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Abstract

Purpose of Review Our goal is to provide an overview ofmachine learningmethods and artificial intelligence in digital pathology

image analysis. We also highlight novel visualization tools to interpret quantitative image-based pathomics data that is extracted

from whole slide images to describe diverse phenotypic characteristics of cancer in a spectrum of tissues.

Recent Findings Image analysis of tissues is based on the identification and classification of tissue, architectural elements, cells,

nuclei, and other histologic features. We report emerging digital pathology image analysis applications to study several types and

subtypes of cancer to complement traditional histopathologic evaluation.

Summary WSIs typically contain hundreds of thousands to millions of objects within a heterogeneous histologic landscape.

Therefore, Pathomics represents an incredibly powerful emerging approach to classify cellular interactions and signaling by

identifying relevant spatial relationships. The quantification of the intrinsic variability of different phenotypes and behavior in

cancer is useful in analyzing and predicting clinical outcomes and treatment response.

Keywords Pathomics . Deep learning image analysis .Whole slide imaging . Histopathology analytics

Introduction

In this report, we survey the history and role of machine learn-

ing and artificial intelligence in anatomic pathology along

with the tools and methods that are to visualize and manage

data generated by algorithms. Digital pathology utilizes com-

putational deep learning-based image analysis methods to ex-

tract embedded information in high-resolution whole-slide

images (WSIs) of tissue sections to obtain quantitative data.

We use the term Pathomics to embody the wide variety of data

that is captured from image analyses to generate quantitative

features to characterize the describe diverse phenotypic fea-

tures of tissue samples in WSIs. Image analysis of tissues is

based on the ability to (1) detect, (2) segment, (3) label, and (4)

classify regions of tissue in terms of architectural elements,

cells, nuclei, and other histologic features. Digital pathology

image analyses methods are being developed to study several

types and subtypes of cancer in order to correlate quantified

features with various phenotypic characteristics in order to

complement traditional histopathologic evaluation per-

formed by pathologists. The ultimate goal of these

higher order analyses is to combine pathomics with pa-

tient management, radiologic, laboratory testing, and ge-

nomic data to analyze and predict clinical outcomes and

treatment response.

Even though the digital pathology is gaining momentum

and becoming more widely adopted in clinical research, it is

currently still limited to single hospital deployments in the

USA due to the availability of one FDA-approved digital slide

scanner. Current clinical applications that utilize, WSIs in-

clude intradepartmental and outside consultation, improving

workflow by electronically transferring WSIs from the histol-

ogy laboratory to pathologists, displaying images for interdis-

ciplinary tumor boards, performing pathologic review for clin-

ical trials, archiving glass tissue slides, and teaching. As the
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technology becomes more available, the demand for readily

available digital pathology image analysis tools appears inev-

itable. Thus, there is a lot of active research and development

of image analysis tools combined with machine learning al-

gorithms that extract, calculate, and analyze a wide variety of

histopathologic features in an effort to improve diagnostic

evaluation of tissue samples and quantitatively characterize

the biological behavior of many different types of cancer.

Currently, there are large collections of digitized glass slides

that contain tissue sections that are stained with hematoxylin

and eosin (H&E) since pathologists routinely utilize H&E for

diagnostic examination.

WSIs typically contain hundreds of thousands to millions

of objects within a heterogeneous histologic landscape that

includes different types of structures, various types of cells,

cell morphologies, and spatial relationships that underlie cel-

lular interactions and signaling. Considerable research efforts

are being devoted to identify and quantify these histologic

features in tissue samples in order to further explore the intrin-

sic variability of the biological behavior of different pheno-

types across the spectrum of cancer in various anatomic sites.

Digital pathology can empower pathologists with the ability to

observe and quantitatively assess diagnostic features of cancer

during histopathologic examination by providing quantitative

data about different types of cells and tissue structures within

the context of enhanced measurements of the tumor and im-

proved delineation of the invasive border, calculated percent-

ages of the glandular or solid patterns of growth, counts and

distributions of different types of cells, calculated features of

nuclei like size, area, color, chromatin density, and mitotic

activity, and calculated percentage of necrosis across the en-

tirety of a WSI. Common examples of pathomics applications

include spatial characterization of tumor and stromal regions,

shapes and textures of nuclei, classifications of cell types,

quantitative characterization of lymphocytic infiltration, and

efforts to quantitatively estimate the number of cells that are

labeled with different kinds of biomarkers in immunohisto-

chemistry (IHC) testing.

