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The emergence of jets and vortices in freely evolving, shallow-water
turbulence on a sphere

James Y-K. Choa) and Lorenzo M. Polvanib)

Program in Applied Mathematics and Department of Applied Physics, Columbia University,
New York, New York 10027

~Received 1 June 1995; accepted 26 December 1995!

Results from a series of simulations of unforced turbulence evolving within a shallow layer of fluid

on a rotating sphere are presented. Simulations show that the turbulent evolution in the spherical

domain is strongly dependent on numerical and physical conditions. The independent effects of ~1!
~hyper!dissipation and initial spectrum, ~2! rotation rate, and ~3! Rossby deformation radius are

carefully isolated and studied in detail. In the nondivergent and nonrotating case, an initially

turbulent flow evolves into a vorticity quadrupole at long times, a direct consequence of angular

momentum conservation. In the presence of sufficiently strong rotation, the nondivergent long-time

behavior yields a field dominated by polar vortices—as previously reported by Yoden and Yamada.

In contrast, the case with a finite deformation radius ~i.e., the full spherical shallow-water system!
spontaneously evolves toward a banded configuration, the number of bands increasing with the

rotation rate. A direct application of this shallow-water model to the Jovian atmosphere is discussed.

Using standard values for the planetary radius and rotation, we show how the initially turbulent flow

self-organizes into a potential vorticity field containing zonal structures, where regions of steep

potential vorticity gradients ~jets! separate relatively homogenized bands. Moreover, Jovian

parameter values in our simulations lead to a strong vorticity asymmetry, favoring anticyclonic

vortices—in further agreement with observations. © 1996 American Institute of Physics.

@S1070-6631~96!02004-9#

I. INTRODUCTION

In recent years, much progress has been made in the

study of high Reynolds number, two-dimensional ~2-D! tur-

bulence via direct numerical integration. The computational

approach provides a direct test of theoretical predictions and

offers a first step toward understanding turbulent phenomena

relevant to atmospheric and ocean dynamics. However, ex-

cept for a few investigations, past 2-D turbulence simulations

have been mainly restricted to doubly periodic planar do-

mains with rigid surface, often without differential rotation.

While useful for studying scaling-symmetry breaking due to

coherent structure formation or inverse cascade arrest due to

anisotropic conditions, the rigid surface and planar restric-

tions are severely limiting for geophysical applications. In

this paper, we proceed one step further and present results

from simulations of rotating shallow-water decaying turbu-

lence in spherical geometry.

The shallow-water model represents a thin, homoge-

neous layer of fluid with a free surface, which moves under

the influence of gravitational and Coriolis forces. The model

in spherical geometry incorporates the effects of both differ-

ential rotation ~b effect! and stratification ~through a finite

deformation radius! and is the simplest of the commonly

used atmospheric dynamics models. Due to its higher com-

plexity, the shallow-water system in spherical geometry al-

lows a much greater variety of physical phenomena than the

planar 2-D model. In this paper, we focus on the roles of

simulation conditions, differential rotation due to spherical

geometry, and free surface variations. Specifically, we are

interested in their respective roles on the morphology of self-

organizing physical structures that spontaneously arise in the

turbulent shallow-water system.

Owing to differences in emphasis between the geophys-

ical and theoretical turbulence communities, a somewhat

confusing nomenclature is found in the literature. In order to

clarify the terminology and locate the present work with re-

spect to previous studies, a number of relevant cases and

their associated physical parameters are summarized in Table

I ~the role played by the different parameters, as will become

clear, is discussed in the ensuing sections and is the primary

concern of this paper!. For the case of planar 2-D turbulence,

a wealth of investigations is available,1–7 while its spherical

counterpart has received little attention.8–10 Similarly,

b-plane turbulence has been well studied11–14 ~though, al-

most exclusively under forced conditions!, while the rotating

spherical case has only been recently numerically

simulated.8,15,16,9 As for shallow water, only three studies of

the f plane case are available.17–19 To the best of our knowl-

edge, there has been no past study of shallow-water turbu-

lence in the spherical geometry. This work is partially aimed

at filling this gap.

Moreover, even in the 2-D cases confined to the plane,

most of the turbulence simulations to date have not explored

thoroughly the dependence of the evolution on the numerical

dissipation and initial conditions, making comparisons of re-

sults somewhat difficult.20 In freely evolving turbulence, a

careful exploration is critical, since this dependence seems to

be more acute than in forced situations. For instance, San-

tangelo et al.5 have found striking differences in the evolu-

tion due to the steepness of the initial spectrum. Their initial

a!Electronic mail: jcho@appmath.columbia.edu
b!Electronic mail: lmp@appmath.columbia.edu
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finding clearly demonstrates the need for performing a thor-

ough simulation-parameter sensitivity study to ascertain

which behaviors are a direct consequence of parameter

choices.

In view of this, our paper is organized in the following

way. After a brief description of the physical models and the

numerical procedure in Sec. II, we start in Sec. III by study-

ing the simplest possible spherical system ~the nondivergent,

nonrotating case of Table I!, in order to clearly characterize

the dependence of the evolution on the hyperdissipation, ini-

tial spectrum, and spherical geometry. Readers interested in

more physical effects may skip this section. Having carefully

accessed the sensitivity to simulation conditions, we incre-

ment the physical complexity of the system by introducing

rotation and describe its effects on the flow evolution in Sec.

IV. In Sec. V, we allow for the variations in the height of the

fluid layer ~i.e., vortex-tube stretching! and consider the ad-

ditional effects of removing the nondivergence constraint un-

der differential rotation. Having studied each physical effect

in detail, we demonstrate one direct application using Jovian

parameters in Sec. VI. Our conclusions are then presented in

Sec. VII.

II. PHYSICAL MODELS AND NUMERICAL
PROCEDURE

We begin by briefly reviewing the shallow-water system

and its relationship to the simpler, nondivergent models ~see

Table I!, which are also considered in this paper. It is well

known that a thin layer of homogeneous ~constant density!,
hydrostatically balanced, rotating fluid with a free surface is

governed by the system of shallow-water equations

~SWE!.21 In general coordinates, the SWE have the follow-

ing form:

] tv1v–“v52g “h2 f k3v, ~1!

] th1v–“h52h“–v, ~2!

where v~x,t! is the horizontal velocity and h5h~x,t! is the

free surface height. The variable f is the Coriolis parameter,

proportional to the rotation rate, and g is the gravitational

acceleration.

Physically, given the characteristic scales of length, ve-

locity, and height ~L , U , and H , respectively!, one can define

the Rossby number and the Froude number,

R[
U

2VL
and F[

U

AgH
, ~3!

respectively, with V representing the rotation rate. These

quantities define the physically relevant (R ,F) parameter

space for the SWE. Another useful nondimensional quantity

is the Burger number:

B[
R2

F2 5S LD

L
D 2

, ~4!

where LD [ AgH/2V is the Rossby deformation radius. With

these definitions, one can obtain a general set of nondimen-

sional equations,

] tv81v8–“v852BR21
“h82R21

k3v8, ~5!

] th81v8–“h852~11h8!“–v8, ~6!

where the following scaling has been used:

~v,h !5@Uv8,H~11h8!# , ~7!

such that h8[ h̃/H is the nondimensional characteristic de-

viation from the mean height; h̃ is the dimensional deviation.

Note that, as we have defined it, h8 need not be small.

With the above set of nondimensional equations, the re-

lationship between the shallow-water system and the simpler

cases may easily be seen. When h850 ~i.e., either h̃→0 or

H→`! Eqs. ~5!–~7! immediately reduce to the rotating 2-D

case for which LD→` ~cf. the nondivergent, rotating col-

umn of Table I! and the fluid surface is rigid. In addition, in

the limit R→` , the nonrotating case is obtained ~cf. the

nondivergent, nonrotating column of Table I!. The nondiver-

gent equations for nonrotating and rotating situations in their

more common dimensional vorticity-streamfunction form

are, respectively,

] tz1J$c ,z%50 ~8!

and

] tz1J$c ,z1 f %50, ~9!

