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Abstract

Background: DNA methylation has been found to associate with disease, aging and environmental exposure,

but it is unknown how genome, environment and disease influence DNA methylation dynamics in childhood.

Results: By analysing 538 paired DNA blood samples from children at birth and at 4–5 years old and 726 paired

samples from children at 4 and 8 years old from four European birth cohorts using the Illumina Infinium Human

Methylation 450 k chip, we have identified 14,150 consistent age-differential methylation sites (a-DMSs) at epigenome-

wide significance of p < 1.14 × 10−7. Genes with an increase in age-differential methylation were enriched in pathways

related to ‘development’, and were more often located in bivalent transcription start site (TSS) regions, which can silence

or activate expression of developmental genes. Genes with a decrease in age-differential methylation were involved in

cell signalling, and enriched on H3K27ac, which can predict developmental state. Maternal smoking tended to decrease

methylation levels at the identified da-DMSs. We also found 101 a-DMSs (0.71%) that were regulated by genetic variants

using cis-differential Methylation Quantitative Trait Locus (cis-dMeQTL) mapping. Moreover, a-DMS-associated genes

during early development were significantly more likely to be linked with disease.

Conclusion: Our study provides new insights into the dynamic epigenetic landscape of the first 8 years of life.
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Background

DNA methylation is the most extensively studied epigen-

etic mechanism. An individual’s DNA methylation profile

is not static but subject to dynamic changes induced by

genetic [1, 2], environmental [3, 4] and stochastic factors

during ageing. Although some age-related epigenetic

changes have been identified [5–9], how genetic and

environmental factors influence methylation-change with

ageing is not yet well understood.

To answer these questions, we performed an epigenome-

wide longitudinal DNA methylation study of 632 children

across four European population-based birth cohorts

participating in the MeDALL (Mechanisms of Develop-

ment of ALLergy) consortium epigenetic study [10] using

the Illumina Infinium HumanMethylation450 BeadChip

(HM450) array. We compared 269 children at ages 0 and

4/5 years, by investigating 538 paired samples of cord

blood and peripheral blood DNA, and another set of 363

children at ages 4 and 8 years (726 paired samples of

peripheral blood DNA). We first identified a set of overlap-

ping and consistent age-differential methylation sites (a-

DMSs) in each group and looked at their functions. Then

we linked genetic variation and maternal smoking during

pregnancy with the changes in these a-DMSs over time to

see how genetic and environmental factors regulate

dynamic changes in methylation. Finally, we investigated if

genes annotated to these a-DMSs were enriched for

disease-associated genes; we linked these a-DMSs to
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asthma, the chronic disease with the highest prevalence in

childhood.

Results
Identification of a-DMSs

We first applied differential methylation analysis on

439,306 cytosine-phosphate-guanine (CpG) sites that

passed our quality control (see Methods) in 538 paired

samples from the INMA (Spain) and EDEN (France) birth

cohorts (ages 0 and 4/5) and in 726 paired samples from

the BAMSE (Sweden) and PIAMA (Netherlands) birth

cohorts (ages 4 and 8), (Fig. 1, Additional file 1: Table S1).

The overall correlations of methylation levels between

two time points in the four birth cohorts are shown

in Additional file 2: Figure S1. In the pooled analysis

of all cohorts adjusting for cell-type-composition [11],

15,529 significant a-DMSs were identified in both age

groups surpassing the 5% Bonferroni corrected threshold

(P < 1.14 × 10−7) (Additional file 1: Figures S2 and S3). Of

these 15,529 a-DMSs, 9,704 (62.5%) showed a consistent

decrease in methylation with age (decrease in age-

differential methylation sites, da-DMSs), whereas 4,446

(28.6%) showed a consistent increase in methylation with

age (increase in age-differential methylation sites, ia-

DMSs). Only 1,379(8.9%) of the CpG sites showed oppos-

ite directions in their methylation changes between the

younger and older comparison sets (Additional file 1:

Table S2). The complete list of 14,150 consistent da-

DMSs and ia-DMSs, and their annotation, is presented in

Additional file 3. Comparing our a-DMS results with

those from two independent, paediatric, age-related

methylation studies [7, 8], we see more than 50% overlap

in the CpG sites identified (Additional file 1: Table S3).

We observed that some of our consistent da-DMSs were

located in clusters, probably reflecting age associated

differential methylated regions rather than one site.

