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THALÍA DOMÍNGUEZ BUCIO, KE LI, Member IEEE, DAVID J. THOMSON,
FREDERIC GARDES, AND GRAHAM T. REED

ABSTRACT | In this paper, we present a brief history of silicon

photonics from the early research papers in the late 1980s and

early 1990s, to the potentially revolutionary technology that

exists today. Given that other papers in this special issue give

detailed reviews of key aspects of the technology, this paper

will concentrate on the key technological milestones that were

crucial in demonstrating the capability of silicon photonics

as both a successful technical platform, as well as indicating

the potential for commercial success. The paper encompasses

discussion of the key technology areas of passive devices,

modulators, detectors, light sources, and system integration.

In so doing, the paper will also serve as an introduction to the

other papers within this special issue.
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I. I N T R O D U C T I O N

Silicon photonics, originally expected to be a combination

of the revolutionary optical communication networks and

the enormous complementary metal–oxide–semiconductor

(CMOS) industry, is becoming a major platform for much
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more than this, including optoelectronic integrated circuits

(OEICs), nonlinear optics, and more recently, lidar, mid-

infrared sensors and quantum photonics circuits. This is

mainly because of its potential for high density of inte-

gration, low cost at large production volume, extremely

large bandwidth and high speed data transmission offered

by optical communications, its compatibility with CMOS

processes, wide transmission window, and good nonlinear

properties. Many challenges have been addressed with

innovative ideas in the last few decades [1]–[9], which

pave the way for the practical deployment of silicon-based

optoelectronic devices and integrated photonic circuits in

computing and communication systems.

The commercialization of silicon photonics, originally

driven by potential applications in telecommunication net-

works and intrachip communications, is now driven pre-

dominantly, but not exclusively by the increasing demand

for low-cost short-range optical interconnects in data

centers and the computing industry. Many products are

already available in the market and have been widely

deployed in the field. For example, the 100G CWDM4

(coarse wavelength division multiplexing 4-lane) QSFP28

optical transceiver and the light peak technology by

Intel [10], the 2 × 100G-PSM4 (parallel single mode fiber

4-lane) embedded optical transceiver by Luxtera [11], etc.

There are also emerging activities in longer reach applica-

tions, notably the applications pioneered by Acacia [12],

such as the recently released AC200-CFP2-LH module

targeted for long-haul dense wavelength division multi-

plexing (DWDM) networks which can reach a distance

of 2500 km.

Silicon offers many advantages over alternative mater-

ial systems (InP, GaAs, lithium niobate, etc.). One major
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advantage is the low cost that silicon photonics can poten-

tially offer because it can be manufactured in large scale

using the widely available CMOS foundries developed

for the microelectronics industry. The huge investment

in CMOS fabrication technology and the high quality of

SOI wafers have meant that it offers higher yield than

is possible with alternative material platforms. Another

advantage is the high refractive index contrast between

the silicon core and silicon dioxide cladding based on

silicon-on-insulator (SOI) wafers, which enables submi-

crometer confinement of light and tight bending of optical

waveguides, although multimicrometer platforms are also

available, as pioneered by Bookham Technology, Kotura,

and more recently, Rockley Photonics. High-density inte-

gration of photonic circuits on the SOI platform is thus

feasible. Furthermore, silicon is a very versatile platform.

It is possible to monolithically integrate not only optical

components, but also electronic circuits and even micro-

electromechanical systems (MEMS) in the same platform

at ultrahigh density [13], or in conveniently copackaged

offerings, for example, using flip-chip techniques [14].

In this paper, we discuss the history of silicon photonics

from the early research papers in the late 1980s and early

1990s, to the potentially revolutionary technology that

exists today. The paper encompasses a brief discussion of

the key technology areas of passive devices, modulators,

detectors, light sources, and system integration, with a

focus on the key technological milestones that were crucial

in demonstrating the capability of silicon photonics.

II. WAV E G U I D E A N D PA S S I V E

C O M P O N E N T S

The origins of integrated optics date back to the 1960s and

1970s with the demonstration of the first 2-D waveguides

on planar substrates and 3-D optical waveguides, which

are the basic elements for guiding light in integrated

circuits [15]–[24]. In the early years, there was a con-

siderable research effort in ferroelectric materials such as

lithium niobate (LiNbO3) and III/V semiconductors such

as indium phosphide (InP) and gallium arsenide (GaAs).

LiNbO3 was attractive because of its good electro–optic

coefficient enabling optical modulation, and the ease of

processing. Alternatively, InP and GaAs were interesting

since they offer a good prospect of optical amplification,

laser development, and electronic integration. However,

while being successful for long-haul applications, these

platforms were less suited to mass markets due to asso-

ciated fabrication costs. In the mid-1980s, Soref et al.

[25]–[28] proposed silicon as a material platform for

integrated photonics. The authors stated: “Silicon is a

‘new’ material in the context of integrated optics even

though Si is the most thoroughly studied semiconductor in

the world.” Subsequently, single-crystal silicon waveguides

[25], [26] were soon demonstrated, initially fabricated

using highly doped silicon substrates. Various substrate

configurations, such as silicon-on-sapphire (SOS) [29],

silicon germanium [30], and SOI [9], [31], [32] were also

studied. The SOI platform among them, first reported for

optical applications in 1988 [31], has by far, become the

most popular among the silicon-based waveguide systems.

In the late 1980s and early 1990s, Separation by

IMplantated OXygen (SIMOX) and Bond and the Etch-

back SOI (BESOI) techniques were the two main methods

for SOI wafer fabrication [22], [33]–[39]. Initially, very

large propagation losses (∼30 dB/cm) from a 2-µm-thick

planar waveguide [37] were demonstrated in these

wafers. Rapidly, Rickman et al. improved propagation

losses to respectable levels by investigating the influence

of buried oxide thickness (BOX). The results showed that a

BOX layer thickness of greater than 0.4 µm was necessary

to prevent substrate leakage losses for a silicon layer

of several microns. Around 1989, Kurdi et al. [31] and

Davis et al. [33] reduced propagation losses to acceptable

levels achieving 4 and 1 dB/cm, respectively. Multiple-

layer waveguiding structures using SIMOX fabrication

technology were also demonstrated [22], [32], [35].

