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The Emergence of Dirac points in
Photonic Crystals with Mirror Symmetry
Wen-Yu He & C. T. Chan

Department of Physics and Institute for Advanced Study, the Hong Kong University of Science and Technology, Clear Water Bay,
Hong Kong, China.

We show that Dirac points can emerge in photonic crystals possessing mirror symmetry when band gap
closes. Themechanism of generatingDirac points is discussed in a two-dimensional photonic square lattice,
in which four Dirac points split out naturally after the touching of two bands with different parity. The
emergence of such nodal points, characterized by vortex structure in momentum space, is attributed to the
unavoidable band crossing protected by mirror symmetry. The Dirac nodes can be unbuckled through
breaking the mirror symmetry and a photonic analog of Chern insulator can be achieved through time
reversal symmetry breaking. Breaking time reversal symmetry can lead to unidirectional helical edge states
and breaking mirror symmetry can reduce the band gap to amplify the finite size effect, providing ways to
engineer helical edge states.

T
opologically characterized gapless points induce many novel phenomena in both electronic and photonic
systems, from robust edge states to back-scattering immune transport1–11. At the band touching point, vortex
structure for Dirac nodal points or monopole for Weyl nodes appear in the momentum space as the

topological feature. As these remarkable properties are mainly attributed to the topological nature of these nodal
points, the mechanism of the creation, moving and vanishing of them, attracts significant research attention both
theoretically and experimentally6–7,12–15. In previous studies, the creation and manipulation of Dirac points is
typically involved with symmetry operations. For Dirac nodes in honeycomb or square lattices, lattice anisotropy
is necessary to induce the topological transition6,13–15, while for Weyl nodes in double gyroid photonic crystals,
either parity or time reversal symmetry breaking is required7. However, interesting band degeneracy phenom-
enon also occurs through the variation of parameters unrelated to symmetry, as the exotic topological semimetal
phase in Ref. 16 and the photonicDirac cone at Brillouin zone center in Ref. 17. Such resultsmotivate us to explore
the possibility to produce and manipulate Dirac points in an unconventional way.

In this paper, we show theoretically that Dirac points can potentially emerge in all photonic crystals withmirror
symmetry during the closing of a photonic band gap. When the mirror symmetry is present, the eigenmodes
along the high symmetry line that are invariant under the mirror operator can be classified by the mirror
symmetry representation. Once two bands with different parity are tuned to approach each other, band crossing
is unavoidable after their touching. Such unavoidable crossing induced band degeneracy is stable and cannot be
destroyed unless the mirror symmetry is broken. This mirror symmetry can generate Dirac points for 2D lattice,
and is responsible for the edge states of the 3D topological crystalline insulator18,19. We investigate in detail the
property of such band degeneracy in a photonic square lattice comprising dielectric cylinders. The photonic
square lattice possesses two equivalent mirror planes, generating two pairs of Dirac points as expected. With k?p
perturbation and symmetry analysis using group theory, we obtain the effective Hamiltonian near the degeneracy
and present the evolution of subbands to show themechanism of generating Dirac points. Subsequently the effect
of mirror symmetry breaking is studied through replacing dielectric cylinders, which have mirror symmetry in
any direction, with artificial structures, which only have mirror symmetry along its principal axis. We found that
fixing its principal axis parallel to one of the mirror planes would lift one pair of Dirac points and preserve the
other, while a general orientation would break both Dirac points, as is consistent with its mirror symmetry
protection. The topological feature of the Dirac points is manifested by considering the magneto-optical effect. A
photonic Chern ‘‘insulator’’ with two helical edge states is realized due to the breaking of time reversal symmetry
(here photonic ‘‘insulator’’ means the propagation of light at a certain frequency range is forbidden by an absolute
photonic band gap). Furthermore, introducing such special artificial structure to this photonic Chern ‘‘insulator’’,
the finite size effect20 is found to be amplified, which suppresses one helical edge state while does not influence the
other at specific frequency.
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Results
Dirac points and mirror symmetry. Consider a photonic crystal
possessing mirror symmetry, such mirror reflection invariance gives