The most significant ia-DMSs, cg01511232 (p0-4/5 =

7.92 × 10−148, p4-8 < 2.25x10
−308) and cg22398226 (p0-4/5

= 1.66 × 10−149, p4-8 = 5.09x10−307) are located on the

chromosome 4q32.1, near the gene LRAT. Mutations in

this gene have been associated with early onset retinal dys-

trophy [12]. The top associated da-DMSs, cg16069986

(p0-4/5 = 6.28 × 10−114, p4-8 < 2.25x10
−308) and cg163125

14(p0-4/5 = 1.67 × 10−106, p4-8 < 2.25x10
−308) on chromo-

some 11q13.4 region were annotated in SHANK2.

Mutations in this SHANK2 synaptic scaffolding gene

have been associated with neurodevelopmental disor-

ders and autism [13].

Characterization of da-DMSs and ia-DMSs

We next examined the enrichment of the 9,704 da-

DMSs and 4,446 ia-DMSs in genomic regions and their

predicted roles in regulating gene expression using his-

tone modifications and chromatin state data from the

Roadmap Epigenomics Project [14]. ia-DMSs were situ-

ated in distinctly different functional domains compared

to da-DMSs, which is consistent with previous findings

[9, 15]. Thus, compared to all the CpG sites we tested,

ia-DMSs were enriched in CpG shores (Fig. 2a) and gene

bodies (Fig. 2b), while da-DMSs were enriched in open

seas, shelves, shores, intergenic regions and transcription

start site (TSS) 1500 regions. ia-DMSs were also

enriched in transcriptional repression histone modifica-

tion marker (H3K9Me3), while da-DMSs were depleted

for this marker (Fig. 2c). Both da-DMSs and ia-DMSs

were enriched in enhancers and bivalent enhancers

(Fig. 2d). ia-DMSs were also enriched in bivalent TSS

regions (Fig. 2d), which are thought to silence or

activate expression of developmental genes [16]. In

contrast, da-DMSs were enriched in H3K27ac, which

separates active from poised enhancers and predict

developmental state [17].

Fig. 1 Study design and structure of this paper. We collected cord

blood and peripheral blood samples from 632 children from four

European birth cohorts: INMA, EDEN, BAMSE and PIAMA. Differential

methylation analysis on different age groups resulted in 14,150

consistent age-differential methylation sites (a-DMSs). We then linked

the methylation change of these a-DMSs to genetics by cis-dMeQTL,

to environmental exposure from maternal smoking, and to diseases,

specifically asthma
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We next performed pathway analysis by GeneNetwork

[18] on genes located in close proximity to DMSs probes.

In total, 3559 genes were annotated to be located near ia-

DMSs probes and 7130 genes near the da-DMSs probes.

1940 of these genes were overlapping across the two

groups, suggesting complex regulation of these genes

during development. The pathway analysis of da-DMSs

specific genes using gene co-expression indicated enrich-

ment of Reactome pathways involved in cell signalling, in-

cluding signalling by nerve growth factors, platelet derived

growth factors, neurotrophin signalling and many others

(Additional file 4). The corresponding Mouse Genome

Informatics (MGI) phenotypes pointed to cell migration,

growth retardation and various abnormal tissue morph-

ologies. The ia-DMS specific genes were enriched for

developmental genes, axon guidance, regulation of insulin

secretion and energy metabolism. The enriched MGI phe-

notypes were related to neonatal and postnatal lethality.

This indicates that in early age methylation regulates the

activity of genes, involved in basic processes of develop-

ment and metabolism.

Next, we inspected methylation dynamics of some well-

known developmental genes and found a lot of CpGs sites

which were annotated to them, such as growth differenti-

ation factors(GDFs), Bone morphogeneic proteins(BMPs),

Wnt signalling pathway (Wnt) gene, Paired box genes(Pax)

and homeotic genes (Hox) gene etc. Among them, the 5′

HOXD cluster [19] that contains genes important for limb

development. The 5′ HOXD cluster consists of five genes

(HOXD9 to HOXD13). We found eight ia-DMSs with low

methylation status within the cluster (Additional file 1:

Table S4), seven of which were localized in CpG islands

encompassing the five promoters and three first exons. In

contrast, Meis homeobox 1 (cg12055515, MEIS1, P0-4/5 =

7.95 × 10−17, P4-8 = 1.77 × 10−11), a limb development regu-

lator that forms complexes with both HOXD9 and

HOXD10 [19], displays a different methylation pattern.

Cg12055515 lies in the gene body of MEIS1 and its methy-

lation level decreases during ageing (Additional file 1:

Table S5).