During the1990s, most of the attention was turned to rib

waveguides, structures that could confine light in both

dimensions. In the early days, the majority of the work was

conducted on relatively large waveguides, of the order

of several micrometers in cross-sectional dimensions.

Silicon waveguides with propagation loss <0.5 dB/cm

were demonstrated in 1991 [40]. By 1994, Reed’s group

at the University of Surrey had achieved an even lower

loss value, for both transverse electric (TE) and transverse

magnetic (TM) mode at a wavelength of 1.532 µm [41].

These papers demonstrated that silicon was not only a

viable waveguiding material, but that the propagation loss

was not going to be a serious issue in the development of

the technology.

Desirable properties of an optical waveguide are single-

mode propagation, polarization independence, and low

propagation loss. Significant research effort was dedicated

in these areas [42]–[46]. In early 1991, Soref et al. [42]

were the first to propose a simple expression for the

single-mode condition of an SOI rib waveguide. Several

years later, Chan et al. [47] derived equations to predict

single-mode and polarization independence for relatively

small rib waveguides. It was found that the quasi-TM

single mode boundary is more restrictive than quasi-TE,

and hence provides guidance on the geometrical lim-

itations to retain single-mode behavior. In the follow-

ing years, this was studied by several groups [48]–[52],

taking into account the influence of the upper oxide

cladding on single-mode and polarization dependence of

rib waveguides. The authors defined more rigorous equa-

tions for both near and mid-infrared silicon photonics that

started to appear in the literature around 2008.

During the 2000s, submicrometer rib, strip, and

photonic crystal waveguides were fabricated on 220-,

340-, and 400-nm SOI platforms. Typical losses for rib

waveguides with large cross section (1–3 µm2) at the oper-

ating wavelength of 1.55 µm were 0.2 dB/cm [53]. Strip
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waveguides with small cross-sectional area (∼0.11 µm2)

exhibited significantly higher losses (1–2 dB/cm) and

losses increased exponentially when the waveguide width

was decreased [54]–[63]. Photonic crystal waveguides on

SOI were demonstrated in 2000 [64], [65], guiding the

light in a line of defects in the 2-D photonic crystal, which

offer many additional functionalities. Around the early

2010s, in order to reduce the propagation losses further,

small cross-sectional etchless/LOCal Oxidation on Silicon

(LOCOS) ridge waveguides were investigated and small

losses for the TE mode, of only 0.3 dB/cm, were demon-

strated [53]. Despite the low losses, these waveguide did

not become mainstream due to complications in other per-

formance parameters such as bending loss. Since the early

demonstration of a silicon wire waveguide with a subwave-

length grating (SWG) metamaterial core in 2006 [66],

metamaterial SWG waveguides have attracted strong inter-

est in academia and industry. Many advanced silicon

photonics devices with unprecedented performance have

been demonstrated [67], [68] with minimum feature size

greater than 100 nm, compatible with deep-up lithography.

Currently, the light scattering at waveguide’ sidewalls

still represents the dominant cause of optical loss in

conventional waveguides in the SOI platform. Device

fabrication technology (i.e., immersion lithography) and

postfabrication treatments such as reoxidation of the

waveguides are continually improving. 200-mm silicon

photonics manufacturing is transitioning toward 300-mm

wafers due to growing demand for a variety of applications

by academic and industrial sectors. Recently, a small sub-

micrometer 457 × 220 nm2 strip waveguides, fabricated

using 45-nm mask technology and 193-nm immersion

lithography on 300-mm SOI platform, demonstrated very

low losses of 0.7 dB/cm for the TE mode [69]. The TM

mode losses are still two to four times higher, while rib

waveguides fabricated by the same technology experienced

much lower losses (∼0.1 dB/cm for 700 × 220 nm2,

70-nm-thick silicon slab layer) [69]. These results rep-

resent the current state of the art and are expected to

improve even more in the future as new designs and

improved fabrication technologies emerge.

SOI has undoubtedly been the leading material platform

for passive devices. It has allowed the implementation of

passive components with outstanding performance includ-

ing waveguides, splitters [70]–[72], interferometers [73],

resonators [74], [75], (de)multiplexers [76], polarization

management devices [77], grating couplers [78]–[92], etc.

However, their functionality is limited to spectral wave-

lengths in which both silicon and silicon dioxide are trans-

parent (1.1–3.8 µm) [93]. Also, the high thermo–optic

coefficient of the Si core makes them strongly sensitive to

temperature variations, while the presence of two-photon

absorption (TPA) and induced free-carrier absorption

makes them potentially inefficient for nonlinear applica-

tions [94], [95] or other high power density applications.

However, it is possible to achieve temperature-independent

operation [96] or limit the free-carrier absorption induced

by TPA [97], [98] with more sophisticated waveguide

designs. Nevertheless, there is an increasing interest in

exploring alternate materials with relatively high index

contrast that will extend the operation range and appli-

cations of passive photonic devices.

Some of the CMOS-compatible materials that have been

considered for the near-infrared and the visible wavelength

regime include polycrystalline silicon [99], [100], amor-

phous silicon [101]–[103], doped silicon dioxide [104],

silicon oxynitride [105], [106], and silicon nitride (SiN)

[107], [108]. Among them, SiN has drawn attention for

a variety of photonic devices. Its key properties are a

wide transparency window covering the visible to the

mid-infrared (MIR), low nonlinear losses, a relatively low

thermo–optic coefficient, and an easily tunable composi-

tion. These features make it an ideal candidate to com-

plement the SOI platform. Devices fabricated on SiN have

shown high insensitivity to temperature variations while

achieving propagation losses below 2 dB/cm in the MIR

and well below 1 dB/cm in the visible and telecom wave-

length ranges [108]–[111]. Furthermore, SiN with a high

silicon content has demonstrated the potential for fabrica-

tion of devices with enhanced nonlinear response and low

nonlinear losses such as photonic crystal waveguides and

cavities [112], [113].

