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Social and community intelligence research aims to reveal individual 
and group behaviors, social interactions, and community dynamics  
by mining the digital traces that people leave while interacting with 
Web applications, static infrastructure, and mobile and wearable  
devices. 

T
he past decade has seen a phenomenal growth of 

Internet and social network services, an explosion of 

sensor-equipped mobile phones, broader use of the 

Global Positioning System (GPS) in all types of public 

transportation, and the extensive deployment of sensor 

networks in facilities and outdoor environments. All these 

developments have led to an unprecedented accumulation 

of digital footprints—the digital traces that people leave 

while interacting with cyberphysical spaces. 

Social and community intelligence (SCI) is an emerg-

ing research field that leverages the capacity to collect and 

analyze these footprints to reveal human behavior patterns 

and community dynamics. The breadth, depth, and scale of 

multimodal, mixed data sources provide an opportunity to 

compile digital footprints into a comprehensive picture of 

an individual’s daily-life facets, transform the understand-

ing of how people live and how organizations and societies 

function, and enable innovative services in human health, 

public safety, city resource management, environmental 

monitoring, and transportation management. 

To understand SCI’s potential, consider the activities 

on a typical university campus. Students often need to 

spontaneously locate sports partners or study space. They 

want instant answers to queries, such as when the next bus 

will reach the stop closest to the library or who is at that 

stop. Quick identification is a luxury in such cases, but if 

a pandemic like H1N1 occurs, it becomes crucial. Health 

organizations must quickly identify whom a suspected 

pandemic carrier has contacted and when and where con-

tact has taken place. It is still difficult to answer questions 

about individual activities, group interaction, and society 

dynamics using current technology.

An SCI system can make such information available by 

analyzing pervasive data streams collected from personal 

mobile phone sensors, GPS devices on buses, WLAN or 

Bluetooth gateways inside a building, and Internet appli-

cations such as online social networks. In the pandemic 

use case, SCI data could provide distance and contact time 

with the suspected carrier, logical places for the encoun-

ters (office or bus), and the carrier’s personal and business 
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EVOLUTION OF SOCIAL AND COMMUNITY INTELLIGENCE RESEARCH

T he understanding of human behavior, social interactions, and 

city dynamics has long relied on data collected through indi-

vidual observations and surveys. Unfortunately, observations were 

usually sparse, and survey results were often incomplete and sig-

nificantly delayed. 

With advances in computing, storage, Internet access, wireless 

communication, and sensing, it is now possible to monitor and ana-

lyze human behavior, social interactions, and city dynamics on a 

large scale and in nearly real time. Initially, analysts used Internet 

content as the premier data source for understanding large-scale 

human interaction. Then the emergence of static sensing infra-

structure made it possible to recognize human activities in a 

physical environment. Recently, the prevalence of sensor-enriched 

mobile devices has brought unprecedented opportunities to 

observe human behavior, social interaction, and community 

dynamics. The Internet and Web, static infrastructure, and wear-

able and mobile devices have all contributed to the evolution of SCI 

research.

Internet services and Web applications
The past two decades have witnessed the explosive growth of 

Internet services, such as e-mail, instant messaging, and Web appli-

cations, which have changed how people share and obtain 

information and communicate with each other. A large body of 

work has centered on leveraging those services, including efforts in 

information extraction and human interaction analysis, such as 

news recommendation, personal and organizational profile extrac-

tion, and e-mail network analysis. As the Internet moves into the 

Web 2.0 era, researchers are turning their attention to online social 

utilities, such as social networking sites, wikis, and blogs. 

