 1970). The PBL height is

not allowed to be less than 100 m or exceed 3000 m.

3.2 Eddy diffusion coefficients (Kz)

The initial calculation of the vertical exchange coefficients

(Kz, units m2 s−1) is done for the whole 3-D domain, using:

Kz =
{

1.1(Ricrit,k − Ri) ℓ2 |1VH/1z|/Ric , for Ri ≤ Ric
Kmin ,Ri > Ric

(4)

where the critical Richardson number Ric is given

by: Ricrit,k = A (1zk/1z0)
B, A=0.115, B=0.175 and

1z0=0.01 m (Pielke, 2002), ℓ is the turbulent mixing

length, and 1VH represents the difference in wind-speed

between two grid-cell centres separated by distance 1z, and

Kmin = 0.001m2 s−1. The numerical values follow from the

suggestions of Blackadar (1979) and Pielke (2002).

The turbulent mixing length, ℓ, is parameterized according

to:

ℓ = k z ,z ≤ zm

ℓ = k zm ,z > zm

where k is the von Karman’s constant (0.41), z is the height

above the ground and zm = 200 m.

Below the mixing height zPBL, these Kz values are re-

calculated. For neutral and stable conditions the simple for-

mulation of Jeričevič et al. (2010) is used, whereby:

Kz(z) = 0.39 u∗z exp
(
−0.5(z/0.21zPBL)

2
)

(5)

for z < zPBL. The values 0.39 and 0.21 are empirical con-

stants derived from large eddy simulation experiments. u∗ is

the friction velocity provided by the NWP model (= √
τ/ρ,

ms−1).

For unstable situations, new Kz values are calculated for

layers below the mixing height using the O’Brien (1970) pro-

file:

Kz(z) = Kz(zPBL) +
(

zPBL−z
zPBL−hs

)2

{Kz(hs) − Kz(zPBL)

+(z − hs)
[

δ
δz

(Kz(hs)) + 2
Kz(hs)−Kz(zPBL)

zPBL−hs

]}

(hs ≤ z < zPBL)

(6)

in which hs is the height of the surface layer (or the so-

called constant flux layer), which we set to be 4% of the

mixing height zPBL (Pielke, 2002). From the similarity theory

of Monin-Obukhov (e.g. Stull, 1988; Garratt, 1992) we have

Kz(z) = u∗ k z

8h

(
z
L

) z < hs (7)

where 8h is the atmospheric stability function for tempera-

ture, assumed valid for all scalars. The latter is derived us-

ing standard similarity theory profiles (Garratt, 1992). The

Obukhov length is given by:

L = −T2 u3
∗ ρ cp

k g H
(8)

where cp is the specific heat capacity of dry air

(1005 J kg−1 K−1), and ρ is air density. The sign here is con-

sistent with H directed away from the surface (positive H

gives unstable conditions).

Finally, in sigma coordinates, the diffusion coefficient has

the following form:

Kσ = Kz ρ2

(
g

p∗

)2

(9)
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Table 2. Meteorological Data Used in EMEP Model.

Name Unit Typea Main Purpose Notes

3-D fields – for 20 σ levels:

Horizontal wind velocity components m s−1 Inst. Advection

Specific humidity kg kg−1 Inst. Chemical reactions, dry deposition

Potential temperature K Inst. Chemical reactions, eddy diffusion

Precipitation mm Acc. Wet and dry deposition b

Cloud cover % Avg. Wet removal, photolysis

Vertical wind in σ coordinates s−1 Inst. Vertical advection

Convective updraft flux kg m−2s−1 Avg. Vertical transport, wet removal d

Convective downdraft flux kg m−2s−1 Avg. Vertical transport, wet removal d

2-D fields – for surface:

Surface pressure hPa Inst. Air density, definition of vertical levels

Temperature at 2m height K Inst. Dry deposition, stability

Surface flux of sensible heat W m−2 Inst. Dry deposition, stability

Surface flux of latent heat W m−2 Inst. Dry deposition

Surface stress or friction velocity N m−2 or m s−1 Inst. Dry deposition, stability

Snow depth m Inst. Dry deposition

Fraction of ice cover % Inst. Dry deposition

Sea surface temperature K Inst. Sea salt e

10-m wind-speed ms−1 Inst Sea-salt f

Soil water, near surface – Inst. Dust emissions g

Soil water, root zone – Inst. Dry deposition g

a Types refer to time-averaging of data: Inst=instantaneous, Acc = accumulated (over 3 h), Avg = averaged (over 3 h); b these data are frequently not
available from NWP models as 3-D fields. If unavailable, 3-D precipitation is derived from surface precipitation – see Supplement, Sect. S3.1; c if not

available, calculated, see Sect. S3.2; d the convective routine is optional in the model, but if switched on these parameters are required; e 2-m temperature,

T2, used if not available; f calculated from 3-D winds if not available; g See Sect. 3.3. If not available, soils assumed to be moist.

3.3 Soil water

Soil water (SW) is very difficult to model accurately in large-

scale models, since it depends very much on assumptions

concerning parameters such as soil texture, and vegetation

characteristics such as rooting depth that are not generally

amenable to measurements (e.g. Baker, 2003; Büker et al.,

2011; Miller et al., 2007). Different NWP models also make

use of very different schemes for soil water, depending on the

complexity of the underlying vegetation schemes, and these

models provide different outputs – sometimes SW in terms

of volumetric amount (e.g. from HIRLAM), sometimes in

terms of a soil moisture index (ECMWF, discussed below).

Volumetric outputs can be difficult to interpret unless the as-

sociated soil and vegetation characteristics are known for that

NWP.

Soil moisture is important though for dry-deposition and

dust emission rates, so we have implemented a procedure

which unifies the treatment from different NWP models.

The exact methodology depends on the NWP model and its

SW outputs, but essentially we define minimum and maxi-

mum soil water amounts to be SWmin (identified with wilting

points for example) and SWmax (identified with field capac-

ity), which may be constant over an NWP domain, or vary

spatially, and then define the soil moisture index (which we

previously denoted as relative extractable water index), as:

SMI = (SW − SWmin)/(SWmax − SWmin). (10)

The index SMI has the advantage over volumetric methods

that it is less sensitive to local soil characteristics, and hence

is easier to interpolate across different vegetation types and

grids. For example, a reasonable estimate of volumetric SW

can be made given local values for SWmin and SWmax, if SMI

is known.

The ECMWF IFS data we now use by default provides

SMI values directly; these are available for the near-surface

(ca. 10 cm) and deeper (1 m) soil layers, which we use for

dust and dry-deposition modules, respectively.

4 Radiation

Calculation of direct and diffuse radiation is needed for

chemical photolysis rates (Sect. 7.3), and in addition, calcu-

lation of photosynthetically active radiation (PAR) is needed

for calculating biogenic VOC emissions (Sect. 6.6), and for

calculation of stomatal conductance for dry deposition or

ozone uptake modelling (Sect. 8).
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Table 3. Land-cover classes used in EMEP model, with default heights (h), growing-season, LAI and BVOC related-parameters.

Growing season LAI parameters BVOC parameters1

code Landcover h SGS50 EGS50 LAImin LAImax LS LE D ε3c,iso
ε3c,mtl

ε3c,mtp

3c m day day m2 m−2 m2 m−2 days days gm−2 µgg−1h−1 µgg−1h−1 µgg−1h−1

CF T/B conif 202 0 366 5 5 1 1 1000 (1) (0.5) (2)

DF T/B decid 202 100 (1.5) 307 (−2.00) 0 4 20 30 320 (15) (2) (2)

NF Med. needle 8 0 366 4 4 1 1 500 (4) (0.2) (4)

BF Med. broadleaf 15 0 366 4 4 1 1 300 (0.1) (10) (0.2)

TC T/B crop 1 123 (2.57) 213 (2.57) 0 3.5 70 20 700 0.1 0.2 0.2

MC Med. crop 2 123 (2.57) 237 (2.57) 0 3 70 44 700 0.1 0.2 0.2

RC Root crop 1 130 250 0 4.2 35 65 700 0.1 0.2 0.2

SNL Moorland 0.5 0 366 2 3 192 96 200 5 0.5 0.5

GR Grass 0.3 0 366 2 3.5 140 135 400 0.1 0.5 0.5

MS Med. scrub 2 0 366 2.5 2.5 1 1 150 8 0.5 2

WE Wetlands 0.5 0 366 na na na na 150 2 0.5 0.5

TU Tundra 0.5 0 366 na na na na 200 5 0.5 0.5

DE Desert 0 0 366 na na na na 0 0 0 0

W Water 0 0 366 na na na na 0 0 0 0

ICE Ice 0 0 366 na na na na 0 0 0 0

U Urban 10 0 366 na na na na 50 0 0 0

IAM CR3 Generic crop 1 123 (2.57) 213 (2.57) 3.5 3.5 0 0 0 0 0 0

IAM DF3 Generic DF 20 105 (1.5) 297 (−2) 0 4 15 30 0 0 0 0

IAM MF3 Generic MF 8 0 366 5 5 1 1 0 0 0 0

Notes: conif = coniferous; decid = deciduous; T/B = temperate/boreal; Med. = Mediterranean; For explanation of LAI parameters, see Sect. 5 and Fig. 4; SGS50, EGS50 are start and
end of growing seasons (daynumber) at 50◦ N. Values in parentheses give the rate of change (days) of SGS and EGS (e.g. d SGS/d latitude) with latitude. For example, SGS for DF
occurs later at the rate of 1.5 days per degree latitude on moving north, or earlier when moving south; (na) – means not applicable. For these land-covers a bulk resistance formulation
is used;
1 for explanation of BVOC parameters, see Sect. 6.6. The parameters for forests (given in parentheses) are only applied when the methodology outlined in Sect. 6.6 cannot be applied,
e.g. for non-European areas;
2 for boreal forests north of 60◦ N, height is reduced by 5 % per degree extra latitude, down to a minimum of 6 m for 74◦ N and above. LAI is reduced in the same proportion;
3 these land-cover categories are added as a tiny fraction of each vegetated grid, purely to collect information for provision to the vegetation-effects community and integrated
assessment modelling.

For radiation calculations at level k in the model, we need

an estimate of the integrated cloud fraction in the column

above and including k. We use a maximum overlap assump-

tion, in which the fraction f k

cloud
is set to the maximum

value of the cell-volume cloud covers from k and all layers

above, i.e. from 1...k, cf. Fig. 2.

Following Pierce and Waldruff (1991) and Iqbal (1983),

direct normal irradiance (W m−2) is then estimated as:

IN
dir = CN A Tk exp

(
−B sec(θ)

p

p0

)
(11)

where CN is a clearness number, assumed equal to 1, Tk is a

transmissivity factor (set as Tk = 1 − 0.75f 3.4
cloud

), A, B are

empirical co-efficients from Iqbal (1983), θ is the solar zenith

angle, p is the local pressure (Pa) and p0 is standard sea-level

pressure, set equal to 101.3 kPa.

The direct and diffusive radiation on a horizontal surface

(W m−2) are then given simply by:

Idir = IN
dir cosθ (12)

Idiff = CIdir (13)

where the co-efficient C is also taken from Iqbal (1983).

Calculation of PAR values are made for each vegetated

land-cover class within the grid, as PAR depends on the

canopy’s leaf area index (LAI). Following Norman (1979,

1982) we divide the canopy into sunlit and shaded leaves,

and calculate the leaf-area and PAR for each class with:

LAIsun =
[

1 − exp(−0.5
LAI

cosθ
)

]
cosθ

cosα
(14)

LAIshade = LAI − LAIsun (15)

I shade

PAR
= Idiff exp

(
−0.5 LAI0.7

)

+0.07 Idir (1.1 − 0.1 LAI) exp(−cosθ) (16)

I sun

PAR
= Idir cosα/cosθ + I shade

PAR
(17)

where α is the average inclination of leaves in the canopy

(assumed 60◦ to represent a spherical leaf distribution).

5 Land-cover

Land-cover data are required in the model, primarily for

dry deposition modelling and for estimation of biogenic
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emissions. As noted in Sect. 2, the standard EMEP grid

has a resolution of approx. 50 km × 50 km, but grid sizes

in reported applications have ranged from 5 km × 5 km to

1◦ × 1◦. Whatever the size, the land-use databases give the

fractional coverage of different land-cover types within each

surface grid cell. This allows sub-grid modelling using a so-

called mosaic approach – allowing for example ecosystem

specific deposition estimates.

The 16 basic land-cover classes are summarised in Table 3.

Additional land-use classes are easily defined and indeed the

specific categories “IAM DF”, “IAM MF” and “IAM CR”

are assigned for provision of data to ozone-effects studies

and integrated assessment studies (e.g. Mills et al., 2011a,b).

For European scale modelling the land-cover data are de-

rived from the CORINE system and from the Stockholm

Environment Institute at York (SEIY) system (www.york.

ac.uk/http://www.sei-international.org/landcover). The basic

principle used was to apply CORINE data wherever avail-

able, thereafter SEIY data. In addition, the more detailed

SEIY data (especially on agriculture) was used to guide the

split of the broader CORINE categories into the EMEP land-

classes needed by the model. The final merge of these data

was done at the the LRTAP Coordination Centre for Ef-

fects (CCE at RIVM, Posch et al. 2005). For global scale

runs, land-cover from GLC-2000 (http://bioval.jrc.ec.europa.

eu/products/glc2000/glc2000.php) are used.

For the vegetative land-cover categories for which stom-

atal modelling is undertaken (see Sect. 8.5), a number of

phenological characteristics are needed. By default, these are

specified in input tables for each EMEP land-cover 3c. In

particular, the start and end of the growing season (SGS,

EGS) must be specified. The development of leaf area index

(LAI) within this growing season is modelled with a simple

function as illustrated in Fig. 4. The parameter values used

for these LAI estimates are given in Table 3.

6 Emissions

The standard emissions input required by EMEP model con-

sists of gridded annual national emissions of sulphur dioxide

(SO2), nitrogen oxides (NOx = NO + NO2), ammonia (NH3),

non-methane volatile organic compounds (NMVOC), carbon

monoxide (CO), and particulates (PM2.5, and PMc, the latter

being the coarse aerosol fraction, PM10-PM2.5). The partic-

ulate matter categories can be further divided into elemen-

tal carbon, organic matter and other compounds as required.

Emissions can be from anthropogenic sources (burning of

fossil and biomass based fuels, solvent release, etc.), or from

natural sources such as foliar VOC emissions or volcanoes.

Several sources are hard to categorise as anthropogenic ver-

sus natural (Winiwarter et al., 1999), e.g. with emissions of

NO from microbes in soils being promoted by N-deposition

and fertilizer usage.
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Fig. 4. Schematic of LAI development and associated parameters.