TABLE I. Here f [2V sin q is the Coriolis parameter; V is the rotation rate and q is the latitude; b is the

latitudinal gradient of f ; d[“–v is the velocity divergence; LD [ AgH/2V is the Rossby deformation radius,

and R[U/2VL is the Rossby number—where H , U , L are the characteristic height, velocity, and length,

respectively.

Physical complexity

GEOMETRY

Nondivergent,

nonrotating

~d50, V50!

Nondivergent,

rotating

~d50, VÞ0!

Divergent,

rotating

~dÞ0, VÞ0!

Plane

f 50

H , LD , R→`
‘‘planar 2-D’’

b5const

H , LD→`; R,`
‘‘b-plane 2-D’’

f 5const; b50

H , LD , R,`
‘‘f -plane SW’’

Sphere

f 50

H , LD , R→`
‘‘spherical 2-D’’

b5

2V

a
cos q

H , LD→`; R,`
‘‘rot. sph. 2-D’’

b5

2V

a
cos q

H , LD , R,`
‘‘rot. sph. SW’’
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where J$• ,•% is the Jacobian operator, c is the streamfunc-

tion, z5Dc5k–“3v is the relative vorticity, and z1 f [za

is the absolute vorticity.

One of the objectives of this paper is to study the com-

bined effects of a finite deformation radius and the b effect.

This cannot be accomplished in the doubly periodic planar

domain since gravity waves would experience jump discon-

tinuities in the phase speed at the edges of the domain.

Hence, unless one is willing to accept the limitations of as-

ymptotically approximating the SWE,22 the planar geometry

must be abandoned, and the obvious one to choose is the

sphere. On the sphere, the components of v, u5u(l ,q ,t)

and v5v(l ,q ,t), represent the eastward and the northward

velocities, respectively, at the location ~l,q!⇒~longitude,

latitude!, while h5h(l ,q ,t) is the surface height of the thin

shell of fluid wrapping the sphere of radius a , such that

h!a . The Coriolis parameter, f 52V sin q.

In the absence of dissipation, the SWE possess a number

of useful invariants: ~1! the total height, H5^h&23 ~conser-

vation of mass!; ~2! the total energy E5^ 1
2(u2

1v
2)h

1
1
2gh2& , where E is the sum of the potential and kinetic

energies, respectively; and ~3! the potential enstrophy

^ 1
2za

2h& . The potential vorticity, q[za/h , is a material invari-

ant in the shallow-water system. In the nondivergent ~h
5const! and the nonrotating ( f 50) cases, these expressions

for the invariants reduce accordingly. We note that, due to

the nonquadratic nature of the energy and enstrophy invari-

ants, analytical theories ~e.g., closure schemes! are much

more difficult to construct for the SWE than in the nondiver-

gent situations.

To numerically integrate the equation~s! governing the

dynamics in each of the spherical situations in Table I, a

pseudospectral algorithm that projects the field variables into

a space of spherical harmonics via the Gauss–Legendre

transform is used.24 The time stepping is performed using a

second-order accurate leapfrog scheme with a Robert–

Asselin filter, which can be used to control modal splitting.25

A triangular shape truncation in spectral, (m ,n), space with

up to 170 resolved n modes ~denoted T170! is employed;

here, m and n are the zonal and the total wave numbers,

respectively.26 The truncation results in an initial spectral

energy density E(n ,t50) that is equipartitioned among the

m modes in each of the n modes spanned by a triangular

mask in spectral space. The kinetic energy density is related

to the vorticity field, z5z(l ,q ,t), by

E~n ,t !5

1

2 (
m52n

n
a2

n~n11 !
uzn

m~ t !u2, ~10!

where zn
m(t) are the coefficients in the truncated, spherical

harmonic expansion of z:

z~l ,q ,t !5 (
n51

n t

(
m52n

n

zn
m~ t !Pn

m~q !e iml, ~11!

where Pn
m are the standard associated Legendre polynomials.

Other dynamical variables can be self-consistently re-

lated via the Helmholtz theorem, in which v5r̂3“c1“x is

linearly decomposed into a rotational part involving the

streamfunction, c, and a divergent part involving the veloc-

ity potential, x, such that the vorticity z[r̂–“3v5Dc and

the divergence d[“–v5Dx. Given the truncation number, a

grid large enough ~e.g., T170⇒5123256 grid! is used in

order to evaluate the transform integrals exactly and nullify

aliasing errors to within machine accuracy.27

Finally, a word about our choice of scales. The charac-

teristic length scale, L , is chosen to be pa/2n0 , where n0 is

the most-energetic scale. Throughout the paper, time is

scaled with an advective time scale, T[a/U , where U

[ A2E ; this is uniformly chosen for all the runs rather than

the enstrophy-based, vortex turnaround time commonly

adopted in planar computations. The latter time scale can

vary significantly from run to run under different physical

conditions and within the duration of a single run.

III. SENSITIVITY TO SIMULATION CONDITIONS

Almost without exception, past turbulence simulations

have been performed using a single choice of dissipation

and/or initial condition without providing elements to assess

the degree to which their results ~e.g., values of spectral

slopes, self-similarity claims, etc.! may depend on their

choices. In this paper, in order to clearly delineate this ‘‘nu-

merical sensitivity’’ issue from the effects of the more com-

plicated physical systems of Secs. IV and V, we begin by

confining the system to the simplest possible situation with

numerical dissipation—i.e., the nondivergent, nonrotating

system ~see Table I! governed by the equation

] tz1J$c ,z%5~21 !p11n2p Dpz , ~12!

where J$• ,•% is now the spherical Jacobian operator.

To isolate the sensitivity of the evolution due to the form

of the dissipation, the power of the dissipation operator, p , in

Eq. ~12!, is varied while adjusting the diffusion coefficient,

n2p, accordingly. Given all the other parameters in a run, the

smallest possible value of n2p is obtained empirically via a

preliminary set of runs, in which n2p is initially chosen so

that n2p[n t(n t11)/a2]p
51, where n t is the truncation

~maximally resolved! scale. Note the geometrical factor of

a2; from here on the value of n2p will be given in units of

a2p for easier comparison with planar cases.

As for the initial condition, the same functional form is

used for all the runs presented in this paper. At t50 the

following energy spectral density distribution is specified:

E~n ,0!5

Ang/2

~n1n0!g . ~13!

The value of A is directly related to the velocity scale U ,

while the parameters, n0 and g, are used to control, respec-

tively, the peak location and the width of the spectrum. Each

mode is initialized with a random phase. The spectra for

several different values of g and n0 are shown in Fig. 1.

Figure 2~a! illustrates a typical physical space evolution

of an initially random vorticity field at high resolution

~T170! with (p ,n2p,n0 ,g)5(8,3.0310235,7,20). In Fig.

2~b!, the spectral space evolution of the same run at three

representative times, t5(0,1,9), corresponding to initial,

early, and late times is shown. Here the time t51 corre-

sponds to approximately ten vortex turnaround times.
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It is clear from these figures that the long-time evolution

is qualitatively similar to those in high-resolution, decaying

planar computations. In particular, note the following fea-

tures: ~1! the early creation of high-gradient, filamentary

structures @t5[1:2] in Fig. 2~a!# and the beginning of the

inverse cascade @t51 in Fig. 2~b!#; and ~2! the eventual

emergence of long-lived coherent structures @t5[4:6] in

Fig. 2~a!#, with the corresponding steepening of the inertial

range @t59 in Fig. 2~b!#. These features are general and are

independent of planar or spherical geometry, as was previ-

ously shown in the lower resolution, shorter integration time,

spectral computations of Yoden and Yamada.9

On the sphere, however, a very long-time integration

shows that coherent structures ultimately evolve to a

vortical-quadrupole state—rather than a dipole state, as on a

plane.28 Figure 3 depicts a typical very long-time run, in

which the quadrupole configuration is reached. Once

reached, the basic configuration is unchanged, even after 70

advective times; no further reduction in the number of vor-

tices occur, even during several close encounters by the con-

stituent vortices over this long, dynamically active period.