Tissue-level, cellular-level, and nuclei-level histologic fea-

tures are evaluated and documented by pathologists in diag-

nostic reports for every case, after which, the slides are typi-

cally filed away in storage. With the advent of digital pathol-

ogy, these slides are immediately available for further exami-

nation and image analyses to quantify these kinds of features

in large-scale collections of WSIs to identify various types of

relationships and interactions between malignant and non-

tumor cells. In this scenario, pathomics can improve the ability

of pathologists to better predict biological behavior, clinical

outcomes, and guide treatment by comparing the features of a

particular WSI to their own collections of WSIs or to those

from other studies and clinical trials. Over the past 20 years,

the field of digital pathology has developed several types of

applications to provide valuable quantitative data in a variety

of correlative and prognostic studies. Thus, the ultimate goal

is to develop and implement deep learning pathomics tools to

provide real-time clinical decision support (CDS) that also

supports quality assurance and control (QA/QC) and actively

integrates various types of other data alongside routine histo-

pathologic examination of tissue sections on glass slides.

In addition, digital pathology image analysis methods are

being developed to utilize pathomics to explore tumor hetero-

geneity since varying degrees of disease progression, clinical

outcomes, and treatment response correspond to the range of

histologic features and genomic variability in different popu-

lations of tumor cells. Pathomics applications are also being

designed to teach trainees and help reduce pathologic inter-

pretation bias to improve diagnostic accuracy and reduce

intra- and inter-observer variability. Digital pathology,

pathomics, and machine-learning methods are positioned to

revolutionize our current level of knowledge about the various

types and subtypes of cancer by allowing pathologists to ex-

tract and incorporate tremendous amounts of data per WSI

compounded by the scale of the studies that can be performed

through the analyses of archived WSIs within and across in-

stitutions to discover features that have not been readily ap-

parent without these kinds of tools in smaller studies.

This report will focus on a description of traditional histo-

pathologic evaluation by pathologists, image analysis tasks

and machine learning, segmentation and classification, WSI

analytic systems, and data and metadata management.

The Role of Pathomics in Traditional
Histopathology

Surgical pathologists evaluate patterns of tumor growth and

tumor cell morphology in tissues from biopsies and surgical

resections in conjunction with ancillary laboratory testing and

radiology to classify tumor types and subtypes. Pathologists

comprehensively report diagnoses that identify tumor type

and subtype, size, location, invasive growth pattern, mitotic

rate, presence of tumor at surgical margins, and metastases to

provide insight into the biological behavior of different tumors

in order to guide patient management and select treatment.

However, there are countless nuances, semantics, and obser-

vation biases that are intrinsic to microscopic examination and

formulating diagnoses.

Traditional histopathologic evaluation of cancer is per-

formed at multiple scales of magnification and resolution in

order to categorically examine various kinds of complex phe-

notypic features, as shown in Fig. 1. These phenotypic fea-

tures are based on a wide variety of molecular events that lead

to the presence and progression of disease. Even though pa-

thologists examine the entirety of tissue samples, diagnosis,

prognosis, and patient management are based on the pheno-

typic features of the foci of cancer that appear the most
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aggressive. Pathologists examine (1) tumor cellularity, (2) ar-

chitectural distortion, (3) tumor growth pattern, (4) tumor-

associated stromal characteristics, (5) inflammatory re-

sponses, (6) presence or absence of necrosis, and (7) the inva-

sive border with respect to adjacent surrounding normal tis-

sues at low magnification (typically 20× to 40×).