SGS and EGS are the start and end of the growing season, in

day-numbers. LS and LE represent the length of the LAI-increase

and decline periods, also in day-numbers. Maximum and mini-

mum (within the growing season) LAI values are given by LAImax,

LAImin.

6.1 National EMEP emissions

As part of the EMEP Protocol under CLRTAP, national es-

timates of the anthropogenic emissions should be provided

to EMEP every year from each country, along with spa-

tial distribution to the EMEP grid. These emissions are pro-

vided for 10 anthropogenic source-sectors denoted by so-

called SNAP codes. An eleventh source-sector exists in the

officially-submitted database (“Other sources and sinks”),

but this consists almost entirely of emissions from natural

and biogenic sources. Officially submitted emissions from

such sources are not used in the modelling work, except for

those from volcanoes (sections 6.6–6.11 discuss the methods

used for dealing with such emissions in the modelling frame-

work). Further details of the anthropogenic emissions can be

found in Mareckova et al. (2009); the emission database is

available from http://www.emep.int, and further details can

be obtained at that site.

Figure S1 in Supplement illustrates the spatial distribution

of two sets of data for these anthropogenic emissions (NOx

and SO2), and two sets of data for biogenic VOC emissions.

6.1.1 Vertical distribution

These land-based gridded emissions are distributed vertically

according to a default distribution based upon the SNAP

codes, as shown in the Supplement, Table S3. These dis-

tributions were originally based upon plume-rise calcula-

tions performed for different types of emission source which

are thought typical for different emission categories, un-

der a range of stability conditions (Vidic, 2002), but have

since been simplified and adjusted to reflect recent find-

ings (Bieser et al., 2011; Pregger and Friedrich, 2009). The

biggest change has been in sector 2 (non-industrial combus-

tion), where now 100 % of the emissions are placed in the

lowest model layer, reflecting the large dominance of domes-

tic combustion for this emission category.

www.atmos-chem-phys.net/12/7825/2012/ Atmos. Chem. Phys., 12, 7825–7865, 2012
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6.1.2 Temporal distribution

For most SNAP sectors, emissions are distributed temporally

according to:

f
i,c
t = f i,c

m,y f
i,c
d f i

h (18)

where f i
t is the temporal factor for SNAP sector i, country

c, and f
i,c
m,y , f

i,c
d , f i

h , are factors accounting for month (and

year for SNAP-1, see below), day-of-week (or for SNAP-2

day of year, see below) and hour of the day. These factors

are derived largely from data provided by the University of

Stuttgart (IER) as part of the GENEMIS project (Friedrich

and Reis, 2004), and are available as data files from the

EMEP model website, www.emep.int. They are specific to

each pollutant (except f i
h), emission sector, and country, and

thus reflect the very different climates and hence energy-use

patterns in different parts of Europe. Fig. 5 illustrates the

monthly variations in emissions of SOx, NOx and NMVOC

for selected countries in different parts of Europe. The an-

nual cycles of SOx and NOx emissions for this year (2008)

are rather constant in the Western European countries (Swe-

den, UK, Spain), but still show winter peaks in the two East-

ern European countries (Poland, Ukraine). The ratio of SOx

to NOx emissions varies markedly from country to country.

Note that these plots illustrate total emissions, and the flat

cycles for SOx and NOx may partly be ascribed to the impor-

tance of traffic emissions (which have very low seasonal cy-

cles), and the lower winter/summer ratio assumed for SNAP-

1 in recent years (below). Emissions for particular sectors

can show much stronger variation; an example for the do-

mestic emissions of organic carbon emissions can be found

in Bergström et al. (2012). The spatial distribution of BVOC

emissions is presented in the Supplement, Fig. S1.

The three improvements which have been made to this

methodology in 2011-2012 versions of the model are dis-

cussed below:

SNAP-1: decreasing winter/summer ratios

The temporal patterns from GENEMIS were derived for the

year 1994, and prior to rv3.9 these values were used for all

years, i.e. f
i,c
m was the same set of 12 values for all years.

However, as illustrated in Grennfelt and Hov (2005), the win-

ter/summer ratios of electricity consumption have been de-

creasing in recent years, from about 1.33 in 1990 for the UK

to 1.22 in 2000, and from 1.1 to 1.02 over the same period in

Italy. Despite very different climates, these changes both rep-

resent a 10 % decrease in the winter/summer ratio over these

10 years. Discussion with IIASA (M. Amann personal com-

munication, 2011) suggest that this decreasing trend has con-

tinued. For SNAP-1, power stations and suchlike, we there-

fore modify these variations, “flattening” the monthly factors

towards the annual mean by a factor ranging from 0–10 %

between 1990 and 2010:

f SNAP-1,c
m,y = f

SNAP-1,c
m,1994

(
1 + 1(y)

200
cos(

2π(m − 8)

12
)

)
(19)

where fm,1994 is the monthly factor obtained from GENE-

MIS for 1994, 1(y) is set to zero before 1990, y − 1990 be-

tween 1990 and 2010, and to 1 after 2010. The cosine term

provides an annual cycle, and m − 8 ensures that maximum

changes occur in February and August. (Note that the mean

of all fm,y factors is 1.0, we are just changing the amplitude

of the annual cycle.)

SNAP-2: use of degree-day factors

SNAP-2 consists mainly of domestic combustion, and as of

rv3.9, the day to day variation is based upon a modification of

the heating degree day concept. For day of year j , with mean

daily temperature in ◦C of T 24h
j we set the heating degree day

to be Hdd,j = max(18 −T 24h
j , 1). (The minimum value of 1

is used rather than zero just to avoid numerical problems).

These degree days are pre-calculated in the model for each

grid cell, and averaged to find the annual mean degree-days

for each grid-cell, Hdd .

These degree-day factors are so far country-independent,

being a function only of gridded daily temperatures. How-

ever, the GENEMIS monthly factors for SNAP-2 are used

to establish a minimum ’base’ factor for each country, f c
B ,

which in some countries would include summertime use of

gas-appliances for cooking, etc. Time-variation of emissions

above this level are driven by calculations of heating degree-

days. For day-number j , SNAP-2 we have:

f
2,c
j = f c

B + (1 − f c
B) Hdd,j/Hdd (20)

Thus, in summertime where temperatures are close to or ex-

ceed 18 ◦C, this emission factor is very small, but in winter

the factor is usually significant, and can change quite sub-

stantially from day to day.

Hourly emissions

Earlier versions (up to rv4β) of the EMEP model used sim-

ple day-night factors (see Table S4) to allocate emissions

within the day. In version rv4 we make use of new hourly

data, provided by B. Bessagnet, INERIS, as part of ongoing

work for the EMEP task Force on Measurements and Mod-

elling. These data consist of a matrix of 11 SNAP sectors ×7

days per week × 24 h. These values are somewhat simplified

versions of the hourly data presented by Menut et al. (2012).

6.2 VOC speciation

Speciation of VOC emissions is also specified separately

for each source-sector. The EMEP model uses a “lumped-
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molecule” approach to VOC emissions and modelling, in

which for example the model species n-butane represents all

C3+ alkanes, and o-xylene represents all aromatic species

(Andersson-Sköld and Simpson, 1997). As discussed in more

detail in Hayman et al. (2012), the VOC data used in the cur-

rent EMEP model are derived from the detailed United King-

dom speciation given in Passant (2002). Although the exact

VOC speciation used can be varied to suit particular emission

scenarios (e.g. Reis et al., 2000), the default split is typically

used, as given in the Supplement, Table S5.

6.3 PM speciation

Where elemental and/or organic carbon (EC, OC) are re-

quired, emissions of PM2.5 and PM10 need to be speciated

into these components. In fact, we are often interested in

emissions of organic matter, OM, which includes for exam-

ple oxygen, hydrogen and other atoms bound to the OC. In

order to generate these speciations, we make use of country

specific information on EC, OC and PM emissions provided

by IIASA. For the fine PM fraction, OM emissions by mass

are assumed to be 1.3 times the OC emission, although with

a cap to make sure that EC + OM ≤ 0.99 PM. For the even

more uncertain coarse fraction, we use a simple default spe-

ciation as given in the Supplement, Table S6.

For some studies, explicit emissions of EC (or related

black carbon, BC) have been available, e.g. for the modelling

studies within the CARBOSOL project (Fagerli et al., 2007;

Simpson et al., 2007b; Tsyro et al., 2007) emissions from

Kupiainen and Klimont (2007) were used, and for the EU-

CAARI project (Kulmala et al., 2011; Bergström et al., 2012)

emissions were from van der Gon et al. (2009).

6.4 Aircraft

Emissions of NOx from aircraft are provided by data from

the EU-Framework Programme 6 Integrated Project QUAN-

TIFY. The data have been downloaded from the project web-

site www.pa.op.dlr.de/quantify. The emissions are calculated

on an annual basis and disaggregated according to a seasonal

variation to create monthly files on a spatial resolution of

1◦ × 1◦ × 610 m. The emissions are interpolated to the rel-

evant model grid during model runtime. In the EMEP model,

only NOx emissions from aircraft are used so far.

6.5 Shipping

The emissions from international shipping were created orig-

inally by ENTEC (now part of AMEC Environment Infras-

tructure, UK, www.amec-ukenvironment.com) and IIASA,

and recently in the context of the revision of national emis-

sion ceilings directive as described in Cofala et al. (2007) and

Jonson et al. (2009). The latest data take account of reduced

sulphur emissions in recent years. Data are now available for

NOx, SOx and PM (for 2000, 2005, 2010, 2015, 2020, 2025

and 2030), with interpolation between these years when re-

quired.

Emissions from national shipping are not included in this

ship inventory as national emissions should be included in

the reported emissions (SNAP sector 8) to UN-ECE by the

individual parties to LRTAP Convention. Unfortunately not

all countries report emissions from national shipping, and for

those who do it can not be distinguished from other mobile

sources.

6.6 Foliar NMVOC emissions

Biogenic emissions of isoprene and (if required) monoter-

penes are calculated in the model for every grid-cell, and

at every model time-step, using near-surface air tempera-

ture (T2) and photosynthetically active radiation (PAR, see

Sect. 4). Following the ideas proposed in Guenther et al.

(1993, 1995), the first step in the emission processing is to

define “standard” emission factors, which give the emissions

of particular land-covers at standard environmental condi-

tions (30 ◦C and PAR of 1000 µmol m−2 s−1).

Emission factors for forests have been created from the

the map of forest species generated by Köble and Seufert

(2001). This work (also used by Karl et al. 2009 and Kesik

et al. 2005) provided maps for 115 tree species in 30 Eu-

ropean countries, based upon a compilation of data from the

ICP-forest network UN-ECE (1998). These data were further

processed to the EMEP grid (S. Cinderby, SEIY, personal

communication, 2004).

The EMEP model cannot deal with all these different for-

est species, but rather has maps of aggregated land-cover

types, such as temperate/boreal coniferous forest (CF), as

in Table 3. Emission rates for the EMEP aggregated land-

cover classes (3c) are developed from maps of the Köble

and Seufert (2001) land-cover types (λc) with:

E∗
3c,i

=
∑

λc
ε∗
λc,i

AλcDλcδ(λc ∈ 3c)∑
λc

Aλc

where E∗
3c,i

is the area-specific reference emission rate

(µg m−2 h−1) for an EMEP land-cover class, at standard en-

vironmental conditions, ε∗
λc,i

is the mass-specific emission

rate (µg g−1(dry-weight) h−1) for BVOC compound i and a

particular real land-cover class (λc) at these standard condi-

tions, Aλc is the area, and Dλc is the foliar biomass density

of that species. The delta (δ) function is set to 1.0 for those

species (λc) belonging to the EMEP land-cover group (3c),

zero otherwise. The standard emission factors are as given in

the Supplement, Table S7.

For example, the standard emissions factor for the CF

landcover (temperate/coniferous forest) would be calculated

as the weighted sum of the species-specific emissions fac-

tors for any species included in this category, thus 3c would

include Norway spruce, Sitka spruce, Scots pine, etc. The
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Table 4. Summary of BVOC Environmental correction factors.

BVOC group γL γT,i γCAN,i Comment

(i)

Isoprene
αCL1Q√
1 + α2Q2

exp
CT1(T − Ts)

RTsT

1+exp
CT2(T − Tm)

RTsT

0.57 γL and γT,iso as in Guenther et al. (1993)

MTP 1.0 exp[β(T − Ts)] 1.0 Pool-dependent monoterpene emissions, γT,MTP from

Guenther et al. (1993)

MTL =γL,iso =γT,MTP 0.57 Light-dependent monoterpene emissions

Notes: all coefficients from Guenther et al. (1993), CT1 = 95000, CT2 = 230000, CL1 = 1.066, Ts = 303 (K), Tm = 314 (K), R = 8.314 (J mole−1 K−1),
α = 0.0027, β = 0.09.

resulting E∗
3c,i

give standard emission factors per m2 of the

appropriate EMEP landcover category.

These E∗
3c,i

maps are intended to represent broad species

characteristics rather than to capture details of the spatial dis-

tribution, and in order to reflect this we have smoothed the

emission factor fields using a simple distance weighted filter.

For non-forest vegetation types (e.g. grasslands, seminat-

ural vegetation) or for forest areas not covered by the emis-

sion factor maps described above (e.g. for eastern Russia, or

non-European forests when modelling at global scale), de-

fault emission factors are applied. These factors are given in

Table 3.

Emission potentials are then re-calculated to instantaneous

emissions every time-step in the model (every 20 min), using

the grid-cell relevant temperature and radiation conditions:

E3c,i = E∗
3c,i

× A3c γ3c,i (21)

where E3c,i is the temperature and (where appropriate light)

corrected emission per square meter of EMEP landcover 3c.

The environmental correction factor γ3c,i consists of cor-

rections for the canopy LAI, temperature, light and canopy-

shading:

γ3c,i = γLAI γL γT ,i γCAN,i (22)

where the LAI factor, γLAI is simply defined as LAI/LAImax

for each land-cover 3c.

In the EMEP model, γCAN,i accounts for the effects of shad-

ing throughout the canopy. In principle a multi-layer canopy

model could be used to specify leaf temperature and radi-

ation conditions at different vertical levels. However, here

we use a simple non-canopy approach, assuming that am-

bient temperature is similar to leaf temperature and that the

use of “branch-level” emission potentials, which are typi-

cally a factor 1.75 smaller than leaf-level values (Guenther

et al., 1994), accounts for the shading effect. Tests in Eu-

ropean conditions have suggested differences in total emis-

sions between the two methodologies of around 20 % (Simp-

son et al., 1995). Given the many uncertainties introduced by

the forest-canopy model itself (e.g. in temperature and light

profiles within the canopy), and the lack of evaluation of such

models under European conditions, we use the same proce-

dure as Simpson et al. (1999) and simply specify that γCAN,i =

1/1.75 = 0.57 for light-sensitive emissions and γCAN,i = 1 for

the pool terpenes.

