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Abstract. In the context of minimally cognitive behavior, we used
multi-robotic systems to investigate the emergence of communication
and cooperation during the evolution of recurrent neural networks. The
networks are systematically analyzed to identify their relevant dynami-
cal properties. Evolution efficiently adapts these properties through small
structural changes within the networks when specific environmental con-
ditions are altered, such as the number of interacting robots. The find-
ings signify the importance of reducing the predefined knowledge about
resulting behaviors, dynamical properties of control, and the topology
of neural networks in order to utilize the strength of the Evolutionary
Robotics approach to Artificial Life.

1 Introduction

The dynamical systems approach to cognition [1,2,3] aims at the study of natural
cognitive systems as dynamical systems. While concrete dynamical models of
cognitive phenomena are still under construction, “one powerful way to improve
our intuitions, clarify the key issues and sharpen the debate is through a careful
study of simpler idealized models of minimally cognitive behavior, the simplest
behavior that raises issues of genuine cognitive interest”[4]. We consider minimal
cognition as metabolism-independent sensorimotor behavior [5] and presuppose
that cognitive behavior generally results from perception-action couplings [6].

The Evolutionary Robotics [7,8] approach to Artificial Life [9] aims at the
emergence of such perception-action couplings during the evolution of complete
brain-body-environment systems [4,10].

As artificial brain structures we utilize recurrent neural networks (RNNs)
which can be described as parameterized dynamical systems [11]. We distinguish
two types of parameters. The first type concerns parameters of single neurons
(bias terms), the structural coupling (the topology), and the strength of these
couplings (the synaptic weights). These parameters are shaped by an evolution-
ary algorithm. The second type of parameters are characterized by the sensor
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states of a robot, which are represented by the activation of input neurons. They
dynamically change during the interaction of a robot with the environment.

Here, we will investigate the dynamical properties of evolved RNNs and
their relation to observable collective behavior in groups of robots, especially
by systematically exploring the sensor input activations provoked by robot-
environment interactions. The detailed analysis of communication underlying
dynamical properties of recurrent neural networks and their relation to structural
changes during evolutionary processes distinguishes our work from pioneer stud-
ies on the evolution of emergent communication among artificial agents [12,13]
as well as from more recent studies [14,15]. These studies describe significant
results but they mainly focus on a detailed analysis at the behavioral level of
communicating artificial agents.

In earlier studies we utilized RNNs to coordinate conflicting behaviors in very
large robot groups [16]. There, we manually designed a local communication
system between several robots in order to synchronize individual internal neural
rhythms which determine the behavior of each robot. For the following experi-
ments, we used the same robot platform, but implemented a much simpler task
in order to investigate how communication can emerge as the basis of coopera-
tion by reducing the predefined knowledge assigned to the evolutionary process.
Furthermore, we investigate how evolution shapes certain parameters of behav-
ior underlying dynamical systems and how it adapts these parameters to specific
changes of the environment.

2 The Ingredients for the Emergence of Communication

To keep the analysis of evolved RNNs, concerning the dynamical properties and
their relation to behavior, still tractable, we use a neuron model with only two
parameters, a bias term and a synaptic self-weight [17]. A network consisting of
n units is then defined as a parameterized discrete-time dynamical system:

ai(t + 1) = θi +
n∑

j=1

wij f(aj(t)) , i = 1, . . . , n , (1)

where ai ∈ R denotes the activity of neuron i, wij the synaptic strength of the
connection from neuron j to neuron i, and θi its fixed bias term. The output
oi = f(ai) of a unit i is given by a sigmoid transfer function, here by f :=
tanh (i.e., oi ∈ (−1, 1)). Although this neuron model is rather simple, already
small recurrent networks of this type can generate complex dynamics, such as
periodic, quasi-periodic, or even chaotic attractors [11]. For the evolution of
these dynamical systems we used an implementation (see [18] for details) of the
evolutionary algorithm ENS3 [19]. This algorithm optimizes the parameters
intrinsic to the RNN, such as synaptic weights, bias terms, and the topology of
the network. For evolution and analysis a physical simulation environment was
created. There, we implemented important properties, such as noise of sensors
and motors, in accordance with results of measurements done with the physical
robot.
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Fig. 1. The physical robot Do:Little (left) and three simulation environments of de-
creasing complexity (I → III)