We point out that here only 0.3% of the total energy is lost at

the end of the run with no loss occurring after t510. The

quadrupole configuration is a direct consequence of angular

momentum conservation on the sphere, which forbids the

flux of energy in or out of the n51 mode, thus forcing a

pile-up at the n52 mode; the early manifestation of this is

clearly visible in Fig. 2~b! ~contrast this with Fig. 2 in Ref. 1,

corresponding to a planar calculation!.

Having illustrated the general features of a typical high-

resolution spectral calculation, we now consider the effects

of varying the power, p , of the dissipation operator. Figure 4

shows the spectra at t51 for runs using p5$1,2,4,8%. All the

runs begin with a common initial condition, which is identi-

cal to that of the run depicted in Fig. 2. Even at this repre-

sentative ‘‘early’’ time ~chosen to minimize the coherent

structure-associated effects on the spectra!, two nontrivial

trends in the spectral behavior can be detected: ~1! the use of

hyperdissipation has the effect of extending the inertial

range, and ~2! the inertial range slope x @such that E(n);nx

for 1!n,n t# appears less steep with increasing p with the

inertial ranges ‘‘converging’’ toward the one corresponding

to p58. Here, we measure the slopes to range from 24.0

60.1 at p51 to 23.360.1 at p58 @see the x(1) column of

Table II# with the uncertainty reflecting our inability to ac-

curately ascertain the true extent of the inertial range.29

Both trends can be easily explained by the activity

present in the corresponding physical space, shown in Fig. 5.

A higher-powered dissipation operator allows more space-

filling, filamentary structures to be formed and sustained. As

has been shown in the two recent studies of simpler, vortex

dynamics problems,30,31 the larger p values lead to less dis-

sipation and sharper small-scale vorticity gradients. We

quantify this effect by the palinstrophy, P (t)[^ 1
2(“z)2&

5(
n51

n t n4E(n ,t); see Table II. As shown in Fig. 6, these

early differences lead to a substantial deviation in the subse-

quent vortex population at later times; the energy spectra

~not shown! for the two runs are also correspondingly differ-

ent.

Next, we proceed to describing the effects of the shape

of prescribed initial spectrum on the turbulent evolution. Fig-

ure 7~a! summarizes the results for different initial spectral

steepness, g5$6,12,20,40,60%, as illustrated in Fig. 1~a!. The

spectra in Fig. 7~a! are shown at time, t59, corresponding to

the ‘‘late’’ stage of evolution when the coherent structures

have existed for many time periods and the enstrophy decay

behavior is flat in all the runs. The parameters for these runs

are (p ,n2p,n0)5(4,3.0310217,7). As can be seen, the iner-

tial range slope does not seem to be strongly affected by the

different initial steepness, even though the initial total enstro-

phies differ by a factor of nearly 20, due to the different

values of g. This behavior clarifies that reported in Ref. 5, in

which a similar difference of initial enstrophy ~a factor of 15

in that study! led to a dramatic difference in the inertial

range. Our study suggests that the strong dependence on the

inertial range slope in their case is not due to initial steepness

FIG. 1. Initial spectra for several parameter values of ~a! the steepness,

g5$6,12,20,40,60% and ~b! the peak wave number, n05$2,3,7,14%. The total

energy in each case is identical.
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FIG. 2. Typical 2-D evolution at a T170 resolution: ~a! vorticity contours at times marked at the upper left of each frame, positive values are in red and

negative values are in blue; and ~b! spectra at t5(0,1,9). The evolution is qualitatively similar to that on the plane.
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but due to the initial peak location, which we now address.

Figure 7~b! shows the effect of varying n05$2,3,7,14%
with fixed (p ,n2p,g)5(2,1.031028,20). As can be seen

from Fig. 1~b!, the variations in n0 correspond to energy and

enstrophy being primarily contained in large (n052) or

small (n0514) scales. It is clear from Fig. 7~b! that, depend-

ing on n0 , two distinct behaviors occur at the late stage ~as

defined above!; the vortex-size distributions are also corre-

spondingly different. For n05$7,14% the inertial range is

‘‘kinked’’ upward, which is qualitatively similar to that re-

ported by Yoden and Yamada,9 while for n052 the kink is

downward, similar to observations reported by Santangelo

et al.5 and Dritschel.10 The n053 case exhibits the ‘‘cross-

over’’ between the two types of behaviors; it is similar to the

spectra in McWilliams1 and Benzi et al.4 Hence, there exists

a clear monotonic relationship between n0 and the kink di-

rection.

From our study of the influence of initial spectra, several

new conclusions can be drawn. First, at the current resolu-

tion, the spectral evolution is much more sensitive to the

FIG. 3. Vortical quadrupole final-state configuration on a nonrotating (R→`) sphere, a direct consequence of angular momentum conservation. In this run,

t51 corresponds to approximately four vortex turnaround times. Solid ~dashed! contours depict positive ~negative! vorticity values.
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initially most-energetic scale than to the spectral bandwidth.

Since the question of time scale is ruled out by comparing

the runs at the ‘‘well-decayed’’ phases of the evolution ~i.e.,

when all the runs are well into the flat region of enstropy

decay and the coherent structures have existed for many

turnaround times!, dissipation characteristics must play a sig-

nificant role here. Second, the isolation of sensitivity to n0

also suggests that the variety of previous results concerning

the inertial range slope can be qualitatively understood in

terms of the initial peak-energy scale used by the different

investigations. And, third, the study also suggests that, in

forced studies some of these sensitive, ‘‘free’’ features may

be obscured or overwhelmed by the prescribed forcing, and

that those studies might benefit from additional sensitivity

tests, supplementing the works of Refs. 13 and 33.

In summary, our exploration of the simulation conditions

leads us to conclude that while the general qualitative behav-

ior ~i.e., the emergence of long-lived coherent structures! is

robust, many quantitative aspects such as the slope of the

inertial range spectra and the population statistics of vortices

and filaments in the flow are severely affected by the choice

of dissipation and of the initial spectrum. Hence, our work

suggests that the recent findings of self-similar

universality34,4 might be put on firmer ground in a series of

calculations such as the one presented here, showing the ro-

bustness of that result to a variety of simulation conditions.

On the other hand, the high sensitivity to simulation condi-

tions and the well-known inadequacy of a purely spectral

FIG. 4. Spectra at an early time, t51, for runs A1–A4 ~cf. Table II!, for

which p5$1,2,4,8%, respectively. The inertial range is broader and less steep

with higher powered dissipation. The corresponding physical space picture

is shown in Fig. 5.

TABLE II. The p variation: n057, g520, and T170 resolution. Here p is

the power of the hyperdissipation operator, n is the viscosity coefficient,

x(1) is the inertial range slope at t51, E is the energy, and P is the

palinstrophy.

Run p n2p x(1) E~1!/E~0! P ~1!/P ~0!

A1 1 2.03 1024
24.060.1 0.768 0.254

A2 2 1.03 1028
23.860.1 0.799 0.899

A3 4 3.0310217
23.660.1 0.950 1.76

A4 8 3.0310235
23.360.1 0.997 2.64

FIG. 5. The vorticity field in cylindrical-equidistant projection for runs

A1–A4 @panels ~a!–~d!, respectively# at t51. Solid ~dashed! contours de-

pict positive ~negative! vorticity. The higher-powered dissipation admits

larger quantity of space-filling filamentary structures.
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description of turbulence lend support to the recent attempts

to emphasize physical space diagnostics6,7,10 and justify our

own emphasis on the robust physical space features to which

we now turn our attention.

IV. ROTATION EFFECTS

In this section, we move one step closer toward a geo-

physically realistic situation by introducing rotation into the

purely 2-D system described by Eq. ~12!. The rotating, non-

divergent spherical system ~cf. Table I! with numerical dis-

sipation is governed by the nondimensional dynamical equa-

tion:

] tz1J$c ,z%1R21 ]lc5~21 !p11n2p Dpz , ~14!

which we directly integrate in the runs described in this sec-

tion; here, the curvature a/L is fixed and hence ignored. It is

worth recalling that this equation is the fundamental state-

ment of the material conservation of potential vorticity,

q[za ~recall that h is constant in this model! in the inviscid

limit. Note also that the rotating sphere offers one important

additional level of realism absent from the more

TABLE III. The R variation: n057, g520, p54, n853.0310217, and T85

resolution. Here R is the Rossby number, x(t) is the inertial range slopes at

time t , nb is the equatorial b based Rhines scale, and n̄ is the energy

centroid.