Much work has focused on social behavior study and user- 

generated content analysis. A group from the University of Koblenz-

Landau has investigated how to mine social networks to study 

customer behavior.1 Researchers from Purdue University have 

developed an unsupervised model to estimate relationship 

strength from interaction activity and user similarity on a social 

website.2 Investigators from Wright State University label Web 2.0 

service users as “citizen sensors” and have worked on social event 

detection from user-contributed contents.3 Collaborators from the 

University of Arizona, Carnegie Mellon University, and the Univer-

sity of Southern California coined the term “social computing,” 

defining it as social study based on the Internet and Web that aims 

to study and extract human social dynamics from online human 

interactions.4

Static sensing infrastructure
With the prevalence of static sensing infrastructure, such as  

surveillance cameras, environmental sensors, indoor positioning 

sensors, and radio-frequency identification (RFID), monitoring and 

detecting real-world events has become feasible. Early sensor 

applications involved mainly environmental monitoring in signifi-

cant places. Surveillance cameras were the first sensing devices 

widely deployed in public and critical spots to detect abnormal 

events. Temperature, light, and humidity sensors are also widely 

used for environmental monitoring, for example, to detect a forest 

fire. With advances in sensing techniques, it is now possible to 

deploy massive numbers of cheap, tiny sensors, such as RFIDs and 

switches, to augment living and working environments—creating 

smart spaces. Active Bats uses ultrasonic sensors and triangulation 

to locate indoor objects,5 which in turn enables location-based ser-

vices like finding a lost key or other objects. Researchers from Intel 

Seattle are exploring techniques to recognize human activities by 

analyzing people’s interaction with RFID-equipped everyday 

objects.6

Mobile sensing
Although static sensing infrastructure brings opportunities to 

infer environmental and human contexts in smart spaces,7 it is 

tied to a particular physical environment. Wearable sensors, in 

contrast, transform people into mobile sensors for both personal 

and ambient environment monitoring. People can wear sensors, 

such as accelerometers, pedometers, heart-rate sensors, wireless 

webcams, and microphones, on different parts of their body to 

enable various human-centered services, including human 

behavior detection, health-status monitoring, and social-context 

recognition. 

Although wearable sensors are portable and promising, people 

still do not view them as a personal companion. In contrast, smart-

phones—sensor-enhanced mobile phones with embedded GPS 

receivers, Bluetooth/WiFi, accelerometers, and cameras—always 

accompany users and are thus a rich information source. 

The volumes of multimodal data collected from people’s daily 

use of smartphones opens a new window to study large-scale 

human behavior patterns and community dynamics. For example, 

Real Time Rome (http://senseable.mit.edu/realtimerome), a project 

that the Massachusetts Institute of Technology initiated in 2006, is 

one of the pioneering projects that explicitly use mobile phone 

data to understand city dynamics, such as people’s movement pat-

terns and the spatial and social use of streets and neighborhoods. 

Reality mining (http://reality.media.mit.edu), on the other hand, 

collects and analyzes mobile phone data such as physical proximity 

to identify predictable patterns of social behavior, such as friend-

ship.8 Dartmouth’s Mobile Sensing Group is looking at the use of 

human-centric sensing to link personal mobile sensing to mobile 

social networks and public environment monitoring.
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relationships—all important clues and contexts that affect 

the probability of disease spread. 

SCI evolved from closely related research areas such as 

social computing, reality mining, and urban computing. 

However, although it embodies aspects of these areas, it 

has unique infrastructure, data, technology, and applica-

tion needs. Unlike research areas, such as social and urban 

computing, SCI mines data from three sources: Internet 

services and Web applications, static infrastructure, and 

wearable sensors and mobile devices.

Many SCI applications are on the horizon, necessitating 

a general system framework that can both accommodate 

heterogeneous devices, software, and spaces and support 

rapid application development. We have developed such 

a framework on the basis of our extensive SCI application 

survey.

CHARACTERISTICS
SCI system scale goes beyond a single smart space to 

the community level. Real-life, real-time data collection 

and inference are key system features. SCI thus requires 

an infrastructure that can integrate large-scale and hetero-

geneous information sources and systematically support 

rapid application development, deployment, and evaluation.

The three main SCI data sources are multimodal and 

heterogeneous, including 

•	 social network and Internet interaction services, which 

provide data about the individual’s preferences and 

relationships; 

•	 infrastructure-bound sensor data about the environ-

ment; and 

•	 mobile and wearable sensor data about the individual 

and moving objects. 

Although each source can independently show one facet 

of the user’s daily life, combined sources can reveal unfore-

seen social and community behavior.

