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Abstract

The wireless sensor network community approached net-

working abstractions as an open question, allowing answers

to emerge with time and experience. The Trickle algorithm

has become a basic mechanism used in numerous protocols

and systems. Trickle brings nodes to eventual consistency

quickly and efficiently while remaining remarkably robust

to variations in network density, topology, and dynamics.

Instead of flooding a network with packets, Trickle uses a

“polite gossip” policy to control send rates so each node

hears just enough packets to stay consistent. This sim-

ple mechanism enables Trickle to scale to thousand-fold

changes in network density, reach consistency in seconds,

and require only a few bytes of state yet impose a main-

tenance cost of a few sends an hour. Originally designed

for disseminating new code, experience has shown Trickle

to have much broader applicability, including route main-

tenance and neighbor discovery. This paper provides an

overview of the research challenges wireless sensor net-

works face, describes the Trickle algorithm, and outlines

several ways it is used today.

1 Wireless Sensor Networks

Although embedded sensing applications are extremely di-

verse, ranging from habitat and structural monitoring to ve-

hicle tracking and shooter localization, the software and

hardware architectures used by these systems are surpris-

ingly similar. The typical architecture is embodied by the

mote platforms, such as those shown in Figure 1. A micro-

controller provides processing, program ROM, and data

RAM, as well as analog-to-digital converters for sensor in-

puts, digital interfaces for connecting to other devices, and

control outputs. Additional flash storage holds program im-

ages and data logs. A low power CMOS radio provides a

simple link layer. Support circuitry allows the system to en-

ter a low-power sleep state, wake quickly, and respond to

important events.

Four fundamental constraints shape wireless embedded

system and network design: power supply, limited memory,

the need for unattended operation, and the lossy and tran-

sient behavior of wireless communication. A typical power

Figure 1: EPIC, KMote, and Telos motes. Each has an

8MHz micro-controller, 10kB of RAM, 48kB of program

flash, and a 250kbps radio.

envelope for operating on batteries or harvesting requires a

600µW average power draw, with 1% of the time spent in

a 60mW active state and the remainder spent in a very low

power 6µW passive state.

Maintaining a small memory footprint is a major require-

ment of algorithm design. Memory in low-cost, ultra-low

power devices does not track Moore’s Law. One indica-

tion of this is that micro-controller RAM costs three orders

of magnitude more than PC SRAM and five orders more

than PC DRAM. More importantly, SRAM leakage cur-

rent, which grows with capacity, dictates overall standby

power consumption and, hence, lifetime. Designs that pro-

vide large RAMs in conjunction with 32-bit processors go

to great lengths to manage power. One concrete exam-

ple of such nodes is the Sun SPOT [20], which enters a

low-power sleep state by writing RAM contents to flash.

Restoring memory from flash on wakeup uses substantial

power and takes considerable time. The alternative, taken

in most sensor node designs, is to have just a few kilobytes

of RAM. This, in turn, imposes limits on the storage com-

plexity of network (and other) protocols, requiring routing

tables, buffering, and caches be kept small. The histori-

cal trends of monetary and energy costs suggest these con-

straints are likely to last.
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Wireless sensors are typically embedded in the physical

environment associated with their application. Communi-

cation connectivity varies due to environmental and elec-

tromagnetic factors, with the additional constraint that no

human being will shepherd the device to a better setting,

as with a cell phone or laptop. The degree of the network

at a node, i.e., the number of nodes in its communication

neighborhood, is determined not by the desired network or-

ganization but the physical device placement, which is of-

ten dictated by application requirements and physical con-

straints. There may be thousands of nodes in close prox-

imity, or just a few. A single transmission may be received

by many devices, so any retransmission, response, or even

a simple acknowledgment, may cause huge contention, in-

terference and loss. Redundancy is essential for reliability,

but it also can be a primary cause of loss.

This last point is one of the key observations that has

emerged from a decade of development of networking ab-

stractions for wireless sensor networks: the variety of net-

work topologies and densities across which sensor net-

work protocols must operate calls for a polite, density-

aware, local retransmission scheme. This paper describes

the Trickle algorithm, which uses such a communication

pattern to provide an eventual consistency mechanism to

protocols and services. In the past ten years, a key insight

that has emerged from the wireless sensor network com-

munity is that many protocol problems can be reduced to

maintaining eventual consistency. Correspondingly, Trickle

has emerged as the core networking primitive at the heart

of practical, efficient, and robust implementations of many

sensor network protocols and systems. Before diving into

the details of the Trickle, however, we review how core

sensor networking protocols work and differ from conven-

tional networking protocols, with the goal of exploring how

a Trickle-like primitive satisfies some of their needs.