Run R x(1) x(3) x(9) x(23) nb n¯(1) n¯(9) n¯(23)

B1 ` 23.6 23.9 24.9 24.9 ••• 7.9 4.3 3.4
B2 0.400 23.7 23.7 23.6 24.0 1.8 7.9 3.8 2.6
B3 0.200 23.8 23.5 23.7 24.0 2.5 7.9 3.4 2.6
B4 0.100 23.8 23.6 23.9 24.0 3.5 8.2 4.1 3.0
B5 0.025 23.8 24.1 24.5 25.3 7.0 9.2 5.9 5.2
B6 0.010 24.6 24.1 24.4 25.5 11. 10.1 6.3 5.8

FIG. 6. The vorticity field for runs A1~a! and A4~b! at t59 in orthographic

projections. The contour levels are reduced in ~a! to reflect the greater loss

in energy. The large difference of vortex population in the two cases is due

to dissipation.

FIG. 7. Initial condition variations: spectra at t59 for ~a!
g5$6,12,20,40,60% and ~b! n05$2,3,7,14%. Long time evolution is not very

sensitive to g, but n052 and n05(7,14) leads to distinctive differences with

‘‘kinks’’ in the opposite direction. Here n053 exhibits the ‘‘cross-over’’

between the two behaviors.
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commonly used b plane; namely, the b ~not only f ! varies

with latitude from the equator to the pole. This leads to in-

teresting differences in the behavior between polar and equa-

torial regions, as discussed below.

The b-plane turbulence in a doubly periodic planar do-

main has been extensively studied.11,13,14 The constant pa-

rameter, b, absent in the nonrotating case, defines a new

length scale, called the Rhines scale Lb [ pA2U/b , at which

the inverse energy cascade is strongly retarded by the anisot-

ropy of the system—preventing the growth of vortices in the

meridional direction.11 Thus, when forced, a steady, alternat-

ing field of elongated, zonal structures and jets is produced in

b-plane turbulence. This mechanism has been proposed by

Williams15 as a possible explanation for the observed, alter-

nating zonal jet patterns in the atmosphere of Jupiter.

In non-Cartesian geometry, freely evolving b-plane tur-

bulent flow has been studied by Marcus35 in annular geom-

etry, and the first high resolution ~T85! spherical simulations

have recently been performed by Yoden and Yamada.9 Start-

ing with initial conditions containing spatial symmetries and

a spectrum, E(n ,0)}n5e2n/2, Yoden and Yamada have

found considerable differences with their and earlier, b-plane

simulations. When V50, they detected a kinked inertial

range with x;23 for n<10 and x;25 for n.10. Also,

when V was increased, they observed the flow field to be

anisotropic ~as in the plane! and reported the formation of an

anticyclonic ~westward! circumpolar vortex at high V.

In this paper, we extend their results in three ways: long-

time integrations are performed, no initial spatial symmetry

is imposed, and more than one initial spectrum is considered.

FIG. 8. Typical potential vorticity evolution under slow rotation (R;1) in the limit of LD→`: run B3 of Table III in ~a! orthographic projection centered

at ~longitude, latitude!5~0,0!, with positive ~negative! values in red ~blue!, and ~b! polar-stereographic projection at the North Pole. Here, t51 corresponds

to 2 rotations of the sphere, and Lb/a51.
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Table III lists one series of runs used for discussion in this

section. The values of (p ,n2p,n0 ,g)5(4,3.0310217,7,20)

are fixed in these runs and only V, or alternatively the

Rossby number R , is varied. The listed runs ~at T85 resolu-

tion! are chosen for their initial spectrum, which is sharply

peaked about a scale smaller than Lb , allowing the flow field

to undergo a significant amount of spectral broadening and

inverse cascade.36 In all the runs, long-time integrations were

carried out until flat enstrophy decay behavior was observed.

We start by mentioning briefly some results regarding long-

time evolution of the spectrum before presenting in detail the

physical evolution and how it is affected by rotation.

The first result to report is that, as rotation increases, the

inertial range slope at early times becomes steeper @see the

x(1) column in Table III#. This monotonic behavior of the

slope x with V for short integration time was previously

reported by Yoden and Yamada9 and is due to the retardation

of inverse cascade by the b effect. However, as can be seen

from the slopes at later times ~cf. Table III!, that behavior is

not robust.

The energy centroid,

n¯~ t ![
(

n51

n t nE~n ,t !

(
n51

n t E~n ,t !
, ~15!

with n̄(0)511.9 ~corresponding to n057! is tabulated for

several times in Table III; it provides a quantifying measure

of the inverse energy cascade arrest. At the early stages, the

inverse cascade is indeed retarded to a greater extent by a

FIG. 8. ~Continued.!
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larger V ~smaller R!, leading to steeper spectra as in Ref. 9

@cf. the n̄ (1) column in Table III#. However, this monotonic

behavior with V is destroyed at later times when the flow

field contains highly intermittent vortical structures @cf. the

n̄ (9) and n̄ (23) columns in Table III#. The vorticity kurtosis,

Kuz(t)[^z4&/^z2&2 ~used to quantify the intermittency!, at

t59 for run B1 is 18, approximately three times larger than

for the rest of the runs. On the other hand, we have found

that the monotonic behavior can be sustained for longer pe-

riods, using an initial spectrum with larger n0 . It should be

clear at this point that many spectral behaviors are possible;

and, the result again points to the danger of making quanti-

tative comparisons of spectral slopes, be they against other

spherical results or against planar results, especially if only a

single simulation condition is considered.

The general physical space behavior, fortunately, can be

considerably more robust. That is, from our many simula-

tions, we have found that the resolution and n0 variations do

not qualitatively affect the features discussed below. The key

physical results of this section is that the rotation V produces

two qualitatively different physical behaviors: one ~at small

V! in which there is a substantial latitudinal motion by the

growing vortices, and the other ~at large V! in which struc-

tures are initially latitudinally confined but quickly give way

FIG. 9. Typical potential vorticity evolution under rapid rotation ~R!1 and LD→`!: run B5 of Table III. The views are as in Fig. 8. The Lb scale is shown

in the last frame in ~b!. Notice the formation of the anticyclonic, circumpolar vortex. Here, t51 corresponds to 16 rotations of the sphere, and Lb/a50.3.

1541Phys. Fluids, Vol. 8, No. 6, June 1996 J. Y-K. Cho and L. M. Polvani
 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.59.154.119 On: Thu, 07 Nov 2013 15:38:12



to a field dominated by a pair of circumpolar vortices. We

now give an illustration of each of these two behaviors.

First, Fig. 8 shows an orthographic ~a! and a polar-

stereographic ~b! view of the potential vorticity evolution in

a typical ‘‘low-rotation’’ (R;1) case, specifically run B3 in

Table III; in this figure, t51 corresponds to approximately 2

rotations of the sphere and Lb/a51, where the equatorial

value of b has been used since the value of b is variable. In

this case, the effect of spatially varying b on the sphere can

be clearly seen. In the early stages, the latitudinal variation of

b separates the field, roughly speaking, into two dynamical

regions @see, for example, the t55 frame of Fig. 8~a!#: a

low-latitude region populated with mostly elongated struc-

tures and large-scale waves and a high-latitude region con-

taining well-defined coherent vortices undergoing continuous

mergers in the poleward direction; the mergers are clearly

seen in the polar view of Fig. 8~b!. These figures highlight

the fact that the rotating sphere is really a composite envi-

ronment, b-plane-like at low latitudes and f -plane-like near

the poles, and exhibits a much more complex physical space

behavior than the simpler b plane.

Furthermore, Fig. 8~a! clearly illustrates the long-time

relaxation of q toward a geostrophic, solid-body rotation

state.37 Notice how, starting from a field containing both

positive ~red! and negative ~blue! values of q in both hemi-

spheres at t50, the flow clearly separates via self-

organization into a northern hemisphere containing strictly

positive values of q and a southern hemisphere containing

FIG. 9. ~Continued.!