MH kð ÞM{1~H Rkð Þ, ð1Þ
whereM is the mirror operator and R is the 23 2 mirror reflection
matrix defining the mirror reflection in a 2D plane. In the Brillouin
zone, a mirror reflection invariant line satisfies the condition Rk5 k
1G (whereG is reciprocal lattice vector). Along themirror reflection
invariant line, the eigenfunction of the Hamiltonian is also an
irreducible representation of the mirror operator, and thus all
bands along that direction can be labeled by {A, B}, which
correspond to the representation with even and odd parity
respectively under the mirror operator. If two bands with different
parity get close to each other, the effective Hamiltonian can be
approximated on the basis of A and B. On this basis, the matrix
representation of M is sz. Along the mirror reflection invariant
line, the symmetry constraint upon the effective Hamiltonian
makes its off diagonal elements become zero and only leaves
diagonal terms. Such diagonal terms control the dispersion of the
two bands independently, and the two bands can have unavoidable
linear crossing once after their touching, as is shown in Fig. S1. Near
the crossing point, expanding the effective Hamiltonian to the first
order subject to symmetry constraints, we can generate the effective
Hamiltonian as the following

Heff kE,k\
� �

~v0kEs0zvxk\sxzvyk\syzvzkEsz ð2Þ
where kI and kH represent the vector component parallel and
perpendicular to the mirror reflection invariant line respectively.
The detailed illustration about the symmetry constraint is given in
the Supplemental Information. The crossing point has a linear
dispersion in all directions and acts as a source (sink) of Berry
curvature in momentum space. When the dielectric constant of
cylinders is very high, a photonic crystal has band gaps separating
isolated bands. Aswe progressively reduce the dielectric constant, the
photonic bands will close as some bands separated by the band gaps
will approach and touch each other. In this process, if mirror
symmetry is present, touching between photonic bands in the
mirror reflection invariant line with different parity will make
Dirac points split out naturally. This intrinsic connection between
band gap closing and emergence of Dirac points provides the
possibility for creating Dirac points in photonic crystals with
mirror symmetry.

Emergence of Dirac points. We consider a two-dimensional
photonic crystal system in a square lattice consisting of dielectric
cylinders. We perform plane wave expansion21 to calculate the
band structure for the transverse magnetic (TM) polarization with
the electric field along the rod axis. Here we denote a as the lattice
constant, and relative permittivity and radius of the cylinders are e5
5.4, r 5 0.2a respectively. Along the XM direction, the fourth and
fifth bands cross linearly at frequency v0, as is shown in Fig. 1(a),
suggesting that isolated band degeneracy occurs in the momentum
space. Further calculation of three-dimensional band dispersion
demonstrates that band touching with linear dispersion arises
around X and Y as shown in Fig. 1(c) and (d), giving rise to four
gapless points in the first Brillouin zone. Emergence of Dirac points
can also appear in other lattices as long as there is amirror symmetry.
For example, six Dirac points can also emerge in a photonic crystal
with triangular lattice as can be seen in Fig. S2 in the Supplementary
Information. This phenomenon is stable and immune to small
variation in radius and permittivity of rods, which can only shift
degenerate points in frequency and momentum space but cannot
remove them. The band degeneracy vanishes once a pair of
degeneracy points meet at X (Y), where they split out, and pairwise
annihilation occurs. Such characteristics of the degeneracy points

resemble the behaviors of Weyl fermions22,23, indicating the
topological nature of the Dirac points.

k?p perturbation and symmetry protection. TheMaxwell equation
for TM wave in two dimensional photonic crystals can be converted
to an eigen problem.We can express the Blochwave functionynk as a
linear combination ofynk0with eigenfrequencyvn0, and establish an

effective Hamiltonian withmatrix element yih jĤ yj

��� E
to describe the

photonic system24. For the square lattice, all symmetry operations in
the C2V group will keep the X (Y) point invariant, suggesting that the
symmetry type of eigenfunction at X (Y) belongs to {B2, A1, B1, A2},
the irreducible representations of C2V