Intermediate and high magnification (typically 100× to

400×) is used to examine (8) distribution of cell types; (9) cell

shapes; (10) relative cell sizes (compared with lymphocytes or

endothelial cells); (11) cytoplasmic appearance and features;

(12) distribution of the size of malignant nuclei; (13) nuclear

color; (14) shapes of malignant nuclei; (15) irregularity and

contour of the nuclear membrane; (16) chromatin texture, den-

sity, and color; (17) presence of nucleoli; and (18) mitotic

activity.

Pathologists typically calibrate histologic examination at

multiple scales of magnification by evaluating the aforemen-

tioned features in cells and nuclei in non-tumor tissues (nor-

mal epithelial tissues, connective tissues, immune cells, etc.)

in order to identify irregular or abnormal features of tumor

cells. For example, large and hyperchromatic (dark purple-

blue) nuclei with abnormal shapes and irregular nuclear bor-

ders in a focal area of cancer can indicate high-grade malig-

nancy. In contrast, large and euchromatic (grayish-purple) nu-

clei are most commonly seen in benign reactive cells in asso-

ciation with inflammatory, regenerative, infectious, and de-

generative processes. However, pathologists do not and can-

not routinely count or characterize every single cell out of

hundreds of thousands of cells in every tissue section. This

basic type of information remains unknown and could be

valuable in terms of the number of tumor cells in a given

cancer type and what proportion of the tumor cells are at the

leading invasive border of the tumor that should be coupled to

the distribution of the size of tumor cells in different areas of

the tumor. Evaluating mitoses is another common example of

limited numerical assessment, where pathologists typically

look at 10 high-power fields (hpf) (typically 400×) and

provide an estimated mitotic rate based on the focus of tumor

with the highest number of mitoses instead of counting the

total number of mitoses that are present in the tumor.

A typical WSI of almost any tissue section that contains

cancer also contains variable amounts of high-grade tumor

cells, low-grade tumor cells, normal epithelial structures and

cells, stromal connective tissues, adipose tissue,

lymphovascular structures, immune infiltrates, and necrosis.

Pathomics can be very useful to provide a quantitative assess-

ment of many of these structures and aforementioned features

at multiple magnifications to complement traditional histo-

pathologic evaluation by pathologists. Deep learning image-

analysis tools have been developed that have the capacity to

automatically detect regions of cancer inWSIs to complement

low-magnification assessment of tumor growth pattern, tissue

architecture distortion, and increased cellularity. Since pathol-

ogists also rely on using the dark blue-purple color associated

with high cellularity and increased density of chromatin in

large malignant nuclei, cancer detection algorithms can be

further combined with pathomics analyses that detect and

count the number of nuclei and provide quantitative informa-

tion about the size, shape, texture, colors, etc. of the objects in

that region. Additional analyses can be applied to identify and

extract quantitative data to describe the features of glands and

vessels, lymphoplasmacytic infiltrates, and regions of necrosis

in order to parallel and complement the histologic features that

are used by pathologists for diagnosis and grading cancer.

Since these various tasks are computationally intensive and

may take several hours per algorithm to analyze hundreds of

thousands of objects in WSIs, image analysis methods typi-

cally divide WSIs into tiles that can be as small as 50 by 50

pixels or as large as 2000 by 2000 pixels to circumnavigate

constraints in computer memory and decrease processing

time. Therefore, pathomics tools are usually based on the abil-

ity to detect, segment, label, and classify regions of tissue,

tissue structures, cell types, and nuclei in tiles, which are then

combined to represent the analyses for entire WSIs. This, too,

Fig. 1 Common appearances of histologic samples at low magnification

and intermediate-high magnification. Left: Low magnification features

include architectural distortion, increased tumor cellularity, solid tumor

growth pattern, no overt areas containing dense inflammatory infiltrates,

no overt areas of necrosis, and an irregular border with adjacent

surrounding normal tissues. Right: Intermediate-high magnification

features include predominantly medium-sized and round to ovoid nuclei

with abundant eosinophilic cytoplasm. Nuclei contain irregular nuclear

contours with open chromatin and variable numbers of small nucleoli. No

mitoses are present in this microscopic field
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is very similar to how pathologists evaluate numerous regions

of interest (ROIs) by physically moving the slide through the

field of view under microscope objectives to evaluate the en-

tirety of a tissue section at various scales of magnification and

resolution. Digital pathology image analysis methods are ei-

ther global and attempt to simultaneously identify all the struc-

tures in a specific ROI or localized to detect and segment

physiologic structures based on the number of objects, cells,

and nuclei.