Genetic variation associates with longitudinal DNA

methylation changes

The availability of paired samples from four different

cohorts gave us the possibility to investigate the effect of

genetics on methylation dynamics in a longitudinal way.

We examined whether genetic variations were associated

with longitudinal DNA methylation changes in childhood

using cis-differential Methylation Quantitative Trait Locus

(cis-dMeQTL) mapping. We associated SNPs within

Fig. 2 Molecular enrichment of a-DMSs for regulatory features. Fold enrichment of 9,704 da-DMSs (blue bar) and 4,446 ia-DMSs (grey bar). a CpG

islands, shore, shelf and open sea. b Gene regions including: within 1.5 kb upstream of the transcription start site (TSS1500), the 5' untranslated

region (5′UTR), the first gene exon, the gene body, the 3' UTR or intergenic region. c Predicted gene expression regulatory regions based on

histone modifications derived from Roadmap epigenomics blood data. d Predicted chromatin state based on Roadmap epigenomics blood data.

DNase: DNase I hypersensitive site, Enh: Enhancers, EnhBiv: Bivalent enhancer, TssA: Active TSS, TSSBiv: Bivalent/poised TSS, Tx: Strong transcription,

TxWk: Weak transcription. The presented fold enrichments are from 1,264 samples by χ
2 test and are relative to all 437,792 CpG sites tested (y-axis); *

1 × 10−3≤ P < 0.01, ** 1 × 10−6≤ P < 1 × 10-3, *** P < 1 × 10−6
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±250 kb of our 14,150 a-DMSs in GWAS data available

for 230 children from BAMSE and PIAMA in the 4–8

years-old comparison set for discovery and from 114 chil-

dren in the INMA 0–4/5 years-old comparison set for

replication (Additional file 1: Table S1). We discovered

7,316 SNP-CpG pairs on 866 aDMSs with significant cis-

dMeQTLs in the older comparison set (FDR < 0.05), and

3,534 SNP-CpG pairs (48.3%) were replicated in the youn-

ger comparison set (same direction of effects and nominal

P < 0.05). 113 potentially false-positive dMeQTLs were re-

moved due to SNP-under-the-probe effects [20]. The

remaining 3,421 (46.8%) SNP-CpG pairs are listed in

Additional file 5, consisting of 2734 SNPs regulating 101

a-DMSs (60 da-DMSs and 41 ia-DMSs) that changed with

age and showed methylation change was partly under gen-

etic control. To understand these dMeQTLs, we tested if

these 3,421 SNP-CpG pairs were MeQTLs at age 4 and

8 years cross-sectionally. Most SNP-CpG pairs showing

dMeQTL were significant MeQTLs when analysed cross-

sectionally at both ages (Additional file 3). The most sig-

nificant MeQTL rs7522439-cg00025357, which are on

chromosome 1p36.13, close to gene PADI3 . By checking

the BIOS QTL browser (http://genenetwork.nl/biosqtl-

browser/), we also found the significant cis-MeQTL

(P = 3.3 × 10−310) in methylation data from adult blood

DNA samples, which is line with the recent findings

that genetic effects on methylation levels are stable [21].

However, we also found three CpG sites cg00804078,

cg02872436 and cg14956327 which were annotated to the

DDO (D-aspartate oxidase) gene showing significant cis-

MeQTL, but did not show significant cis-MeQTL in the

BIOS QTL database. This may indicate an age specific

MeQTL effect since D-aspartate content in brain is

decreased during adulthood [22].

Furthermore, we compared the MeQTL-effect size at

ages 4 and 8 (Fig. 3a), and found that almost all effects

of genetic factors on methylation had the same direction

at both ages (3,348 SNP-CpG pairs; 97.9%), i.e., genetic

effects on methylation remained stable with ageing.

Among these 3,348 SNP-CpG pairs, 725 had a signifi-

cantly larger effect and 2,623 had a significantly smaller

effect at age 4 years than at age 8 (Fig. 3b, 1-sample pro-

portion test, P = 4.8 × 10−236). An example of this pattern

(Figs. 3c and d) is shown for the rs9320331_cg00804078

SNP-CpG pair in the DDO (D-aspartate oxidase) gene,

which showed a MeQTL at both ages 4 and 8

(Fig. 3e), with a stronger effect at age 8(beta = 0.058,

P = 1.3 × 10−13) compared to the effect at age 4 (beta

= 0.032, P = 2.7 × 10−6).