We utilized the Do:Little robot (illustrated in Fig. 1) as an artificial creature.
The advantages of this robot are its simple but very reliable sensor and motor
capabilities. Besides infrared sensors for obstacle detection and floor sensors for
measuring the gray scale of the ground, we especially made use of its robust
communication system. It consists of a stereo microphone which can detect the
direction of sound signals emitted by nearby robots. In every interval of the
robot’s update cycle (100 ms) the robot can produce several sound signals of
the same frequency. Signals are differentiated by a unique sequence of pulses
within one update cycle. The advantage of not coding different signals with
different frequencies is that the robots are able to detect their sound signals
very reliable even in rather noisy environments. Thus only acoustic signal peaks
can be detected but no continuous sound signals. We will see later how this
constraint will influence the evolution of communication behavior if we change
the population size.

Neurons I1, I2, and I3 represent the left, right, and back infrared sensors,
respectively. The sensor inputs are linearly mapped onto [−1, 1], where −1 means
no obstacle detection and +1 indicates very close obstacles. Neuron I4 represents
the floor sensor. The inputs are also linearly mapped onto [−1, 1], where −1
indicates white colored and +1 black colored ground. For communication we
only used one acoustic signal. The angle α of a perceived sound signal to the
heading direction of the robot is represented by o(I5) = 0.5 · (1 + sin(α)) and
o(I6) = 0.5 · (1−sin(α)). The speed of the left and right wheel are calculated by
c ·(o(O1)−o(O2)) and c ·(o(O3)−o(O4)), respectively, where c is a speed factor.
Important for the understanding of the described communication systems is that
the robot emits a single sound signal when o(O5) switches from a negative to a
positive value.

In the following experiments we wanted to know more about the minimal
requirements necessary to provoke the emergence of communication within a
population of robots during the evolution of their control architectures. Hence,
we defined the following simple task: A single robot can increase its fitness by ex-
ploring the environment and finding patches of food while avoiding collisions with
obstacles and other robots. Thereby an individual can benefit from the behavior
of other robots if they cooperate. Such robots, sharing a common environment,
are conspecific because they are identical with respect to their morphology and
control, and the selection process during evolution is group based because the
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mean fitness of all robots in a group is taken1. However, this does not necessarily
mean that only cooperative behavior can be successful or communication will
inevitably emerge. For instance, even solitary behavior can be efficient if each
individual is able to locate food patches reliably without running into obstacles
or other robots.

To overcome the well known bootstrap problem of the evolutionary approach
to the development of behavior [7], we applied a so called semi-restrictive incre-
mental method [18]. Therefor, in the first evolutionary step the task of a single
robot was to explore its environment as good as possible without running into
obstacles. For this task robots were equipped with infrared sensors for avoiding
obstacles. The topology of the neural network was not determined, only input
and output neurons were defined. Structural elements, such as synapses and hid-
den neurons, could freely emerge in between. In the second evolutionary step,
robots could additionally access a floor sensor for detecting black food patches
on the ground. We selected several different RNNs which were successful in solv-
ing the exploration task as a basis for evolving RNNs which are now supposed
to force the robots to stay on a food patch as soon as they find one. During
this second evolutionary process, already existing structural elements were not
allowed to be removed (whereas their parameters could change), but new struc-
tural elements could emerge within the whole network which now also has new
sensor inputs. The same technique was applied for the last step, where robots, in
addition, could access a speaker and a stereo microphone for emitting and sens-
ing sound signals. RNNs resulting from the preceding step provided the basis for
this evolutionary run.