The addition of quantitative deep learning image analysis

and pathomics to descriptive traditional histopathologic eval-

uation by experienced pathologists is a very exciting frontier

that can be immediately useful in routine surgical pathology

workflow in many subspecialties of pathology. Pathomics is

also well positioned to quantitatively define known salient

features across the scale of thousands to hundreds of thou-

sands of WSIs of cancer and discover unknown features and

relationships that can provide insight into many different types

of cancer in an unprecedented manner by improving our abil-

ity to better characterize disease through improved diagnostic

accuracy and decreased inter-observer variability. For exam-

ple, if there is an unusually aggressive clinical course with

treatment failure or tumor metastasis, digital pathology can

be utilized to explore and capture quantitative information

about the phenotypic features of specific cells, cellular struc-

tures, and focal areas of tumor features that are beyond the

scope of traditional histopathologic diagnosis in order to pos-

sibly provide an explanation for this kind of biological

behavior.

Thus, there is considerable excitement about digital pathol-

ogy image analyses and pathomics due to the opportunities to

integrate the classification of histopathologic features of many

different types of cancer with applicable diagnostic endpoints.

Image Analysis Tasks and Machine Learning

In this section, we outline whole slide image analysis tasks.

Analysis tasks include the following: (1) assignment of a clas-

sification to a collection of WSIs arising from a given biopsy

or resection (e.g., a set of WSIs might be classified using

established classification guidelines such as Gleason grade

for prostate cancer); (2) classification of a region of a whole

slide image (e.g., ROI classified as cancer, infiltrated by lym-

phocytes, or having a particular tissue morphology, such as a

local Gleason pattern assigned to a tissue tile); (3) detection

and/or segmentation of specific microanatomic structures

such as specific types of cells or nuclei with subsequent clas-

sification (e.g., mitotic figures, lymphocytes, or cancer cells).

Accomplishing these tasks encompasses segmentation and

classification. As shown in Fig. 2, segmentation extracts the

locations and boundaries of objects (nuclei, cells, or regions)

in an image, whereas classification groups objects and assigns

class labels.

Earlier approaches in WSI analysis often employed statis-

tical techniques to detect and delineate object boundaries

based on the statistics of intensity and texture variations, clus-

tering methods, binary classifiers, and probabilistic/non-

probabilistic machine learning methods to classify regions

and images [1–5]. In recent years, deep machine learning

has significantly grown in popularity in the computer vision

and image analysis communities, driven by the increased up-

take of deep learning methods in Big Data and Internet com-

panies and increased computing capacity through specialized

computing devices (GPUs) and cloud-based computing [1, 5,

6]. Since there are many research and engineering projects that

target the development of efficient and reliable image analysis

techniques, software tools, and infrastructure, we describe re-

cent work in segmentation and classification in selected cur-

rent projects with the goal of providing an overview of the

evolving digital pathology landscape.

Changes in subcellular tissue structure can function as

valuable biomarkers that can be used to assess onset and pro-

gression of disease. The use of digital pathology data in clin-

ical and research settings have been studied and validated by

several studies [7–13]. Availability of tissue images can facil-

itate multi-institutional and national level studies with large

cohorts of patients. There are approximately 31,000 WSIs in

the TCGA from diagnostic and frozen tissue samples from

over 30 different cancer types that were collected from

11,000 patients. This resource has led to numerous digital

pathology studies both in terms of novel methodology devel-

opment and scientific inquiry [10, 12•, 14–17].