2 Networking Protocols

Networking issues are at the core of embedded sensor net-

work design because radio communication – listening, re-

ceiving, and transmitting – dominates the active energy bud-

get and defines system lifetime. The standard energy cost

metric for multihop protocols, in either link layer meshing

or network layer routing, is communication cost, defined

as the number of individual radio transmissions and recep-

tions. One protocol is more efficient than another if it can

provide equivalent performance (e.g., throughput, latency,

delivery ratio) at a lower communication cost. Protocols

focus on minimizing transmissions and making sure trans-

mitted packets arrive successfully.

Almost all sensor network systems rely on two multihop

protocols for their basic operation: a collection protocol for

pulling data out of a network and a dissemination protocol

for pushing data into a network through one or more dis-

tinguished nodes or egress routers. Many higher level pro-

tocols build on dissemination and collection. For example,

reprogramming services such as Deluge [9] use dissemina-

tion to deliver commands to change program images. Man-

agement layers [22] and remote source-level debuggers [25]

also use dissemination. Reliable transport protocols, such

as RCRT [18], and rate control protocols such as IFRC [19],

operate on collection trees. Point-to-point routing schemes,

such as S4 [16], establish overlays over multiple parallel

collection topologies.

While collection and dissemination have the opposite

communication patterns (all-to-one vs. one-to-all) and dif-

fer in reliability (unreliable versus reliable), both maintain

eventually consistent shared state between nodes. The rest

of this section provides a high-level overview of these two

protocol classes. It provides details on the challenging prob-

lems they introduce, and how some of them can be solved

through eventual consistency.

2.1 Pushing Data In: Dissemination

One problem sensor network administrators face is dynam-

ically changing how a network collects data by changing

the sampled sensors, the sampling rate, or even the code

running on the nodes by disseminating the change to every

node in a network. We begin with a discussion of dissemi-

nation protocols because they were the original impetus for

Trickle and are its simplest application.

Early systems used packet floods to disseminate changes.

Flooding protocols rebroadcast packets they receive. Flood-

ing is very simple – often just a line or two of code – but

has many problems. First, floods are unreliable. Inevitably,

some nodes do not receive the packet, so users typically re-

peatedly flood until every node receives it. Second, in high

density networks, many nodes end up re-broadcasting pack-

ets at the same time. These messages collide and cause a

form of network collapse called a “broadcast storm” [17].

Second-generation dissemination and network program-

ming systems like Xnp [3] and TinyDB [15] use an adap-

tive flood combined with a protocol to request missing mes-

sages. Adaptive flooding uses an estimate of the node den-

sity to limit the flooding rate. The missing message protocol

allows nodes to request the (hopefully few) missing mes-

sages from their neighbors. Unfortunately, getting such pro-

tocols to work well can be tricky, especially across a range

of network densities and object sizes.

Another way to look at dissemination protocols is that

they ensure that every node has an eventually consistent ver-

sion of some shared state, such as the value of a configura-

tion parameter or command. Data consistency is when all

nodes have the same version of that state, and nodes resolve

inconsistencies by updating neighbors to the newer version.
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Inductively, these definitions cause the network to converge

on the most recent version. To disseminate a command, a

system installs it on one node as a newer version and initi-

ates the consistency protocol.

Casting dissemination as a data consistency problem

means it does not provide full reliability. Eventual con-

sistency only promises to deliver the most recent version

to connected nodes. Disconnected nodes can and often do

miss updates. In practice, however, this limitation is rarely

problematic. An administrator who changes the data report-

ing rate three times then adds some new nodes expects them

to receive the most recent reporting rate, not all three. Sim-

ilarly, when sending commands, users do not expect a new

node to receive the entire history of all commands injected

into a network. A node that is disconnected for several min-

utes will still receive the most recent command when it re-

connects, however.

Dissemination protocols succeed where flooding and its

derivatives fail because they cast the problem of delivering

data into maintaining data consistency among neighbors.

This allows them to provide a very useful form of reliabil-

ity in arbitrary topologies with no a priori topology knowl-

edge or configuration. An effective dissemination protocol,

however, needs to bring nodes up to date quick while send-

ing few packets when every node has the most recent ver-

sion: this is correspondingly a requirement for the underly-

ing consistency mechanism.