25. For this reason we adopt
Y~ yB2 ,yA1

,yB1 ,yA2

� �
, which corresponds to the eigenfunction for

the third, fourth, fifth, and sixth band respectively, as the basis wave
function to do k?p perturbation near the X point (Here the Bloch
wave functions are obtained through COMSOL Multiphysics, a
commercial package based on the finite-element method). Then a
43 4 effective Hamiltonian can be deduced as follows

H~

v2
B2

c2
zqB2B2k

2 {pB2A1yky 0 {pB2A1xkx

{p�B2A1yky
v2

A1

c2
zqA1A1k

2 {pA1B2xkx 0

0 {p�A1B2xkx
v2

B1

c2
zqB1B1k

2 {pB1A2yky

{p�B2A2xkx 0 {p�B1A2yky
v2

A2

c2
zqA2A2k

2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð3Þ

Here k5 k2k0, c is the speed of light, vi (ig{B2, A1, B1, A2}) is the
eigen frequency at X for corresponding band and the coefficient is

plj~i
2pð Þ2
V

ð
y�
lk0 rð Þ: 2+yjk0 rð Þ

m rð Þ z +
1

m rð Þ
� �

yjk0 rð Þ
� �

dr ð4Þ

and

qlj~
2pð Þ2
V

ð
y�
lk0 rð Þ 1

m rð Þyjk0dr, ð5Þ

which can be obtained by numerical integration of the eigen wave
function through the unit cell. TheV here is the area of the unit cell to
normalize the wave function. Results from this effective Hamiltonian
generate eigen spectrum that agree well with plane wave calculation
as can be seen from Fig. 1 (b), and obtain the weight of each
representation simultaneously. From group theory, this effective
Hamiltonian should keep invariant under any symmetry operation
of C2V, which means that nonzero Hamiltonian matrix element only
exists when the direct product of the irreducible representations of
yi, Ĥ, and yj contains A1, the full symmetry representation26. It can
be confirmed that this effective Hamiltonian is consistent with the
requirement by group theory, indicating the emergence of suchDirac
points is intrinsically decided by the crystal symmetry.
From the effectiveHamiltonian, we see that it is block diagonalized

along CX and XM direction. For kx 5 0 along XM, A1 state only
couples with B2 state while B1 state only couples with A2 state, redu-
cing A1 state and B1 state to A and B type respectively (here A and B
are irreducible representations of mirror operator mx). As A and B
bands approach each other when the photonic band gap closes due to
the reduction of e in the cylinders, band crossing would unavoidably
occur along XM. Such unavoidably crossing is intrinsically protected
by the mirror symmetry of mx, and guarantees the emergence of
degeneracy at N1 and N2. However, for ky 5 0 along CX, A1 and
B1 state are both reduced to A type. Thus in the process of band gap
closing, level repulsion and inversion between the two A type bands

www.nature.com/scientificreports
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takes place once they touch. Such band inversion and repulsion
induces directional band gap along CX, acting as the role of partial
gap to isolate the two band crossing points andmaking a pair ofDirac
points N1 and N2 split out, as is shown in Fig. 2. We see here that the
Dirac points N1 and N2 are stable and generic once they emerge, as
long as the mx mirror symmetry protected unavoidable crossing
maintains. Such analysis is also suitable for Dirac points N3 and N4

near Y, which are protected bymy mirror symmetry (the calculation
details for the evolution of A1 and B1 states is in the Supplemental
Information).
Since the Dirac points are formed by the linear crossing of the

fourth and fifth bands, far away from the third and sixth bands in
frequency, bands near Dirac degeneracy are mainly formed the mix-
ture of A1 and B1 states, while fraction of A2 and B2 is tiny small. It is
therefore appropriate to apply second order perturbation to integrate
out the distant frequency degrees of freedom and reduce the effective
Hamiltonian to a two band model as