1542 Phys. Fluids, Vol. 8, No. 6, June 1996 J. Y-K. Cho and L. M. Polvani
 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.59.154.119 On: Thu, 07 Nov 2013 15:38:12



only negative values of q at t58. We note that the relaxation

is not due to dissipation, since only 4% of the initial energy

is lost at the end of the run and is mainly due to the inversely

cascading turbulent evolution. To the best of our knowledge,

this type of evolution of q toward f from random initial

conditions has not been demonstrated in previous

simulations.38

Second, Figs. 9~a! and 9~b! illustrate a typical ‘‘high-

rotation’’ (R!1) case, specifically run B5 in Table III. In

this example, t51 corresponds to approximately 16 rotations

of the sphere and Lb/a50.3. The distinctive behavior at high

rotation is the formation of anticyclonic circumpolar vorti-

ces, as previously reported by Yoden and Yamada.9 In our

computations, in which no initial spatial symmetries have

been used, we have found that polar vortices generally form

at both poles—as might be expected. Moreover, when the

polar vortices, bounded by large q gradients, are fully

formed, q is well homogenized in their interiors—but not

elsewhere ~see the last three frames of Fig. 9!, a feature not

obvious in Ref. 9 since the c field is plotted rather than the q

field ~see Fig. 7 in Ref. 9!.
Unlike in the forced planar cases,11,13 zonal jet structures

are not particularly well defined in our rotating, nondivergent

decaying experiments. This is due to a combination of the

spatially varying b, the anisotropic energy arrest in spectral

space, and the decaying nature of unforced evolution. It

would seem that steady jets in the pure 2-D case require a

continuous supply of enstrophy for sustenance. Table III also

shows that, at the stage when the inverse cascade has nearly

halted (t523), n̄,nb at high rotation rates, as was found in

the forced b-plane experiments of Vallis and Maltrud.14

Therefore, although the meridional alternations do generally

increase in number for greater values of V initially @see the

n¯(23) column of Table III#, the Rhines scale Lb does not

appear in this case to be a viable measure of the number of

bands on the sphere, and ultimately not even in a qualitative

sense, since the jets do not last. This is particularly clear in

physical space, where the initially large number of alterna-

tions quickly gives way to a field dominated by strong polar

vortices, and the q contours are nearly uniform in the me-

ridional direction ~cf. Fig. 9!. In this situation, jets are barely

present and difficult to detect, except at the edges of the

polar vortices.

Finally, in our series of many nondivergent runs under

varying rotating conditions, no asymmetry between cyclonic

and anticyclonic39 vorticity is observed. The cyclone/

anticyclone asymmetry can be quantified and tracked via the

skewness of the vorticity field, defined by

Skz~ t ![
^z3&

^z2&3/2 . ~16!

Figure 10~a! shows the vorticity skewness time series for run

B4 in Table III, a typical high rotation case. The small non-

zero values are due to the numerical discretization. A com-

plimentary quantity, confirming the absence of vorticity

asymmetry in these nondivergent rotating cases, is the corre-

sponding vorticity pdf, shown in Fig. 10~b! for t54. Note

the approximately equal areas in the left and right wings,

corroborating the zero skewness. Therefore, our computa-

tions provide evidence that the b effect alone is clearly not

sufficient to explain the predominance of anticyclonic vorti-

ces in the atmospheres of the giant planets.40 It is through the

addition of one further physical complexity, specifically the

presence of free surface, that asymmetry between cyclones

and anticyclones is found to appear. The effects of a free

surface is the subject of the next section.

V. DEFORMATION RADIUS EFFECTS

In this section, we further increase the physical complex-

ity by considering a rotating fluid bounded by a free surface;

this allows for horizontal divergence of the velocity field and

hence vortex-tube stretching in the flow. For this, the full set

of shallow-water equations ~SWE! must be used. The spheri-

cal SWE in nondimensional vorticity-divergence form, as

they are used in the numerical integration procedure, are

FIG. 10. Absence of cyclone/anticyclone asymmetry in the nondivergent,

rotating case: ~a! the vorticity skewness time series for run B4 of Table III

and ~b! the pdf of the vorticity field at t54.
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] tza52

1

ã~12m2!
]l~Ũza!2

1

ã
]m~ Ṽza!1D̂z , ~17!

] td5

1

ã~12m2!
]l~ Ṽza!2

1

ã
]m~Ũza!

2DS F22~11h8!1

Ũ2
1Ṽ2

2~12m2!
D 1D̂d , ~18!

] th852

1

ã~12m2!
]l@Ũ~11h8!#2

1

ã
]m@ Ṽ~11h8!#

2d1D̂h8, ~19!

where

za[
1

ã~12m2!
]lṼ2

1

ã
]mŨ1R21m , ~20!

d[
1

ã~12m2!
]lŨ1

1

ã
]mṼ , ~21!

FIG. 11. Typical potential vorticity evolution of a run with finite deformation radius (LD/a50.03) in ~a! orthographic and ~b! polar-stereographic views. The

field does not condense into a polar vortex and bands are formed. Here, t51 corresponds to approximately 20 rotations of the sphere and Lb/a50.3. The Lb

scale is shown in the last frame of ~b!; the LD scale is too small to be shown.
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and h8 are the three prognostic variables, representing abso-

lute vorticity, velocity divergence, and surface deviation, re-

spectively, and

Ũ[u8A12m2,

V˜[v8A12m2,

with m[sin q and ã[a/L . Here D̂ is the hyperdissipation

operator, (21)p11n2pDp. We remind the reader that the po-

tential vorticity, q , is now equal to za/h .

Whereas in the previous section the only physical length

scale in the problem was Lb , the presence of a free surface

introduces here a new important length scale in the physical

system, LD 5 AgH/2V . The nondivergent systems we have

considered in the previous two sections correspond to the

limit LD→` , whereas it is finite in this system.

In the asymptotic limit of R!1 and F!1, where the

SWE reduce to the so-called ‘‘equivalent barotropic’’ equa-

tions on the f plane, the effect of a finite LD on the vorticity

dynamics of a shallow rotating fluid have been studied in

some detail.41–43 In this case, it is well known that the vortex

interaction decays exponentially with separation over an

e-folding scale comparable to LD , in contrast with the non-

divergent case where the interaction is long range and loga-

rithmic. The shorter range implies that when vortices are of a

size that is large compared to LD they are less coherent since

one side of the vortex does not ‘‘see’’ the other side; hence,

FIG. 11. ~Continued.!
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for L@LD vortices are found to be ‘‘blobby’’ and

nonaxisymmetric.41–43

As for the full SWE ~i.e., in nonasymptotic parameter

regimes!, the evolution of coherent structures has only re-

cently been studied in doubly periodic, planar geometry.17–19

The key results are that the emergence and the eventual size

of coherent structures are strongly influenced by the value of

the deformation radius ~in our case, LD provides a second,

apparently crucial, inverse-cascade arrest mechanism!. Fur-

thermore, when the free surface variations are not small com-

pared to the mean thickness of the fluid layer @i.e., h85O ~1!
such that RB21>0.1360.04# a strong asymmetry develops

between cyclonic and anticyclonic vortices, favoring the

latter.19

Since the full SWE admit gravity waves, it is necessary

to initialize the flow with a balancing procedure.44 In this

work, a bounded derivative method45 has been used to bal-

ance the initial condition. The bounded derivative method is

based on the observation that a solution of the scaled equa-

tions with a time scale of O ~1! must have a sequence of time

derivatives of the dependent variables, also of O ~1!. Thus,

terms in SWE that contribute to large time derivatives are

identified by performing a scaling analysis and are con-

strained to be on the same order as the slower, Rossby wave

time scale. In theory, the higher the order of the constrained

time derivative, the smoother the temporal evolution of the

flow. In practice, we have found a second-order time and

first-order (R) bound to be adequate for this study.