Consequently, after the first evolutionary step we always put a certain prede-
fined knowledge in each subsequent step. However, this was only done to provide
basic behaviors for the evolution of more complex behaviors, for which we never
defined how a network eventually should look like. Therefore, we argue that
the emergence of communication during evolution was neither explicitly forced
by a given network structure nor by the fitness function. Hence, the remaining
constraint was the design of the environment.

At first, we thought that a complex environment, such as Environment I, shown
in Fig. 1, would enforce the emergence of cooperation. In this environment it is
rather complicated for a solitary individual to quickly find the food patch. Once
an individual find it perchance, it could use its communication system to guide
the others. Surprisingly, even after many repetitions of the evolutionary process
no cooperation emerged. In our opinion this is because of the bootstrap problem
[7]. It may take too much time until an individual finds the food patch. And conse-
quently, even when it then starts to call other robots, this would not significantly
increase the performance compared to robust solitary behavior. Therefore, a step-
wise refinement of the communication system (note, the robots had to learn signal-

1 The fitness of a single robot i is Fi = 600ki
T

, where T is the number of evaluation
time steps and ki is defined by how often the robot is able to find a food patch in T
(whenever the robot finds a food patch, it recharges its virtual battery and is than
replaced randomly within the environment).
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ing and the appropriate responses to other signals) may become very improbable
during evolution (this first assumption has to be verified in future work). Thus, we
decreased the environmental complexity by removing obstacles and placing the
food patch in the center (Environment II), but even there no cooperation emerged
during evolution. Only further removal of obstacles (Environment III) enabled the
emergence of cooperation, as it will be discussed in the following section. Note, that
although all RNNs were evolved in the rather simple Environment III, the result-
ing cooperative behavior was robust enough that, in the end, we could also observe
better performance in the more difficult Environment I and II compared to solitary
behavior without any additional optimization.

3 Dynamics of Evolved Communication Systems

3.1 Communication in Small Groups of Robots

One small sized network resulting from the evolution of robot groups contain-
ing 10 individuals is drawn in Fig. 2A (we call individuals with this RNN as
control architecture individuals of type A1 ). For completeness, the whole net-
work and its parameters are given, but in the following we will concentrate only
on the communication system intrinsic to the RNN. By means of an odd loop
with over-critical synaptic weights2, the sound generating output neuron O5 is
connected with a hidden neuron (H1). This loop acts as a switchable oscillator
[11] depending on the value of I4, the floor sensor input. I4 is equal to -1.0 as
long as the robot is moving on white ground. As we can see in the bifurcation
diagram (Fig. 2C) the oscillation, caused by a period-4 attractor, is switched on
by an increased activation of I4. The bifurcation point is very close to I4 = −1.0,
and therefore, it can already be crossed by noise of the floor sensor. However, in
order to emit a sound signal at least two points of the periodic orbit have to be
in the negative and in the positive domain. This is only the case for I4 > −0.7
(never reached by sensor noise only). As a constraint of the environment, food
patches always provoke sensor signals of I4 within [0.8, 1.0]. For these values the
output of O5 oscillates as shown in Fig. 2B. Thus, communication is context-
sensitive: whenever a robot detects a food patch, it emits a sound signal every
4 time steps. This signal triggers a positive taxis in nearby perceiving robots
through the input neurons I5 and I6. Consequently, these robots will approach
the signaling robots until they reach the food patch where they then also imme-
diately start signaling. Therefore, communication is unidirectional, because the
signaling of one robot alters the behavior of another robot, but this behavioral
change does not influence the behavior of the signaler.