The core SCI technologies are data mining, machine 

learning, and artificial intelligence. The objective of data 

processing and inference ranges from recognizing the 

individual’s physical activity and environmental context 

to extracting higher-level community and social behavior. 

Semantic gaps exist between individual activities and social 

and community behavior, and bridging these gaps is a key 

challenge for SCI research.

SCI applications aim to enable innovative services at the 

society level, such as community healthcare, public safety, 

and city resource and transportation management.

Comparison with existing research
The “Evolution of Social and Community Intelligence 

Research” sidebar describes how research developments 

have led to the birth of SCI research. Table 1 lists the goals 

of SCI and four closely related research areas. SCI differs 

from the other research areas listed in Table 1 primarily 

because it explores the fusion of three data sources, not just 

one source, to infer intelligence at the group and commu-

nity level. Intelligence can range from human interaction 

to group behavior within a community to the dynamics of 

an entire community. 

Compared to SCI, social computing emphasizes the 

analysis of human interaction and social behaviors using 

only Web data. It does not target the study of a large-scale 

physical community. Similar to social computing, reality 

mining focuses on social-interaction analysis, but relies 

primarily on data gathered from mobile devices. Like SCI, 

urban computing studies the relationship between indi-

vidual and environment at the city scale, but SCI extends 

its scope from urban design to the large-scale analysis 

of personal, group, and community dynamics. Human-

centric sensing is the research area closest to SCI. The 

two areas have similar research goals, but the underlying 

sensing mechanisms are different. While human-centric 

sensing uses only mobile phones, SCI aggregates the infor-

mation from mobile phones, Internet services, and static 

infrastructure.

As this brief comparison shows, SCI has many aspects in 

common with the four research areas in Table 1, but goes 

beyond them in scope and data sources. Breakthroughs 

Table 1. Goals of SCI and four related research areas.

Research area Goals

SCI Reveal individual and group behavior, social interactions, and community dynamics, leveraging the aggregated power of 

three information sources: Internet and Web, static infrastructure, and mobile devices and wearable sensors

Social computing Conduct computational social studies, analyze human interactions, and design technologies that consider social context

Reality mining Collect and analyze mobile sensing data related to human social behavior to characterize human interaction and behavior 

patterns

Urban computing Study the interaction between humans and environments using technology in public areas, such as cities, suburbs, parks, 

and forests

Human-centric 

sensing

Use mobile sensing data to derive people’s daily patterns and interactions and identify characteristics of public 

environments
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in any of the four areas will contribute to progress in SCI 

research. 

Aggregated sources
The three SCI data sources have different attributes and 

strengths that affect how analysts can fuse them to extract 

information: 

•	 The Internet and Web are the best sources for extract-

ing static or slowly changing information, such as user 

profiles, organization structures, and user relation-

ships in a community. 

•	 Static infrastructure enables the detection of indoor 

and urban user activities, group activities, and spatial 

context in sensor-enriched environments.

•	 Mobile devices and wearable sensors are always user-

centric and are thus appropriate for sensing individual 

activities, interpersonal interactions, significant user 

locations, and public environment contexts.

The three examples in Figure 1 showcase the aggre-

gated effects among the three data sources. Many more 

are possible.

Figure 1a shows the power of combining Web knowl-

edge mining and sensor-based activity recognition. Social 

relationships extracted from the Web can assist social-

activity recognition in the physical world. For example, 

if the detected social gathering is in the evening and all  

participants are friends, the event is likely to be a party. If 

the gathering occurs on a weekday morning and partici-

pants are managers and subordinates, it is more likely to 

be a business meeting.

Figure 1b shows how sensor-detected human inter- 

action can enhance an online social network. Online social 

networks still rely on user input to infer social relationships. 

However, because users input only partial information 

about themselves and their friends, the predicted social 

connection is often inaccurate. By tracking real-world user 

interactions through sensors and then mapping the detected 

relationship onto the online social network, analysts can 

significantly improve the quality of social-network services. 

For example, if two people are spending time together after 

work, they are probably close friends. If they meet only at 

work, they are likely to be merely colleagues. In the Seren-

dipity project,1 researchers used Bluetooth-enabled mobile 

phones to scan other devices in the user’s proximity—infor-

mation they then used to verify and better characterize 

relationships in an online social-network system.