We start by illustrating the key result of this section in

Fig. 11: in the presence of a finite deformation radius, the

potential vorticity does not condense into a polar vortex but

takes the form of banded zonal structures—even when V is

large. Contrast the evolution in Figs. 11~a! and 11~b! with the

corresponding nondivergent case in Fig. 9. The runs in both

figures have Lb/a50.3; however, in Fig. 11 LD/a50.03,

whereas it is infinity in Fig. 9. The formation of banded

FIG. 12. The zonally averaged, zonal velocity in units of characteristic velocity as a function of latitude for several rotation rates: ~a! the common initial

profile and ~b!–~d! the long-time, steady profiles for runs with R5(1.5,0.15,0.015), respectively. All other parameters are identical:

(p ,n2p,n0 ,g)5(3,4.0310210,7,18). The number of jets increase with V, as R becomes small.
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structures leading to robust zonal jets is a general behavior

that we have found common to all the runs, with LD/a,
1
3 in

our many simulations. For larger values of LD/a , the effect

of the free surface is negligible and the evolution resembles

the nondivergent or nonrotating cases of the previous sec-

tions; we have spanned the values of LD/a from 0.01 to 725.

Notice further how, when LD is finite, the zonal struc-

tures are somewhat spiraling out of the pole and are made of

regions of steep gradients separating well-homogenized

bands of potential vorticity @see, for instance, frame t58 in

Fig. 11~b!#. The polar regions, of course, behave more like

an f plane, and hence vortices are not sheared away by the b
effect; at the same time, note how the unsheared vortices do

not condense into a polar vortex, owing to the small LD

halting the inverse cascade. It is well worth emphasizing here

that the evolution of the flow is completely unforced; to the

best of our knowledge, all previous studies that have pro-

duced steady banded structures have done so under forced

conditions.15,13,14 We are demonstrating here for the first

time that a freely evolving flow spontaneously self-organizes

into such banded structures, provided the deformation radius

is finite and the rotation is high.

The second result is a direct consequence of the fact that

a finite deformation radius yields banded potential vorticity

structures: one can directly observe in physical space how

the number of robust jets ~the bunching of q contours! in-

creases as the rotation rate is increased—even after a long

time. In Fig. 12 we demonstrate this by plotting zonally av-

eraged zonal velocity [ ū[1/2p*0
2pu(l ,q)dl] profiles. Fig-

ure 12~a! is the common, random initial condition, while

Figs. 12~b!–12~d! show the zonal profiles at long times for

three different value of Rossby numbers, R51.5, 0.15, and

0.015, respectively. After t523, the profiles are perfectly

steady for all three cases. It is also clear that, in our simula-

tions with well-resolved and well-separated Lb and LD

scales, the former scale controls the jet scale and no second-

ary spectral peak in the vicinity of the latter scale is ob-

served.

Although the number of zonal jets clearly increases with

rotation rate, as predicted by Rhines,11 again we have been

unable to quantitatively use the Rhine scale as a predictor of

that number, showing that this behavior is not a result of

forcing. In Fig. 12, the rough expected number of bands

using the Rhines scale (pa/Lb) is 1, 4, and 12 in panels ~b!,

~c!, and ~d!, respectively. As in Ref. 14, we suspect the spa-

tial variation of b to play an important role in moderating the

number of bands and jets. We also point out that, unlike in

the forced b-plane simulations, our spontaneously formed

bands on the sphere are not perfectly zonal; they spiral at

high latitudes. Therefore, the zonal averaging procedure de-

stroys some of the ~banded! features, which are otherwise

more obvious in the full physical field ~cf. Fig. 11!.
A third interesting result can be obtained by varying the

mean thickness, H ~hence the LD!, at a fixed rotation rate.

This is illustrated in Fig. 13, where the zonally averaged

velocities at t532 for four runs with

LD/a5(0.30,0.18,0.12,0.08) are shown; all other parameters

are fixed. The point here is that a decreasing deformation

radius yields an increasing equatorial jet; or, equivalently,

the zonal winds decay with increasing H . In all our many

SWE simulations, the preferred direction of the intensifica-

tion is westward, and we believe this to be a general, distin-

guishing feature of freely evolving shallow-water systems.

The fact that a number of equatorial jets in planetary atmo-

spheres are in fact eastward, points to the conclusion that

physics beyond the freely evolving shallow-water model is

necessary to explain the direction of the equatorial jet.

Finally, the presence of a free surface in the runs dis-

cussed in this section allows for a clear symmetry breaking

in the populations of cyclones and anticyclones. In the pre-

vious section we have shown that b alone is not sufficient to

produce an asymmetric evolution. In fact, it is not even nec-

essary since the asymmetry has been observed on the f

plane.19,46

Figure 14 clearly illustrates the cyclone/anticyclone

asymmetry. Shown is the relative vorticity field in the north-

ern hemisphere in polar-stereographic projection for a run

with (p ,n2p,n0 ,g)5(3,5.031029,14,18), for which

LD/a50.02 and Lb/a50.3. The cyclonic vorticity is in red

and the anticyclonic vorticity is in blue. Note the predomi-

nance ~especially at low latitudes! and the coherence ~near

the pole! of blue structures as the evolution proceeds; finer

temporal resolution of the early stage of evolution shows that

anticyclones are able to merge more efficiently, leading to

the dominance at late times in a fashion similar to the planar

behavior.19 The anticyclones, which are associated with local

elevations of the fluid, correspond to greater effective local

value of LD , thereby interacting and merging more effi-

ciently with other like-signed vortices; in this way, anticy-

clones are able to more prominently assert themselves than

their cyclonic counterparts.

In Fig. 15 we present the measures of asymmetry corre-

sponding to the run in Fig. 14. Both the skewness and the pdf

of vorticity field show a marked asymmetry toward anticy-

clonic vorticity. Figure 15 should be contrasted with the cor-

FIG. 13. The zonal velocity profiles as in Fig. 12 for several values of H

with fixed V: the LD/a values are shown in the legend. All other parameters

are identical: (p ,n2p,n0 ,g)5(3,4.0310210,7,18). As H decreases, or as LD

decreases, the equatorial jet intensifies.
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responding measure given in Fig. 10 for the case where the

deformation radius approaches infinity.

From the large number of simulations, we have identi-

fied the region in (R ,F) space, where the evolution proceeds

asymmetrically. This is shown in Fig. 16, which summarizes

all the shallow-water parameter values we have explored.

The marks indicate initial parameter values; the ‘‘asymmet-

ric run’’ is marked with an ‘‘x,’’ and the ‘‘symmetric run’’

with a box. The asymmetry was determined by computing

the vorticity skewness and the pdfs of the vorticity field. As

can be seen, our runs suggest two features: ~1! the relevant

‘‘asymmetry parameter’’ is the combination, RB21
5F2R21

~the B51 line, shown as a dotted line, is also drawn for

further justification of this point and is clearly not the appro-

priate parameter of demarcation!; and ~2! an initial value of

RB21>0.1360.04 leads to cyclone–anticyclone symmetry

breaking; the RB21
50.13 line in (R ,F) space is shown

dashed in the figure. Note that physically the parameter

RB21 corresponds to the deviation from the average height

and is a measure of the ageostrophy. It is interesting to note

that an h85O (RB21) value of 0.13 is sufficient to see a

FIG. 14. The relative vorticity field in polar-stereographic projection at the North Pole. Notice the appearance of cyclone/anticyclone asymmetry: cyclonic

vorticity ~red! and anticyclonic vorticity ~blue! for a run with Lb/a50.3 and LD/a50.02.
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clear asymmetry, since this value does not correspond to a

large surface height variation.

In summary, we have presented a careful study of pa-

rameter effects on the turbulent evolution by systematically

adding complexity, beginning from the simplest possible

situation. The fact that the inclusion of a finite LD produces

zonally banded homogenized regions of potential vorticity

and favors anticyclonic vortices suggest that the dynamics at

play in this ultimately very simple model ~no vertical struc-

ture, no thermodynamics, no forcing! may be of relevance to

the atmospheres of the giant planets. We therefore conclude

this survey, with a specific application to the atmosphere of

Jupiter.