Another RNN with a completely different solution for context-sensitive com-
munication is shown in Fig. 3A. We call individuals with this control to be of
type A2. There, communication is realized by utilizing sensor noise. If no ob-
stacle is close to the left side of the robot (I1 = −1.0), the robot will stay on

2 Here, due to the use of tanh as activation function, over-critical means a synaptic
weight |wij | > 1.0. See [3] for details.
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Fig. 2. A: RNN of A1 individuals (group size: n = 10 individuals during evolution)
with inputs from left (I1), right(I2), and back(I3) distance sensors, left (I5) and right
(I6) sound sensors, and the floor sensor (I4). Output neurons O1 & O2 and O3 &
O4 steer the left and right wheel, respectively. O5 controls the signaling. H1 is a
hidden neuron. B: Signals of O5 when a robot stays on a food patch (I1 = I2 =
I3 = −1.0; I4 = 1.0; I5 = I6 = 0.0). C: Bifurcation diagram for O5 by varying I4
(I1 = I2 = I3 = −1.0; I5 = I6 = 0.0).
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Fig. 3. A: RNN of A2 individuals (n = 10 during evolution, cf. Fig. 2A). B: Signals of
O5 when the robots stays on a food patch (cf. Fig. 2B). C: Bifurcation diagram for O5
by varying I4 (cf. Fig. 2C). D-F: Bifurcation diagram for O5 by varying each distance
sensor (I1, I2, I3) input, where I4 = 1.0; I5 = I6 = 0.0 (not varied distance sensor
inputs are set to -1.0).

a detected food patch because the outputs of O1 and O2 are equal (within the
upper saturation domain of the transfer function, i.e., 1.0) as well as the outputs
of O3 and O4 (within the lower saturation domain, i.e., −1.0). Correlating these
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values with the connections projecting to O5 (emphasized in Fig. 3A) leads to
an activation of O5 = 0. In this situation the asymptotically stable fixed point
(SFP in the following) is in the linear domain of the transfer function. Hence,
the neural activation is highly sensitive to the sensor noise of I1. Therefore the
output crosses the zero-line randomly from the negative to the positive domain
(see Fig. 3B). Diagram C shows how the SFP of O5 is shifted from the lower
saturation domain to the linear domain when the robot detects a food patch
via I4. Once the robot stays on a food patch, this SFP can be shifted away
depending on the activation of I1, I2, and I3 (Fig. 3D-F). That means, if an-
other robot approaches a signaling robot, and consequently activates its infrared
sensors accordingly, the signaling will cease.

Using noise for behavior control of autonomous robots is usually not wanted
and engineers try to eliminate it from their systems as often as possible. In
our example, it is a quite efficient solution for signaling. Infrared sensors are
always noisy, and we tested different noise levels in the simulation environment3

with the result that the behavior does not qualitatively change when we vary
the noise level between 2% and 10%. In contrast to the prevention of noise in
most technical applications, for biological systems it is well known that noise
can significantly enhance sensorimotor patterns by means of a mechanism called
Stochastic Resonance [20].

When we compare A1 and A2 with respect to their performance depending
on the group size (see Fig. 5), we see that the more individuals are interacting
in the same environment, the better A2 performs compared to A1 (if n > 7).
The reason is the described constraint of the physical communication system,
namely the ability for perceiving only sound signal peaks. The more individuals
of A1 are signaling at the same time, the higher the probability that their signals
will sum up to a continuous signal which cannot be perceived anymore by other
robots still searching for food. Already four individuals of A1 can produce a
continuous signal when they are all signaling with different phases. Note, this is
not simply an artifact of the simulation. Experiments with physical robots have
also shown that the maximal frequency, where two subsequent signals can be
distinguished, is 5Hz.

In contrast to the constant period-4 signals in A1, the individuals of A2 signal
rather randomly. Consequently, the probability of producing a continuous signal
for a longer time period is rather low in larger groups. Additionally, whenever
a food patch becomes crowded, signaling robots will perceive nearby robots
by their infrared sensors which in turn will stop their signaling, as we have
discussed above (Fig. 3D-F). Thus, communication can no longer be described
as unidirectional because signaling of food patch locations will attract other
robots which in turn influence this signaling behavior as soon as they come close
to the signaler.