Another national consortium, the Surveillance,

Epidemiology, and End Results (SEER) Program, collects tis-

sue specimens from large cohorts of patients (about 500,000

patients per year) and is investing in digitizing glass tissue

slides as WSIs. Imaging studies at this scale can reveal novel

biomarkers and phenotypes that are common within cohorts

of these patients that can eventually lead to more effective

diagnoses and treatment strategies. Even in smaller studies,

data fromWSIs enables quantitative, objective, and reproduc-

ible characterizations of tissue data that are not possible by

histopathologic evaluation of glass slides. These kinds of ca-

pabilities have great potential for improving the prediction of

clinical outcomes and treatment response as we continue to

evaluate and refine workflows and systems that can play cru-

cial roles in precision medicine.

Qaiser et al. [18, 19] designed a tumor segmentation meth-

od that uses persistent homology profiles (PHPs) and deep

convolutional networks, where PHPs map a given image

patch into one-dimensional statistical distributions that repre-

sent the degree of nuclear connectivity based on a combina-

tion of features learned from a convolutional neural network

(CNN) and PHPs. A fast histopathology image inference
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network was proposed by Lin et al. [20] for cancer metastasis

detection in whole slide tissue images by taking advantage of

fully convolutional architectures for speed through the utiliza-

tion of deep convolutional and pooling layers to improve pre-

diction accuracy. Cruz-Roa et al. [21•, 22] proposed a set of

CNNs for detection of invasive cancer regions by using an

adaptive samplingmethod that selects the most relevant image

patches instead of densely scanning the entire whole slide

image to predict regions of tissue with invasive cancer.

Hou et al. [23•] developed a sparse convolutional

autoencoder that enables the detection and encoding of nuclei

in an image patch into a sparse feature map, which is then

processed to segment the boundaries of nuclei. Zheng et al.

[24] devised a CNN method to extract and characterize distri-

butions of nuclei in tissue images, whereas Janowczyk et al.

[25] devised an adaptive deep hierarchical approach to nuclear

segmentation that leverages deep learning models at lower

image resolutions to increase the speed of computations while

preserving accuracy. Al-Milaji et al. [26] developed a CNN-

based pipeline to classify regions of tissue in H&E WSIs into

stromal and epithelial regions. A related approach was pro-

posed by Yu et al. [27] with a machine-learning model that

learned class dictionaries to classify tissue images.

Mobadersany et al. [12•] implemented a method that com-

bines image analysis by CNNs with genomic markers into a

unified machine learning model to predict the survival of pa-

tients with glioma, where the deep learning architecture con-

sists of convolutional layers that are trained to predict image

patterns associated with survival, fully connected layers that

further transform image features from the convolutional

layers, and a Cox proportional hazard layer that models sur-

vival data. Peikari and Martel [28] proposed a color transfor-

mation step that maps the red-green-blue (RGB) color space

by computing eigenvectors of the RGB space to perform cell

segmentation by utilizing the color-mapped image. A deep

learning method is employed by Sirinukunwattana et al. [29]

to detect and classify nuclei in H&E stained color cancer tis-

sue images by implementing a spatially constrained CNN for

nucleus detection followed by a predictor that is coupled with

a CNN for classification. Deep learning-based analysis frame-

work have also been used for analyses of prostate cancer cases

with Gleason scores [29]. The framework implements

methods that combine data from whole slide tissue images

and genomic data to identify computational biomarkers for

recurrence and survival analysis.

Ensembles of support vector machines (SVMs) were used

by Manivannan et al. [30] to detect and classify cellular pat-

terns. Peikari et al. [28, 31] designed an analysis pipeline

where a clustering operation is executed on input data to detect

the structure of the data space, where a semi-supervised learn-

ing method is then executed to carry out classification using

clustering information. Chen et al. [32] developed a deep

learning framework for segmentation that implemented a

multi-task learning approach by the use of multi-level

CNNs. A pipeline of clustering, segmentation and classifica-

tion operations for identification and categorization of breast

regions is described by Dundar et al. [33]. The analysis pipe-

line segments and extracts imaging features from cells and use

them in a binary classifier. Beck et al. [34•] use a binary clas-

sifier for epithelial vs. stromal classification in breast cancer

cases. The binary classifier is trained with morphological im-

aging features extracted from H&E images.