Figure 1c shows one possible result of merging mobile 

sensing and Web data. Because data from a source often 

characterizes a specific facet, fusing distinct data sources 

can often draw a better picture of the entire situation. For 

example, by integrating the mined theme from user posts 

and the revealed location information from GPS-equipped 

mobile phones, Twitter was able to support the near real-

time reporting of earthquakes in Japan.2

GENERAL SYSTEM FRAMEWORK
Because it is effectively a community-wide sensing 

system, SCI infrastructure requires a general framework 

that integrates large-scale and heterogeneous informa-

tion sources and systematically supports rapid application 

development, deployment, and evaluation. On the basis of 

our investigations into SCI, we have developed the five-layer 

general framework in Figure 2.

The pervasive sensing layer manages the three 

major information sources. Because privacy is a major 

concern for both personal and organizational data 

Relationship
1. Friend?
2. Colleague?
3. Advisor-student?

Recognition
1. Party?
2. Meeting?
3. Banquet?

S2. Using social relationship information to recognize
group activity

(a) (b) (c)

S1. Extracting social relationships from social websites like
Facebook, Linkedin, and personal homepages

S2. Using interaction information to form 
social network, recommend friends

S1. Sensing physical interaction information

S2. Earthquake viewer

S1. Twitter post with location information

Figure 1. Examples of data-source aggregation in SCI. (a) Analysts use Web-mined knowledge to enhance sensor-based activity 

recognition. (b) Sensor-detected human interaction enhances an online social network. (c) Analysts merge mobile sensing and Web data 

to characterize a situation more accurately.
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sharing, the proposed framework also incor-

porates a data anonymization layer before 

data release and processing. The hybrid 

learning layer applies diverse machine- 

learning and data-mining techniques to con-

vert low-level single-modality sensing data 

into high-level features. The goal is to mine the 

frequent data patterns to derive the individu-

al’s behavior and single space context before 

extracting the complete SCI. The semantic 

inference layer uses logic-based inferences to 

accommodate feature aggregation. It comple-

ments the statistical learning approach and 

uses explicit rules to effectively associate the 

hybrid learning layer with the expected SCI 

on the basis of expert domain knowledge. 

Finally, the application layer includes a variety 

of potential SCI-enabled services.

APPLICATIONS
SCI applications stem from the need to 

develop socially aware services that facili-

tate group interaction and communication, 

monitor the real-time change of the physical 

world for the public good, and track and pre-

dict specific events to benefit society. Many 

application areas are possible, but we have 

chosen six primary ones.

Although most of these applications use only 

one or two data source types, we believe that 

there are ways to enhance them or even build 

new applications by incorporating increasingly  

heterogeneous data sources. For example, both mobile 

devices and infrastructure can help improve applications 

in urban planning, environmental monitoring, well-being 

management, and public safety.

Social network services
By recording various aspects of physical interaction and 

communication, such as colocation, conversations, and 

call logs, and by mining user behavior patterns, such as 

places of interest, SCI nurtures the development of many 

social-network services, such as friend recommendation 

and augmented online interaction. The FriendSensing 

application3 can recommend friends by monitoring a 

user’s encounters and mobile phone activity, such as text-

ing and calling. The CenceMe project (www.cenceme.org) 

exploits off-the-shelf smartphones to automatically infer 

people’s presence, whether they are walking on the street 

or dancing at a party with friends, and then shares this 

presence through social-network portals such as Facebook 

and Twitter.

In the EU FP7 Societies project (www.ict-societies.eu), we 

plan to support the creation and management of different 

social communities in pervasive computing environments. 

A community has several forms. It can be people colocated 

in a physical space, defined through an environment- 

sensing infrastructure. It can be a group with common 

interests and expertise, defined through information extrac-

tion from a homepage or social website. Or it can be a group 

whose members have followed a similar routine, defined by 

analyzing traces from wearable or mobile sensors. Social 

communities not only have different forms and goals but 

also can be highly dynamic. The more information we can 

obtain from different data sources about people, the better 

we can support and manage social communities.