2.2 Pulling Data Out: Collection

As the typical sensor network goal is to report observa-

tions on a remote environment, it is not surprising that data

collection is the earliest and most studied class of proto-

col. There are many collection protocol variations, simi-

lar to how there are many versions of TCP. These differ-

ences aside, all commonly used collection protocols pro-

vide unreliable datagram delivery to a collection point using

a minimum-cost routing tree. Following the general goal of

layer 3 protocols, cost is typically measured in terms of ex-

pected transmissions, or ETX [2]: nodes send packets on

the route that requires the fewest transmissions to reach a

collection point.

The earliest collection protocol, Directed Diffusion, pro-

posed dynamically setting up collection trees based on data-

specific node requests [10]. Early experiences with low-

power wireless, however, led many deployments to move

towards a much simpler and less general approach, where

each node decides on a single next hop for all forwarded

data traffic, thereby creating routing trees to fixed collec-

tion points. The network builds this tree by establishing a

routing cost gradient. A collection point has a cost of 0. A

node calculates the cost of each of its candidate next hops

as the cost of that node plus the cost of the link to it. Induc-

0

12

22
22

2423

35
38

15

10

18

20

23

12

10

12

12

14

10

15
18

10
10

Figure 2: Sample collection tree, showing per-link and node

costs. The cost of a node is its next hop’s cost plus the cost

of the link.

tively, a node’s cost is the sum of the costs of the links in its

route. Figure 2 illustrates an example topology.

Collection variations boil down to how they quantify and

calculate link costs, the number of links they maintain, how

they propagate changes in link state amongst nodes, and

how frequently they re-evaluate link costs and switch par-

ents. Early protocols used hop-counts [8] as a link cost met-

ric, similar to MANET protocols such as AODV and DSDV;

second-generation protocols such as MintRoute [24] and

Srcr [2] estimated the transmissions per delivery on a link

using periodic broadcasts; third generation protocols, such

as MultiHopLQI, added physical layer signal quality to

the metric; current generation collection protocols, such as

CTP, unify these approaches, drawing on information from

multiple layers [6].

Most collection layers operate as anycast protocols. A

network can have multiple data collection points, and col-

lection automatically routes to the closest one. As there is

only one destination – any collection point – the required

routing state can be independent of network density and

size. Most protocols use a small, fixed-size table of can-

didate next hops. They also attempt to strike a balance be-

tween route stability and churn to discover new, possibly

better parents by switching parents infrequently and using

damping mechanisms to limit the rate of change.

As collection protocols have improved and become bet-

ter at choosing routes, reducing control traffic has become

an increasingly important component of efficiency. While

nodes can piggyback some control information on data

packets, they need to send link-layer broadcasts to their lo-

cal neighbors to advertise their presence and routing cost.

Choosing how often to send these advertisements intro-

duces a difficult design tension. A slow rate imposes a low

overhead, but limits how quickly the tree can adapt to fail-

ures or link changes, making its data traffic less efficient.

A fast rate imposes a higher overhead, but leads to an agile

tree that can more accurately find the best route to use.

This tension is especially challenging when a network

only collects data in response to events, and so can go
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through periods of high and low data rates. Having a high

control rate during periods of low traffic is highly ineffi-

cient, while having a low control rate during periods of

high traffic makes the tree unable to react quickly enough

to changes. When starting a burst of transmissions, a node

may find that link costs have changed substantially neces-

sitating a change in its route and, as a result, its advertised

routing cost. Changes in costs need to propagate quickly,

or the topology can easily form routing loops. For exam-

ple, if a link’s cost increases significantly, then a node may

choose one if its children as its next hop. Since the protocol

state must be independent of the topology, a node cannot

avoid this by simply enumerating its children (constraining

tree in-degree to a constant leads to inefficient, circuitous

topologies in dense networks).

Current protocols, such as CTP [21] and ArchRock’s

routing layer [1], resolve this tension by reducing the rout-

ing gradient as a data consistency problem. The gradient

is consistent as long as children have a higher cost than

their parent. An inconsistency can arise when costs change

enough to violate this constraint. As long as routing costs

are stable, nodes can assume the gradient is consistent and

avoid exchanging unnecessary packets.