Other material platforms investigated in recent years

to extend the operational wavelength range of passive

silicon photonics devices to the MIR include silicon-on-

sapphire [114], silicon-on-porous silicon [115], suspended

silicon [116]–[120], silicon-germanium-on-silicon [121],

and germanium-on-silicon [93]. All these platforms have

improved performance within transparency windows in

the 2–16-µm wavelength range. These platforms exhibit

complementary characteristics related to their cost, fabri-

cation complexity, and device footprint that makes them

dominant for different wavelength regions of the MIR.

III. M O D U L AT O R S

Silicon does not exhibit a Pockels electro–optic effect as

used in modulators formed in more traditional photonic

materials. However, optical modulation in silicon photon-

ics can be achieved through different means. The major-

ity of the earliest demonstrations and probably still the

most popular today use the free carrier plasma dispersion

effect in silicon. This effect was characterized into useful

practical equations for near-infrared wavelengths by Soref

and Bennett in the 1980s [122] and extended out into

the MIR by Nedeljkovic et al. in 2011 [123]. As the name

suggests, this approach involves modifying the density of

free carriers present in the material through which the light

propagates, causing a modulation of real and imaginary

parts of the refractive index.

This modification can be induced optically, the so-called

light by light modulation approach for example [124].

More commonly electrical diode like structures are imple-

mented in and/or around the waveguide structure where

Vol. 106, No. 12, December 2018 | PROCEEDINGS OF THE IEEE 2103



Chen et al.: The Emergence of Silicon Photonics as a Flexible Technology Platform

the electron and hole densities in the waveguide can be

controlled electrically. Early modulators of this type used

free carrier injection structures which consist of a pin

diode formed across the waveguide. Early demonstrations

were limited to speeds in the megahertz range [125] but

improvements in performance achieved over time were

made by scaling down device dimensions and design

optimization with the first proposed gigahertz modulator

design published by Png et al. in 2004 [126]. Carrier injec-

tion devices are efficient enough to permit device lengths

on the order of hundreds of micrometers and are simple to

fabricate using standard CMOS techniques, but their main

limitation is the operation speed with the fastest demon-

strations on the order of a gigahertz [127] (although faster

may be achieved through a preemphasis drive technique as

first proposed by Png et al. [126], and later implemented

by Lipson et al. in a ring resonator format [127]).

In order push to higher device speeds, other electrical

structures have been proposed and demonstrated. The

first demonstrated gigahertz modulator was reported in

2004 [128] and employed the carrier accumulation struc-

ture (or MOSCAP as it is also known). In such a device, free

carriers are accumulated on either side of a thin insulating

layer positioned within the waveguide. This type of device

provides reasonable efficiency together with high-speed

operation, the issue being that it requires a more complex

fabrication process than either carrier injection or deple-

tion structures (see below in the following paragraph). A

particular challenge is the introduction of the thin insulat-

ing layer within the waveguide while having silicon with

good optical and electrical properties on either side.

In 2005, Gardes et al. proposed the first waveguide-

based carrier depletion device predicting speeds into the

tens of gigahertz [129]. In this type of device, free carriers

are depleted from a pn junction which is positioned so that

the depletion width interacts with the light propagating in

the waveguide. Such a device requires a simpler fabrication

process as compared to the accumulation modulator and

provides high-speed operation, but its efficiency is low,

meaning that device lengths are typically on the order of

millimeters. Intel was the first to demonstrate modulation

at 40 Gb/s from a depletion device in 2007 albeit with a

1-dB extinction ratio [130]. In 2011, Thomson et al. then

demonstrated 40-Gb/s modulation with a 10-dB extinc-

tion ratio [131]. In the same year, Gardes et al. showed

that 40-Gb/s modulation could be achieved with a 6.5-dB

extinction ratio for both TE and TM polarizations [132].

In 2012, Thomson et al. showed 50-Gb/s modulation with

a 3-dB extinction ration from a silicon depletion modula-

tor for the first time [133]. In recent years, modulation

rates up to 60 Gb/s [134], [135], 70 Gb/s [136], and

90 Gb/s [137] have been reported.

In recent years, there have been numerous demonstra-

tions of carrier depletion devices with optimizations of dif-

ferent performance metrics. They remain the most popular

techniques in silicon photonics and the one used in silicon

photonics multiproject wafer (MPW) services worldwide.

As mentioned above, the free carrier effect changes

both the real and imaginary parts of the refractive index,

however devices are more effective when implemented

as a phase modulator (at least in the near infrared).

Intensity modulation is then achieved using an optical

interference or resonance structure to translate from the

phase modulation produced. The Mach–Zehnder modu-

lator (MZM) is the most commonly used interference-

based structure providing good thermal stability and a

wide operating wavelength range as a modulator. The

ring resonator (RR) is the most commonly used resonant

structure, and can provide a much more compact and

lower drive power solution than the MZM. However, it

is highly sensitive to temperature, fabrication tolerances,

and has a narrow operating wavelength range, which

means that a tuning/stabilization technique is required

for practical use. Slow light structures provide another

means for reducing the power consumption and/or foot

print of the phase modulator, but again at the cost of

reduced optical bandwidth and increased fabrication and

temperature sensitivity [138].

Other mechanisms to achieve modulation in an “all

silicon” regime are through the use of the thermo–optic

effect [139] and MEMS-based structures [140], however

these are mostly limited to lower speed applications.

Another interesting technique has been the use of stress to

invoke the Pockels effect in silicon, although to date rather

large drive voltages are still required [141], [142].

The introduction of other materials onto the silicon

photonics platform provides another means to achieve

high-performance modulation in silicon. For example, the

use of III/Vs [143], graphene [144], EO polymers [145],

LiNbO3 [146], and SiGe [147], [148] have been demon-

strated. The use of SiGe, to form both quantum confined

stark effect (QCSE) [149] and Franz–Keldysh (FK) [147]

effect modulators is particular attractive since it retains

CMOS compatibly.

In recent years, focus has moved away somewhat

from developing the speed of the modulator, and looking

at modulation formats which can fit more data into a

modulator with a fixed bandwidth. Popular techniques

have included pulse amplitude modulation (PAM) [150],

quadrature phase-shift keying (QPSK) [151], quadrature

amplitude modulation (QAM) [152] and discrete multi-

tone (DMT) [153]. Concentration has also shifted heavily

toward the power consumption of the modulator and

design which can be operated with low drive voltages.