Urban sensing
With wireless sensor platforms in the hands of the 

masses, it is possible to leverage community sensing to 

address urban-scale problems, such as ambient monitor-

ing, traffic planning, and the better use of public utilities.

MIT’s Real Time Rome project (see sidebar) uses aggre-

gated data from cell phones, buses, and taxis in Rome 

to better understand urban dynamics in real time. The 

Biketastic project (http://biketastic.com) improves bike 

commuting in Los Angeles by collecting and mining data 

that bikers have contributed through their mobile phones. 

Bikers can then plan routes with the lowest probability 

of traffic accidents and the best air quality. The GeoLife 

Social
network
services

Individual/group
behavior

Social
interactions

Semantic interference layer

Social and community intelligence

Hybrid learning layer

Data anonymization layer

Pervasive sensing layer

Mobile/wearable sensors Social Web Static sensing infrastructure

Community
dynamics

Urban
sensing

Applications

Public safety

Public health

Environmental
monitoring

Sentiment
analysis

Figure 2. A general SCI system framework. The proposed framework integrates 

large-scale and heterogeneous information sources and systematically supports 

rapid application development, deployment, and evaluation.
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project extracts information about interesting locations 

and travel sequences on the basis of users’ GPS trajecto-

ries and provides travel recommendations to the city’s 

first-time visitors.4

Environmental monitoring
The nomadic, participatory, and in situ nature of 

community sensing provides new opportunities for envi-

ronmental monitoring and natural-resource protection.

One area is nature preservation. With the help of 

human volunteers, the Great Backyard Bird Count project 

reports the cumulative counts of birdwatchers from across 

America (www.birdsource.org/gbbc). The MIT Owl project 

(http://web.mit.edu/newsoffice/2008/tracking-0822.html) 

leverages a network of smartphones equipped with GPS, 

compasses, and directional microphones to reduce the 

burden of manually assessing owl populations.

Pollution measurement is another area ripe for environ-

mental monitoring. Several projects have used portable 

pollution-sensing devices in various missions. The BikeNet 

application assesses metrics to give a holistic picture of 

the cyclist’s experience, including the carbon dioxide 

level along the path. It facilitates public sensing and shar-

ing by letting multiple users merge their individual data, 

for example, to create pollution and noise maps of their 

city.5 The Personal Environmental Impact Report project 

(http://urban.cens.ucla.edu/projects/peir) uses GPS-enabled 

phones to detect if a user is driving, riding, or walking. The 

information becomes the basis for assessing an individual’s 

environmental impact, such as the carbon footprint from 

the mode of transportation, and exposure to air pollution. 

Public health
SCI can make it easier to anticipate and track a disease 

outbreak. Epidemics of seasonal influenza are a major 

public health concern, causing tens of thousands of deaths 

worldwide annually. Early detection is key to reducing this 

count. Google researchers have shown that, by mining 

indirect signals from millions of geographically localized 

health-related search queries, it is possible to estimate 

the level of influenza-like illnesses in US regions with a 

reporting lag of just one day.6 This lag is much smaller than 

the government agency estimates of regional data, which 

are published weekly on the basis of virology and clinical 

statistics. 

SCI also brings new opportunities for managing per-

sonal well-being. With community sensing, people can log 

their physical activities, track their food intake, sense their 

mental status in real time, and record their daily social 

interactions—all of which is information that is useful in 

improving their health management. The Neat-o-Games 

system, for example, uses a wearable accelerometer to 

detect if the user is walking or running and motivates users 

to do more exercises by showing avatars in a virtual com-

munity race game.7

Sentiment analysis
Sensing user sentiments is important in context-aware 

computing, but it is not easy to use physical sensors for this 

purpose. One way around the problem is to collect or mine 

user-generated Web data. For example, Emotional City 

(www.emotionalcities.com) and D-Tower (www.d-toren.

nl) collect information about citizens’ moods through daily 

Web surveys and display their emotions by changing the 

colors of a building or public sculpture. 

Public safety
Public safety involves the prevention of and protection 

from events that could endanger the public, such as crimes 

or disasters. Public video surveillance systems have greatly 

enhanced citywide event sensing and safety monitoring. 