2.3 A General Mechanism

The examples above described how two very different pro-

tocols can both address a design tension by reducing a prob-

lem to maintaining data consistency. Both examples place

the same requirements on a data consistency mechanism:

it needs to resolve inconsistencies quickly, send few pack-

ets when data is consistent, and require very little state. The

Trickle algorithm, discussed in the next section, meets these

three requirements.

3 Trickle

The Trickle algorithm establishes a density-aware local

broadcast with an underlying consistency model that guides

when a node communicates. When a node’s data does not

agree with its neighbors, it communicates quickly to resolve

the inconsistency. When nodes agree, they slow their com-

munication rate exponentially, such that in a stable state

nodes send at most a few packets per hour. Instead of

flooding a network with packets, the algorithm controls the

send rate so each node hears a small trickle of packets, just

enough to stay consistent. Furthermore, by relying only on

local broadcasts, Trickle handles network re-population, is

robust to network transience, loss, and disconnection, and

requires very little state (implementations use 4-11 bytes).

While Trickle was originally designed for reprogram-

ming protocols (where the data is the code of the program

being updated), experience has shown it to be a powerful

τ Communication interval length

t Timer value in range [ τ

2
, τ)

c Communication counter

k Redundancy constant

τl Smallest τ

τh Largest τ

Figure 3: Trickle parameters and variables.

mechanism that can be applied to wide range of protocol

design problems. For example, routing protocols can use

Trickle to ensure that nodes in a given neighborhood have

consistent, loop-free routes. When the topology is con-

sistent, nodes occasionally gossip to check that they still

agree, and when the topology changes they gossip more fre-

quently, until they reach consistency again.

For the purpose of clearly explaining the reasons behind

Trickle’s design, all of the experimental results in this sec-

tion are from simulation, in some cases very high-level ab-

stract simulators. In practice, Trickle’s simplicity means it

works remarkably well in the far more challenging and dif-

ficult real world. The original Trickle paper [13], as well as

Deluge [9] and DIP [14] report experimental results from

real networks.

3.1 Algorithm

Trickle’s basic mechanism is a randomized, suppressive

broadcast. A Trickle has a time interval of length τ and

a redundancy constant k. At the beginning of an interval, a

node sets a timer t in the range of ( τ
2 , τ ]. When this timer

fires, the node decides whether to broadcast a packet con-

taining metadata for detecting inconsistencies. This deci-

sion is based on what packets the node heard in the interval

before t. A Trickle maintains a counter c, which it initial-

izes to 0 at the beginning of each interval. Every time a

node hears a Trickle broadcast that is consistent with its own

state, it increments c. When it reaches time t, the Trickle

broadcasts if c < k. Randomizing t spreads transmission

load over a single-hop neighborhood, as nodes take turns

being the first node to decide whether to transmit. Figure 3

summarizes Trickle’s parameters.

3.2 Scalability

Transmitting only if c < k makes a Trickle density aware,

as it limits the transmission rate over a region of the network

to a factor of k. In practice, the transmission load a node

observes over an interval is O(k · log(d)), where d is the

network density. The base of the logarithm depends on the

packet loss rate PLR: it is log 1

P LR

.

This logarithmic behavior represents the probability that

a single node misses a number of transmissions. For ex-

ample, with a 10% loss rate, there is a 10% chance that a

node will miss a single packet. If a node misses a packet, it
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Figure 4: Trickle’s transmissions per interval scales log-

arithmically with density. The base of the logarithm is a

function of the packet loss rate (the percentages).

will transmit, resulting in two transmissions. There is corre-

spondingly a 1% chance a node will miss two packets from

other nodes, leading to three transmissions. In the extreme

case of a 100% loss rate, each node is by itself: transmis-

sions scale linearly.

Figure 4 shows this scaling. The number of transmis-

sions scales logarithmically with density, and the slope the

line (base of the logarithm) depends on the loss rate. These

results come from a Trickle-specific algorithmic simulator

we implemented to explore the algorithm’s behavior un-

der controlled conditions. Consisting of little more than

an event queue, this simulator allows configuration of all

of Trickle’s parameters, run duration, and the boot time of

nodes. It models a uniform packet loss rate (same for all

links) across a single hop network. Its output is a packet

send count.

3.3 Synchronization

Figure 4’s scaling assumes that all nodes are synchronized,

such that the intervals during which they are awake and lis-

tening to their radios line up perfectly. Inevitably, this kind

of time synchronization imposes a communication, and

therefore energy, overhead. While some networks can pro-

vide time synchronization to Trickle, others cannot. There-

fore, Trickle is designed to work in both the presence and

absence of synchronization.