IV. P H O T O D E T E C T O R S

Photodetectors are one of the key components of opti-

cal links in integrated circuits as they convert light into

electricity. Over the last 30 years, a tremendous amount

of work has been focused on pushing the capabilities

of detector materials and their integration to associated

devices. The particular emphasis of the development has

been on high-speed, large-bandwidth, and low-noise char-
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acteristics to target the telecommunication market in the

O optical band (1260–1360 nm) and the C optical band

(1530–1565 nm). A variety of material systems currently

exist, where specific structures are targeting an optimum

integration with traditional CMOS driving circuitry. The

“standard” semiconductor materials currently competing

for large-scale, low-cost “CMOS” integration are group IV

materials silicon (Si), tin (Sn) germanium (Ge), or more

complex compounds for extended wavelength detection

such as InGaAs and HgCdTe. Moreover, less conventional

2-D materials have also created a lot of interest recently

such as graphene, carbon nanotubes, or MoS2. Currently,

the majority of the work is focused on data transmission

in the 1300–1550-nm wavelength range, corresponding to

the historical window of minimum optical loss for silica

optical fibers. Nevertheless more work is being undertaken

to expand the capability of detection and to cover a wide

spectrum range going from visible to mid-infrared. The

established trend for ideal photodetectors is to optimize

features or at least obtain the best tradeoff in metrics such

as: high responsivity or sensitivity, high detection speed,

large bandwidth, high quantum efficiency (QE), low dark

current, and low applied voltage bias.

Group IV materials such as Si, Sn, or more particu-

larly Ge are the most commonly integrated photodetection

material on the CMOS platforms. For Ge, liquid phase

epitaxy [154], [155] and a two-step epitaxial growth

technique has been developed to directly grow Ge on Si

to alleviate the issues linked to the lattice mismatch and

enable to obtain dislocation density of ∼ 106–107 cm−2

[156], [157]. Coupling the Ge photodiode to a waveguide

through edge coupling or evanescent coupling led to

responsivity larger than 1 A/W [158], [159], with band-

width beyond 30 GHz [159], [160], and dark current as

low as 0.2 nA [161]. Recently, with the help of GeSn

active layers, high-performance Ge p − i − n photodiodes

(PDs) have been fabricated to extend the photodetection

to the longer wavelengths up to 1800 nm and beyond

[162], [163]. Ge-on-Si avalanche PDs are also of great

interest as they combine the optical absorption of the

Ge layer with the carrier-multiplication properties of Si

[164], [165]. In the case of Si, the relatively large indi-

rect bandgap corresponds to a cutoff wavelength below

1100 nm [166], which makes the material mostly suitable

for visible light and infrared detection. Nevertheless, a

substantial amount of work on the material engineering

aspect has provided mechanisms to perform detection

at near-infrared through methods such as mid-bandgap

absorption (MBA) [167], [168], surface-state absorption

(SSA) [169], internal photon emission (IPE) [170], and

TPA [171]. MBA PDs are developed based on the fact

that high energy particles could introduce defect states

located within the bandgap of the intrinsic Si crystal, thus

enabling detection of sub-bandgap optical radiation. SSA

PDs are based on a similar principle as MBA PDs, but in

this case, surface states are introduced into the bandgap

of the intrinsic Si, providing a path to optical absorption

at longer wavelengths. IPE PDs rely on the principle that

photo-excited electrons in metal can gain energy higher

than the Schottky barrier and subsequently move into

the conduction band of the semiconductor. TPA PDs are

based on the nonlinear TPA process where an electron can

absorb two photons (having individual energies below the

semiconductor bandgap) approximately at the same time,

and reach the excited state in the conduction band.

InxGa1-xAs alloys are currently the most mature mate-

rial system for photodetection due to the alloy vari-

able bandgap where the absorption edge wavelength can

be varied between 0.85 and 3.6 µm, making it ideal

for near-infrared photodetection [172]. Nevertheless flip-

chip integration is currently the most common process

used to integrate the III/V layers with the SOI substrate

[173]–[177] with recent efforts focused on extending the

capability of InGaAs APDs for error-free, high-speed mod-

ern communication (∼50 Gb/s) as well as single pho-

ton detection systems [178]. The flip chip technique is

nonideal as the integration process must be carried out

through dice bonding at wafer level, a process that is time

consuming and therefore expensive. An alternative solu-

tion to bonding could be a new heterogeneous integration

approach using a metal-organic chemical vapor deposition

(CVD) technology. The epitaxy of a InxGa1-xAs absorption

layer is showing the promise of selectively grown III/V on

Si substrate [179].

In terms of material properties, HgCdTe is probably

the most promising semiconductor to cover infrared to

mid-infrared photodetection with a detection spectrum

between 0.7 and 25 µm. APDs for photodetection at

1060, 1300, and 1550 nm have all been fabricated

using liquid phase epitaxy or molecular beam epitaxy

[180]–[182]. Nevertheless, integration to CMOS circuitry

is more problematic as high-quality HgCdTe is usually

grown on CdZnTe substrate, which is a difficult material to

integrate with the silicon readout circuit due to different

thermal expansion coefficients and a 19% lattice mismatch

[183], [184]. The fabrication cost associated with the

CdZnTe substrate is also much higher than Si and Ge.

Different from bulk materials, low-dimensional mate-

rials provide some unique properties when used as

photodetectors. Interesting properties (such as exciton

parameters), which are often negligible in bulk materi-

als, are greatly accentuated in low-dimensional materials.

These unique electronic and optical properties make pho-

todetection promising even in an extremely small nanos-

tructure that is only one atomic-layer thick (graphene

or MoS2) [185] or just a few nanometers (carbon

nanotube) [186].

V. I N T E G R AT E D L I G H T S O U R C E S

Light sources are essential components in photonic inte-

grated circuits (PICs). Silicon, however, is a very ineffi-

cient light emitter due to its indirect bandgap. Therefore,

making an efficient light source in silicon photonics has
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proved to be one of the most challenging tasks for many

years. Lack of such sources has prevented this technology

showing its full potential. Although using an external,

off-chip light source (optically coupled to a silicon PIC) is

an acceptable approach in some applications, development

of low power consumption on-chip light sources for silicon

photonics is desirable for optical interconnects that are

targeting datacom applications where both low power

consumption and high bit rates are needed.