For example, the Boston police department has recently 

embraced collecting user-contributed sensor data to assist 

in crime prevention. 

RESEARCH ISSUES
SCI applications directly motivate many research issues, 

which are aligned with the functional layers in our SCI 

system framework: sensing, data anonymization, data pro-

cessing, social-context learning, and intelligence extraction.

Participatory or opportunistic sensing?
The first research issue to be considered is what roles 

people should play in community sensing. For example, 

when a mobile phone is acting as a sensing device, should 

the sensing system interrupt the mobile phone user to 

accept or stop the sensing task? There are two extreme 

cases for sensing. 

In participatory sensing, people are part of the sens-

ing system’s decision-making process. They decide which 

application request to accept, what data to share, and to 

what extent they will allow privacy mechanisms to impact 

data fidelity. In other words, users retain control over their 

raw data. The Personal Data Vault system is based on this 

idea, which seeks to provide easy-to-use toolkits to support 

data control.8

Opportunistic sensing, in contrast, automatically 

determines when to use devices to meet the application’s 

sensing requests. Instead of requiring human interven-

tion to actively and consciously participate in the sensing, 

opportunistic sensing requests that a sensing device be 

used automatically whenever its state (location, user activ-

ity, and so on) matches an application’s requirements. 

Obviously, there’s a tradeoff between participatory and 

opportunistic sensing. Participatory sensing places demands 

on user involvement, which restricts the pool of willing par-
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For example, some people put their mobile phones in their 

pocket; others put it in a purse. If both users are walking, 

the data from those phones will be quite different. Rather 

than take the data directly from the device, it might be 

better to train classifiers that work in different contexts. 

Both data collection and context identification remain chal-

lenging issues, however. 

Trust. Mining social and community behavior often 

requires collecting data from anonymous participants. If 

no mechanism ensures that the source is valid and the 

information is therefore accurate, the data will not be 

trustworthy. Twitter data is sometimes unreliable; mobile 

phone users can send incorrect or even faked data to the 

data center. Future work should look at developing trust 

and abnormal data-detection methods to ensure the trust-

worthiness and quality of collected data.

Managing large-scale heterogeneous  
data sources

In an SCI system, data producers can differ signifi-

cantly in modality (mobile phones, fixed cameras, or 

Web services), Internet connectivity (constant or inter-

mittent), sharing willingness or privacy sensitivity, and 

resource capabilities for processing data locally. Infor-

mation consumers are also heterogeneous in terms of 

running environments and data needs. These myriad 

dimensions of heterogeneity pose hard challenges for 

data management.

Multimodal data. Different sensor types have different 

attributes and capabilities, such as varying accuracy in sens-

ing the physical and virtual world. Integrating information 

from diverse data sources compounds the job of SCI mining. 

Raw data from different sensor sources must be transformed 

to the same metrics and represented by a shared ontology to 

facilitate the learning and inference process.

Temporal and continuous data. Because sensing data 

is time sequenced, when modeling individual and group 

behavior, the system should consider multiple data stream 

samples, rather than what each sensor reads in isolation. In 

addition, real-world systems are continuous, so it’s impor-

tant to build models that cater to the discrete, sampled 

sensor state.

Large-scale data processing. SCI applications often deal 

with real-time data collected from many sensing nodes, 

such as the computing and visualization of traffic con-

ditions in a city. As such, they can suffer from the same 

modeling and computational difficulties inherent in most 

data-mining tasks. More work is needed on sampling opti-

mization, problem decomposition, and the adoption of 

advanced computational and learning models within a 

particular problem domain.

Inconsistency. The same sensor might sense an event 

under different conditions, such as sensing a person’s voice 

in a quiet office or noisy restaurant, which can yield con-

ticipants, and people’s tolerance of interruptions limits the 

number of applications. Opportunistic sensing risks leak-

ing personally sensitive information and requires more 

resources for decision making, such as a determination of 

the sampling context (indicates when sampling should be 

started and stopped). As such, an opportunistic system must 

adapt to the device’s changing resource availability. 

Future work should focus on how to balance users’ 

involvement and proper control while integrating the 

appropriate protection mechanisms for data privacy.