~H~
1
2

a kx,ky
� �

zc kx,ky
� �� �

s0zb kx,ky
� �

sy

z
1
2

a kx,ky
� �

{c kx,ky
� �	 


sz

ð6Þ

where sy and sz are two Pauli matrices and I is the 2 3 2 identity
matrix. This effective Hamiltonian is approximated by eigen states at
X (Y) point, and it can be reduced to Eq. (2) through Taylor expan-
sion around the degenerated Dirac points. Using the coefficients of

Pauli matrices to define a planar vector h5 (hx,hy), with hx 5 b(kx,
ky) and hy 5 1/2[a(kx, ky)-c(kx, ky)], we can interpret the Dirac
points as a topological vortex, with topological index (the winding
number) defined as16

W~

þ
C

dk
2p

: hx
hj j+

hy
hj j

� �
{

hy
hj j+

hx
hj j

� �� �
: ð7Þ

The 2D planar vector h around each time reversal related Dirac point
indeed has vortex structure with nontrivial winding number 1 and21,
while the winding number vanishes once both time reversal partners
are included, as is shown in Fig. S3. This is distinct from the Dirac
cones splitting out of quadratic degeneracy by symmetry breaking
operation in Ref. 27, where the winding number around each cone is
1 and around the both is 2 instead. This vortex structure in momentum
space manifests the topological feature of the nodal points.
We now consider symmetry breaking effect on these Dirac points.

An artificial structure is shown in Fig. 3(a), where the ratio between r1
and r can be used to describe the degree of its deviation from cylinder
(it is still a cylinder when r1 5 r). Here we found that the principal
axis of the artificial structure orientating parallel to the mirror plane
of mx would lift one pair of Dirac nodes N3 and N4 while keep the
other pair N1 and N2, as is shown in Fig. 3(b) and (c), while a general
orientation of the principal axis would break both, as is shown in
Fig. 3(d) and (e). This is due to the fact that the former casemaintains
mirror symmetry of mx, but breaks that of my, while the latter case
both the mirror symmetry ofmx andmy is broken. Consequently the

Figure 1 | Band structure of a 2D photonic crystal with a square lattice. The photonic crystal is composed of dielectric cylinders as shown in the inset in

panel (a) with e 5 5.4 and radius r 5 0.2a embedded in air. Here, a is the lattice constant. (a) The band structure along high symmetry lines. Gapless

Dirac points with linear dispersions at frequency v0 emerge along XM. (b) Enlarged view near the Dirac point, with the solid lines showing k?p
perturbation result. (c) Three dimensional dispersion surface containing four Dirac points in the first Brillouin zone. (d) The red dots mark the positions

of Dirac points {N1, N2, N3, N4} in the first Brillouin zone. The two perpendicular dot lines represent the mirror operation mx and my.

www.nature.com/scientificreports
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breaking ofmirror symmetry induces hybridization between A and B
type bands so that crossing is avoided and Dirac nodes are
unbuckled. This is consistent with the previous analysis that the

stability of Dirac points vanishes as the mirror symmetry protected
unavoidable crossing fails. Here, the coexistence of buckled and
unbuckled Dirac nodes is achieved in this photonic system and the

Figure 2 | Evolution of A1 and B1 subbands with variation of cylinders’ relative dielectric constant.Dirac points emerge as the photonic band gap closes

upon a reduction of the dielectric constant. The relative permittivity and radii adopted are {e 5 8.8, r 5 0.2a} for (a) and (b), {e 5 8, r 5 0.2a} for

(c) and (d), {e5 7.2, r5 0.2a} for (e) and (f). The colored shading indicates the symmetry type of the band at the corresponding point in Brillouin zone. A

and B are irreducible representation of C1h group with even and odd parity respectively. We note that the bands repel along CX after the A1 and B1 touch

and change order when the band gap closes, but the bands along XM have an unavoidable crossing giving rise to Dirac points.

www.nature.com/scientificreports
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width of gap for unbuckled ones is also found to be tunable through
varying the degree of deformation. This phenomenon gives us the
possibility to manipulate the Dirac points through controlling the
mirror symmetry of such special artificial structure.