Although lasing in bulk silicon was achieved in 2004 via

stimulated Raman scattering and optical pumping [187],

this approach offers neither high-level integration nor the

relatively high power efficiency, needed for optical inter-

connects [188]. Some research effort has been directed

to modifying silicon in order to transform it into a

light emitting material, such as introducing light-emitting

centers in Si or SiO2 substrates [189], [190], mostly

based on rare-earth element doping [191]. Although,

an optically pumped CMOS-compatible laser has been

demonstrated using this approach [192], realization of

electrically pumped devices remains very challenging.

Most of the research efforts in this field have been

focused on integrating efficient light emitters (primarily

based on III/V semiconductors) onto the SOI platform.

Based on the integration techniques employed, we can dis-

tinguish three different approaches taken by researchers:

1) hybrid integration based on copackaging of III/V laser

die and SOI PICs; 2) monolithic integration, based on

various epitaxial growth techniques; and 3) heterogeneous

integration, based on wafer bonding techniques.

The oldest approach taken was hybrid integration where

a prefabricated optical source (laser or LED) is mounted

and fixed on a common substrate and optically coupled

to the PIC. The most common technique used for this is

flip-chip bonding, based on a solder bump and attachment

process [193]. This technique has been used for integration

of vertical cavity surface emitting lasers (VCSEL) on CMOS

circuits since the late 1990s [194]. However, integrating

VCSELs emitting at telecommunication wavelengths (1310

and 1550 nm) with silicon PICs has proved to be challeng-

ing and progress has only recently been reported [195].

A more conventional approach involved integration

of longitudinal cavity lasers based on InP and cor-

responding alloys. In 2010, Luxtera demonstrated a

40-Gb/s optoelectronic transceiver, based on a single III/V

continuous-waveform (cw) laser enclosed in an optical

micropackage (including a lens and isolator) that was

flip-chipped onto the underlying silicon die and optically

coupled to the photonic chip via grating couplers [196].

Further evolution of this device led to the demonstration of

the first 100-Gb/s optical transceiver, where a micropack-

aged distributed feedback (DFB) laser was epoxy-bonded

onto the chip [197].

Another approach based on copackaging was to form an

external cavity laser by placing a III/V die, acting as a semi-

conductor optical amplifier (SOA), and optically coupling

it to the silicon PIC that provided the wavelength-selective

optical feedback. Following this approach, external cavity

hybrid silicon lasers were demonstrated by Kotura [198],

Fujitsu [199], and Oracle [200], [201].

Despite being relatively straightforward from the fab-

rication perspective, hybrid integration usually requires

time-consuming and costly alignment schemes, and has

obvious limitations when high-density integration is

required.

Monolithic integration is based on epitaxial growth

of high-quality layers of, mostly, III/V semiconductors

on top of silicon or SOI substrates. The grown mate-

rial is subsequently processed to form hybrid lasers,

which are lithographically aligned to the underlying SOI

PICs. This approach requires no active alignment and

allows high-density integration and wafer-scale process-

ing. However, there are many challenges in its practical

implementation, primarily due to the lattice constant mis-

match between most III/V materials and silicon, as well

as the difference in thermal coefficients of expansions

(TCEs). Several growth techniques were employed in this

field. Researchers reported lasers based on GaSb grown

on misoriented Si substrates, operating both in pulsed

[202], [203] and continuous-wave regimes [204], as well

as GaAs-based quantum dots (QDs) in a well laser, emitting

at 1.3 µm [205]–[208]. Recently, reported InAs/GaAs QD

lasers demonstrated record-low threshold current density

and excellent aging test results [209]. Combined with less

sensitivity of QD lasers to threading dislocations compared

to standard quantum-well (QW) lasers, this approach is

offering a promising way for fabrication of high-quality

light sources on the silicon photonics platforms.

Certain efforts were focused on developing hybrid lasers

in Ge-on-Si material systems, with the idea of growing

a tensile-strained, n-type germanium on a silicon sub-

strate in order to achieve a direct bandgap light emis-

sion [210]. Using this approach, both light-emitting diodes

(LEDs) [211] and electrically pumped lasers [212] were

demonstrated, but only in the pulsed regime and with a

very high threshold current density.

Another promising approach in monolithic integration

is based on direct growth of III/V nanowires on SOI

platform forming a photonic crystal cavity [213], [214].

This approach does not require growth of any buffer layer

and allows fabrication of small-footprint lasers with a high

Q-factor.

However, a general drawback of monolithic integration

is that growth temperatures are generally above 400 ◦C,

which is not compatible for back-end-of-line (BEOL)

processing in a CMOS foundry. Germanium–silicon–tin

(Ge1-x-ySixSny) has recently emerged as a promising mate-

rial for low-temperature growth on silicon [215], [216],

but further improvements are needed to achieve a direct

bandgap in this material.

Heterogeneous integration based on bonding tech-

niques is another promising technology for large-volume,

wafer-scale fabrication of lasers in silicon photonics. This

approach combines the best elements of hybrid and
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monolithic integration by bonding high-quality III/V mate-

rial (in the form of wafers or individual dies) onto SOI sub-

strates. Subsequent processing of III/V material is carried

out to form hybrid III/V/Si lasers. In this way, alignment

between the III/V layers and the silicon waveguides is

achieved via photolithography on a wafer scale, while the

technologically challenging growth of III/V materials on a

silicon substrate is avoided.

The most common wafer bonding technique used for

this integration is plasma-assisted, low-temperature direct

bonding. Adhesive bonding based on use of the ther-

mosetting polymer divinylsiloxane–bisbenzocyclobutene

(DVS–BCB) and various metal bonding techniques are also

employed.

The first hybrid III/V/Si optically pumped laser based

on direct bonding and evanescent coupling was reported

in 2005 [217], followed by an electrically pumped Fabry–

Perot (FP) laser in the following year [218]. Following

this approach, researchers reported DFB [219], distrib-

uted Bragg reflector (DBR) [220], racetrack [221], and

microring lasers [222], [223]. In 2010, using this tech-

nique, Intel demonstrated first four-channel silicon pho-

tonics link operating at 50 Gb/s [224]. Using DVS–BCB-

based adhesive bonding and the same principle of evanes-

cent coupling, both FB [225] and DFB lasers [226] were

reported, followed by lasers with more advanced hybrid

cavity designs and lower threshold currents [227], [228].