Privacy, data quality, and trust
Sharing and revealing personal digital data could pose 

privacy risks for users. Even data gathered in a community 

can reveal considerable information about an individual or 

organization’s behavior. For example, a person’s location 

might reveal her private interests, while an organization’s 

health data might suggest potential environmental prob-

lems for the staff. The impact is obvious: if there is no way 

to anonymize the data and place it under the data owner’s 

control, people might be less likely to share their data.

Privacy. Privacy protection involves many elements, 

including identity (who is asking for the data?), granularity 

(how much does the data reveal about people or the user’s 

identity?), and time (how long will the data be retained?). 

Data anonymization and user control are two research 

areas that address these questions.

The objective of data anonymization is to avoid revealing 

users’ identities when they contribute their data. Metro-

Sense uses the k-anonymity method when users contribute 

location data to a server. The method generalizes a user’s 

position to a region containing at least k users, thereby 

hiding that user’s identity.5 

Another promising approach to secure multiparty compu-

tation allows data mining from many organizations without 

ever aggregating the data into a central data repository. Each 

organization performs part of the computation on the basis 

of its privately held data and uses cryptography to encode 

intermediate results that it must then communicate to other 

organizations performing other parts of the computation.9 

Other privacy-preserving methods include sharing only 

statistical summaries of the individual datasets and insert-

ing random perturbations into individual data records 

before sharing them.

User control is critical to personal data sharing because 

it ensures that users reveal only the information they want 

to reveal and that the system reveals only what the users 

want it to reveal. For example, a user might track his heart 

rate each day, but there is no reason to share that informa-

tion with anyone but his doctor. User control research is 

exploiting methods that enable users to manage their data 

by tailoring access-control and data-management tools.8

Data quality. Web data quality can range from autho-

rized to fake. The same is true of mobile phone data quality. 
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flicting inference results. Because of these environmental 

differences, a group of colocated sensors running the same 

classification algorithm and sensing the same event in time 

and space could compute different inference results, which 

leads to system inconsistency. Dartmouth’s Mobile Sensing 

group proposed a collaborative approach to deal with this 

inconsistency,10 but more solutions are needed. 

Difficulty in labeling data. Labeling large amounts of 

data is often difficult and time-consuming. Future work 

should focus on learning algorithms that can derive system 

models from relatively small amounts of labeled data.

Extracting high-level intelligence data  
from low-level sensing data

SCI aims to identify a set of characteristics or behaviors 

associated with a social community. Social communities 

form flexibly from people in the same organization, at the 

same places, with the same behaviors and interests, and 

so on, depending on social application requirements.1 By 

pooling individual behavior traces and mining the under-

lying social patterns, an SCI system can extract various 

social or group behaviors.9 The extracted social context 

can be an event such as an open concert, a behavior pat-

tern in daily activity, a relationship within a group, or a 

significant location. 

The thrust of SCI pattern mining is to identify user simi-

larity in these social patterns to facilitate offering socially 

aware services. Unsupervised learning techniques, such as 

clustering, latent semantic analysis, and matrix factoriza-

tion, are possible ways to mine social context according to 

individual behavioral similarities. The process includes the 

mining and discovery of common social contexts, such as 

personal characteristics, cuisine preferences, and eager-

ness to participate socially. It also includes the discovery of 

undefined social patterns for interest matching and ranking 

social choices.

To enable systems to infer social events on the basis of 

user context traces, data mining and inference research 

should aim to bridge the semantic gap between the low-

level individual activities and high-level social events. 

W
e believe that SCI represents a new interdis-

ciplinary research and application field and 

that its scope will continue to expand with 

innovative applications in the near future. 

As an emerging research area, SCI still faces challenges, 

but their resolution will pave the way for new research 

opportunities. Although existing SCI practices involve only 

one data source type—Web applications and Internet ser-

vices, static sensor infrastructure, or mobile and wearable 

devices—we expect to see the rapid growth of research on 

using the aggregated power of three information sources as 

well as on enabling innovative SCI-enabled applications. 

r7P-guo.indd   28 6/23/11   1:23 PM