Trickle chooses t in the range of ( τ
2 , τ ] rather than (0, τ ]

because the latter causes the transmission load in unsyn-

chronized networks to scale with O(
√

d). This undesirable

scaling occurs due to the short listen problem, where some

subset of motes gossip soon after the beginning of their in-

terval. They listen for only a short time, before anyone else

has a chance to speak up. This is not a problem if all of the

intervals are synchronized, since the first gossip will quiet

everyone else. However, if nodes are not synchronized, a

node may start its interval just after another node’s broad-

cast, resulting in missed messages and increased transmis-
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Figure 5: Without a listen-only period, Trickle’s transmis-

sions scale with a square root of the density when intervals

are not synchronized. With a listen-only period of duration
τ
2 , the transmissions per interval asymptotically approach

2k. The black line shows how Trickle scales when intervals

are synchronized. These results are from lossless networks.

sion load.

Unlike loss, where the extra O(log(d)) transmissions

keep the worst case node that missed several packets up

to date, the additional transmissions due to the short listen

problem are completely wasteful. Choosing t in the range

of ( τ
2 , τ ] removes this problem: it defines a “listen-only”

period of the first half of an interval. A listening period im-

proves scalability by enforcing a simple constraint. If send-

ing a message guarantees a silent period of some time T

that is independent of density, then the send rate is bounded

above (independent of the density). When a mote transmits,

it suppresses all other nodes for at least the length of the

listening period. Figure 5 shows how a listen period of τ
2

bounds the total sends in a lossless single-hop network to

be 2k. With loss, transmissions scale as O(2k · log(d)) per

interval, returning scalability to the O(log(d)) goal.

3.4 Controlling τ

A large τ (gossiping interval) leads to a low communication

overhead, but propagates information slowly. Conversely,

a small τ imposes a higher communication overhead, but

propagates data more quickly. These two goals, rapid prop-

agation and low overhead, are fundamentally at odds: the

former requires communication to be frequent, while the

latter requires it to be infrequent.

By dynamically scaling τ , Trickle can quickly make data

consistent with a very small cost. τ has a lower bound, τl,

and an upper bound τh. When τ expires without a node

receiving a new update, τ doubles, up to a maximum of

τh. When a node detects a data inconsistency (e.g., a newer

version number in dissemination, a gradient constraint vio-

lation in collection), it resets τ to be τl.

Essentially, when there’s nothing new to say, motes gos-

sip infrequently: τ is set to τh. However, as soon as a mote
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Event Action

τ Expires Double τ , up to τh. Reset c, pick a new t.

t Expires If c < k, transmit.

Receive consistent data Increment c.

Receive inconsistent data Set τ to τl. Reset c, pick a new t.

t is picked from the range [ τ

2
, τ)

Figure 6: Trickle pseudocode.

hears something new, it gossips more frequently, so those

who haven’t heard the new data receive it quickly. The chat-

ter then dies down, as τ grows from τl to τh.

By adjusting τ in this way, Trickle can get the best of

both worlds: rapid consistency, and low overhead when the

network is consistent. The cost per inconsistency (shrink-

ing τ ), is approximately log( τh

τl

) additional sends. For a

τl of one second and a τh of one hour, this is a cost of

eleven packets to obtain a three-thousand fold decrease in

the time it takes to detect an inconsistency (or, from the

other perspective, a three thousand fold decrease in mainte-

nance overhead). The simple Trickle policy, ”every once in

a while, transmit unless you’ve heard a few other transmis-

sions,” can be used both to inexpensively maintain that the

network is consistent as well as quickly inform nodes when

there is an inconsistency.

Figure 6 shows pseudocode for the complete Trickle al-

gorithm.

3.5 Case Study: Maté

Maté is a lightweight bytecode interpreter for wireless sen-

sornets [11]. Programs are tiny sequences of optimized

bytecodes. The Maté runtime uses Trickle to install new

programs in a network, by making all nodes consistent to

the most recent version of a script.

Maté uses Trickle to periodically broadcast version sum-

maries. In all experiments, code routines fit in a single

packet (30 bytes). The runtime registers routines with a

Trickle propagation service, which then maintains all of

the necessary timers and broadcasts, notifying the runtime

when it installs new code. Maté uses a very simple con-

sistency resolution mechanism. It broadcasts the missing

routines three times: one second, three seconds, and seven

seconds after hearing there is an inconsistency.