Also, microdisk hybrid III/V/Si lasers, with a very small

footprint and large free spectral range, were demonstrated

using both direct [229] and DVS–BCB bonding [230].

Metal bonding techniques have also been used for the

fabrication of hybrid III/V/Si lasers [231], [232]. In 2013,

Skorpios Technologies reported the first III/V/SOI hybrid

laser fabricated in a commercial foundry, based on the

metal bonding of a III/V die onto SOI [233].

In order to economically utilise relatively expensive III/V

material, researchers have focused on development of

multiple die-to-wafer bonding techniques. One of the

most promising approaches in this type of bonding is

transfer printing [234]. This technique was used to fab-

ricate electrically pumped AlGaAs/AlInGaAs double QW

FP lasers [235] and InGaAsP/InP-based VCSELs on SOI

substrates [236].

VI. PA C K A G I N G A N D C O U P L I N G

Fibers are the high-speed transmission lines that make

up the backbone of most optical communication systems.

When coupling to fibers from the PICs used by silicon

photonics, loss is critical and must be minimized. Losses

are the result of many mechanisms particularly from reflec-

tions when light transfers between media. Alignment to

PIC waveguides is also critical, made particularly difficult

by the size difference between fibers and typical sub-

micrometer silicon photonic waveguides where the spot

size produced by a standard telecommunications fiber is

approximately 630 times larger. Coupling between these

structures is comparable to aligning a basketball-sized pipe

to a pea-sized tube, causing the majority of light to be lost.

Larger waveguide platforms also exist without such a large

mode size mismatch, such as those pioneered by Bookham

Technology [237], the first Silicon Photonics company,

Kotura [238] and more recently, Rockley Photonics [239].

For coupling to submicrometer waveguides, engineered

structures on the fiber and waveguide will reduce losses;

a lens at the fiber tip will focus the light to a smaller spot,

significantly improving transmission, however, a smaller

spot size makes the physical alignment of the fiber even

more difficult, which normally requires a precision of a few

hundred nanometers. Tapering of waveguides increases

their surface area, however, with the scale of nanophotonic

fabrication, structures as large as fibers are difficult to

fabricate on-chip. Furthermore, vertical tapering on chip is

difficult, and requires local thickening of the waveguiding

structure. Consequently, many coupling setups use a com-

bination of these methods to produce acceptable results.

Edge or butt coupling via a polished facet at the edge of

a PIC is a common method for coupling, but the invention

of grating couplers in the 1970s [240] allows the option to

align a fiber near normal to the surface of the PIC. Grating

couplers phase match the fiber mode to a waveguide

mode, permitting optical coupling, whereas an unaltered

surface would merely reflect or transmit the light. Many

detailed modifications can improve coupling efficiency for

both edge coupling [241]–[246] and grating coupling

[78]–[92], but for mass market applications, cost is of

crucial importance, which means that active alignment

techniques applied to more traditional long haul photonics,

are too costly for these applications..

Photonic packaging is the process of using the aforemen-

tioned coupling methods in a commercially viable way. Tra-

ditional optical telecommunications requires relatively low

volumes, permitting high precision, active alignment that

is high cost and time consuming. Recent trends in silicon

photonics are pushing toward mass markets and therefore

a high volume production environment, requiring auto-

mated, high-speed, cost-effective packaging processes.

The first demonstration of commercial silicon photonic

packaging was in 2008 with the start of ePIXpack; using

glass blocks for support, a fiber array was manually aligned

to grating couplers and glued in place with epoxy [247].

This approach has been used a number of times since,

improving on the concept [248], [249]. Passive align-

ment was first demonstrated by Galan et al., who used

v-grooves to align a fiber to an inverted taper. They demon-

strated an added loss of 1.5 dB with a total insertion loss

of 7.5 dB [250].

In 2012, Bernabe et al. published work using a v-groove

capping chip which holds and positions fibers above a

grating coupler, using a facet at the v-groove end to reflect

light down to a grating coupler on the chip surface. With

an added loss of 4 dB, this approach has the advantage

of providing in-plane alignment that is semipassive, using

computer vision for alignment [251]. Researchers at the
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Tyndall Institute have developed a process using angled

fibers positioned above grating couplers, where the angled

facet is used to redirect the coupled light [252]. This

actively aligned solution has a total coupling loss of 4.5 dB.

In 2015, significant improvements were achieved in

coupling efficiency with work from Lindenmann et al.

[253], [254]. They showed a coupling loss of 1.7 dB, using

a novel method of 3-D writing waveguides in polymer

much like a wire bond. In the same year, Barwicz et al. from

IBM [255] produced a design similar to [250], utilizing

v-grooves and optical mode converters. However, instead

of typical inverted tapers, suspended subwavelength meta-

material mode converters [246] are used, which employ

the subwavelength metamaterial mode converter demon-

strated previously at NRC Canada [66], [243] and a

suspended silicon dioxide layer [246] as additional mode

guiding layer for an improved coupling efficiency. The IBM

team demonstrated multichannel passive alignment with

1.3-dB insertion loss. Packaging has received very little

research interest compared to most other disciplines within

silicon photonics, even though the package will often con-

tribute a large portion of PIC production cost. Regardless,

packaging has shown a positive trend toward lower loss

and reduced assembly time, which will only improve as

industrial interest in silicon photonics continuous to grow.