VI. A SIMULATION WITH JOVIAN PARAMETERS

A number of authors have suggested that the zonal jets

of the Jovian atmosphere can be understood, at least qualita-

tively, as the consequence of the nonlinear dynamics of a

thin spherical shell of rotating fluid. The reader may consult

the recent reviews of Rhines37 and Yano47 for more details.

However, to the best of our knowledge, all previous

work along these lines has been done with forced systems

and is hence liable to the criticism that the bands may be a

direct product of a somewhat artificial forcing. Without de-

nying the potentially important role of forcing, here we take

a different angle of attack, along the lines of Ockham’s fa-

mous razor. That is, we are interested in answering the ques-

tion: how much of the observed behavior can we capture

with a simpler unforced model? We believe an answer to this

question will clearly discriminate between those features that

are a robust spontaneous characteristic of the free dynamics

and those that may be directly dependent on the currently

unknown forcing.

As a specific application, results from a T170 resolution

simulation with Jupiter parameters ~a57.153107 m,

V51.7631024 s21, g522.9 m/s2, and H52.03104 m! are

presented in Figs. 17 and 18. In the figures, a dimensional

time unit of the Jupiter day is used. The dissipation and

initial conditions for this run are

(p ,n2p,n0 ,g)5(3,1.0310212,14,18) and do not qualita-

tively affect the results, provided that the initial scale is small

enough to allow a reasonable inverse cascade. The value of

AgH is based on observations from Voyager encounters48

and follows the shallow-water simulations of Dowling and

Ingersoll49 in a channel geometry, leading to LD;23106 m.

Figure 17 shows q contours of this run for a long-time

integration in orthographic ~a! and polar-stereographic ~b!
projections. Many realistic features are seen: ~1! there are

clear banded regions of homogenized q , bounded in latitude

by regions of high q gradients ~notice the multiple bunching

of q contours!; ~2! there is a large amount of eddy activity

accompanying the jets—the animations clearly show many

stable anticyclones that are ‘‘rolling with the winds,’’ even at

FIG. 15. The vorticity skewness time series for the run in Fig. 14~a! and the

pdf of the vorticity field for the same run at t510 ~b!. Compare with Fig. 10

for the case in which LD→`; skewness is negative, showing the dominance

of anticyclonicity.

FIG. 16. The (R ,F) space: asymmetric runs ~x’s! and symmetric runs

~boxes!. Solid lines demarcate valid region ~to their left! for shallow-water

system; B51 line ~dotted! and RB21
50.13 line ~dashed! are also shown.
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low latitudes; ~3! while most of the cyclones are sheared out,

anticyclones clearly persist and are much more prevailing ~as

indicated by the skewness of 21.460.1 in Fig. 18!; ~4! there

is a wavy structure with high azimuthal wave number

straddled by vortices at high latitude, including vortex pairs

~cf. t5120 and t5140 in Fig. 17!; and ~5! the number and

magnitude of the jets, including a strong equatorial compo-

nent, are in rough agreement with the observations.

Figure 18~a! shows the zonal jets corresponding to the

run in Fig. 17; the zonal wind profile can be contrasted with

those presented in the previous section with smaller radius

and rotation rate ~cf. Figs. 12 and 13!. Figure 18~b!, showing

the vorticity skewness, verifies the preponderance of anticy-

clones over cyclones.

The main discrepancy between the observed Jovian flow

and the results of this simulation is that the equatorial jet is

westward in our simulation, whereas on Jupiter it is east-

ward. Since the westward direction of the equatorial jet is a

very robust feature in our shallow-water simulation ~i.e., we

have been unable to find parameter regimes where the equa-

torial jet is robustly eastward!, we are forced to conclude that

the eastward direction of the Jovian equatorial jet must be

due to yet unknown physics that is beyond our simple, freely

evolving, one-layer shallow-water model, at least at the cur-

FIG. 17. A simulation with standard Jupiter parameters: a57.23107 m, V51.831024 s21, and LD523106 m. Here, positive ~negative! potential vorticity

contours are in full ~dashed! lines in ~a! orthographic and ~b! polar-stereographic views. Here, t51 corresponds to 1 Jupiter day.
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rent resolution. However, it is interesting to note that the

equatorial jets on Uranus and Neptune are westward.50 A

careful comparison of jet formation for all four Jovian giant

planets will be reported elsewhere.

VII. CONCLUSION

Three main features characterize the present work: ~1!
we have performed our work on a full spherical domain, with

a free surface, since the spherical geometry and the presence

of finite deformation radius are important to geophysical

~and possibly astrophysical! applications; ~2! we have pre-

sented high-resolution, long-duration, unforced simulations

without initially imposing symmetry, allowing the system to

evolve freely according to its own dynamics through all

stages of its development; and ~3! we have systematically

varied only one parameter in a series of runs ~totaling over

200! for a careful characterization of each parameter’s influ-

ence on the evolution.

As a result, a number of phenomena previously not well

emphasized or observed have been demonstrated. First, the

spectral evolution was shown to be highly dependent on the

initial conditions, with very sensitive behavior attributed to

the initially most-energetic scale, as well as to the choice of

dissipation. Also, in the absence of rotation and in the limit

of infinite deformation radius LD , the end state was found to

be in a vortical quadrupole configuration.

Second, in the presence of rotation, vortices undergo

continuous inelastic interactions ~i.e., various degrees of

mergers and straining!51 in the poleward direction—evolving

finally toward a solid-body rotation end-state. At low rota-

tion rates, some zonal jets form, but are not steady, since

vortical structures are not well confined in the meridional

direction. At high rotation rates ~and LD→`!, the evolution

is dominated by a somewhat surprising circumpolar vortices.

This last result independently confirms the earlier calculation

of Yoden and Yamada9 over a much broader range of simu-

lation conditions.

Third, the addition of a free surface ~and thus of a finite

LD! leads to a number of new and interesting behaviors. A

finite LD provides a second inverse cascade arrest mecha-

nism, and is responsible for the absence of polar vortices in

spherical shallow-water turbulence, even at high rotation

rates. Furthermore, a finite value of LD leads to the forma-

tion of robust, zonally elongated structures with a jet profile

containing an intensifying, westward, equatorial

component—increasing as LD is decreased.

In addition, we find that, as in the planar case, anticy-

clonic vortices are favored over cyclonic ones and that the

asymmetry appears to be controlled by the parameter RB21.

Although b is not required for asymmetry, it does seem to

enhance the asymmetry, in that anticyclones are always the

preferred vortical structures in the equatorial regions, where

the value of b is large.

Finally, we have performed a detailed simulation with

Jovian parameters. While it is clear that many of the key

qualitative features of Jupiter’s atmosphere can be captured

by a free-evolving shallow-water system, at least one serious

qualitative discrepancy has clearly emerged, namely the di-

rection of equatorial winds. We hope future studies will shed

new light on this matter.
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FIG. 18. Key features of Jupiter’s atmosphere captured by our simple

model: ~a! a large number of jets in the zonal wind profile and ~b! a pre-

ponderance of stable anticyclones. The equatorial jet is westward, however,

in marked contrast with observations.