Saltz et al. [10] developed a deep learning–based patch

classification workflow to characterize patterns of lympho-

cytes in whole slide tissue images that utilizes a CNN for

classification of image patches as lymphocyte-positive (i.e.,

containing lymphocytes) or lymphocyte-negative in combina-

tion with a CNN to segment necrotic regions in order to elim-

inate false lymphocyte-positive classifications. The

lymphocyte-detection pipeline was applied to 5200 images

from 13 cancer types in the Cancer Genome Atlas (TCGA)

repository to quantitatively characterize tumor infiltrating

lymphocytes (TILs), since TILs have become increasingly

important in precision medicine with the growth of cancer

immunotherapy. These kinds of characterizations ofWSIs will

become increasingly significant to understanding the immune

response associated with cancer in each patient in various

clinical scenarios. High densities of TILs correlate with favor-

able clinical outcomes including longer disease-free survival

and/or improved overall survival (OS) in multiple cancer

types, where recent studies further suggest that the spatial

context and the nature of cellular heterogeneity within the

tumor microenvironment in the main bulk of the tumor and

the invasive margin are important in cancer prognosis.

One of the challenges in machine learning analysis ofWSIs

is the lack of large training datasets that contain ground truth

Fig. 2 Examples of nuclear

segmentation. The boundaries of

the nuclei are highlighted in

yellow based on differences in

color, contrast, and texture
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due to the amount of intense labor and time that is necessary

for manual segmentations and classifications of tissue regions

and micro-anatomic structures such as nuclei and cells.

Several research projects have investigated the generation of

synthetic datasets to overcome this limitation. Mahmood et al.

[35] proposed a conditional generative adversarial network

(GAN) for nucleus segmentation that is trained by synthetic

and real data to address limited real training data and the

ongoing challenge of separating overlapping and clumped nu-

clei by utilizing a cycle GAN method to generate synthetic

image patches and segmentation masks. Hou et al. [36] pro-

posed an unsupervised (GAN) architecture for generation of

synthetic tissue images and segmentation masks to generate

training data for deep learning segmentation methods

consisting of multiple CNNs that generate initial synthetic

images and then refined them to reference styles in order to

train a segmentation model. Senaras et al. [37] developed a

GAN method that generates synthetic image datasets with

known amounts of positive and negative nuclei in images

from IHC-stained tissue specimens for tumor grading.

Machine learning and deep learning methods have also

been used for quality assessment in whole slide images.

Senaras et al. [38] applied deep learning methods to detect

out-of-focus regions in whole slide tissue images that can be

avoided in segmentation and classification operations. Wen

et al. [39, 40] utilized machine learning classifiers (SVM,

random forest, and CNN) that operate on texture and intensity

features extracted from image patches to evaluate the quality

of nuclear segmentation results.

Several research groups have also developed methods for

3D reconstruction of morphological structures and image vol-

umes from histopathology images [41, 42]. Kather et al. [43•]

employed image analysis pipelines to generate topographic

mappings of multiple immune cells in immunohistochemistry

stained images. These various methodologic approaches from

nuclear segmentation and characterization to 3D reconstruc-

tion are continuing to be refined and developed for a wide

variety of clinical applications that can be very useful for

pathologists in the near future.

WSI Visual Analytics Systems

There are currently several virtual microscope applications

that facilitate the visualization ofWSIs for pathomics analyses

that include open-source and commercial software tools for

WSIs, where a few examples include caMicroscope (Emory

University, Atlanta, Georgia, USA), QuPath (University of

Edinburgh, Edinburgh, UK), HALO (Indica Labs, Corrales,

NewMexico, USA), Aperio GENIE (Vista, California, USA),

HistoRx AQUA Analysis (Branford, Connecticut, USA), and

Visiopharm (Hoersholm, Denmark). These viewers are de-

signed to give users the ability to freely explore any part of

the image by scrolling and zooming in and out of WSIs to

function as a virtual microscope. These software applications

also provide interfaces that (1) permit the ability to gather,

store, and interact with large collections of WSIs; (2) annotate

and measure specific histologic features at multiple scales

(0.0001 cm for tumor size and distance to the surgical resec-

tion margin to 0.1 μm for nuclear and cell size to calculate

nuclear to cytoplasmic (N/C) ratio); and (3) view results from

image analysis and deep learning methods, such as nuclear

segmentation, tumor identification, and lymphocyte detection.