VII. I N T E G R AT I O N
Integration of photonics and electronics is one of the key

subjects for the development of silicon photonics. During

2006–2007, Luxtera [256], [257] successfully demon-

strated the approach of monolithic optoelectronic inte-

gration, where multiple channels of an optoelectronic

transceiver were implemented at 10 Gb/s per channel

in a 0.13-µm CMOS SOI process. With the monolithic

integration approach, the cofabrication of optical devices

and CMOS transistors on the same silicon wafer provides

versatile possibilities of new optoelectronic functions and

dramatic improvement for system footprint and power

dissipation. For example, in 2015, based on the 90-nm

SOI process node, IBM introduced the CMOS9GW silicon

photonic platform, and a 16-Gb/s full transceiver link has

been demonstrated in [258]. Based on the same platform,

the speed has been boosted to 56 Gb/s by using the four-

level PAM approach [259]. Meanwhile, several designs

based on the 45-nm SOI platform [260]–[262] have been

reported, including the first single-chip processor that com-

municates directly using light [261]. In addition to this,

IHP introduced the SiGe:C platform, which is based on

the 0.25-µm BiCMOS technology, and a 13-dB extinction

ratio 28-Gb/s nonreturn-to-zero (NRZ) transmitter was

reported in 2016 [263].

In general, the monolithic integration approach enables

the shortest possible electrical interconnects between opti-

cal and electrical devices, which hence minimizes other-

wise unavoidable parasitic effects due to the packaging.

However, the SOI substrate used in these silicon photonics

platforms differs from the substrate used for standard

CMOS technologies. Monolithic integration with photon-

ics would require major process changes, which are not

normally compatible with the time scale of technology

evolution in electronics technology [264]. Currently, the

most advanced monolithic silicon photonics platforms are

based on a 45-nm SOI CMOS process, whereas the stan-

dard CMOS technology has evolved into the 10-nm node.

Therefore, a two-wafer solution is usually desirable, which

means the electrical design can fully utilize the high-speed

and low-power consumption advantages from the state-

of-the-art CMOS technologies, while the optical design

can be realized with lower cost, more mature processing

platforms. Furthermore, this approach means that large

photonic devices do not consume expensive real estate in

the most expensive CMOS platforms, and also enables elec-

tronic circuits to be upgraded to better CMOS platforms

without necessarily abandoning the photonic designs in a

tried and tested platform. Therefore, this approach is likely

to continue in the short term, until a more flexible and cost-

effective method of monolithic integration can be found.

The most traditional low-cost packaging solution to

combine the electronics and photonics chips is the wire-

bonding-based approach, which inevitably suffers from

parasitic effect introduced by the bonding wires. Due to

its simplicity and costs effectiveness, it is of the interest to

many research groups to demonstrate initial concepts on

the codesigning optoelectronic functions, but seriously lim-

its the data rate for commercial devices. In contrast, flip-

chip-based 3-D integration approach [14], [265]–[268]

has become one of the alternative techniques, which can

significantly reduce the parasitic effect introduced by the

packing and increase the interconnection density. A rep-

resentative example is the 10-Gb/s transceiver described

in [14], in which the electronic design is realized with 40-

nm CMOS and many 25-µm pitched microsolder bumps

are deposited as interconnect between the optics and

electronics. For more advanced integration, through silicon

vias (TSVs) or through oxide vias (TOVs) [268] have

been introduced into the silicon photonics integration in

2015, where an order of magnitude reduction in parasitic

capacitance and two orders of magnitude higher inter-

connect density have been reported. Meanwhile, during

2015–2016, STMicroelectronics has introduced a design

based on the fine pitch copper pillar interconnect while

realizing the electronics in 65-nm CMOS or 55-nm BiCMOS

technologies [264]–[266]. The reported maximum data

rate was 56-Gb/s NRZ transmission with power consump-

tion at 300 mW.

With increasing complexity, it has become clear that

integration of photonics and electronics requires code-

sign between the optical and electrical functions. This

means that neither the electrical devices nor the optical

devices can be treated as a standalone component and

indeed the realization of system functionality depends on

the integration of these functions at the design stage.

A simple example is the wavelength stabilization sys-

tem design for a microresonator [269]–[271], where a
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dedicated thermal control loop is designed to compen-

sate for temperature drift and errors due to fabrication

tolerances. The more advanced examples are segmented

modulator and driver systems [262], [263], [272]–[275],

where advanced modulation formats (such as PAM-4 and

QAM-16) or optical signal shaping (such as feedforward

equalization) become the system requirement. The trend

of this electrical–optical codesigned system may signifi-

cantly broaden the application area of silicon photonics

as well as dramatically change the structure of existing

optoelectronic transceivers.

VIII. P O W E R E F F I C I E N C Y

The power efficiency of a silicon photonics transceiver

is a critical and yet complex issue. It can be traded off

with many other parameters, such as extinction ratio,

optical loss, linearity, optical-signal-to-noise ratio (OSNR),

and system stability. Generally, the power efficiency of

an optical transceiver is calculated by dividing the power

consumption with its maximum data rate, and expressed

in Joules per bit. For instance, the first monolithically inte-

grated optoelectronic transceiver [256], [257] presented

by Luxtera (fabricated with the 130-nm CMOS technology

node) consumed 1.25 W at 10 Gb/s, equating to a power

consumption of 125 pJ/bit. This power consumption figure

includes the power consumed in the Serializer/Deserializer

(SERDES), driver, and TIA for a point-to-point transmis-

sion, but not the more complicated signal processing ele-

ments analog-to-digital converter (ADC)/digital-to-analog

converter (DAC) and digital signal processing (DSP) nor-

mally required for a long-haul communication network.

Within that optoelectronic transceiver, the most power-

hungry device is the MZM driver, which consumes 575

mW. This is mainly because the driver circuit uses double

matching resistors at both ends of the MZM electrodes.

To enhance the power efficiency of an MZM driver,

there has been some work [265]–[267] in recent years

to increase the data rate of the transmitter by using more

advanced fabrication processes, such as the 28-nm CMOS

or the 55-nm BiCMOS technology node. For example, a

data rate of 56-Gb/s ON–OFF keying (OOK) was achieved

at 300 mW [266] fabricated with the 55-nm BiCMOS

technologies, which equivalent to 5.4 pJ/bit. On the other

hand, several designs [259], [262], [263], [272]–[275]

adopted advanced modulation formats (such as PAM-4

or PAM-16) with segmented MZM approaches, with each

segment of the MZM treated as a lumped capacitive ele-

ment, thus eliminating the need for termination resistors.

For instance, the power efficiency for segmented MZM is

0.25 pJ/bit for 40-Gb/s PAM-16 in [272]. However, it is

difficult to claim these approaches are superior since the

use of advanced modulation formats will inevitably suffer

from worse OSNR performance and will require additional

decoding circuits at the receiver side.