Nevertheless, both control architectures resulted from the evolution with a
group size of 10 individuals. For this size the performance difference between A1
and A2 is not as significant as it becomes with increased group size (Fig. 5).

3 The noise level of the physical infrared sensors is between 4% and 6%.
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3.2 Evolutionary Changes of Communication in Larger Groups

The results of the previous section suggest that performance may improve when
we repeat the evolution with a larger group size. More interesting than a sim-
ple performance improvement would be to see how the communication system,
as a part of the RNN, will change when we increase the number of interacting
individuals. Therefore, we started a new evolutionary run with the control ar-
chitecture of A1 as initial structure (which was more appealing because of its
independence of sensor noise and its lower fitness at larger population size). We
increased the group size to 25 individuals and allowed again parameter changes
of the initial RNN as well as the emergence of new structural elements.

One resulting RNN is shown in Fig. 4A. When we compare the structural
elements responsible for the communication system with the initial RNN of
A1 (Fig. 2A), we notice the same odd loop between H1 and O5 with over-
critical synaptic weights. In addition, we found an over-critical self-connection
at H1. With the given weight configuration this module exhibits quasi-periodic
oscillations (Fig. 4B) which are switched on by an increased activation of the
floor sensor I4 (see Fig. 4C). We applied a power spectrum analysis to the
time series in Fig. 4B and found a mean period length of about 8.7 time steps.
The period of time between emitting two subsequent sound signals is now almost
twice as long as in A1. Although this is presumably a coincidence, the correlation
is interesting because the group size used in evolution of B1 is also almost twice
as large as it was used for the evolution of A1.
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the mean number of finding a food patch in 600 time steps for a single robot (mean of
all robots in a group is taken). The mean performance of A1, A2, and B1 individuals
where the communication system was deactivated is drawn as a reference (dotted line).

Another new structural element is the connection between I6, the left micro-
phone input, and H1. Whenever a robot is staying on a food patch, and therefore
I4 > 0.8, the described quasi-periodic oscillation (see Fig. 4B-C) is responsible
for sound emission. As soon as another nearby robot also starts signaling, I6
will become activated (even when the other robot is to the most right side,
which is due to the high noise, approx. 30%, of the sound direction detection).
Then, as we can see in the bifurcation diagram of Fig. 4D, the quasi-periodic
attractor switches to a SFP, thus the oscillation will cease. Because the sound
signal of signaling robots lasts only one time step, these oscillations immedi-
ately start again in the next time step (I6 = 0). This reset mechanism will lead
to a synchronization of the signaling among robots which stay together on the
food patch (a mechanism very similar to the synchronization of internal neu-
ral rhythms described in [16]). That means, if there are many robots on a food
patch, they will not produce a continuous sound signal as it is the case for robots
of type A1. One can see the improvement of the performance with respect to A1
in Fig. 5. However, the performance of B1 is not significantly higher compared
to A2 (although A2 was only evolved with a population size of 10). The next
section will discuss this surprising robustness of A2 against more complicated
environmental conditions which did not occur during its course of evolution.

3.3 Discussion

The results presented in section 3.1 demonstrate an example of the phenomena
called natural drift, which is well known from evolution of biological systems [6].
We started several evolutionary runs for the rather simple task of exploration
and obstacle avoidance. The initial conditions were always the same (empty RNN
structure, fitness function, environment). Evolution came up with solutions being
very different concerning the network’s topology, but very similar concerning the
observed behavior. Secondly we started again several evolutionary runs, with dif-
ferent RNNs as initial structure which resulted from the preceding step. The task
was slightly more complex (i.e., individuals had to find food patches and should
stay there). Again, several RNNs resulting from this evolution were selected as
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initial structures for the final evolutionary step. This time individuals could de-
velop a communication system in order to cooperate. During this runs we still
allowed the emergence of new structural changes within the initial RNNs. And
we presented two completely different solutions of emergent communication (A1
and A2 individuals) to the same task as a result of different structural changes.
Both perform well with respect to the given fitness function and group size with
which evolution took place. However, individuals utilizing noise for communi-
cation (A2 ) do also perform well in conditions they were not confronted with
during their course of evolution. They posses the intrinsic property to be robust
against increased population size not only because of the lowered probability
of producing unrecognizable continuous sound signals, but also because of the
described indirect bidirectional communication behavior. We argue, such solu-
tions can hardly be found when too much predefined knowledge about the fitness
function and topology of RNNs is assigned to the evolutionary process.