Figure 7 shows simulation results of Maté’s behavior

during a reprogramming event. These results come from

the TOSSIM simulator [12], which simulates entire sensor-

net applications and models wireless connectivity at the bit

level. In these experiments, τl is one second and τh is one

minute.

Each simulation had 400 nodes regularly placed in a

square grid with node spacings of 5, 10, 15, and 20 feet.

By varying network density, we were able to examine how

Trickle’s propagation rate scales over different loss rates

(a) 5’ Spacing, 6 hops (b) 10’ Spacing, 16 hops

(c) 15’ Spacing, 32 hops (d) 20’ Spacing, 40 hops

Figure 7: Time to consistency in 20x20 TOSSIM grids (sec-

onds). The hop count values in each legend are the expected

number of transmissions necessary to get from corner to

corner, considering loss.

and physical densities. Density ranged from a five foot

spacing between nodes up to twenty feet (the networks

were 95’x95’ to 380’x380’). Crossing the network in these

topologies takes from six to forty hops. 1 Time to complete

propagation varied from 16 seconds in the densest network

to about 70 seconds for the sparsest, representing a latency

of 2.7 and 1.8 seconds per hop, respectively. The minimum

per-hop Trickle latency is τl

2 and the consistency mecha-

nism broadcasts a routine one second after discovering an

inconsistency, so the best case latency is 1.5 seconds per

hop. Despite an almost complete lack of coordination be-

tween nodes, Trickle still is able to cause them them to co-

operate efficiently.

Figure 8 shows how adjusting τh changes the propaga-

tion time for the five and twenty foot spacings. Increasing

τh from one minute to five does not significantly affect the

propagation time; indeed, in the sparse case, it propagates

faster until roughly the 95th percentile. This result indicates

that there may be little trade-off between the maintenance

overhead of Trickle and its effectiveness in the face of a

propagation event.

A very large τh can increase the time to discover incon-

sistencies to be approximately τh

2 . However, this is only

true when two stable subnets (τ = τh) with different code

reconnect. If new code is introduced, it immediately trig-

1These hop count values come from computing the minimum cost path

across the network loss topology, where each link has a weight of 1

1−loss
,

i.e. the expected number of transmissions to successfully traverse that link.
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TOSSIM. A larger τh does not slow reaching consistency.

gers nodes to reset τ to τl, bringing them quickly to a con-

sistent state.

The Maté implementation of Trickle requires few system

resources. It requires approximately seventy bytes of RAM;

half of this is a message buffer for transmissions, a quarter is

pointers to code routines. Trickle itself requires only eleven

bytes for its counters; the remaining RAM is for internal

coordination (e.g. pending and initialization flags). The ex-

ecutable code is 1.8K (90 lines of code). Other implemen-

tations have similar costs. The algorithm requires few CPU

cycles, and can operate at a very low duty cycle.

3.6 Uses and Improvements

Trickle is not just used by Maté; it and its derivatives

are used in almost every dissemination protocol today.

The Deluge binary dissemination protocol for installing

new sensor node firmware uses Trickle to detect when

nodes have different firmware versions [9] (τl =500ms, τh

=1.1h). The MNP binary dissemination protocol (τl =16s,

τh =512s) adjusts Trickle so that nodes with more neighbors

are more likely to send updates by preventing low degree

nodes from suppressing high degree ones [23]. The Drip

command layer of the Sensornet Management System uses

Trickle (τl =100ms,τh =32s) to install commands [22]. The

Tenet programming architecture uses Trickle (τl =100ms,

τh =32s) to install small dynamic code tasks [7].

In the past few years, as collection protocols have im-

proved in efficiency, they have also begun to use Trickle.

The Collection Tree Protocol (CTP), the standard collec-

tion layer in the TinyOS operating system distribution [21],

uses Trickle timers (τl =64ms, τh =1h) for its routing traffic.

The 6LoWPAN IPv6 routing layer in Arch Rock’s software

uses Trickle to keep IPv6 routing tables and ICMP neigh-

bor lists consistent [1]. As protocols continue to improve,

Trickle’s efficacy and simplicity will cause it to be used in

more protocols and systems.