Even though there has been a lot of progress and development

in software and infrastructure to perform WSI analyses to pro-

duce and store pathomics data with various methods and ap-

proaches, there is a need for visual analytic systems that can

ultimately integrate and represent the various forms of large

amounts of data in a biologically interpretable manner. This is

even more important when we consider integrating pathomics

with correlative data frommolecular studies, radiomics, and clin-

ical data. For example, Fig. 3 shows an example of the wide

spectrum of features that can be calculated from nuclear segmen-

tation to provide heat maps, which depicts the relationships be-

tween salient image-based features that can be further correlated

with relevant histopathologic features.

Even though Featurescape provides a powerful and inter-

active view into the WSI from an image analysis data point of

view, the relationships between these numerous and different

kinds of extracted image features from segmented objects are

still not readily interpretable by pathologists. Therefore,

pathomics analyses can also be displayed as an image-based

representation to show how features can be readily interpret-

able within a histologic context as a multilayer Featuremap.

The combination of these views into the data can be utilized to

address the challenging problem of identifying which of these

features are relevant and how they are related to the histopath-

ologic features of disease.

Therefore, significant efforts have been dedicated to develop

interfaces that permit easy navigation of large collections of

WSIs combined with Featuremaps that permit interactive assess-

ment of how image analysis-based features can be used to quan-

titatively identify heterogeneous structural and textural tissue

characteristics in different types of tissues and tumors. As shown

in Fig. 4, H&E WSIs can be analyzed with tumor and lympho-

cyte detection deep learning methods and then combined to pro-

vide a view into the quantitative spatial assessment of TILs in

terms of TIL%, location, and overall pattern of the immune in-

filtrate with respect to intra- and peritumoral TILs. These maps

can also display the calculations in a similar manner to help

interpret the image-based features in the context of histology at

multiple scales of magnification. In the near future, these tools

will be used to correlate specific image-based features with var-

ious histologic features to predict the expression of various pro-

teins on the cell surface and subcellular structures in conjunction

with immunohistochemistry (IHC) for applications ranging from
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biomarker discovery, pharmaceutical research, systems biology,

and treatment planning.

Data and Metadata Management

Pathology images are captured from glass tissue slides by

digital microscopy scanners. Currently, there are no standard

or widely accepted community formats for pathology image

files, whereas radiology images are stored and shared in

DICOM format [44]. Each digital pathology imaging vendor

has their own file format which stores metadata about images

at varying levels of detail in vendor-specific metadata fields

that limits the types and amount of metadata that can be di-

rectly extracted from a pathology image. There are open

source libraries, such as OpenSlide [45] and Bio-formats

Fig. 3 Featurescape example showing the relationship between calculated features in a WSI based on nuclear segmentation
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[46] that can parse some vendor pathology image formats and

read image metadata, but are limited by whether they can

recognize specific vendor metadata fields. Similarly, there

are no community-accepted models or standard data models

to represent metadata about the results from analyses of digital

pathology image data.

The lack of imaging standards in digital pathology has led

to the development of a wide variety of data models and da-

tabases. There are a number of commercial software systems

developed by digital microscopy vendors and pathology im-

age analysis companies and a growing number of open source

and freely available software systems. The OME (Open

Microscopy Environment) project has developed a data model

for representation of image acquisition parameters, image ex-

periment metadata, and image analysis results [46]. The OME

model is supported by a relational database for storage,

indexing, and querying that is realized in XML file format

for exchange of image metadata between software systems

and research teams. The OMERO (OME Remote Objects)