1551Phys. Fluids, Vol. 8, No. 6, June 1996 J. Y-K. Cho and L. M. Polvani
 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.59.154.119 On: Thu, 07 Nov 2013 15:38:12



1J. C. McWilliams, ‘‘The emergence of isolated coherent vortices in turbu-

lent flow,’’ J. Fluid Mech. 146, 21 ~1984!.
2S. Kida, ‘‘Numerical simulation of two-dimensional turbulence with high-

symmetry,’’ J. Phys. Soc. Jpn. 54, 2840 ~1985!.
3M. E. Brachet, M. Meneguzzi, and P. L. Sulem, ‘‘Small scale dynamics of

high Reynolds number two-dimensional turbulence,’’ Phys. Rev. Lett. 57,

683 ~1986!.
4R. Benzi, S. Patarnello, and P. Santangelo, ‘‘Self-similar coherent struc-

tures in two-dimensional decaying turbulence,’’ J. Phys. A Math. Gen. 21,

1221 ~1988!.
5P. Santangelo, R. Benzi, and B. Legras, ‘‘The generation of vortices in

high-resolution, two-dimensional decaying turbulence and the influence of

initial conditions on the breaking of self-similarity,’’ Phys. Fluids A 1,

1027 ~1989!.
6J. C. McWilliams, ‘‘The vortices of two-dimensional turbulence,’’ J. Fluid

Mech. 219, 361 ~1990!.
7R. Benzi, M. Briscolini, M. Colella, and P. Santangelo, ‘‘A simple point

vortex model for two-dimensional decaying turbulence,’’ Phys. Fluids A

4, 1036 ~1992!.
8C-M. Tang and S. Orszag, ‘‘Two-dimensional turbulence on the surface of

a sphere,’’ J. Fluid Mech. 87, 305 ~1978!.
9S. Yoden and M. Yamada, ‘‘A numerical experiment on two-dimensional

decaying turbulence on a rotating sphere,’’ J. Atmos. Sci. 50, 631 ~1993!.
10D. G. Dritschel, ‘‘The vortex property of two-dimensional turbulence,’’

Phys. Fluids A 5, 984 ~1993!.
11P. B. Rhines, ‘‘Waves and turbulence on the b-plane,’’ J. Fluid Mech. 69,

417 ~1975!.
12P. B. Rhines, ‘‘Geostrophic turbulence,’’ Annu. Rev. Fluid Mech. 11, 404

~1979!.
13M. E. Maltrud and G. K. Vallis, ‘‘Energy spectra and coherent structures

in forced two-dimensional and beta-plane turbulence,’’ J. Fluid Mech.

228, 321 ~1991!.
14G. K. Vallis and M. E. Maltrud, ‘‘Generation of mean flows and jets on a

beta plane and over topography,’’ J. Phys. Oceanogr. 23, 1346 ~1993!.
15G. P. Williams, ‘‘Planetary circulations: 1 barotropic representations of

Jovian and terrestrial turbulence,’’ J. Atmos. Sci. 35, 1399 ~1978!.
16C. Basdevant, B. Legras, R. Sadourny, and M. Beland, ‘‘A study of baro-

tropic model flows: Intermittency, waves and predictability,’’ J. Atmos.

Sci. 38, 2305 ~1981!.
17M. Farge and R. Sadourny, ‘‘Wave-vortex dynamics in rotating shallow

water,’’ J. Fluid Mech. 206, 433 ~1990!.
18M. A. Spall and J. C. McWilliams, ‘‘Rotational and gravitational influ-

ences on the degree of balance in the shallow water equations,’’ Geophys.

Astrophys. Fluid Dyn. 64, 1 ~1992!.
19L. M. Polvani, J. C. McWilliams, M. A. Spall, and R. Ford, ‘‘The coherent

structures of shallow-water turbulence: Deformation-radius effects,

cyclone/anticyclone asymmetry and gravity-wave generation,’’ Chaos 4,

177 ~1994!.
20Indeed, to the best of our knowledge, a detailed and comprehensive sen-

sitivity study in fully turbulent, decaying situations has never been per-

formed, particularly for the spherical geometry.
21J. Pedlosky, Geophysical Fluid Dynamics ~Springer-Verlag, Berlin, 1987!.
22B. Cushman-Roisin and B. Tang, ‘‘Geostrophic turbulence and emergence

of eddies beyond the radius of deformation,’’ J. Phys. Oceanogr. 20, 97

~1990!.
23The ^•& operator denotes a spatial average 1/4p*0

2p*
2p/2
p/2 ~•!cos q dq dl .

24J. J. Hack and R. Jakob, NCAR Technical Note NCAR/TN-3431STR,

1992.
25Computations were performed on a 16-processor CRAY-YMP/C90 with a

parallelized code.

26In the spherical geometry, the total wave number n plays the analogous

role of k in the planar geometry.
27G. J. Haltiner and R. T. Williams, Numerical Prediction and Dynamic

Meteorology ~Wiley, New York, 1980!.
28W. H. Matthaeus, W. T. Stribling, D. Martinez, S. Oughton, and D. Mont-

gomery, ‘‘Selective decay and coherent vortices in two-dimensional in-

compressible turbulence,’’ Phys. Rev. Lett. 66, 2731 ~1991!.
29A fiducial cut in spectral range is made for the slope determination using

a ‘‘best-fit’’ procedure on the compensated spectra; an average of the

slopes over three frames and three runs are taken. The precise values of

the slopes are sensitive to the range examined; however, the emphasis here

is on the trends.
30A. Mariotti, B. Legras, and D. G. Dritschel, ‘‘Vortex stripping and the

erosion of coherent structures in two-dimensional flows,’’ Phys. Fluids 6,

3954 ~1994!.
31H. B. Yao, N. J. Zabusky, and D. G. Dritschel, ‘‘High gradient phenomena

in two-dimensional vortex interactions,’’ Phys. Fluids 7, 539 ~1995!.
32In this case, the vortex size distribution is different at t50 due to the

difference in g.
33V. Borue, ‘‘Spectral exponents of enstrophy cascade in stationary two-

dimensional homogeneous turbulence,’’ Phys. Rev. Lett. 71, 3967 ~1993!.
34G. F. Carnevale, J. C. McWilliams, Y. Pomeau, J. B. Weiss, and W. R.

Young, ‘‘Evolution of vortex statistics in two-dimensional turbulence,’’

Phys. Rev. Lett. 66, 2735 ~1991!.
35P. S. Marcus, ‘‘Vortex dynamics in a shearing zonal flow,’’ J. Fluid Mech.

215, 393 ~1990!.
36The spectrum used in Ref. 9 is qualitatively similar to the one used here;

their spectral peak location corresponds to a slightly larger n0 .
37P. B. Rhines, ‘‘Jets,’’ Chaos 4, 313 ~1994!.
38This behavior is also observed in the full shallow-water cases.
39Recall that a vortex is cyclonic when its vorticity has the same sign as the

planetary rotation, and anticyclonic otherwise.
40M. V. Nezlin and E. N. Snezhkin, Rossby Vortices, Spiral Structures and

Solitons ~Springer-Verlag, Berlin, 1993!.
41L. M. Polvani, N. J. Zabusky, and G. R. Flierl, ‘‘Two-layer geostrophic

vortex dynamics. Part 1. Upper layer V-states and merger,’’ J. Fluid Mech.

205, 215 ~1989!.
42V. D. Larichev and J. C. McWilliams, ‘‘Weakly decaying turbulence in an

equivalent barotropic model,’’ Phys. Fluids A 3, 938 ~1991!.
43D. W. Waugh, Ph.D. thesis, Cambridge University, 1992.
44In the nondivergent cases initial balancing is not required, since gravity

waves are not present.
45G. Browning, A. Kasahara, and H-O. Kreiss, ‘‘Initialization of primitive

equations by the bounded derivative method,’’ J. Atmos. Sci. 37, 1424

~1980!.
46M. Arai and T. Yamagata, ‘‘Asymmetric evolution of eddies,’’ Chaos 4,

163 ~1994!.
47J.-I. Yano, ‘‘A critical review on the dynamics of Jovian atmospheres,’’

Chaos 4, 287 ~1994!.
48A. P. Ingersoll, ‘‘Atmospheric dynamics of the outer planets,’’ Science

248, 308 ~1990!.
49T. E. Dowling and A. P. Ingersoll, ‘‘Jupiter’s Great Red spot as a shallow

water system,’’ J. Atmos. Sci. 46, 3256 ~1989!.
50R. Beebe, ‘‘Characteristic zonal winds and long-lived vortices in the at-

mosphere of the outer planets,’’ Chaos 4, 113 ~1994!.
51D. G. Dritschel and D. W. Waugh, ‘‘Quantification of the inelastic inter-

action of two asymmetric vortices in two-dimensional vortex dynamics,’’

Phys. Fluids A 4, 1737 ~1992!.

1552 Phys. Fluids, Vol. 8, No. 6, June 1996 J. Y-K. Cho and L. M. Polvani
 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.59.154.119 On: Thu, 07 Nov 2013 15:38:12