Maternal smoking during pregnancy associates with

longitudinal DNA methylation changes

Methylation has been found strongly associated with

maternal smoking during pregnancy [3]. Here we further

investigated whether methylation changes of the 14,150

a-DMSs between the 0–4/5 and 4–8 years-old compari-

son sets were associated with maternal smoking during

pregnancy. In total, we found eight significant a-DMSs

in the younger set and one in the older set (FDR < 0.05,

Additional file 1: Table S6) associated with maternal

smoking. These nine CpG sites mapped to five genes,

ITGA11, OR5B3, VWF, RCBTB1 and CREB5 and one

pseudogene HNRNPA3P1. The most significant associ-

ation was for the methylation change of cg09836827 at

the VWF gene (Von Willebrand Factor), a protein-

coding gene crucial for haemostasis. Both VWF and

ITGA11 (integrin alpha 11) are involved in regulating

cell-substrate adhesion. Interestingly, all nine significant

CpG sites belonged to the da-DMS group, and the asso-

ciation of maternal smoking with methylation changes

was always negative (Additional file 1: Table S6). This

means that the methylation decrease was consistently

larger in the children exposed to smoke in utero com-

pared to the non-exposed. Fig. 4a and Additional file 2:

Figure S4 show that maternal smoking during pregnancy

was associated with a stronger, decreasing effect on

methylation change of cg09836827 (VWF) in those

children. To underpin this, we further checked the

directions of effect of all nominally significant a-DMSs

(P < 0.05) and found that methylation changes tended to

be negatively associated with maternal smoking between

0 and 4/5 years (Fig. 4b) and, moreover, that 721/971

(74.2%) a-DMSs showed a stronger decrease in methyla-

tion levels from 0 to 4/5 years (Additional file 1: Table

S7). In summary, we found that maternal smoking ex-

posure tended to more strongly decrease methylation

levels at the identified da-DMSs.

DNA methylation changes related to disease

development

Early children development is considered to be the most

important phase in life and also of great vulnerability to

negative influences. We found that many top associated

a-DMSs, and their annotated gene were linked to dis-

eases, such as SHANK2 (cg16069986 and cg16312514)

which is related to autism, and CSRP3 (cg05895618)

which is linked to cardiomyopathy. We hypothesised

that these a-DMSs annotated genes are crucial for the

growth, and dysregulation of gene expression and even-

tually lead to disease development. Therefore, we further

investigated if genes containing a-DMSs were more

likely to be associated with disease by studying the en-

richment of genes on our list (Additional file 1) in the

catalogue of disease-associated genes provided by the

Clinical Genomic Database [23]. Indeed, we found that

genes containing a-DMSs were more likely to be

disease-related (16.9% compared with 14.0%, P = 4.9 × 10
−6, Fisher’s exact test) (Additional file 1: Table S8). This
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Fig. 3 (See legend on next page.)
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might indicate a link between age-related methylation

changes and disease.

We then investigated the associations of the a-DMSs

with asthma, the most common chronic pulmonary dis-

ease in childhood, and the focus of our MeDALL study

[10]. Since early-life exposures strongly influence asthma

development, and may affect DNA methylation [24], we

hypothesized that dynamic methylation changes occurring

specifically in early childhood might be associated with

asthma. We tested the association of our 14,150 a-DMSs

with asthma at age 4/5 and 8 years using the MeDALL

asthma definition [25]. Three CpG sites were significantly

associated (FDR < 0.05) with asthma at age 4: cg22971191

in SLC10A2 (solute carrier family 10 (sodium/bile acid

cotransporter) member 2), cg18515031 in C10orf104

(chromosome 10 open reading frame 104) and cg05712073

in ZNF384 (Zinc Finger Protein 384). We also found one

significant (FDR < 0.05) CpG site, cg02977254 in C11orf63

(Chromosome 11 Open Reading Frame 63), to be associ-

ated with asthma at age 8 (Additional file 1: Table S9).

Discussion
This study offers insight into the dynamic epigenetic land-

scape of the first 8 years of life. We report a large number

of DNA methylation changes that are consistent between

both our age range comparisons (0-4/5 years and 4–8

years). These changes with increasing age (da-DMSs and

ia-DMSs) have distinct, only partly overlapping, genetic

localizations and functional annotations. The enrichment

of a-DMSs in gene bodies and in enhancer regions suggest

that longitudinal changes in DNA methylation are not

only acting as transcription repressors, but may also act as

buffers to stabilize decisions by transcription factors, en-

suring precise and robust transcription [26]. Importantly,

we also demonstrate that ia-DMSs occur preferentially at

developmental genes (e.g., 5′ HOXD) cluster and are

located at bivalent chromatin domains. These chromatin

domains appear to be able to repress or activate epigenetic

modifications, and are thought to be important during im-

printing and development. We focused on consistent

methylation changes that are present between ages 0 to 4

as well as 4 to 8 years, and suggest that further analyses

Fig. 4 The effect of maternal smoking on methylation change. a The

effect of maternal smoking on methylation change of cg09836827 (VWF)