extension of the OME platform is designed to serve as a cen-

tral repository of pathology image data [47]. Wang et al. [2,

48] developed PIDB (Pathology Image Database System) and

PAIS (Pathology Analytical Imaging Standards) models to

represent pathology image metadata and image analysis re-

sults and metadata that draw from the AIM (Annotation and

Image Markup) model [49] and extend it with data elements

Fig. 4 Deep learning image analysis pipeline to generate a Featuremap. a

Low magnification H&E image. b Automated tumor detection displayed

as a probability distribution from 0 to 1. Non-tumor tissue in solid blue. c

Automated lymphocyte detection displayed as a probability distribution

from 0 to 1. Non-lymphocyte tissue in solid blue. d Combined tumor and

lymphocyte detection with tumor depicted in yellow, lymphocytes in red,

and non-tumor tissue in gray. This permits the ability to see lymphocyte

detection in the context of cancer to identify TILs and calculate TIL% in

intra- and peri-tumoral areas. The parameters shown in Featurescape (Fig.

3) can also be depicted in this manner to permit the visual interpretation of

features within a histologic context in combination with tumor and

lymphocyte detection
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for pathology image experiments, acquisition parameters, and

analysis results, which are then implemented on top of a rela-

tional database management system.

Gutman et al. [50] implemented a software system for

management and analysis of pathology images by using

Girder [51] as the backend database management system.

Martel et al. [52] developed a desktop application, PIIP

(Pathology Image Informatics Platform), which extends a

freely available tool, Sedeen, for the management, annota-

tion, and viewing of pathology image data. Bisque [53] is

a web-based platform that provides support for organiza-

tion and analysis of image data and uses metadata repre-

sentation based on tag documents (i.e., nested sets of (key,

value) tags). Williams et al. [54] developed a prototype

system, IDR (Image Data Resource), to integrate and share

image data from multiple modalities, including digital pa-

thology and multi-dimensional microscopy data. Image

and annotation metadata are represented in tabular forms,

drawing from the MAGE-TAB and ISA-TAB models. The

QuIP platform [55] implements a fully containerized soft-

ware system for the management, analysis, viewing, and

sharing of digital pathology imaging data and image anal-

ysis results by supporting a GeoJSON compliant [56] data

model to represent image analysis results in the FeatureDB

database, which is built on top of a NoSQL document

store. Cytomine [57] is a web-based software platform

designed to support sharing of histology and molecular

imaging data for proteomics preprocessing. The

ImageMiner system [58] provides support for management

and analysis of tissue microarray datasets by using a rela-

tional database backend for management of image data

and annotations. A prototype system for content-based im-

age retrieval to search and retrieve pathology images was

developed by Zheng et al. [59]. The caTIES project led

by Crowley et al. [60] developed methods and software

infrastructure to support analysis and coding of surgical

pathology reports. The coded results could then be used

to search and retrieve specific cancer cases and tissue

specimens.

In addition to these commercial and open source soft-

ware systems, there are ongoing efforts for the standardi-

zation of the representation and storage of pathology im-

age data and analysis results. Even though there are pres-

ently very few digital microscopy vendors who have

adopted DICOM, there is an increasing push for use of

the DICOM WSI format [61, 62]. The DICOM standards

body is also working on additional supplements for the

capture and representation of digital pathology image and

analysis metadata [63] and DICOM Structured Reporting

[64–66]. As these standards are refined and implemented,

we expect that open source and commercial software prod-

ucts will adopt these formats as their default data models

for image analysis results to enable interoperability across

different imaging and software systems in order to facili-

tate easier development and integration of new data man-

agement capabilities.

Conclusions

Artificial intelligence has arrived in anatomic pathology.

While the technology is still primarily in the hands of re-

searchers, emerging methods will transform the landscape

and workflow of surgical pathology by allowing identifica-

tion, analysis, and classification of every cell and

microanatomic structure found in tissue sections. In our opin-

ion, the deluge of data will increase our collective insight into

cancer and provide pathologists with tools that will allow

them to interpret their visual inspection in unprecedented

ways. Since we have already begun to see how the relation-

ships and patterns that are present in these new types of data

can be utilized to steer patient treatment and predict outcome,

we believe that it is the right time to introduce the wider

audience of pathologists and cancer researchers to established

and emerging pathomics.
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