Besides the MZM, the ring-resonator-based modulator is

a well-known device for low power consumption. It not

only eliminates the use of 50-� matching resistors, but

also features an exceptionally small footprint, which is

preferred for monolithically integrated photonic circuits.

For example, power consumption as low as 0.17 pJ/bit

for the OOK mode [260] and 0.042 pJ/bit for the PAM-4

mode [262] has been demonstrated for the ring-resonator-

based modulator, which is one order better than for MZMs.

However, as has been mentioned in Section III, thermal

stability, fabrication tolerances, and the narrow operating

wavelength range limit its utilization. Control of these

factors to make the use of a ring-resonator-based modu-

lator practical would cause additional power consumption

which needs to be considered when assessing the overall

power benefits.

IX. R E C E N T T R E N D S

Beyond the devices in optical communication wavelengths,

silicon photonics at mid-infrared wavelengths is now

emerging as a new frontier. Many groups around the

world have started to work in this area because of the

potential applications envisaged for chemical and biolog-

ical sensing, trace-gas detection, environmental monitor-

ing, etc. [93]. The potential of seamless integration of

multiple components on a single chip offers an attrac-

tive solution for applications at mid-infrared wavelengths.

Soref et al. theoretically studied various types of opti-

cal waveguides for longer wavelength transmission in

2006 [276]. Subsequently, various designs of grating cou-

plers [277]–[280] and waveguide devices [114]–[116],

[119], [121], [281] based on various platforms have

been experimentally demonstrated at mid-infrared wave-

lengths, such as silicon-on-sapphire, air-cladded silicon

(suspended silicon), Ge-on-Si, and Ge-on-SOI. A silicon

cascaded Raman laser was demonstrated by Rong et al. in

2008, with a potential to make room-temperature lasers

at mid-infrared wavelengths [282]. Raman amplification

in mid-infrared was demonstrated in bulk silicon [283],

with an amplification of 12 dB demonstrated at 3.39-µm
wavelength. The absence of TPA at mid-infrared wave-

lengths also offers intriguing opportunities for the study

and application of nonlinear optical effects, which may find

applications in novel laser systems, gas sensing devices, or

quantum photonic systems. More recently, there have been

also studies investigating high-speed modulators [123]

and detectors [167] beyond 1550-nm wavelength in order

to potentially increase communication systems capacity.

Silicon has now been developed into a truly versa-

tile platform with superior performances. It has been

used as a platform for many other applications that had

not been envisaged in the early years, such as photonic

phased arrays [284], [285], microwave photonics systems

[286], [287], and integrated optical gyroscopes [288].

Integrated quantum photonics and optomechanical devices

on SOI platforms are also attracting great interest recently.

Integrated optomechanical devices have the potential to

integrate novel nano–opto–electro–mechanical systems on
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chip. A detailed review is presented by Van Thourhout and

Baets [289]. Quantum photonic circuits are also the subject

of a great deal of emerging research for applications in

secure communications, sensing, and computing systems.

Silicon photonics has been proved to be the preferred plat-

form to realize compact and scalable integrated quantum

photonic circuits [290], [291].

The high cost of fabrication facilities has started a trend

toward “fabless silicon photonic” [292], similar to the

development of CMOS technology. In this approach, a

research group or startup company can design photonic

circuits and have them fabricated in a silicon photonics

foundry. Some foundries offer cost sharing between users

utilizing the so-called MPWs. This enables users to fabri-

cate devices and circuits at a modest entry cost, typically

starting at only a few tens of thousands of U.S. dollars, a

small fraction of the total cost of the fabrication process

of full SOI wafers. The equipment needed for fabrication

of integrated photonic circuits is prohibitive for all but

the largest companies, and therefore the shared platforms

have facilitated a huge body of research work worldwide.

Organizations which offer the ability to build passive and

active photonic circuits in an MPW environment include,

for example, the EPIXfab in Europe (now via Europrac-

tice) [293], IME in Singapore [294], and the CORNER-

STONE project in the United Kingom [295], and has given

affordable access to a photonics fabrication facilities for

academia and industry alike.

X. C O N C L U S I O N

Although origins of integrated optics date back to the early

1960s and 1970s, with a variety of materials and material

platforms being investigated, the SOI platform still remains

the most popular platform for silicon photonics. Device

fabrication technology and postfabrication treatments are

continually improving, and propagation losses as low

as 0.7 and 0.1 dB/cm were demonstrated at 1550-nm

wavelength for submicrometer strip and rib waveguides,

respectively. The SOI platform is well suited for real-

izing the current and potential commercial products.

As a complement to the SOI platform, a wide variety of

materials have been considered for the visible and near-

infrared wavelength regimes, including polysilicon, amor-

phous silicon, doped silicon dioxide, silicon oxynitride, and

silicon nitride. Additionally, several other platforms such

as silicon-on-nitride, silicon-on-sapphire, and germanium-

on-silicon, among many others, are currently being inves-

tigated to enable and improve the performance of silicon

photonic devices at longer wavelengths (2–16-µm wave-

length range).

The cost of silicon photonic products is now dominated

by the packaging process. An accurate and expensive active

alignment process is generally required currently for sili-

con photonic devices. Although a lot of effort was spent

to reduce the cost by developing low-cost passive align-

ment techniques or simplified/optimized active alignment

techniques, the progress is modest, and no single “best”

solution exists today. There are always some performance

tradeoffs.

Regarding active components in silicon photonic cir-

cuits, monolithic integration of a viable laser source is

not yet achieved. Hybrid III/V/Si lasers based on different

bonding techniques have shown promising results, with

multiple die-to-wafer bonding approach being pursued as

the economically viable technique for industrial-volume

fabrication. On the other hand, further progress in direct

growth of QD or nanowire III/V lasers on SOI platform

might eventually lead to fabrication of integrated light

sources suitable for commercial applications. The inte-

grated modulators and detectors in silicon photonics have

been very successful in the last decade, and many commer-

cial products are available. However, the modulation speed

and power consumption of the current carrier-depletion-

type modulators, and the sensitivity of the photodetec-

tors are still not satisfactory for the ever-growing need

for data capacity in the communication and computing

network. �
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