In section 3.2 we demonstrated another striking result of the described exper-
iments and analysis: the evolutionary adaptivity of RNNs, as dynamical systems
for behavior control, to varying environmental conditions, such as the number of
interacting robots. We observed how small structural changes within such net-
works lead to an adaptation of the communication mechanism. During the evolu-
tion with small group sizes a context-sensitive communication system developed
which is based on a simple two neuron loop that provided period-4 oscillations
(A1 individuals). In this case robots directly communicate the discovery of a
food patch unidirectionally to other robots. The behavior was sufficient to im-
prove the performance of the robot group, as we have defined it there. However,
by changing the environmental conditions, that is, by increasing the number of
robots, it turned out that this strategy was not sufficient enough anymore. In
our experiments this was especially due to the physical implementation of the
sound perception system. Confronted with this constraint and the larger group
size, small structural changes refined this solution. These changes lead to quasi-
periodic oscillations of longer periods which then are also synchronized among
interacting agents (B1 individuals). Communication is not longer just a sim-
ple stimulus-response action. It is direct bidirectional: the act of signaling also
directly influences the signaling behavior of other robots.

4 Conclusions

In this paper we showed how communication among interacting autonomous
robots emerges by evolving dynamical systems, like recurrent neural networks, in
the context of complete brain-body-environment systems [4,10]. We have seen that
only small structural changes are necessary to alter previously solitary behavior
to cooperative behavior among communicating robots.

The presented communication system and collective behavior are indeed
rather simple. And often the answer to what is necessary in the Artificial Life
approach to place autonomous robots into the same category as animals is to
keep up climbing the complexity ladder. However, we agree with [21] in that this
is “not the most practical answer .. [because].. seeking such complexity blindly,
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by typically restricting the search to achieving more complex behaviors, does
not accomplish much”. Therefore, our approach is to build simple, and therefore
still tractable, models of minimally cognitive behavior [22] and to increase their
complexity as soon as our understanding improves [23].

There are also some relations to biological systems, we can draw from our ob-
served processes of evolutionary adaptation. We setup a communication system
in the robot where the perception is limited to signal peaks. This was thought to
be a disadvantage for the development of behavior, although it is of great advan-
tage for the interaction with highly noisy real-world environments. In the end,
by evolving dynamical systems, we have to argue, that such physical constraints
are not necessarily a disadvantage for the development of behavior. Evolution
finds solutions which integrate the properties of such physical system very well.
On a more abstract phenomenological level, we can compare our artificial sys-
tem with biological systems, for instance with the synchronized flashing of male
fireflies during mating [24]. This astonishing collective process is in general also
based on pulse coupled oscillators [25]. Although the process which leads to this
synchronization is now well understood, the evolutionary reason why thousand
of fireflies synchronize their flashing can only be assumed. One possible expla-
nation is that females are stronger attracted by sudden bright pulses than by a
clutter of single flashes. It is also well known that humans, or animals in general,
react to sudden changes in their environment stronger than to sustained sensory
inputs (it is also known that persistent stimuli can attenuate sensation [26]).
Here, we unintentionally put this property into our system. There was no other
choice than utilizing only acoustic changes instead of continuous signals. And
evolution found solutions able to handle this handicap and adapt to changes in
the environment in a very efficient way considering the size of the resulting net-
works. We argue that such solutions are hardly found when too much predefined
knowledge about the topology and the dynamics are assigned to such systems,
however compelling this may seem in order to speed up the evolutionary process.
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