in the age 0–4/5 group. Maternal smoking shows an enhanced effect on

decreasing methylation levels since the decrease from age 0 to age

4/5 years old of cg09836827 in the exposed group is significantly

larger compared to the non-exposed group. b Density plot of

effect size of all nominally significant a-DMSs (P < 0.05) with maternal

smoking. In the age 0–4/5 group, methylation changes tend to be

negatively associated with maternal smoking since there are more

negatively associated a-DMSs. In the age 4–8 group, there are similar

numbers of negatively- and positively associated sites

(See figure on previous page.)

Fig. 3 Genetic variation associated with longitudinal DNA methylation changes by cis-dMeQTL study. a The effect sizes of MeQTL at age 4 years against

those at age 8 years of 3421 SNP-CpG pairs in the age 4-8 group. Almost all the dots lie in the first and third quadrants, suggesting that the effect size

of genetic factors on methylation from most of the SNP-CpG pairs followed the same direction at both ages. Blue dots represent SNP-CpG pairs with a

significantly weaker effect size at age 4 than at age 8, whereas green dots represent a stronger effect, and red dots represent a different direction of

effect. b Bar plot of 3421 SNP-CpG pairs. There are 725 SNP-CpG pairs showing a weaker effect at age 4 than age 8 (blue bar), 3,348 SNP-CpG pairs

showing stronger effect (green bar) and 73 SNP-CpG pairs showing a different effect (red bar). c Boxplot of dMeQTL of rs9320331-cg00074818. 181 PIAMA

samples have been used to illustrate this dMeQTL. d Regional dMeQTL association of cg00074818 results for the age 4–8 group. Plots were generated

using LocusZoom [48]. The LD estimates are color-coded as a heatmap from dark blue (0≥ r2> 0.2) to red (0.8≥ r2 > 1.0) Regional plot shows-log10P of

all SNPs surrounding SNP rs9320331, and the degree of linkage disequilibrium between all SNPs and lead SNP rs9320331. SNPs with lower P-values span

DDO and SLC22A18 genes within a recombination boundary. e Boxplot of MeQTL of rs9320331-cg00074818 at age 4 and age 8 cross-sectionally
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using even shorter time periods (i.e., infancy) may reveal

further insight into the epigenetic association with specific

developmental periods of a child. For the first time, we

have linked genome-wide genetic variants with longitu-

dinal methylation changes by performing cis-dMeQTL

analysis. We find that 0.71% (101/14150) of the differen-

tially methylated CpG sites are regulated by genetic

variation, which is compatible with genetic control over

epigenetic plasticity. In most cases, MeQTL were more

pronounced at age 8 than at age 4, indicating stronger

genetic regulation later in childhood, and possibly linking

genetic regulation of methylation with ageing. Zooming

in on one dMeQTL, rs9320331-cg00804078 located on

chromosome 6q21 close to DDO gene (Fig. 3), we

observed relationships between this SNP, gene expression

and methylation by combining our data with public data

(Additional file 2: Figure S5). Methylation of cg00804078

was reported to be negatively correlated with DDO

expression in 1,264 monocyte samples [9], while SNP

rs9320331 has been detected as an eQTL of DDO mRNA

in whole blood27 and other tissues [27]. The expression of

the DDO enzyme has been reported to control the rate of

brain-ageing processes by decreasing D-aspartate levels

[28]. Therefore, a plausible mechanism for the observed

MeQTL is that SNPs regulate the expression of DDO

through DNA methylation to ultimately control the rate

the brain ages. In our data, we observed a significantly

lower methylation of cg00804078 from age 4 to 8, contrib-

uting to higher DDO expression and lower D-aspartate

levels, and corroborating earlier findings of lower D-

aspartate levels with ageing [29]. Moreover, we did not

observe significant cis-MeQTL of cg00804078 in adult

data by checking BIOS QTL browser. It may indicate that

epigenetic mediation of genetic risk [30] for DDO expres-

sion is age specific and only plays a role in childhood.