Photonic Chern ‘‘insulator’’. For photonic crystals with such Dirac
nodes, nodes unbuckling by time reversal symmetry breaking will
introduce nontrivial Chern numbers. We use a magnetic
permeability tensor with imaginary off-diagonal components to
represent the magneto-optical effect and break the time reversal
symmetry28. It has the following form

m̂~

m imk 0

{imk m 0

0 0 m0

0
B@

1
CA: ð8Þ

Introducing magneto-optical effect breaks parity27, unbuckles all
four Dirac nodes, and nonzero Chern number emerges. Since the
integration of Berry curvature near each node contributes to a Chern
number of6 1/229, the unbuckled four Dirac nodes in our case give
rise to a photonic Chern ‘‘insulator’’ with Chern number jCj 5 2.
Consistent with the bulk-edge correspondence30,31, two different
edge states emerge at the boundary of this photonic system, as is
shown in Fig. 4 (a).

A very recent paper32 shows that multimode one-way waveguide
of large chern number becomes realizable with this mechanism.
Since the number of equivalent mirror planes in photonic crystal
potentially determines how many pairs of Dirac points can be cre-
ated, breaking time reversal symmetry by magneto optical effect
straightforward combines these with Chern number. It indicates that
for the triangular lattice (see Fig. S2), photonic Chern ‘‘insulator’’
with three helical edge state is expected.

Enhancement of finite size effect. The helical edge states along the
boundary of photonic Chern ‘‘insulator’’ has unidirectional
propagation2,9,33, and the strength of the modes decays
exponentially in the direction perpendicular to the boundary.
Owing to the finite size of the sample, the edge mode can leak to
the other side and couple with its counterpart to induce a gap in the
edge spectrum. This is a typical finite size effect20. Interestingly, we
find such finite size effect is amplified by mirror symmetry breaking
along the propagating direction (here we replace dielectric cylinders
with a special artificial structure and align its principal axis along
propagating direction).Whenwe compare Fig. 4(b) with Fig. 4(a), we
see that the band gap size is reduced when the mirror symmetry is
broken. The reduced band gap leads to a stronger coupling of the
edge mode on either side of the finite-sized sample, opening a
minigap in the edge mode spectrum. As is shown in Fig. 4(b),
there exists a gap in the edge modes spectrum at k 5 0 and one

Figure 3 | The effect of mirror symmetry breaking on the band structure. (a) Design of an artificial structure with a smooth transition from cylinder to

triangular shape. First, the cylinder is narrowed and trisected. Then the empty area between the three sectors is filled with the same material allowing

for a smooth profile of the whole structure. For (b) the special artificial structure of {e5 7.2, r15 0.18a, r5 0.2a} in the unit cell aligns its principal axis

parallel to a lattice unit vector while it is rotated by 45u for (d). (c) The band structure near lifted degenerate points around Y andmaintainingDirac points

around X. (e) The band structure near lifted degenerate points around both Y and X.

www.nature.com/scientificreports
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edge mode is observed to leak to the other side with decay length
comparable to the width of the ribbon. Moreover, only widening the
photonic supercell and keeping all other condition invariant would
suppress the gap in the edge spectrum drastically and reduces the
leakage of the corresponding edge mode dramatically, as is shown in
Fig. S5 in the Supplementary Information, confirming that it is finite-
size effect. Since the edge spectrum of the two edge modes crosses at
different frequencies, such enhanced finite size effect only affect one
edge mode at degenerate frequency and does not influence the other.
It seems that based on this mechanism, the two helical edge states
become controllable and a frequency dependent helical wave filter is
feasible.

Conclusion
In summary, we have shown that Dirac points can potentially split
out in photonic crystals with mirror symmetry during the closing of
photonic gaps by the touching of two bands with different parity. The
full property of Dirac points, including the emergence and the res-
ponse to symmetry breaking effect, is then investigated in a photonic
square lattice. Such an effect can enable the design of photonic Chern
‘‘insulator’’ with large Chern number, manipulation of multi-helical
edge states, photonic valleytronics, and the development of novel
wave functional devices.
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