The light correction factor γL and temperature correction

factor γT are different for the model’s three emission cate-

gories: isoprene, pool-dependent monoterpenes (MTP) and

light-dependent monoterpenes (MTL). Isoprene is always

light and temperature controlled. MTP emissions are derived

entirely from pool-emissions, and so have γL = 1 always.

MTL emissions are synthesised, and are both light and tem-

perate controlled. Table 4 summarizes the environmental cor-

rection factors used.

Figure 5 illustrates the monthly variations in emissions

of isoprene and monoterpenes for selected countries in dif-

ferent parts of Europe, also in comparison to the anthro-

pogenic emissions and soil-NO (below). These results clearly

illustrate not just the strong seasonal cycle, but also the

large country to country differences. In the UK for exam-

ple, BVOC emissions are smaller than anthropogenic even

in the summer months, but in the other countries summer-

time BVOC emissions can be far greater than anthropogenic

NMVOC. Emissions of monoterpenes dominate over those

of isoprene, also in most of the countries that are not shown.

Annual emissions of these BVOC are given in Table S2 of

the Supplement, where again the importance of these sources

is obvious. The spatial distribution of isoprene and monoter-

pene emissions are shown in Fig. S1 of the Supplement.
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Fig. 5. Monthly emissions from selected countries. The left column gives combustion-derived NOx and SOx, as well as soil-NO emis-

sions. The right column gives anthropogenic NMVOC, and then biogenic isoprene and monoterpene emissions. Units are Gg month−1, with

emissions of NOx are as NO2, and SOx as SO2. and isoprene in the EMEP grid for the year 2006. Units: mg m−2.

www.atmos-chem-phys.net/12/7825/2012/ Atmos. Chem. Phys., 12, 7825–7865, 2012
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6.7 Soil NO emissions

For global scale modelling the EMEP model can make use of

monthly averaged soil NO emissions from a process-based

terrestrial-biosphere model (Zaehle et al., 2011), kindly pro-

vided as netcdf files with 1◦ × 1◦ resolution (S. Zaehle, per-

sonal communication, 2010).

For European-scale applications, we make use of more de-

tailed land-cover and meteorological data. Emissions of NO

from soils of seminatural ecosystems are specified as a func-

tion of the N-deposition and temperature:

ENO,3c = E∗
NO,3c

NTfNdep (23)

where E∗
NO,3c

is the maximum emission rate, set

to 150 µg(N)m−2 h−1 for coniferous forest, and

50 µg(N)m−2 h−1 for deciduous forests and other sem-

inatural ecosystems. NT is the temperature response,

identical to that used by Laville et al. (2005) and Linn and

Doran (1984), and which also seems broadly consistent with

data presented by Schaufler et al. (2010). fNdep is a scaling

factor to account for the N-deposition load in each grid.

For fNdep we take the ratio of annual deposition divided by

5000 mg(N) m−2, with maximum value 1.0.

For crops, emissions are given by:

ENO,3c = E0
NO + E∗

NO,3c
NT fβ,nd (24)

where E∗
NO,3c

is 80 µg(N)m−2 h−1 for all crops, The func-

tion fβ,nd applies a β(2,2) function, which produces a value

1.0 when the daynumber nd (between 1 to 366) is equal to

the start of the growing season (SGS), falling to zero 30 days

on either side of SGS. E0
NO is the baseline emission level of

1 µg(N)m−2 h−1.

The approaches used are meant to loosely capture two

of the most important dependencies found in field and ex-

perimental studies. For example, from a detailed study of

15 forest sites across Europe, Pilegaard et al. (2005) found

an almost linear relationship between NO emissions and N-

deposition at coniferous sites, with emissions ranging from

non-detectable at a Finnish site to ca. 80 µg(N)m−2 h−1 at

two high-deposition sites in the Netherlands and Germany.

For deciduous forests the relationship with N-deposition was

much weaker, with rates varying from 0.7 (Scotland) to

13 µg(N)m−2 h−1 (Germany). The deposition estimates were

based upon throughfall for coniferous forest, and throughfall

plus stem-flow for deciduous, and so are both uncertain and

not strictly comparable. Schaufler et al. (2010) found a some-

what closer relationships between soils from coniferous and

deciduous forests in an experimental study, albeit with only

a few sites.

The procedure used for crops is designed to loosely mimic

results shown in for example Butterbach-Bahl et al. (2009),

Rolland et al. (2008, 2010), or Laville et al. (2005, 2009),

all showing a broad peak in emissions in springtime (corre-

sponding to the application of fertilizer and start of the grow-

ing season).

Figure 5 illustrates the monthly variations in emissions

of soil-NO in comparison to the anthropogenic emissions

of NOx. The spring peak is clearly seen, starting earlier in

southern compared to northern Europe. Country to coun-

try differences are large. For Sweden for example, a heav-

ily forested country with relatively low population density,

soil-NO emissions are rather large compared to the (low)

anthropogenic emissions. For the densely populated United

Kingdom, on the other hand, the soil-NO emissions are al-

most negligible compared to those from industry and traffic.

Annual emissions of these soil-NO are given in Table S2 of

the Supplement. It should be noted that, although relatively

small in most countries (compared to the combustion-sources

of NOx), these emissions can still impact atmospheric chem-

istry because of their seasonal cycle and location in NOx-

sensitive areas (Simpson et al., 2006a; Butterbach-Bahl et al.,

2009).

This methodology has of course a number of weaknesses,

including lack of controls by soil moisture, but the emis-

sion rates seem to correspond reasonably well to the (widely-

scattered) published values from European forests and agri-

cultural areas cited above. A more detailed methodology

would require data on a host of factors which are not nor-

mally available at the European scale, including details of

soil and vegetation types, and timing of crop growing sea-

sons, fertilization, and irrigation.

6.8 Sea salt

The generation of sea salt aerosol over oceans is driven by

the surface wind. There are two main mechanisms for sea

salt aerosol generation: bubble bursting during whitecap for-

mation (indirect) and through spume drops under the wave

breaking (direct). The latter mechanism is believed to be im-

portant source for particles larger than 10 µm and at wind

speeds exceeding 10–12 ms−1. In the EMEP MSC-W model,

sea salt calculations include primarily particles with ambi-

ent diameters up to 10 µm. These sea salt particles originate

mainly from the bubble-mediated sea spray. As discussed in

detail in Tsyro et al. (2011), the EMEP model’s parameter-

isation scheme for calculating sea salt generation is based

on two source functions, those of Monahan et al. (1986) and

Mårtensson et al. (2003). The equations used are briefly re-

capitulated in the Supplement (Sect. S4.5), but the reader is

referred to Tsyro et al. (2011) for a thorough discussion and

comparison with measurements and other models.

6.9 Forest and vegetation fires

As of model version rv3.9 (November 2011), daily emis-

sions from forest and vegetation fires are taken from the

“Fire INventory from NCAR version 1.0” (FINNv1, Wied-

inmyer et al. 2011). Data are available from 2005, with daily

Atmos. Chem. Phys., 12, 7825–7865, 2012 www.atmos-chem-phys.net/12/7825/2012/
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resolution, on a fine 1 km × 1 km grid. We store these data

on a slightly coarser grid (0.2◦ × 0.2◦) globally for access by

the EMEP model.

For earlier years, and in previous versions of the model

(e.g. as used in Hodnebrog et al. 2012 or Tsyro et al.

2007), the model used the 8-daily fire emissions from

GFED-2 (Global Forest Emission database, http://www.

globalfiredata.org), as documented in van der Werf et al.

(2010).

Emissions from either database include SO2, CO, NOx,

NMHC, PM2.5, PM10, OC, and BC. Where OM is needed

explicitly, we scale from OC using a factor of 1.7 (based on

AMS measurements presented by Aiken et al. 2008). Emis-

sions are homogeneously distributed over the eight lowest

model layers, loosely following recommendations by Sofiev

et al. (2009) to use a PBL height as an approximate height

for emission injection.

6.10 Dust

The sources of natural mineral dust in the model include

windblown dust from deserts, semi-arid areas, agricultural

and bare lands within the model domain, as well as dust

produced beyond the model grid (e.g. on African deserts)

and transported to the calculation domain. A preliminary

road-dust module has also been implemented. The inflow of

African dust is accounted for through boundary conditions.

The monthly average concentrations of fine and coarse dust,

calculated with the global chemical transport model of the

University of Oslo (CTM-2) for 2000, are currently used as

boundary conditions (Grini et al., 2005).

The parameterisation of wind mobilisation of soil dust is

based among others on the works of Marticorena and Berga-

metti (1995), Marticorena et al. (1997), Alfaro and Gomes

(2001), Gomes et al. (2003), and Zender et al. (2003). The

key parameter driving dust emissions is wind friction veloc-

ity. The dust mobilisation by wind and the horizontal motion

of soil particles (called saltation) occurs when the wind fric-

tion velocity exceeds a threshold value. This threshold value

depends on the size of soil aggregates. The model employs a

partitioning scheme of wind shear stress between the erodible

and non-erodible surface elements to calculate the threshold

friction velocity (Marticorena and Bergametti, 1995). Cur-

rently, the threshold friction velocity is calculated for a parti-

cle size optimal for saltation, which is assumed to be 75 µm

(Zender et al., 2003). The general expression for threshold

wind friction velocity (u∗,th) is written as

u∗,th = u∗,sm

feff
fw (25)

where u∗,sm is the threshold friction velocity for erodible

(smooth) part of surface, feff is the efficient friction veloc-

ity ratio (describing wind drag partitioning between erodi-

ble surface and non-erodible roughness elements), and fw is

the correction factor accounting for soil moisture. Following

Marticorena and Bergametti (1995),

feff = 1 −




ln
(

z0
z0,s

)

ln

(
0.35

(
10
z0,s

)0.8
)


 (26)

where z0,s is the roughness length of the erodible part of

the surface (smooth), i.e. roughness of soil aggregates, z0

is the roughness length of the non-erodible roughness ele-

ments (e.g. pebbles, rocks, vegetation). The roughness length

of smooth erodible surfaces depends on soil morphology and

is calculated following Marticorena et al. (1997) as z0,s =
ds/30, where ds is the diameter of erodible particles, for

which the median diameter of the most coarse population of

the soil is used.

The suppression of soil erosion by soil moisture is ac-

counted for as suggested by Fécan et al. (1998). The cor-

rection factor accounting for increase of threshold friction

velocity due to soil moisture is calculated as

fw = 1 for w ≤ w
′

(27)

fw =
√(

1 + 121
(
w − w

′)0.68
)

for w > w
′

(28)

where w is the gravimetric soil moisture (kg kg−1) and w
′

is

the minimum soil moisture from which the threshold velocity

increases. The latter depends on soil texture as:

w = 0.14 F 2
clay + 0.17 Fclay (29)

where Fclay is the fractional clay content of the soil. In the

present model version, w
′

is assumed to be equal to the Per-

manent Wilting Point (PWP) obtained from ECMWF-IFS

data. The EMEP model’s soil moisture index (Sect. 3.3) is

converted first to volumetric, and then gravimetric soil water,

following Zender et al. (2003), using information on sand

content in the soil.

The land-use types, from which windblown dust emissions

are calculated in the model, include deserts/bare lands and

agricultural arable lands outside growing periods. Some ad-

ditional constraints are imposed on the onset of windblown

dust generation, so that no emissions take place: (1) dur-

ing precipitation events (with precipitation rate greater than

0.2 mm per day) and two days afterwards; (2) under high sur-

face relative humidity conditions (RH > 85 %); and (3) from

frozen surface or surface covered by snow.

The condition for the onset of dust mobilisation by wind

is u∗ ≥ u∗,th. The model allows a possibility of accounting

for the gustiness of wind at free convection conditions. As

proposed in Beljaars (1994), modified 10 m wind and wind
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friction velocity can then be calculated as:

u10 =
√(

V 2
10 +

(
1.2w2∗

))

u∗ = k

ln
(

z10
z0

)
√(

u2
10 + (1.2w∗)2

)
(30)

where V10 is the velocity of horizontal wind at 10 m height,

w∗ is the free convection velocity scale, z0 is the land-use

defined roughness length and z10 = 10 m. The term
(
1.2w2

∗
)

represents the near surface wind induced by large eddies.

The horizontal flux of soil particles (i.e. saltation) is cal-

culated as in Marticorena and Bergametti (1995)

Qs = Cρair

g
u3

∗

(
1 − u∗,th

u∗

) (
1 + u∗,th

u∗

)2

(31)

where Qs is the horizontal mass flux of soil particles

(kg m−1 s−1), ρair is the air density, g is the gravitational ac-

celeration and C is the empirical coefficient (C = 2.61 based

on Zender et al. (2003) and references therein). The vertical

flux of dust particles, released by sandblasting mechanism

from the saltating and/or surface soil aggregates, is simulated

as

F = As K α Qs (32)

where F is the vertical mass flux of dust (kg m−2 s−1), As is

the area fraction of erodible soil in the grid cell, K is the coef-

ficient accounting for soil erodibility (or availability of loose

soil aggregates), and α is the sandblasting efficiency (m−1).

Based on the experimental results in Gomes et al. (2003), the

following values (providing the best fit with measurements)

are currently used in the model: α = 2.0 × 10−5, 1.5 × 10−5

and 1.0 × 10−5 m−1 and K = 0.5, 0.05 and 0.02 for North

African deserts, Mediterranean arid areas and arable lands

respectively.

Finally, we can mention that a road dust emission module

has been added to the EMEP model. The code and methodol-

ogy are taken directly from that described in Denier van der

Gon et al. (2010). This is very preliminary work, however,

and details of the results will be presented elsewhere.

6.11 Other sources

Biogenic emissions of dimethly sulphide (DMS) can some-

times make a significant input to European sulphate levels.

As discussed in detail by Tarrasón et al. (1995), the EMEP

model uses a very simplified treatment, in which DMS is not

modelled explicitly, but rather we assume that most DMS en-

ters long-range transport already as sulphur dioxide. Monthly

emission fields of DMS-derived SO2 are taken from the work

of Tarrasón et al. (1995).