To assess the role of an important environmental factor,

we examined longitudinal changes in DNA methylation

associated to maternal smoking during pregnancy and

found association with decreasing methylation levels from

birth up to age 4/5. Since it has been suggested that

decreasing methylation is associated with ageing [6], our

findings may indicate that maternal smoking during preg-

nancy has an immediate effect on ageing by decreasing

methylation levels. However, we did not find this “decreas-

ing methylation” effect in our 4–8 year-old set. This shift

may indicate that the in utero effect of maternal smoking

is most crucial during the first years of life. We further

tested the effect of smoking on Horvath’s “epigenetic

clock” [5], which predicts age based on DNA methylation

data and statistical learning, but found no significant effect

(Additional file 2: Figure S6). This may be because the

“epigenetic clock” was trained on adult samples, making it

less accurate for age predictions based on DNA methyla-

tion in children (Additional file 2: Figure S7).

The DOHAD (Developmental Origins of Health and Dis-

ease) hypothesis proposes that early human development

affects the risk of chronic, non-communicable diseases in

later life [31]. Early life development may be expressed in

epigenetic mechanisms, such as DNA methylation, and this

may have long-lasting effects over an individual’s life. We

reasoned that the set of a-DMSs that change in the first

8 years of life could be used to test for enrichment with dis-

ease genes. One interesting observation that came out of

this analysis is that childhood a-DMS-genes were more

likely to be disease-linked. We therefore tested the associ-

ation of identified 14150 a-DMSs with asthma, which often

starts in early life and is the most prevalent chronic disease

in childhood. We identified four a-DMSs associated with

asthma at ages 4 and 8, a finding that warrants replication.

We propose that future studies could assess the association

of a-DMSs with other chronic, non-communicable diseases

originating in early childhood.

A major strength of our study is the combination of four

different European birth cohorts of general population

samples. Although children from more highly educated

parents may be overrepresented in our study [32], our

study represents a reasonable representation of European

populations, forming a large dataset with good statistical

power. Furthermore, the paired sample approach enables

conclusions on longitudinal changes, and we specifically

focused on childhood ageing to complement the focus on

adult ageing populations in the literature.

However, our study had some limitations: the HM450

platform only covers 1.6% of all methylation sites [33], and

the design of HM450 may be biased towards CpG-richer

regions of the genome. DNA was derived from different

blood cell types: cord blood at age 0 versus peripheral

blood at older ages; this could be a potential confounder.

We therefore applied a cell-type correction [11] and only

used findings consistent over the two comparison sets to

support our conclusions.

Conclusions

In this research, we observed dynamic DNA methylation

changes in the first 8 years of life, with increasing or de-

creasing a-DMSs having specific functional annotations

and genomic localizations. We describe that a subset of

these a-DMSs are under genetic control, and report how

maternal smoking affects DNA methylation changes in

early life. Finally, we provide evidence that the set of

genes annotated to a-DMSs is enriched for disease

development, and specifically show 4 CpG sites to be as-

sociated with asthma in the first 8 years of life.

Methods

Study population

All DNA samples were obtained from the MeDALL

epigenetics study, which covers four cohorts and was
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designed to investigate the development of asthma and

allergy using a paired case-cohort design. We firstly ran-

domly select paired samples at ages 0 and 4/5 years and

age 4 and 8 years, and then added more asthma cases.

This design resulted in an enrichment of subjects with

asthma. The prevalence of asthma at age 4 and age 8 in

all MeDALL samples are 25 and 20% respectively. Since

the aim of our study was to investigate methylation in

childhood ageing independent of disease status, we only

selected the random samples. In total, we had 1,622

paired samples from the four European birth cohorts:

BAMSE [34], EDEN [35], INMA [36] and PIAMA [32].

After random sample selection, 1,264 paired samples

were used in the analysis. The prevalence of asthma at

age 4 and age 8 in all random samples are 13 and 11%,

respectively. The basic characteristics of the participants

are given in Additional file 1: Table S1.

DNA extraction, bisulphite treatment and DNA

methylation measurement

In the MeDALL study, cord blood samples and periph-

eral blood samples were collected from all consenting

cohort participants and DNA was extracted using the

QIAamp blood kit (Qiagen or equivalent protocols),

followed by precipitation-based concentration using

GlycoBlue (Ambion). DNA concentration was deter-

mined by Nanodrop measurement and Picogreen quan-

tification. 500 ng of DNA was bisulphite-converted

using the EZ 96-DNA methylation kit (Zymo Research),

following the manufacturer’s standard protocol. After

verification of the bisulphite conversion step using

Sanger Sequencing, genome-wide DNA methylation was

measured using the Illumina Infinium HumanMethyla-

tion450 BeadChip. After normalization of the concentra-

tion, the samples were randomized to avoid batch

effects, and all paired samples were hybridized on the

same chip. Standard male and female DNA samples

were included in this step as control samples.