One limitation with Trickle as described in this paper is

that its maintenance cost grows O(n) with the number of

data items, as nodes must exchange version numbers. This

growth may be a hindering factor as Trickle’s use increases.

Recent work on the DIP protocol addresses this concern by

using a combination of hash trees and randomized searches,

enabling the maintenance cost to remain O(1) while impos-

ing a O(log(n)) discovery cost [14].

4 Discussion

Wireless sensor networks, like other ad hoc networks, do

not know the interconnection topology a priori and are typ-

ically not static. Nodes must discovered it by attempting

to communicate and then observing where communication

succeeds. In addition, the communication medium is ex-

pected to be lossy. Redundancy in such networks is both

friend and foe, but Trickle reinforces the positive aspects

and suppresses the negative ones.

Trickle draws on two major areas of prior research. The

first area is controlled, density-aware flooding algorithms

for wireless and multicast networks [5, 17]. The second

is epidemic and gossiping algorithms for maintaining data

consistency in distributed systems [4]. Although both tech-

niques – broadcasts and epidemics – have assumptions that

make them inappropriate in their pure form to eventual con-

sistency in sensor networks, they are powerful techniques

that Trickle draws from. Trickle’s suppression mechanism

is inspired by the request/repair algorithm used in Scalable

and Reliable Multicast (SRM) [5]. Trickle adapts to lo-

cal network density as controlled floods do, but continually

maintains consistency in a manner similar to epidemic algo-

rithms. Trickle also takes advantage of the broadcast nature

of the wireless channel, employing SRM-like duplicate sup-

pression to conserve precious transmission energy and scale

to dense networks.

Exponential timers are a common protocol mechanism.

Ethernet, for example, uses an exponential backoff to pre-

vent collisions. While Trickle also has an exponential timer,

its use is reversed. Where Ethernet defaults to the smallest

time window and increases it only in the case of collisions,

Trickle defaults to the largest time window and decreases it

only in the case of an inconsistency. This reversal is indica-

tive of the different priorities in ultra-low power networks:

minimizing energy consumption, rather than increasing per-

formance, is typically the more important goal.

In the case of dissemination, Trickle timers spread out

packet responses across nodes while allowing nodes to es-

timate their degree and set their communication interval.

Trickle leads to energy efficient, density-aware dissemina-

tion not only by avoiding collisions through making colli-

sions rare, but also by suppressing unnecessary retransmis-

sions.

Instead of trying to enforce suppression on an abstraction

of a logical group, which can become difficult in multi-hop

networks with dynamically changing connectivity, Trickle
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suppresses in terms of an implicit group: nearby nodes that

hear a broadcast. Correspondingly, Trickle does not impose

the overhead of discovering and maintaining logical groups,

and effortlessly deals with transient and lossy wireless links.

By relying on this implicit naming, the Trickle algorithm

remains very simple: implementations can fit in under 2K

of code, and require a mere 11 bytes of state.

Routing protocols discover other routers, exchange rout-

ing information, issue probes, and establish as well as tear

down links. All of these operations can be rate-controlled

by Trickle. For example, in our experiences exploring how

wireless sensor networks can adopt more of the IPv6 stack

in 6LoWPAN, Trickle provides a way to support established

ICMP-v6 mechanisms for neighbor discovery, duplicate ad-

dress detection, router discovery, and DHCP in wireless net-

works. Each of these involve advertisement and response.

Trickle mechanisms are a natural fit: they avoid loss where

density is large, allow prompt notifications of change and

adapt to low energy consumption when the configuration

stabilizes. By adopting a model of eventual consistency,

nodes can locally settle on a consistent state without requir-

ing any actions from an administrator.

Trickle was initially developed for distributing new pro-

grams into a wireless sensornet: the title of the origi-

nal paper is “Trickle: A Self-Regulating Algorithm for

Code Propagation and Maintenance in Wireless Sensor Net-

works.” [13] Experience has shown it to have much broader

uses. Trickle-based communication, rather than flooding,

has emerged as the central paradigm for the basic multi-

hop network operations of discovering connectivity, data

dissemination, and route maintenance.

Looking forward, we expect that the use of these kind of

techniques to be increasingly common throughout the upper

layers of the wireless network stack. Such progress will not

only make existing protocols more efficient, it will enable

sensor networks to support layers originally thought infea-

sible. Viewing protocols as a continuous process of estab-

lishing and adjusting a consistent view of distributed data is

an attractive way to build robust distributed systems.
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