Emissions of volcanoes are introduced into the model

as point sources, at a height determined by the height of

each volcano. For the standard European-scale runs, volcano

emissions are based upon officially reported data. These have

been provided by Italy for many years, and recently by Ice-

land. For global and regional scale calculations, a new mod-

ule for volcanic eruptions with default values based upon

Mastin et al. (2009a,b) has recently been implemented and

is currently in testing.

Emissions of NOx from lightning are included as monthly

averages of global 3-D fields on a T21 (5.65◦ × 5.65◦) reso-

lution (Köhler et al., 1995).

7 Chemistry

The chemical scheme used for gas-phase chemistry traces

its origins to the EMEP chemical mechanisms that began

with Eliassen et al. (1982). This scheme has been updated

and tested against other schemes in a number of studies

(Simpson et al., 1993; Simpson, 1995; Kuhn et al., 1998;

Andersson-Sköld and Simpson, 1999). The scheme doc-

umented in Simpson et al. (2003a) and Andersson-Sköld

and Simpson (1999) is now denoted EmChem03. The lat-

est scheme was largely developed in 2008–2009 and is de-

noted EmChem09. Compared to EmChem03, EmChem09

has updated rate-coefficients, and some additional species,

including HONO. A detailed comparison of these chemical

schemes, including their response to emission changes is pre-

sented in Hayman et al. (2012).

The EMEP model now uses a chemical pre-processor

(GenChem) to convert lists of input chemical species and re-

actions to differential equations in Fortran code. At the time

of writing, eight different chemical schemes have been tested

within the EMEP model, as discussed in detail in Hayman

et al. (2012) and summarised in Table 5. A large number

of schemes for organic aerosol have also been tested (Simp-

son et al., 2007b; Bergström et al., 2012), but these are too

complex and numerous to document here. Here we document

only the default chemical scheme, EmChem09.

The numerical solution of the chemical equations is dis-

cussed in Sect. 7.8 and Supplement, Sect. S2.3.

7.1 Species used, EmChem09

Tables S8-S10 list the chemical compounds used in the Em-

Chem09 scheme, along with associated characteristics such

as the assignments used for dry and wet deposition. Most

species are sufficiently long lived that they are included in

both the advection and chemical equations. The species la-

belled “short-lived” have sufficiently short lifetimes that their

concentrations are essentially controlled by local chemistry,

so they are not included among the advected species. (Some

short-lived species are advected anyway for numerical rea-

sons.)

Note that this list excludes a number of intermedi-

ate species which are assumed to react immediately upon
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formation. For example, H atoms react immediately with O2

to form HO2, and so are not included explicitly.

The EMEP model distinguishes five classes of fine and

coarse particles, which for dry-deposition purposes are as-

signed mass-median diameters (Dp), geometric standard de-

viations (σg), and densities (ρp). The characteristics of these

aerosol classes are given in Table 6.

It can be noted that the assumed Dp for coarse nitrate par-

ticles has been reduced in recent years compared to Simp-

son et al. (2003a) which had Dp = 4 µm. This choice re-

flects an assumption that coarse nitrate formation is driven

by surface-area rather than mass (hence favouring the smaller

size-ranges), and consistent with Pakkanen et al. (1996) and

Torseth et al. (2000). This assumption is very uncertain how-

ever, and probably depends on whether dust or sea-salt is

the main reacting surface. In future we will consider explicit

modelling of nitrate formation on different types of aerosol in

order to better characterise the size-distribution. Accounting

for the difference betweem MMD and aerodynamic diame-

ter, the choice that Dp = 3 µm implies that 27 % of calculated

coarse-nitrate can be assigned to the PM2.5 fraction.

The semi-volatile organic compounds involved in SOA

formation are a special case, in that the model transports both

the gas and the aerosol fraction as one lumped concentration

for numerical stability. The model also tracks the gas fraction

as a separate quantity. For these compounds, dry and wet de-

position processes are applied as appropriate to the different

fractions.

7.2 Gas-phase chemical mechanism

Table S11 lists the chemical reaction mechanism used in the

photo-oxidant model (for photolysis reactions, see below).

Rate-coefficients for 3-body and some other reactions are

given in Tables S12–S13. During 2008–2009 the scheme’s

rate-coefficients have been updated and in some cases re-

placed by Troe expressions to allow their application to the

greater range of temperatures and pressures inherent in the

3-D model domain. The rates and products were updated to

be, as far as possible, consistent with IUPAC recommenda-

tions (http://www.iupac-kinetic.ch.cam.ac.uk/); most of the

reaction coefficients are from Atkinson et al. (2004, 2006).

7.3 Photo-dissociation rates

Table S14 lists the photolysis reactions used in the model for

the EmChem09 mechanism. The reactions are taken from

Simpson et al. (1993), with minor updates. The calcula-

tion of photo-dissociation rates (J-values) is identical to the

methodology used for the earlier EMEP oxidant model (Jon-

son et al., 2001). J-values are calculated for clear sky con-

ditions and for two predefined clouds using the PHODIS

routine (Kylling et al., 1998). Ozone concentrations from

a 2-D global model, extending from the surface to 50 km

(Stordal et al., 1985) are scaled by observed total ozone

columns from Dutsch (1974). Cloud base for both the prede-

fined clouds is at 1 km above the ground. The first predefined

cloud is 3 km deep, with a water content of 0.7 g cm−3 and a

mean droplet radius of 10 µm. The second predefined cloud

is 1 km deep, with water content of only 0.3 g cm−3 and a

mean droplet radius of 10 µm. The J-values are calculated

using the recommendations for absorption cross sections and

quantum yields from DeMore et al. (1997). The introduction

of different chemical mechanisms into the model with new

species and photochemical reactions would, in principle, re-

quire the recalculation of these databases. As a temporary

approach (prior to recalculation of the photolysis databases),

we selected the existing photolysis process in the photolysis

database which most closely matched the zenith angle de-

pendence of the “new” photolysis process and derived fac-

tors to scale the rates. For example, the photolysis of NO2

provided an excellent description of the photolysis rate of

the newly added species, HONO. This is described further in

Hayman et al. (2012).

7.4 Sulphate production

The parameterization outlined below is previously described

in Jonson et al. (2000) and Simpson et al. (2003a), with the

only major change being the introduction of explicit pH cal-

culations. In the model SO2 is oxidized to sulphate both in

the gas phase and in the aqueous phase. We always assume

equilibrium between gas and aqueous phase. It should be

noted that in case the clouds occupy only a fraction of the

grid volume, the total concentration (gas + aqueous) of sol-

uble components are assumed to be uniformly distributed

in the grid volume. If the cloud evaporates, ions formed in

the cloud (e.g. sulphate) are simply assigned to the airborne

phase.

For both gas and aqueous phase reactions we scale the re-

action rates, rather than the concentrations, by the solubility

and cloud volume fractions. In the present calculations we

have assumed a constant value cloud liquid water content of

0.6 g m−3 (inside the clouds).

As of model version rv3.9, [H+] and pH in cloud water is

estimated from the acid-base balance, including buffering by

bicarbonate (through CO2):

[H+]=2[SO2
4−] + 2[SO2

3−] + [HSO−
3 ] + [NO−

3 ]

+[HCO−
3 ]−[NH+

4 ]
This calculation is performed iteratively because the solubil-

ity or/and dissociation of SO2 and NH3 (and CO2) depend

on pH. (Prior to this version a constant pH of 4.3 was as-

sumed). The effect of sea-salt and dust on the cloud pH is

not taken into account. Although this could easily be imple-

mented in the model code, large uncertainties are associated

with especially the calculations of dust. In any case, studies

over continents (and especially industrial/agricultural areas)
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Table 5. Chemical schemes available to the EMEP MSC-W model

Mechanism Species Reactions Photochemical Emitted VOCs Ref.

Reactions (No. Biogenic)

CRI v2 465 1202 185 116 (3) Jenkin et al. (2008)

CRI v2 R5 195 569 96 3 (3) Watson et al. (2008)

CBM-IV 38 95 13 10 (1) Gery et al. (1989)

CB-05 70 189 27 16 (2) Yarwood et al. (2005)

OSRM 70 197 25 15 (1) Hayman et al. (2010)

EMEP-EmChem03a 69 135 10 (1) Simpson et al. (2003a),

Andersson-Sköld and Simpson

(1999)

EMEP-EmChem09a 72 137 26 10 (1) This work

EMEP-EmChem09soa b b 26 11 (2) Bergström et al. (2012)c

a We give here the number of species and reactions for the default EMEP chemistry where only isoprene is included for BVOCs. Some tracer species are

also excluded. An α-pinene chemistry is available for organic aerosol studies (Andersson-Sköld and Simpson, 2001; Simpson et al., 2007b), b the current
SOA scheme also includes a large number of tracers that are not strictly necessary. Numbers of species in operational scheme should be known in February
2012. c The main SOA formulation is discussed in Bergström et al. (2012), but for this work the simplified ‘NPAS’ scheme which assumes non-volatile
emissions is used, see Sect. 7.7.

Table 6. Characteristics of the aerosol classes used in the EMEP

scheme. Table gives mass median diameter (Dp), geometric stan-

dard deviations (σg), densities (ρp), and enhancement factor (FN),

see Sect. 8.9.

Dp σg ρp FN Speciesa

µm kg m−3

0.33 1.8 1600 3 fine-mode nitrate, ammonium

0.33 1.8 1600 1 other fine-mode particles, eg sulphates, EC, OAb

3.0 2.0 2200 1 coarse nitrate

4.0 2.0 2200 1 coarse sea-salt

4.5 2.2 2600 1 coarse dust, sand

a The same classes are used with all schemes listed in Table 5;
b for semi-volatile compounds associated with organic aerosol (OA), these characteristics
are applied to the particle fraction only.

show that over land cloud-water is dominated by sulphate

and nitrate ions and ammonium and hydrogen cations (Alek-

sic et al., 2009; Aneja and Kim, 1993; Li and Aneja, 1992).

The results suggested that the cloud water acidity may be

coming predominantly from sulphate aerosol and less from

nitric acid. Therefore we have chosen to omit sea salt and

dust from the pH calculations.

Nitrate and sulphate aerosols and HNO3 are assumed to

be completely dissolved. In the parameterization of aqueous

phase chemistry we assume that Henry’s law is fulfilled:

[C(aq)] = HcPc (33)

where [C(aq)] is the concentration of any soluble gas C (mol

l−1) in the aqueous phase, Hc its Henry’s law coefficient and

Pc the partial pressure of C in the gas phase. In the aqueous

phase many soluble gases undergo rapid reversible reactions

such as acid-base equilibrium reactions. For these gases it

is convenient to define an efficient Henry’s law coefficient

where the total amount of dissolved gases is taken into ac-

count. For example, the total amount of dissolved sulphur in

solution (S(IV)) is equal to

[S(IV)(aq)] = [SO2(aq)] + [HSO−
3(aq)] + [SO2−

3(aq)] (34)

The total dissolved S(IV) can be related to the partial pres-

sure of SO2 over the solution (PSO2 ) by

[S(IV)(aq)] = HSO2PSO2

(
1 + K1

[H+] + K1K2

[H+]2

)
(35)

where HSO2 is the Henry’s law coefficient for SO2 and K1

and K2 are the first and second ionisation constants for sul-

phurous acid.

We define the effective Henry’s law coefficient for SO2 as:

H ∗ = [S(IV)(aq)]/PSO2 (36)

and make use of the ideal gas law (Pc = [C(g)] ·RT , where

[C(g)] is gas phase concentration of C, R is the universal gas

constant and T is temperature) in order to find an expression

for the total concentration [CT] (gas + aqueous-phase) in a

cloud volume:

[CT] = [C(g)]/α + [C(aq)]

= [C(aq)]
(

1 + 1
H ∗RT α

)
(37)

where α is the volume fraction of cloud water. Both [CT] and

[C(g)] are in units M (mol l−1). The fraction of the total (gas +

aqueous) mass remaining in the interstitial cloud air (fg) and
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the fraction absorbed by the droplets (faq) can be calculated

as:

faq = 1 − fg = [C(aq)]
[CT] = 1

1 + (H ∗RT α)−1
(38)

In the model we use the local cloud fraction, defined in the

meteorological input fields, as an approximate value for the

fractional cloud volume. With the parameterisation above,

SO2 is oxidized both in the cloud free parts of the grid box

and in the interstitial cloud air.

7.4.1 Gas phase

In the gas phase SO2 is oxidized by a chain of reactions ini-

tiated by the reaction with OH:

SO2 + OH −→ ......H2SO4 (+HO2)

with a reaction rate of 2.0×10−12 cm3 molecule−1 s−1. Since

some of the SO2 in a grid square is dissolved in clouds, we

define a pseudo reaction rate to allow for this. Using faq as

defined above, then for a fractional cloud volume W , the frac-

tion of SO2 in the gas-phase is given by:

Fg = 1 − faqW (39)

The pseudo-rate coefficient for model reaction OH + SO2

→ SO4 + HO2 then becomes kcl−OH = 2.0 × 10−12Fg (Ta-

ble S11).

7.4.2 Aqueous phase

Although a number of oxidants may contribute in the oxi-

dation, only O3, H2O2 and O2 catalyzed by metal ions are

considered here. The rate of production for sulphate in solu-

tion is expressed as:

d[SO2−
4 ]/dt = kcl1[H2O2][SO2] (40)

+(kcl2[H+][O3] + kcl3)([SO2] + [HSO−
3 ])

where the reaction rate for the oxidation by O3 is kcl2 =
1.8 × 104[H+]−0.4 mol−1l (Möller, 1980) and the reaction

rate for the oxidation by H2O2 is kcl1 = 8.3 × 105 mol−1l

(Martin and Damschen, 1981). For the oxidation by O2 cat-

alyzed by metal ions we assume a reaction rate of kcl3=

3.3 × 10−10 s−1.

As for the gas phase production of sulphate, we define

pseudo reaction rates, taking into account the solubility of

SO2, H2O2 and O3 and the fractional cloud volume. The

pseudo reaction rates then becomes:

k′
cl1 = kcl1Ŵ

HSO2

H ∗
SO2

fSO2fHW (41)

k′
cl2 = kcl2ŴfSO2fO3W (42)

k′
cl3 = kcl3fSO2W (43)

for the for oxidation by H2O2, O3 and O2, respectively. fH,

fSO2 and fO3 are the fractional solubilities of H2O2, SO2

and O3 and Ŵ is a conversion factor converting k′
cl1 and k′

cl2

to molecules−1 s−1 cm3. HSO2 is the Henry’s law constant

for SO2 and H∗
SO2

is the effective Henry’s law constant for

S(IV).