Quality control and pre-processing of microarray data

DNA methylation data were pre-processed in R with the

Bioconductor package Minfi [37], using the original

IDAT files extracted from the HiScanSQ scanner. We

had a total of 1,748 blood samples from four birth co-

horts in the MeDALL epigenetics study. Samples that

did not provide significant methylation signals in more

than 10% of probes (detection P = 0.01) were excluded

from further analysis. Samples were also excluded in

cases of low staining efficiency, low single base extension

efficiency, low stripping efficiency of DNA from probes

after single base extension, poor hybridization perform-

ance, poor bisulphite conversion and high negative con-

trol probe staining. Further, we used the 65 SNP probes

to check for concordances between paired DNA samples

from the sample individual and assessed the methylation

distribution of the X-chromosome to verify gender.

Paired samples with Pearson correlation coefficients <0.9

were regarded as sample mix-ups and were excluded from

the study. In total, we excluded 16 samples due to poor

quality and 24 samples due to apparent sample mix-up. In

probe filtering [38], we excluded probes on sex chromo-

somes, probes that mapped on multi-loci, the 65 random

SNPs assay and probes that contained SNPs at the target

CpG sites with a minor allele frequency >10%. The allele

frequencies of a list of SNPs were obtained from 1000

Genomes, release 20110521 for CEU population. Finally,

we implemented “DASEN” [39] to perform signal correc-

tion and normalization. After quality control, 1,708 sam-

ples and 439,306 autosomal probes remained. From these,

we selected 1,264 samples in pairs from the population of

randomly selected children for further analysis.

Differential methylation analysis

Methylation levels (beta values, β) at a given CpG site

were derived from the ratio of the methylated probe in-

tensity to overall intensity (sum of methylated and

unmethylated probe intensities): β is equal to M/(U +M

+ α), where M is the intensity of the methylated probe,

U is the intensity of the unmethylated probe, and α is

the constant offset with the default value of 100. To

remove bias in methylation profiles due to technical

variation, we implemented a correction procedure based

on 613 negative control probes [40] present in HM450K

arrays because these negative control probes did not re-

late to biological variation. First, we implemented princi-

pal component analysis (PCA) on control probe data

according to the method proposed by Zhang et al. [41].

Then, we permuted the control probe data 10000 times

and applied PCA to each of these permuted datasets.

We then selected principal components with a P-value

defined to get the P(number of var(random pc)>var(pc))/(number of

permutations) < 10
−4. The methylation data for each CpG

were the residuals from a linear model incorporating the

five significant principal components that reflected tech-

nical variation. We adjusted the residuals by cohort, gen-

der, bisulphite conversion kit batch number, position on

the array and the percentage of monocytes, B cells, NK

cells, CD4+ T cells, CD8+ T cells and granulocytes

predicted by Houseman et al’s algorithm [11]. In the

age-differential-methylation analysis, the significant

methylation differences of CpG Sites between two age

groups (ages 0–4/5 years and ages 4–8 years) were iden-

tified by fitting a robust linear regression model. For the

maternal smoking analysis, smoking during pregnancy

was defined as: the mother was smoking in the last

trimester of her pregnancy. The detailed definition of

maternal smoking for each cohort can be found in refer-

ence [3]. Additional variables included in the final robust
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linear model for maternal smoking analysis were mater-

nal age, parity and maternal education.