7.5 Nitrate formation

An important source of aerosol nitrate in the troposphere

(and also of NOx loss) is the reaction of N2O5 on deliques-

cent aerosols, producing two HNO3 molecules:

N2O5(g) + H2O(l) −→ 2HNO3(aq)

HNO3 formed in the reaction above is initially assumed to

evaporate and will take part in the formation of ammonium

nitrate (Sect. 7.6) or coarse nitrate through reaction ‘IN-19’

(Supplement, Table S11). Mentel et al. (1999) showed that

the uptake rate of N2O5 is around one magnitude lower for

nitrate aerosols compared to sulphate aerosols, and this was

the basis for the parameterisation of Riemer et al. (2003).

More recent measurements in both the laboratory and ambi-

ent samples have shown very different values, however, with

some studies revealing very low rates, and with very differ-

ent dependencies, for example on the sulphate/organic ratio

(e.g. Brown et al., 2009, 2006; Bertram et al., 2009; Bertram

and Thornton, 2009; Riemer et al., 2009; Chang et al., 2011).

Tests with updated schemes have so far not improved the per-

formance of the model for particulate nitrate, and this aspect

of the chemistry is probably one of the most uncertain. This

reaction is applied whenever RH exceeds 40 %, and follow-

ing Riemer et al. (2003) the rate we then use is:

kN2O5 = 1

4
cN2O5 S αN2O5 (44)

where cN2O5 is the mean molecular speed for N2O5 and S is

here the available aerosol surface area, and αN2O5 is the reac-

tion probability, which is weighted according to the compo-

sition of the aerosol:

αN2O5 = f α1 + (1 − f ) α2 (45)

with α1 = 0.02, α2 = 0.002, and

f =
m

SO2−
4

m
SO2−

4
+ mNO−

3

(46)
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where m
SO2−

4
, mNO−

3
are the aerosol mass concentrations of

the secondary inorganic aerosols sulphate and nitrate. (Ide-

ally we would use just fine nitrate here, but given the dif-

ficulties associated with such partitioning, we use the more

robust sum of fine+coarse nitrate.)

The aerosol surface area, S, is calculated from secondary

inorganic aerosol mass, mSIA = m
SO2−

4
+mNO−

3
+m

NH2+
4

, as-

suming an aerosol density of ρaer to get volume V , then as-

suming a log normal size distribution, we get (e.g. Seinfeld

and Pandis, 1998):

S = 3

rn
g

e− 5
2 (lnσg)

2
V (47)

where rn
g is the geometric number mean radius (assumed

to be 0.068 µm), and σg = 1.8. The above formulations ig-

nore two terms: (i) the effects of OM and other fine PM on

aerosol surface area, which would increase the surface area

and hence the rate (ii) inhibiting effect of OM on the stick-

ing coefficient, which would reduce the rate (Riemer et al.,

2009). Both terms are very uncertain, but opposite in sign.

For ρaer we assume a specific aerosol density of 2 g cm−3

near 40 % RH, appropriate for dry aerosol. At higher rela-

tive humidity, the salts undergo deliquescence, water con-

tent increases, and the density decreases towards values near

1 g cm−3. The particles grow by absorbing water and hence

the surface available to heterogeneous reactions increases. To

account in a simple way for the increased surface area, we

apply

ρaer = 2.5−1.25RH
100 , RH > 40 (48)

where RH is given in %.

7.6 Gas/aerosol partitioning

As of version rv3.9, the EMEP model uses the MARS equi-

librium module of Binkowski and Shankar (1995) to calcu-

late the partitioning between gas and fine-mode aerosol phase

in the system of SO2+
4 -HNO3-NO−

3 -NH3-NH+
4 . MARS has

now replaced another code, EQSAM (Metzger et al., 2002;

Metzger, 2000), which we have used previously. The MARS

module also calculates the mass of aerosol water, see

Sect. 11.4.

It should be noted that MARS does not treat sodium chlo-

ride and dust components, which is a weakness where sea-

salt (near coasts) and dust are important. Further, calculated

PM water is expected to be underpredicted over seas and

coast areas, where sea salt contributes considerably to PM.

The effect of not accounting for mineral components is, how-

ever, anticipated to be smaller due to their smaller solubility

compared to sea salt. It should be recognised that there are

also significant uncertainties with other approaches, but in

future we will likely replace MARS with a more comprehen-

sive module. (See also Sect. 12.)

7.7 Organic aerosol, SOA modelling

As of 2011, a so-called volatility basis set (VBS) approach

(Robinson et al., 2007; Donahue et al., 2009) for secondary

organic aerosol (SOA) has been added to the available de-

faults of the EMEP chemical code. The new EmChem09soa

scheme uses a variant of the VBS approach which is a some-

what simplified version of the mechanisms discussed in de-

tail in Bergström et al. (2012).

The main differences to the schemes in Bergström et al.

(2012) is that in EmChem09soa all primary organic aerosol

(POA) emissions are treated as nonvolatile, to keep emission

totals of both PM and VOC components the same as in the

official emission inventories, while the semi-volatile ASOA

and BSOA species are assumed to oxidise (age) in the at-

mosphere by OH-reactions, leading to decreased volatilities

for the SOA, and thereby increased partitioning to the parti-

cle phase. We denote this version of the EMEP VBS schemes

the “NPAS” scheme (no partitioning of POA, aging of SOA).

This assumption of non-volatility for POA is a simplification,

but we believe a valid one for our purposes. This is discussed

further in Sect. 12.

The OH-reaction rate for SOA-aging in this NPAS scheme

is set to 4.0×10−12 cm3 molecule−1 s−1 (as suggested by

Lane et al. 2008) and each reaction leads to an order of mag-

nitude decrease in volatility and a small increase in mass

(+7.5 %) to account for oxygen-addition. This procedure is

similar to that used for other EMEP VBS schemes; for fur-

ther details see Bergström et al. (2012).

7.8 Numerical solution of chemical scheme

The chemical equations are solved using the TWOSTEP al-

gorithm tested by Verwer et al. (1996) and Verwer and Simp-

son (1995). Technical details are discussed in the Supple-

ment, Sect. S2.3.

8 Dry deposition

8.1 Resistance formulation

The dry deposition flux (F i
g) of a gas i to the ground surface

is modelled using the so-called deposition velocity, V i
g (z),

such that:

F i
g = −V i

g (z) χ i(z) (49)

This equation is assumed to be true throughout the so-

called constant flux layer. In the model we assume that the

concentration and deposition velocity calculated at the centre

of the lowest grid cell (typically 45 m), a height we refer to

below as the reference height zref, is within this layer. V i
g (z)

is calculated using a resistance approach:

V i
g (z) = 1

Ra(z) + Ri
b + Ri

c

(50)
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where Ra is the aerodynamic resistance between the height z

and the top of the vegetation canopy (formally, d +z0, where

d is the displacement height and z0 the roughness length),

Ri
b is the quasi-laminar layer resistance to gas i, and Ri

c is

the surface (canopy) resistance.

Over grid-cells which are 100 % sea we simply use the

NWP model’s meteorological parameters (and z0) to cal-

culate the resistances of Eq. (50). Where grid-cells contain

other land-classes, we implement a so-called mosaic ap-

proach, whereby the the grid-average deposition rate is given

by:

Ṽ i
g (z) =

∑
N
k=1fk V i

g,k(z) (51)

where Q̃ symbolises the grid-square average of any quantity

Q, fk is the fraction of land-cover type k in the grid-square,

and V i
g,k is the deposition velocity for this land-cover type,

calculated with Eq. (50) using sub-grid (mosaic) values for

each resistance term.

In order to make this sub-grid estimation, we are implic-

itly assuming that the height zref can be treated as a so-called

blending height (e.g. Mason, 1988; Claussen, 1995; Salzen

et al., 1996), a height at which the concentrations and meteo-

rological variables are representative of the properties of the

full grid square, and not of the local underlying landcover. A

further assumption is that the effects of the surface roughness

layer can be ignored. Studies have shown that this approxi-

mation is probably fine for most purposes, but may impact

the estimates of some metrics (AOT40, PODY, see Sect. 11)

(Tuovinen and Simpson, 2008).

8.2 Aerodynamic resistance, Ra

The first steps in the derivation of sub-grid Ra are to derive a

grid-square average Obukhov length, L̃, as in Eq. (8).

The 3-D model meteorology includes wind-speed VH(zref)

for the centre of the lowest grid level, at around 45 m. We as-

sume that this height is within or near the top of the surface

layer, and proceed to calculate turbulence parameters based

upon the local values of z0 and d . These are simply derived

from the height, h, of the vegetation for each land-cover type

(Table 3). For forests we use d = 0.78h, z0 = 0.07h, follow-

ing Jarvis et al. (1976), but with the restriction that z0 ≤ 1 m.

This restriction was found necessary when comparing mod-

elled friction velocity (u∗) with data from the Carbo-Europe

network (Papale et al., 2006). For other vegetation, we use

d = 0.7h, z0 = 0.1h. Over water, we use the Charnock rela-

tion with z0 = mu2
∗/g, setting the constant m to be 0.0144

(Garratt, 1992). A minimum value of z0 = 1.5 × 10−5 m is

enforced, following Berge (1990). From the local d and z0,

we then estimate a new u∗ based upon our reference height

wind, VH(zref):

u∗ = VH(zref) k

ln
(

zref−d
z0

)
− 9m

(
zref−d

L

)
+ 9m

(
z0
L

) (52)

where 9m is the standard integral function of the similarity

profile of momentum (Garratt, 1992). Having calculated u∗
in this way, a local estimate of L can be found by substi-

tuting u∗ in Eq. (8). The aerodynamic resistance for heat or

scalars between any two levels z1 and z2 is calculated with

the standard Ra(z) formula, the same as used in Eq. (50).

8.3 Quasi-laminar layer resistance, Ri
b

The quasi-laminar layer resistance is calculated with

Ri
b = 2

ku∗

(
Sci

Pr

)2/3

(53)

where Sci , the Schmidt number is equal to the ν/Di , with ν

being the kinetic viscosity of air (0.15 cm2 s−1 at 20 ◦C) and

Di is the molecular diffusivity of gas i, and Pr is the Prandtl

number (0.72). Over sea areas the expression of Hicks and

Liss (1976) is used:

Ri
b = 1

k u∗
· ln

(
z0

Di

ku∗

)
(54)

8.4 Surface resistance, Rc

Surface (or canopy) resistance is the most complex variable

in the deposition model, as it depends heavily on surface

characteristics and the chemical characteristics of the de-

positing gas. Our approach makes use of bulk canopy resis-

tances and conductances (R and G terms, where Gi = 1/Ri

for any gas i), and of unit-leaf-area (one-sided, projected)

resistances and conductances, which we denote with lower-

case letters (r , g). The general formula for bulk canopy con-

ductances, Gc, is:

Gc = LAI gsto + Gns (55)

where LAI is the one-sided (projected) leaf-area index (m2

m−2), gsto is the stomatal conductance, and Gns is the bulk

non-stomatal conductance. For non-vegetative surfaces only

the last term is relevant.

The formulation for stomatal and non-stomatal conduc-

tances for most gases and conditions are dealt with in

Sects. 8.5–8.6. Two special cases are (a) HNO3 and (b) NH3

over crops:

(a) Rc, HNO3

In normal conditions the surface resistance to HNO3 is effec-

tively zero. A minimum value of Rc of 10 sm−1 is enforced

for numerical reasons, so for HNO3 the whole canopy resis-

tance is then simply given by:

RHNO3
c = max(10.0,R

HNO3
low ) (56)

where R
HNO3
low accounts for observations of HNO3 deposition

over snow, and is set simply to R
HNO3
low = −2 TS, with Ts be-

ing the surface (2 m) temperature in ◦C. These values loosely

match those found by Johansson and Granat (1986) for tem-

peratures of down to −18 ◦C.
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(b) Rc, NH3, crops

During the growing season for crop land-covers, the surface

resistance is set very large, ensuring zero deposition. This

procedure is designed to account for the fact that many crop-

lands are actually emitters of NH3, rather than sinks (e.g. Sut-

ton et al., 2000; Fowler et al., 2009, and references therein).

8.5 Stomatal conductance, gsto

Stomatal conductance is calculated with a multiplicative

model, a development of that described in Emberson et al.

(2000a):

gsto = gmax fphen flight max{fmin,fT fD fSW} (57)

where gmax is the maximum stomatal conductance, and

fx are factors (within 0–1) accounting for time of year

(leaf phenology), the minimum observed stomatal conduc-

tance (min), light (actually PAR), temperature (T ), vapour-

pressure deficit (D), and soil-water (SW). It should be noted

that the canopy scale stomatal conductance (LAI gsto in

Eq. 55) is a non-linear function of LAI, since flight and

hence gsto are non-linear functions of LAI, see Supplement,

Sect. S7.2.

The main new feature of the EMEP model with regard to

this procedure is that soil water effects are now included by

default. In Emberson et al. (2000a), fSW was based upon

soil-water-potential (SWP). SWP is a very non-linear func-

tion of soil water content, varying with soil texture and ho-

mogeneity, and in practice can only be accurately estimated

with in situ measurements. For these reasons fSW was sim-

ply set to 1 in most previous EMEP model runs, i.e. stomatal

uptake was not assumed to be limited by soil water avail-

ability (e.g. Simpson et al., 2007a). A number of techniques

are being investigated with regard to soil water calculations

(Büker et al., 2011), but as of version rv3.9 the EMEP code

makes use of the simple SMI index (Sect. 3.3) to calculate

fSW. Rather than attempting to calculate absolute values of

SWP, we use a simple procedure designed to capture the

main effects of dry periods on gsto:

fSW = 1 , for SMI ≥ 0.5 (58)

fSW = 2 SMI , for SMI < 0.5

For deposition modelling we use the SMI values appropriate

for deeper soil layers; for ECMWF inputs this is the top 1 m

soil layer.

The methodology for gsto was developed and tested

within a dry deposition framework for ozone, now referred

to as the DO3SE (Deposition of Ozone and Stomatal Ex-

change) model (Emberson et al., 2000a,b, 2001, 2007; Kling-

berg et al., 2008; Simpson et al., 2001, 2003b; Tuovinen

et al., 2001, 2004). Stomatal conductance calculated for any

other gas i is simply scaled from that for ozone using the ra-

tio of the diffusivities in air of ozone and gas i. Table S18

in the Supplement gives the diffusivities (although expressed

relative to water) used in the EMEP model.

Further details of the equations and current parameter val-

ues underlying the stomatal conductance algorithm are given

in the Supplement, Sect. S7.2.

8.6 Non-stomatal resistances

Gns is calculated specifically for O3, SO2, and NH3. Values

for other gases are obtained by interpolation of the O3 and

SO2 values (Sect. 8.8).

The ground-surface resistance, Ri
gs, for a specific gas is

an important component of the total non-stomatal resistance.

Base-values of Rgs (denoted R̂gs) for O3 or SO2 are given in

Table S19. Similar to Zhang et al. (2003), these are modified

for low temperature and snow cover with:

1

Rx
gs

= 1 − 2fsnow

FTR̂x
gs

+ 2fsnow

Rx
snow

(59)

where x represents either O3 or SO2, fsnow reflects the snow

coverage, and FT is a low-temperature correction factor – see

Sect. 8.7.1 for both terms.

8.6.1 Ozone, G
O3
ns

Our formulation of the non-stomatal conductance for ozone

builds upon the framework of Emberson et al. (2000a), which

has been been extensively evaluated in a number of studies

(Emberson et al., 2000a; Tuovinen et al., 2001, 2004):

GO3
ns = SAI

rext
+ 1

Rinc + R
O3
gs

(60)

where SAI is a surface area index (m2 m−2), rext is the ex-

ternal leaf-resistance (cuticles+other surfaces) per m2 PLA,

Rinc is the in-canopy resistance, and Rgs is the ground sur-

face resistance (soil or other ground cover, e.g. moss). The

external resistance rext is set to 2500 FT sm−1, where FT

is a low-temperature correction factor (see Sect. 8.7.1). Fol-

lowing Erisman et al. (1994), the in-canopy resistance, Rinc,

is defined as b SAI h/u∗, where h is the canopy height and

b = 14 s−1 is an empirical constant.

SAI is simply set to LAI+1 for forests, or equal to LAI for

non-crop vegetation. For crops a substantial part of the leaf

area can be senescent. A simplified version of the methodol-

ogy of Tuovinen et al. (2004), based upon the life-cycle of

wheat, is applied:

SAI = 5
3.5 LAI for: dSGS < dN < dSGS + LS

= LAI + 1.5 for: dSGS + LS < dN < dEGS

(61)

where dN is the day number, and dSGS, dEGS, and LS

are as defined in Sect. 5. Outside the growing season,

SAI = LAI = 0.
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8.6.2 Ammonia, G
NH3
ns

For vegetated surfaces, the non-stomatal resistance Rns for

NH3 is assumed to depend upon surface (2 m) temperature,

Ts (◦C), humidity levels, RH (%), and on the molar “acidity

ratio”:

aSN = [SO2]/[NH3] (62)

This acidity ratio is a first attempt to account for the ob-

served changes in resistance in areas with different pollution

climates (Erisman et al., 2001; Fowler and Erisman, 2003).

More advanced treatments are possible, but the spread in val-

ues from different parameterisations is substantial (Massad

et al., 2010).

The parameterisation of Smith et al. (2000) has been mod-

ified in order to take into account the effects of aSN, based

upon an approach suggested by Smith et al. (2003). The re-

sulting scheme can be expressed as:

R
NH3
ns = β F1(T2,RH) F2(aSN)

(for T2 > 0)

100 (−5 < T2 ≤ 0)

500 (T2 ≤ −5)

F1 = 10 log10(T2 + 2)e
100−RH

7

F2 = 10(−1.1099 aSN+1.6769)

where β is a normalising factor (1/22 = 0.0455). The F1 term

is identical to that of Smith et al. (2000) and provides a rela-

tionship of Rns with temperature and relative humidity. The

second function, F2, is an equation derived from observa-

tions presented in Nemitz et al. (2001), and relates the value

at 95 % relative humidity and 10 ◦C to the molar ratio of

SO2/NH3. The two terms are equal for molar SO2/NH3 ra-

tio 0.3. The factor β is introduced in order to normalize one

equation to the other, i.e. to ensure that the combined param-

eterisation is equal to the two separate terms for 95 % relative

humidity, 10 ◦C and molar ratio 0.3.

For above-zero temperatures R
NH3
ns is constrained to lie be-

tween 10 and 200 s m−1. Finally, we do not distinguish wet

or dry surfaces in this formulation (they are included in the

RH dependency used above).

8.7 Sulphur dioxide, G
SO2
ns

The canopy conductance of SO2 is strongly controlled by

wetness and NH3 levels, as well as deposition of other acidic

gases (HNO3 and HCl), adsorption of CO2, aerosol dry de-

position, the composition of rain during precipitation events,

ion leaching from the plants and processes such as dew fall

and guttation (e.g. Flechard et al., 1999; Fowler et al., 2001,

2009; Burkhardt et al., 2009).

In order to develop a simple parametrisation for G
SO2
ns ,

which nevertheless captured the main processes, Fagerli et al.

(2012) used long-term simultaneous measurements of NH3

and SO2 exchange, made within the EU LIFE Deposition

Monitoring Project (Erisman et al., 2001), to derive opera-

tional parameterisations of co-deposition effects.

The parameterisation developed links the non-stomatal

canopy uptake resistance of SO2 (R
SO2
ns ) to the mean molar

SO2/NH3 ratio in air over the last 24 h, a24h
SN :

R
SO2
ns = 11.84 × e(1.1×a24h

SN ) × f −1.67
RH

(T2 > 0)

100 (−5 < T2 ≤ 0)

500 (T2 ≤ −5)

For above-zero temperatures R
SO2
ns is constrained to lie be-

tween 10 and 1000 sm−1. a24h
SN is constrained to be maximum

3, which corresponds to R
SO2
ns = 400 sm−1 for RH of about

85 %. For non-vegetative surfaces, R
SO2
ns is simply set to the

base-values, R̂gs, shown in the Supplement, Table S19.

8.7.1 Snow and low-temperature corrections

At temperatures below −1 ◦C, non-stomatal resistances are

increased using a factor FT as in Zhang et al. (2003):

FT = e−0.2 (1+Ts) (63)

with the constraint 1 ≤ FT ≤ 2.

Resistances for SO2 over snow covered surfaces depend

on the temperature. For instance, Granat and Johansson

(1983) found that SO2 dry deposition velocities were smaller

than 0.1 cm s−1 at temperatures below −1 ◦C, but higher at

warmer temperatures due to the presence of liquid water at

the snow surface. Rsnow for SO2 (in sm−1) are here loosely

based on Erisman et al. (1994) and Zhang et al. (2003):

RSO2
snow = 70 Ts ≥ +1◦C (64)

= 70 × (2 − T2) −1 ≥ Ts < 1◦C

= 700 Ts < −1◦C

For ozone, we simply set R
O3
snow = 2000 sm−1.

The term fsnow in Eq. (59) is an estimate of the fractional

cover of snow, derived from the NWP model’s snow depth

(Sd) and an assumed maximum value Sd,max at which the

snow fraction for canopy leaves is assumed to be 1. We use a

similar methodology to that proposed by Zhang et al. (2003):

fsnow = Sd

Sd,max
(65)

with the constraint 0 ≤ fsnow ≤ 1.

Zhang et al. (2003) presented tabulated values of Sd,max,

but we simply assume that Sd,max = 0.1 h, where h is the
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height of the vegetation. If some fraction of the grid is cov-

ered with ice, we assume that fsnow is the maximum value of

the snow or ice fractions.

8.8 Extension to other gases

For all gases other than HNO3 or NH3 we obtain Gns by in-

terpolating between the values for O3 and SO2. This interpo-

lation borrows the solubility index, here denoted H∗, and the

reactivity index, f0, from the Wesely (1989) methodology,

but these are applied directly now to total non-stomatal con-

ductance rather than to individual resistances (Table S18). As

there is so little data available on non-stomatal resistances,

even for O3 and SO2, this simpler scaling seems acceptable.

With these indices, the dry and wet conductance values for a

gas i are obtained from the values for ozone and SO2 using:

Gi
ns = 10−5H i

∗ GSO2
ns + f i

0 GO3
ns (66)

8.9 Aerosol dry deposition

Although a range of theory-based models is available to de-

scribe aerosol deposition, they often predict features which

conflict with measured deposition rates (Pryor et al., 2008b,a;

Petroff et al., 2008a; Flechard et al., 2011). For example,

methods based on the well-known formulations of Slinn

(1982) predict low deposition velocities to forest canopies.

Alternative formulae of Zhang et al. (2001) predict higher

deposition velocities, but no effect of canopy density. Sev-

eral studies show that ammonium-nitrate has higher deposi-

tion velocities than sulphates, as a result of the partitioning

of NH4NO3 to the more rapidly depositing HNO3 and NH3

gases (e.g. Fowler et al., 2009; Wolff et al., 2010). Petroff

et al. (2008a,b) have presented an extensive discussion of the

issues surrounding chemically-inert particles, and presented

calculations where deposition is affected by both particle

size and canopy leaf area index. Loosely based upon these

reviews, and results from various experimental studies, we

have implemented a new but deliberately simple scheme for

particles in low vegetation and forests in the EMEP model.

The basic formulation follows the same pattern as many stud-

ies (Wesely et al., 1985; Lamaud et al., 1994; Gallagher et al.,

1997; Nemitz et al., 2004), but modified by an enhancement

factor, FN, for nitrogen compounds:

Vds

u∗
= a1 ,L ≥ 0 (67)

= a1 FN

[
1 + (

−a2
L

)2/3
]

,L < 0 (68)

where Vds is the surface deposition velocity (Petroff et al.,

2008a), and FN = 3 for fine-nitrate and ammonium, and 1 for

all other compounds (Table 6). Further, we restrict applica-

tion of the equation to 1/L > −0.04 m−1. For all landcover

categories except forests we use use a1 = 0.002 from Wesely

et al. (1985), and set a2 to 300 m, the simplified stability cor-

rection suggested by Gallagher et al. (1997).

For forests, we implement a simple dependence on surface

area index:

a1 = 0.008
SAI

10
(69)

with a2 again set to 300 m, and the additional restriction that

a1 ≥ 0.002.

These values are loosely based upon the results of an anal-

ysis of measurements, and sets of complex calculations pre-

sented in Petroff et al. (2008a,b). Petroff et al. (2008b) calcu-

lated that a forest with total LAI of 22 would have a sur-

face deposition velocity of ca. 0.002–0.004 ms−1 at u∗ =
0.45 ms−1 for particles in the accumulation size range (see

Fig. 15, Petroff et al. 2008b). Our 0.008 u∗ gives 0.004 ms−1

for this same friction velocity. They also showed that a de-

crease in LAI of a factor of 2 would reduce Vds by a fac-

tor 1.5–2. Further, Petroff et al. (2008b)’s calculations sug-

gested that Vds is approximately proportional to LAI for

Dp ∼ 0.5 µm. For the EMEP model we make use of our sur-

face area index, SAI, which accounts for non-leafy surfaces,

and which is simply derived as SAI = LAI + 1 for forests.

Petroff started with a total LAI of 22, which is ca. LAI = 10

(1-sided), or SAI = 11. Simplifying, we therefore scale with

SAI/10. (The use of SAI rather than LAI also prevent winter-

time deposition in deciduous forests going to zero). Finally,

we enforce a minimum Vds of 0.002 u∗, consistent with We-

sely as SAI → 0.

As pointed out by Venkatram and Pleim (1999), the resis-

tance analogy is not appropriate for particles. We have there-

fore implemented the mass-conservative equation:

Vd(z) = vs

1 − e−r(z)vs
(70)

where vs is settling velocity, Vd(z) is the deposition velocity

at height z, and r(z) is the sum of the aerodynamic resistance

and inverse Vds.

As summarized in Sect. 6, the EMEP model distinguishes

five classes of fine and coarse particles, which are presently

assigned mass-median diameters, geometric standard devia-

tions (σg), and densities (ρp).

Although the dry-deposition rates of fine (accumulation-

mode) particles are not size-dependent in the model, the over-

all dry deposition rate of larger particles is affected by vs,

which is strongly size-dependent. To account for this, the vs

calculations are integrated over the aerosol sizes, assuming

a log-normal particle size distribution. These polydisperse

settling velocities of coarse particles are calculated, using

Eqs. (A25–A32) from Binkowski and Shankar (1995).

This revised scheme (and the changes in assumed aerosol

size), which we here denote the EMEP-12 particle deposi-

tion scheme, gives significantly different rates to those used

previously, with higher rates for fine particles (especially for

the nitrogen components), and lower rates for coarse nitrate

(since the assumed particle size is smaller). In order to illus-

trate the net effect, and place these results in the context of
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a previous comparison, we have rerun the setup of Flechard

et al. (2011), but adding the new EMEP-12 particle deposi-

tion scheme. In Flechard et al. (2011), four different deposi-

tion modules (including EMEP-03) were applied for 55 Eu-

ropean sites covering four land-cover categories: Forest (F),

Seminatural (SNL), grassland (G) and crops (C). This study

also made the general assumption that 19% of nitrate is in

the coarse mode at all sites. The sites were part of the EU Ni-

troEurope study, monitoring monthly concentrations of the

key reactive nitrogen (Nr) species, with the intention to esti-

mate dry-deposition using inferential techniques (Tang et al.,

2009).

Figure 6 compares the estimated deposition rates for par-

ticulate nitrate from the 2003 and 2012 versions of the EMEP

scheme, and three other models, CBED, CDRY and IDEM

models (for references and descriptions of these other mod-

els, see Flechard et al. 2011). The EMEP-03 and EMEP-12

results are surprisingly similar for all land-cover categories

except crops, where EMEP-12 gives higher rates. This sim-

ilarity is partly coincidental, however, representing the bal-

ance between increased deposition rates for fine particles,

and reduced rates for coarse particles. For example, over

grassland the estimated Vg for fine-nitrate increased by a fac-

tor of 5 on average (from 0.28 mms−1 for EMEP-03 to 1.4

mms−1 for EMEP-12), but Vg for coarse nitrate decreased by

a factor of six (from 7.2 to 1.2 mms−1). The larger change

for crops seen in Fig. 6 reflects the more complicated changes

in Rb (with different equations used inside and outside the

growing season) used in the EMEP-03 scheme. The changes

from EMEP-03 to EMEP-12 are thus significant, but as also

seen in Fig. 6, differences between all methods are very large.

As noted in Flechard et al. (2011), this is unfortunate, but

currently the experimental difficulties are too large to allow

a reliable choice of scheme (e.g Fowler et al., 2009; Pryor

et al., 2008b,a). The new EMEP particle deposition scheme

has at least the advantages of simplicity of formulation, and

results are broadly consistent with recent but more complex

schemes, and recent flux measurements (Fowler et al., 2009;

Petroff et al., 2008a,b; Wolff et al., 2010).