Genotyping, MeQTL and dMeQTL

Genotype data from the individual cohorts were imputed

to reference data of the 1000 Genomes’ CEU panel (release

March 2012). Detailed information on the genotyping of

BAMSE, INMA and PIAMA has already been published

[42]. Subsequent quality control removed SNPs with minor

allele frequency (MAF) <0.01, those with Hardy Weinberg

equilibrium P < 1x10−6, genotype call rate <0.95, the mini-

mum MACH R2 measure to include SNPs (rsq < 0.3) for

BAMSE data and Info score < 0.3 for PIAMA and INMA

data. All the genotypes were aligned to the GIANT release

of 1000G to facilitate further data integration and meta-

analysis by genotype Harmonizer 1.4.9 [43]. We had geno-

type data for 114 INMA samples, age 0-4/5 years, and for

181 PIAMA and 49 BAMSE samples, age 4–8 years.

The dMeQTL and MeQTL analysis was performed

using the R package MatrixEQTL [44] using an additive

linear model. To remove the effect of extreme outliers, we

trimmed the methylation set using: (25th percentile

-3*IQR) and (75th percentile + 3*IQR), where IQR = inter-

quartile range. SNPs were included in the cis-analysis if

they were located within 250 kb of the methylation probe

under consideration. The methylation differences between

two time points were used as molecular phenotype for

dMeQTL study. The fixed-effect-model based on the in-

verse standard error was utilized for meta-analysing

BAMSE and PIAMA dMeQTL and MeQTL results at age

4–8 by using METAL [45]. The BAMSE and PIAMA

samples from the 4–8 years-old comparison set were used

as discovery cohorts, and the INMA samples from the

younger comparison set were used as replication. The

SNP-CpG pairs were considered as significant dMeQTL

in the 4–8 years-old comparison set if the P-value after

FDR correction was <0.05 and if the P-value was <0.05 in

the replication study in the 0–4 years-old group. We

filtered the cis-meQTLs effects by removing SNP-CpG

pairs for which the same SNP was also located in the

probe, or for which the SNP was outside the probe but in

linkage disequilibrium (LD) (r2 > 0.2) with a SNP inside

the probe. We tested for LD between SNPs pairs by using

1000 Genomes’ CEU data [46].

Functional annotation analysis

For molecular enrichment analysis, CpG sets were anno-

tated by the Illumina HM450 manifest file (version 1.2).

Annotations used were classified as gene related (TSS1500

and TSS200, regions from-1500 to–200 and-200 to the

transcriptional start site, respectively; 5′ UTRs; first exons;

gene bodies; 3′ UTR and intergenic (no gene annotation))

or CpG island-related (islands shores (0 to 2 kb flanking

islands), shelves (2 to 4 kb flanking islands) and open sea

(>4 kb from islands)). All 3,091 CpH sites were excluded

in the enrichment analysis, leading to 437,792 CpG sites

for the enrichment test. In addition, the epigenome Road-

map annotation was created by overlapping the histone

marks and chromatin states for the 27 blood cell-types an-

notated in the epigenome Roadmap project with the CpG

sites interrogated by the HM450 array. The raw annotation

was retrieved from the Epigenome Roadmap web portal

(http://egg2.wustl.edu/roadmap/web_portal/index.html).

The mark states were combined over the 27 blood-related

types by taking a state as present if it was in at least 1 of

the 27 blood-related measurements.

In pathway and gene-set analysis of a-DMSs, we

used the loci and gene definitions predicted in

GREAT (Genomic Regions of Annotations Tool) [47]

that assigns biological meaning to cis regulatory

regions (CpG sites) using the single nearest gene as-

sociation rule within a 100 kb window. We used Gen-

eNetwork (http://129.125.135.180:8080/GeneNetwork/

pathway.html) [18] for pathway analysis of a-DMSs.

Methylation age and disease analysis

For the Horvath Age predictor, methylation age was deter-

mined in all cohorts using the online calculator (https://

labs.genetics.ucla.edu/horvath/dnamage/). For the disease

analysis, genes were linked to a disease based on the

Clinical Genomic Database [23] (http://research.nhgri.nih.-

gov/CGD/download/, last accessed on Feb 27 2016). Age-

related gene sets were annotated by the Illumina HM450

manifest file (version 1.2). For asthma analysis, we used

the full MeDALL data at age 4/5 years and 8 years (asthma

cases and population-based controls) to investigate the as-

sociations between CpG methylation and asthma status.

The basic characteristics of participants included in the

asthma study are listed in Additional file 1: Table S10. The

final robust regression model was as follows: methylation

levels (corrected by 5PC of control probes) ~ asthma + co-

variables + cell counts. The co-variables included were

cohorts, gender, bisulphite conversion kit batch number,

duration of the 450 K assay, position on the array and cell

count percentages of monocytes, B cells, NK cells, CD4+

T cells, CD8+ T cells and granulocytes predicted by

Houseman et al’s algorithm [11].
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Additional file 1: Tables S1-S10. (DOCX 1279 kb)

Additional file 2: Figures S1-S7. (DOCX 45 kb)

Additional file 3: Age-differential methylation sites in early childhood

(XLSX 2094 kb)

Additional file 4: Pathway analysis of age-differential methylation sites

by gene network. (XLSX 3782 kb)

Additional file 5: List of age differential Methylation Quantitative Trait

Locus in early childhood (XLSX 336 kb)
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