9 Wet deposition

Parameterisation of the wet deposition processes in the

EMEP model includes both in-cloud and sub-cloud scav-

enging of gases and particles. The parameterization of the

wet deposition is previously described in Berge and Jakob-

sen (1998).

9.1 In-cloud scavenging

The in-cloud scavenging Sin of a soluble component of mix-

ing ratio χ is given by the expression:

Sin = −χ
Win P

hs ρw
(71)
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Fig. 6. Comparison of modelled deposition rates for particulate ni-

trate from the 2003 and 2012 versions of the EMEP model, and from

the CBED, CDRY and IDEM models, evaluated over 55 European

sites covering four land-cover categories: Forest (F), Seminatural

(SNL), grassland (G) and crops (C). The setup is the same as that

presented in Flechard et al. (2011), except that here we added the

EMEP rv4 (EMEP-12) results for comparison.

where Win is the in-cloud scavenging ratio given in the Sup-

plement, Table S20, P (kg m−2 s−1) is the precipitation rate,

hs is the characteristic scavenging depth (assumed to be

1000 m) and ρw is the water density (1000 kg m−3). We do

not account for the effect that dissolved material may be re-

leased if clouds or rain water evaporate.

9.2 Below-cloud scavenging

For below cloud scavenging a distinction is made between

scavenging of particulate matter and gas phase components.

The sub-cloud scavenging of the gases is calculated as:

S
gas
sub = −χ

Wsub P

hs ρw
(72)

where Wsub is the sub-cloud scavenging ratio given in the

Supplement, Table S20.

Wet deposition rates for particles are calculated, based on

Scott (1979), as:

Saer
sub = −χ

A P

Vdr
Ē (73)

where Vdr is the the raindrop fall speed (Vdr = 5 m s−1),

A = 5.2 m3 kg−1 s−1 is the empirical coefficient (a Marshall-

Palmer size distribution is assumed for rain drops), and Ē is

the size-dependent collection efficiency of aerosols by the

raindrops (Table S20). The collection efficiency is size de-

pendent, with a minimum for fine particles (see Laakso et al.,

2003; Henzing et al., 2006).
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10 Initial and boundary conditions

Initial concentrations of major long-lived species are re-

quired in order to initialise model runs. Boundary conditions

along the sides of the model domain and at the top of the

domain are then required as the model is running. Addition-

ally, we often need to specify concentrations of some species

which are not explicitly included in the chemistry of inter-

est, but that enter into reactions with some of the reacting

chemical compounds (“background” species). We refer here

to all of these types of data as initial and boundary conditions

(IBCs). Two main methods of specifying boundary condi-

tions are currently available:

1. Provision of 3-D fields for whole domain from previ-

ous runs of the same or another version of the EMEP

model (self-assimilation), or from other models, typi-

cally global chemical transport models (CTMs).

2. Simple functions are used to prescribe concentrations

in terms of latitude and time-of-year, or time-of-day.

For ozone, 3-D fields for the whole domain are spec-

ified from climatological ozone-sonde data-sets, modi-

fied monthly against clean-air surface observations.

Method (1) allows great flexibility. A pre-processing pro-

gram interpolates the data field of interest to the desired hor-

izontal resolution (e.g. 50 km × 50 km), and to the 20 verti-

cal levels in the EMEP model. The frequency of the update

of the boundary conditions can be chosen freely, as long as

the boundary condition field is provided for the same time

period. Examples of this kind of approach can be found in

Vieno et al. (2010), where the European scale model was

used to provide IBCs for a 5 km scale model over the UK.

Method (2) is used for those species where rather sim-

ple descriptions of boundary condition are sufficient. Despite

its simplicity, this method has the advantage that the IBCs

are based upon measurements, ensuring a robustness which

global CTM model results sometimes lack. For policy runs,

the EMEP model is usually run using this methodology, and

it is this method we document here.

10.1 Ozone

Ozone is the gas for which the specification of accurate

boundary conditions is most essential to a good model per-

formance. This is due to the fact that ambient ozone levels

in Europe are typically not much greater than the North-

ern hemispheric background ozone. Boundary conditions of

ozone are developed from a two-step procedure. First, the

climatological O3 data of Logan (1998) is used, which pro-

vides gridded O3 data with resolution 4◦ latitude by 5◦ longi-

tude for 13 pressure levels. These data are interpolated to the

EMEP grid system to provide a monthly base-set for ozone

IBCs.

These monthly data are then adjusted using a so-called

“Mace-Head” adjustment. Mace Head is a site on the west

coast of Ireland, ideally suited as a background site for mid-

latitude air masses. It was shown by Derwent et al. (1998),

using trajectory analysis and other techniques, that the clean-

air concentrations of O3 (and CO) at Mace Head were basi-

cally uniform in a wide sector for air masses arriving from

Iceland to Barbados – in other words, it confirmed the view

of a general well-mixed background air mass.

For the EMEP model we have made use of an extended

version of this analysis. Ozone concentrations from Mace

Head have been sorted using sector-analysis, obtained using

trajectories obtained from http://www.emep.int1. Monthly

mean values of the ozone associated with easterly sectors

(sectors 6–8) have been calculated. Where fewer than 15 days

were available to make an average for a particular year, aver-

ages from a full 10-yr analysis were substituted for the miss-

ing days.

In order to generate an adjustment factor, the monthly val-

ues of observed O3 derived using this procedure, denoted

OMH
3 , are compared with the average surface concentrations

from the global datasets in the south-west quadrant of the

EMEP domain, denoted OGD
3 . (Thus, if the coordinates of

Mace Head are denoted xM, yM, OGD
3 is the average con-

centration from model domain x = 1..xM, y = 1..yM). If the

difference between the two datasets obtained in this way is 1

(=OMH
3 -OGD

3 , in ppb), we simply add 1 to the ozone bound-

ary conditions over the whole domain. Since the concentra-

tions of ozone are generally increasing with height in the

model domain (from say 40 ppb to several hundred ppb), then

the effect of this constant 1 term is greatest for the surface

layer and quite small at say 5–10 km height.

Although simple, this procedure ensures that the BCs used

for ozone are realistic in the mid-latitude region near ground

level, at least near the Western boundary. Although based en-

tirely upon one station, this correction has been found to re-

sult in good BCs for almost all sites on the west coast of

Europe, ranging from Norway to Spain.

For other species where prescribed values are needed, sim-

ple functions have been chosen, designed to enable concen-

tration values that correspond to observations. The concen-

trations are adjusted in the vertical and for latitude and time

of the year (monthly fields) to match the observed distribu-

tions. Table S21 lists the parameters used, as described be-

low.

We first calculate the seasonal changes in ground-level BC

concentration, χ0, through:

χ0 = χmean + 1χ cos

(
2π

dmm − dmax

ny

)
(74)

where χmean is the annual mean near-surface concentration,

1χ the amplitude of the cycle, ny is the number of days per

year, dmm is the day number of mid-month (assumed to be

1 Prior to 1996, sectors from another Irish site, Valentia, had to

be used. However, results calculated after 1996 show almost identi-

cal sector-results, regardless of the choice of Mace Head or Valentia
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the 15th), and dmax is day number at which χ0 maximises.

Changes in the vertical are specified with a scale-height, Hz:

χIBC(z) = χ0 exp(−z/Hz) (75)

where χIBC(h) is the concentration used for IBCs at height z.

For simplicity we set z to be the height of the centre of each

model layer assuming a standard atmosphere. Values of χIBC

are constrained to be greater or equal to the minimum values,

χv
min, given in Table S21. For some species a latitude factor,

given in Table S22, is also applied. Values of χi adjusted

in this manner are constrained to be greater or equal to the

minimum values, χh
min, given in Table S21.

Finally, for two species, we simply specify constant mix-

ing ratios over the whole model domain, valid for 1990 (see

Sect. 10.2 for other years). These are 1780 ppb for methane

and 600 ppb for hydrogen.

10.2 Trends in initial and boundary conditions

The BC values discussed above are assumed appropriate for

the year 1990. For other years these values are adjusted us-

ing trend factors. Such adjustments can be made with results

of e.g. global CTMs (including EMEP model runs). Lacking

other information we use the default trend factors as sum-

marised in the Supplement, Table S23.

11 Outputs

The EMEP model produces a large number of outputs for a

variety of purposes. Most are straightforward, for example

maps of annual wet deposition of oxidised or reduced nitro-

gen. However, some outputs display special features or are

provided for specific purposes. For example, one of the main

reasons for running the EMEP model is to generate results

for use in integrated assessment modelling (IAM), and for

studies on the risks and damages caused by pollution, and

a number of model outputs are designed with this in mind.

Here we briefly describe some of the most important outputs.

11.1 Near-surface concentrations

The basic calculations of the EMEP CTM produce concen-

trations for model layers. The lowest layer is about 90 m

deep, so concentrations from this layer may be interpreted

as being applicable for 45 m above ground level (or stricter,

above displacement height d). In order to estimate concen-

trations at heights more typical of measurements, typically

around 3 m for EMEP observations, or at canopy top for

some ozone-flux or AOT40 estimates, we make use of as-

sumption that the vertical deposition flux density (F i
g , Eq. 49)

remains approximately constant within the atmospheric sur-

face layer (e.g. Tuovinen, 2000). Referring to the model con-

centrations of species i at reference height zref of 45 m as

χ i(zref), we readily obtain the concentrations at any other

height within the surface layer from Eq. (49):

χ i(z) = χ i(zref)
V i

g (zref)

V i
g (z)

(76)

with appropriate calculations of the deposition velocity resis-

tance terms as discussed in Sect. 8.

11.2 Ecosystem-specific depositions

As discussed in Sect. 8, the model’s calculations of dry de-

position are made separately for each sub-grid landcover. For

provision to IAM or the effects community, these sub-grid es-

timates are aggregated to provide output deposition estimates

for broader ecosystem categories, as shown in Table 7

A possible output would be deposition to water, but for

IAM purposes the deposition of interest here is to the catch-

ment area, rather than to the water surface. Thus, deposition

estimates for waters are usually simply taken from the grid-

average depositions.

11.3 Ozone statistics

A number of statistics are typically used to describe the dis-
tribution of ozone within each grid square, and for input to
IAM assessments:

Mean of Daily Max. Ozone. – First we evaluate the maximum

modelled concentration for each day, then we take either 6-monthly

(1 April–30 September) or annual averages of these values.

SOMO35. – The Sum of Ozone Means Over 35 ppb is the indicator

for health impact assessment recommended by WHO. It is defined

as the yearly sum of the daily maximum of 8-h running average

over 35 ppb. For each day the maximum of the running 8-h average

for O3 is selected and the values over 35 ppb are summed over the

whole year.

If we let Ad
8 denote the maximum 8-hourly average ozone (in ppb)

on day d , during a year with Ny days (Ny = 365 or 366), then

SOMO35 can be defined as:

SOMO35 =
∑d=Ny

d=1 max
(
Ad

8 − 35,0
)

where the max function evaluates max(A−B,0) to A−B for A >

B, or zero if A ≤ B, ensuring that only Ad
8 values exceeding 35 ppb

are included. The corresponding unit is ppb days.

PODY . – (Formerly AFstY) – Phyto-toxic ozone dose, is the accu-

mulated stomatal ozone flux over a threshold Y , i.e.:

PODY =
∫

max(Fst − Y,0) dt (77)

where stomatal flux Fst (discussed below), and threshold, Y , are in

nmole O3 m−2 (PLA) s−1 and POD itself has units mmole O3 m−2

(PLA) s−1. This integral is evaluated over time, from the start of the

growing season (SGS), to the end (EGS).
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AOT40. – is the accumulated amount of ozone over the threshold

value of 40 ppb, i.e.

AOT40 =
∫

max(O3 − 40 ppb,0.0)dt

where the max function ensures that only ozone values exceeding

40 ppb are included. The integral is taken over time, namely the

relevant growing season for the vegetation concerned. The corre-

sponding unit are ppb hours (abbreviated to ppb h). The usage and

definitions of AOT40 have changed over the years though, and also

differ between UNECE and the EU. LRTAP (2009) give the latest

definitions for UNECE work, and describes carefully how AOT40

values are best estimated for local conditions (using information on

real growing seasons for example), and specific types of vegetation.

Further, since O3 concentrations can have strong vertical gradients,

it is important to specify the height of the O3 concentrations used.

Although the EMEP model now generates a number of related out-

puts, the following definitions are usually most relevant:

AOT40uc
f

. – AOT40 calculated for forests using estimates of O3

at forest-top (uc: upper-canopy). This AOT40 is that defined for

forests by LRTAP (2009), but using a default growing season of

April–September.

AOT40uc
c . – AOT40 calculated for agricultural crops using esti-

mates of O3 at the top of the crop. This AOT40 is close to that

defined for agricultural crops by LRTAP (2009), but using a default

growing season of May–July, and a default crop-height of 1 m.

AOT40G
f

, AOT40G
c . – as above, but using the simple grid-average

concentrations from the model’s 3 m level.

The first two “canopy-top” definitions are in accordance with the

recommendations of LRTAP (2009), and the two “grid” values are

for comparison to AOT40 maps derived from observations.

In all cases only daylight hours are included, and for practical rea-

sons we define daylight for the model outputs as the time when the

solar zenith angle is equal to or less than 89◦. (The proper UNECE

definition uses clear-sky global radiation exceeding 50 W m−2 to

define daylight). The EU definitions of AOT40 use day hours from

08:00–20:00.

For the development of the 1999 “Gothenburg” Protocol

(http://www.unece.org/env/lrtap/), the metric used for assess-

ing the risk to vegetation was AOT40. However, new critical

levels based on PODY have now been agreed (Mills et al.,

2011b, and references therein). For provision of data to sup-

port the use of these new approaches to IAM, a simplified

approach to mapping ozone fluxes was defined by LRTAP

(2009), in which one generic crop species was defined, and

two generic forest species. The “IAM” species in Tables 3

and Table S16 correspond to these, although the phenology

functions are somewhat simplified compared to the latest

(2010) Mapping Manual update. In the model inputs, a tiny

fraction of IAM CR, IAM DF and IAM MF are added to

each grid square where any vegetation is present, so we can

calculate fluxes even in grids where the landuse data suggest

no such species are present, providing a more comprehensive

and easier to interpret spatial indication of risk.

This simplified approach for IAM was adopted because it

was recognised that our knowledge of many critical inputs

Table 7. Ecosystems provided in deposition outputs, and associated

EMEP landcover categories (see Table 3).

Output ecosystem EMEP landcovers

label (3c)

Conif CF, NF

Decid DF, BF

Seminat GR, SNL, MS

Crops TC, RC, MC

(e.g. growing seasons and phenology, conductance parame-

ters, elevation effects, soil water parameters, etc.) is too un-

certain to allow accurate mapping of the real ozone flux to

specific species. On the other hand the spatial distribution of

fluxes is so different to that of AOT40 (Simpson et al., 2007a)

that calculation of fluxes to a generic species was seen as an

improvement upon the continued use of AOT40. It was also

recognised that the IAM process (which balances health and

vegetation impacts from many pollutants, against costs of

emissions measures) could not take into account many differ-

ent types of vegetation, and that only a few flux-maps could

be included in the IAM optimisation work.

Although there are obvious similarities in the methods

used to model upper-canopy stomatal fluxes (Fst) for the cal-

culation of PODY , and modelling of full-canopy fluxes for

deposition purposes, these calculations have important dif-

ferences. The Fst values required for PODY represent max-

imum uptake to a small portion of the canopy, not net up-

take to the whole canopy. These Fst calculations are there-

fore performed as a parallel exercise to the deposition mod-

elling, being performed from within the EMEP model’s de-

position routines, but having no feedback to the canopy-

scale deposition calculations required for the model’s atmo-

spheric chemistry calculations. The flight term (see Supple-

ment, Sect. A6.2) is based upon I sun

PAR
, and soil-water limita-

tions usually ignored (i.e. fSW = 1). Further discussion of

these type of calculations is given in Simpson et al. (2007a)

and Tuovinen et al. (2009).

For these generic “IAM” species, the suffix gen can be

applied, e.g. PODY,gen is used for forests. (POD was intro-

duced in 2009 as an easier and more descriptive term for the

accumulated ozone flux than the former AFst term. The def-

initions of AFst and POD are identical however.)

11.4 PM-water

PM10 and PM2.5 mass determined with a gravimetric method

is likely to include particle-bound water, which does not get

completely removed (or condenses on the particles) under fil-

ters conditioning at temperature 20 ◦C and relative humidity

50 %. To make comparison of calculated PM10 and PM2.5

concentrations with gravimetric measurements more consis-

tent, the model accounts for particle water within the PM

mass. The water content in PM2.5 and PM10 is calculated

Atmos. Chem. Phys., 12, 7825–7865, 2012 www.atmos-chem-phys.net/12/7825/2012/
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with the MARS equilibrium model (Binkowski and Shankar,

1995) for the conditions required for filters equilibration, i.e.

temperature 20 ◦C and relative humidity 50 %. As only fine

SIA aerosols (i.e. SO2−
4 , NO−

3 and NH+
4 ) are included in the

MARS model, the calculated water describes water in PM2.5.

The calculated mass of water is added to both dry PM2.5 and

PM10 masses when being compared with measured concen-

trations. Note that the components of sea salt aerosol is not

included in the MARS model, leading to some underestima-

tion of particle water.

The calculated aerosol water content depends on the mass

of soluble PM fraction and on the type of salt mixture in par-

ticles. Accounting for particle water in calculated PM2.5 and

PM10 has been shown to improve the general correspondence

between model results and observations. However, there are

caveats to the model esimates of particle-bound water as no

proper verification of the calculated water content with mea-

surements is presently available. Further details as well as

results and initial evaluation of model calculation of particle

water can be found in Tsyro (2005).

12 Discussion and some future challenges

As noted in the Introduction, the intention of this paper has

been to document the EMEP MSC-W model version rv4,

and for reasons of space this has not allowed much discus-

sion of the background for model choices. One motivation

for this focus on documentation is of course the importance

of the EMEP model for European air pollution policy formu-

lations. Another motivation is that the model is being widely

used, applied in research projects and/or model intercompar-

ison excercises, but so far only sparse and incomplete docu-

mentation has been available for the recent model versions.

Indeed, the model has taken part in a large number of

inter-comparisons in recent years: Cuvelier et al. (2007); van

Loon et al. (2007); Fiore et al. (2009); Huijnen et al. (2010);

Jonson et al. (2010a); Colette et al. (2011, 2012); Langner

et al. (2012), among others. In terms of performance, the

EMEP model has ranked well in these studies, with consis-

tently good performance for different pollutants (ozone, PM,

etc.). In terms of complexity the EMEP model is fairly simi-

lar to other regional-scale European CTMs, such as MATCH

(Robertson et al., 1999), CHIMERE (Bessagnet et al., 2004),

or DEHM (Christensen, 1997; Frohn et al., 2001). All of

these models have some flexibility with regard to chemical

schemes, and have zooming-capabilities.

Given the complexity of any CTM, it is hard to limit a dis-

cussion of where the main limitations in a model are, and

indeed it is difficult to know if the main source of uncer-

tainty in models lies in their meteorological drivers, physical

descriptions, chemical and/or aerosol schemes, or loss pro-

cesses. The reliability of inputs such as emissions is a major

cause of uncertainty. Here we address just a few areas where

improvements are desired in the next few years, and where

some work is ongoing. To limit the scope, we focus on par-

ticulate matter, which is probably the biggest challenge for

both CTM models and policy development.

(i) Aerosol size-distributions

The standard EMEP model described here uses essentially

two size-modes for particles, although our definitions of

particle-size depend a little on the compound. This is a great

simplification, which can be justified for current needs by

the fact that the present version of model is mainly designed

to calculate PM10 and PM2.5 mass closure (i.e. concentra-

tions and chemical composition), which over the last decade

has been the highest priority within the EMEP/LRTAP Con-

vention framework. A pragmatic defence of this procedure

is that in most comparisons with measurements (e.g. Fagerli

and Aas, 2008; Simpson et al., 2006b, or EMEP status re-

ports over many years) the EMEP model has been shown to

perform quite well against measured PM mass. Problems are

clearly apparent in some studies, for example in capturing

hourly variations in Nr components measured in reactive ni-

trogen components close to agricultural areas (e.g. Aas et al.,

2012), but it is unclear how far this problem can be related

to size-distribution, and how much is due to other (so far un-

solved) problems with model resolution or equilibrium dy-

namics (e.g. Aan de Brugh et al., 2012).

Still, the need for a more detailed description of the aerosol

size-distribution is clearly apparent, on grounds of scientific

realism (to capture the effects of for example in-cloud acti-

vation of particular size-fractions), an increasing need to link

to climate issues (e.g. Liu et al., 2012), and also in terms of

human health effects, where size distributions are also impli-

cated. The challenge here is mainly to find an optimal bal-

ance between the number of bins/modes, in order to increase

realism but preventing excessive CPU-increases.

(ii) Gas/aerosol equilibria (inorganic)

As noted in Sect. 7.6, the MARS module we use for

gas/aerosol partitioning of inorganic compounds into fine-

mode aerosol cannot account for sea-salt and dust compo-

nents, and we use a very simplified treatment of nitrate for-

mation on coarse aerosol. In future we will likely replace

MARS with a more comprehensive module (e.g. Fountoukis

and Nenes, 2007), and likely use a kinetic (rather than equi-

librium) approach for coarse nitrate formation, with explicit

reactions of for example HNO3 with NaCl or dust. We have

indeed been exploring such reactions, but this is ongoing

work. Apart from the difficulty of predicting such compo-

nents, there are also large gaps in our scientific understanding

of nitrate composition – there are hardly any measurements

of coarse-mode nitrate to compare against for example.

www.atmos-chem-phys.net/12/7825/2012/ Atmos. Chem. Phys., 12, 7825–7865, 2012
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(iii) Organic aerosol

For organic aerosol (OA), there are a large number of prob-

lems with all model formulations, something which in-

evitably follows from the complexity of OA itself, and our

lack of understanding of the underlying science (e.g. Hal-

lquist et al., 2009; Ng et al., 2010). Many of these issues

(e.g. large uncertainties in emission inventories from both an-

thropogenic and biogenic sources, or in vapour pressure as-

sumptions) have been discussed in relation to earlier EMEP

modelling studies (Simpson et al., 2007b; Bergström et al.,

2012), but here we briefly discuss an uncertainty arising from

the use of the simplified ‘NPAS’ VBS scheme in the standard

model. The NPAS scheme assumes that POA emissions can

be treated as non-volatile, instead of treating them (and re-

lated emissions of SVOC and IVOC: semi- and intermediate-

volatilty gases) as components of varying volatility (as in,

e.g Robinson et al., 2007). In high-emission areas this NPAS

scheme should lead to higher OA compared to a model that

allows evaporation of some of the initially emitted POA. On

the other hand, VBS schemes often postulate emissions of

SVOC & IVOC which are supposed to be unaccounted for

in the official emission inventories (e.g. Shrivastava et al.,

2008). This is likely more realistic, and provides a larger pool

of VOC compounds from which partitioning to aerosol can

occur, but it is also a large source of uncertainty.

There are two main reasons why we choose to use non-

volatile POA emissions in the “standard” EMEP model code

(that used for policy-associated runs): (1) The volatility dis-

tribution of POA and associated SVOC and IVOC com-

pounds is poorly known; the amount of SVOC + IVOC emis-

sions is probably substantial, but so far we have only a very

limited number of (American) studies with which to esti-

mate this contribution (e.g. Shrivastava et al., 2008); (2) offi-

cial European emission inventories used for policy modelling

consist of PM compounds which are assumed to be inert,

as well as VOC emissions. No consideration of volatility is

made in either the PM or VOC inventories. For policy mod-

elling it is necessary to keep these POA and VOC emission

totals the same as in the official emission inventories.

In order to assess the sensitivity of the model to this as-

sumption, we have used the schemes presented by Bergström

et al. 2012 to compare model versions with and without this

inert POA assumption. The results, illustrated in Supplement

Fig. S2, show that total yearly average OA concentrations

(in PM2.5) over most of the European land-area are 10–20 %

lower when we use inert POA emissions (NPAS scheme)

than if we use volatility-based emissions and aging of the

emitted semi- and intermediate volatility OC emissions – an

effect of the extra SVOC+IVOC assumed in the PAA VBS

scheme which generates more OA because of aging pro-

cesses. For some high-emission areas the inert assumption

leads to much higher yearly average OA than the volatility

based approach. The biggest effects are found over Paris,

where we obtain more than 40 % higher fine OA with the

inert POA model.

The volatility question is thus important, but one of many

uncertainties with regard to OA modelling. There is clearly

an urgent need for new measurement and inventory data on

emissions and volatility distributions in Europe though, if we

are to take account of these properly in future research or

policy-related modelling.

(iv) Dispersion/resolution issues

The final major challenge we will mention is that of model

resolution, especially in the vertical. The EMEP model cur-

rently has a lowest layer of about 90 m deep, so gener-

ates concentration data which is appropriate for about 45 m.

This is clearly a simplification, especially in wintertime for

those pollutants that have major ground-level sources. Wood-

burning emissions are a clear example of this, and their im-

portance for wintertime OA concentrations has been stressed

in many studies (see Simpson et al., 2007b; Bergström et al.,

2012, and references cited therein), but there is no easy solu-

tion. Simply reducing the thickness of the lowest model layer

is also unrealistic, since this quickly leads to an imbalance in

the horizontal and vertical scales. It is not realistic for ex-

ample to disperse the emissions from a point source through

50 km × 50 km in the horizontal, but only 10 m in the verti-

cal.

Another major problem for this situation is that modelling

of the stable boundary layers found in wintertime is noto-

riously difficult, and there is generally very little data with

which to evaluate the vertical dispersion estimated by mod-

els. Work is also ongoing to find the best compromise in

terms of grid resolution and model physics.

13 Conclusions

The Meteorological Synthesizing Centre – West (MSC-W)

of EMEP has been performing model calculations in sup-

port of UNECE for more than 30 years. The EMEP MSC-W

chemical transport model is still one of the key models used

in policy support in Europe. It is central to UN-ECE work,

with a mandate to provide scientific support to the devel-

opment of air pollution reduction Protocols, and is the sole

provider of source-receptor matrices to the IIASA GAINS

model (which is central to EU policy work), and is used in

many EU projects alongside other chemical transport mod-

els.

The MSC-W models have been increasing in complexity

and capabilities over this time-period, and today the MSC-W

model is used to simulate photo-oxidants and both inorganic

and organic aerosols, on scales ranging from national studies

at ca. 5 km resolution to global scale.

The last full documentation of the EMEP MSC-W model

is almost ten years old (Simpson et al., 2003a), referring
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to version rv1.7 (or EMEP-03 for simplicity). The model

has changed in numerous ways (both large and small) since

this document was written. These changes include revised

methods for calculating mixing heights and eddy diffusion

coefficients (for stable and neutral conditions), new tem-

poral variation factors (based upon degree-days) for the

SNAP2 (mainly residential combustion) emission category,

and changed summer/winter ratios for the SNAP-1 (power

station) category, a complete revision of the spatial mapping

for BVOC emissions (plus an update of the emission fac-

tors), addition of soil NO procedures for both global mod-

elling and finer-scale European modelling, addition of sea-

salt, dust, forest-fires and secondary organic aerosols (SOA)

to the standard model. The model has become very flexible,

and can now be run with several meteorological drivers, and

has the ability to run in nested mode (allowing zooming). A

chemical pre-processor has allowed a number of other chem-

ical schemes to be implemented, ranging in complexity from

less than a hundred to more than a thousand reactions (the

CRI v2 scheme). For sulphur and nitrogen compounds the

dry-deposition equations have changed substantially since

EMEP-03 (e.g. for the non-stomatal conductance, treatment

of humidity, snow, etc.). The aerosol dry deposition scheme

is completely new. The MARS equilibrium solver has re-

placed the earlier EQSAM code, and water associated with

PM is now calculated with the same MARS model as used

for gas/aerosol partitioning calculations.

Smaller changes include revisions in the equations con-

cerning the stomatal deposition pathway, and in parameter

values for land-cover characteristics, the vertical distribution

of emissions, collection efficiencies of fine particles, and the

VOC speciation. New sources of aircraft emissions and ship-

ping emissions are being used.

In this paper, we have documented the current state of the

model, version rv4. The model is continually evolving, but

we hope that the rv4 model version provides a good base

against which future model changes can be compared. The

model code itself is available at www.emep.int, along with

the datasets required to run for a full year over Europe.

Supplementary material related to this article is

available online at: http://www.atmos-chem-phys.net/12/

7825/2012/acp-12-7825-2012-supplement.pdf.
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Harmens, H., and Büker, P.: Evidence of widespread ef-

fects of ozone on crops and (semi-)natural vegetation in Eu-

rope (1990-2006) in relation to AOT40- and flux-based risk

maps, Glob. Change Biol., 17, 592–613, doi:10.1111/j.1365-

2486.2010.02217.x, 2011a.

Mills, G., Pleijel, H., Braun, S., Büker, P., Bermejo, V.,
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