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Abstract

The circadian clock is a complex cellular mechanism that, through the control of diverse metabolic 

and gene expression pathways, governs a large array of cyclic physiological processes. 

Epidemiological and clinical data reveal a connection between the disruption of circadian rhythms 

and cancer that is supported by recent preclinical data. In addition, the use of animal models and 

molecular studies indicate emerging links between cancer metabolism and the circadian clock. 

This has implications for therapeutic approaches and we discuss the possible design of chrono-

pharmacological strategies.

The circadian clock sustains self-perpetuating oscillations with a 24-hour periodicity, while 

also being synchronized by external environmental cues such as light, temperature and food 

intake, the so-called zeitgebers or time-givers that maintain proper timekeeping (Figure 1). 

Disruptions in biological rhythms result in numerous physiological disorders in organismal 

homeostasis, the consequences of which have been linked to several pathologies, including 

cancer1,2. Specifically, epidemiological and laboratory evidence has long suggested that a 

relationship exists between the circadian clock and cancer3, yet the precise molecular 

mechanisms of this connection are not fully elucidated. Interestingly, epidemiological 

evidence shows a link between hormone-dependent cancers and environmental disruption of 

the circadian clock by shift-work and light exposure at night4–6 which is supported by 

preclinical data, although the precise mechanisms of clock disruption related to cancer 

initiation versus progression remain unknown.

Therefore, this Perspective serves to summarize the current state of knowledge regarding the 

links between the circadian clock (see Box 1, Figure 2) and cancer in an effort to highlight 

new avenues for therapeutic intervention. Specifically, we discuss recent advances in teasing 

out how the clock is implicated in regulating cancer-initiating cells versus utilization of 

genetic mouse models of cancer where circadian disruption alters disease progression. 

Additionally, we focus on several facets of cancer metabolism that can be rewired in 

response to circadian disruption. We intend to point to new directions where further research 

emphasis is required to fully understand how clock disruption and cancer converge, in 

addition to new avenues of pharmacological intervention and treatment of cancer.
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Links between Circadian Disruption and Cancer

Epidemiological Links between the Clock and Cancer

Circadian disruption has been associated with increased incidence of specific cancers in 

various epidemiological studies, though the causes and factors linked with this disruption 

remain somewhat unclear. Yet, in 2007, the International Agency for Research on Cancer 

(IARC) listed “shift work leading to a disruption in circadian rhythm” as a probable human 

carcinogen, classified as Group 2A7. The most convincing epidemiological evidence relates 

to studies on shift workers, and more recently meal-timing. Accumulating data show 

correlation between shift work and breast and prostate cancer4–6. For example, according to 

the Nurses’ Health Study and case-controlled studies conducted with Norwegian nurses, 

women that worked night shifts for less than 30 years had a moderately increased risk for 

breast cancer and risk was further increased upon working 30 or more years of rotating shift 

work [relative risk (RR) = 1.36]4,6,8. Similarly, reports suggest that the risk of prostate 

cancer is increased in night-shift workers, and this risk is augmented with longer duration of 

shift work, particularly in high grade cancers5,9. Moreover, light at night exposure may not 

be the only risk factor influencing circadian disruption and tumorigenesis. A prospective 

study of 41,398 day-working adults in the French NutriNet-Sante cohort identified that ‘late-

eaters’ (those that exhibited eating episodes after 9:30PM) have an increased risk of breast 

and prostate cancer, with Hazard ratios (HR) of 1.48 and 2.20, respectively10. Based on 

these epidemiological studies, the effect of environmental disruption of the clock on cancer 

is further discussed below.

Linking the Circadian Clock and Cancer in animal models

The epidemiological evidence summarized above broadly linking circadian disruption with 

cancer, although limited, has triggered a significant number of studies using genetic mouse 

models (Figure 3). While drawing parallels between epidemiological information and results 

from mouse experimental models is always difficult, significant evidence of a link between 

circadian clock disruption and increased cancer risk has accumulated. Early landmark 

studies have shown that mice carrying mutations in individual clock genes (mutation of 

Per2m/m; heterozygous ablation of Bmal1+/−; and double null Cry1/2-/ ) are more susceptible 

to lymphoma, and when irradiated, these mutant mice have increased rates of lymphoma and 

hepatocellular carcinoma11,12. Recent evidence demonstrates that crossing Per2m/m mice 

with a KrasLSL-G12D/+;p53fl/fl genetically engineered mouse model (GEMM) of lung 

adenocarcinoma resulted in increased tumor burden, more aggressive Grade 3 and 4 lung 

tumors, and subsequent decreased overall survival13. Altogether these studies provide 

compelling information that genetic disruption of key components of the clock mechanism 

increases tumorigenesis, it is still unclear whether there is any specificity for distinct types 

of cancer.

Notably, mouse studies indicate that tumorigenesis may be linked to anatomical disruption 

of the central circadian pacemaker housed in the suprachiasmatic nucleus (SCN), though the 

effects on peripheral clocks remains unresolved. Bilateral electrolytic lesions of the SCN 

enhanced tumor growth of implanted Glasgow osteosarcoma and pancreatic ductal 

adenocarcinoma (PDAC) versus sham operated mice14. Yet, the molecular mechanisms by 
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which disruption of the central pacemaker results in enhanced tumorigenesis is unknown and 

likely involves changes in the synchrony between the SCN and peripheral clocks.

Environmental Disruption of the Circadian Clock and Cancer

Epidemiological studies indicate that disruption of circadian rhythms in humans is 

associated to increased cancer risk (see above). In addition, pilot data now suggests that shift 

work can also regulate the epigenetic landscape, which could likely be a mechanism by 

which circadian gene expression is altered15–17. For instance, DNA methylation studies have 

found genome-wide alterations to cancer-specific and circadian loci in female shift workers 

from a prospective cohort in Denmark, including estrogen receptor a (Esr1) and circadian 

genes, Clock and Cry217. On a genome-wide scale, 5,409 CpG sites were found to be 

differentially methylated in day-time versus night-time shift workers, and a remarkable 66% 

of these loci were hypermethylated17. Similarly, CpG methylation of the Per1, Per2 and Per3 
promoters was found to correlate with changes in protein expression in 50% of breast tumors 

versus normal tissue taken from the same patient15. Moreover, in 126 cases of several types 

of hematologic malignancies, Bmal1 gene silencing due to CpG promoter methylation was 

found in 19.7% of diffuse large B-cell lymphomas, 33.3% of acute lymphocytic leukemia, 

and 19.2% of acute myeloid leukemias16.

These findings are intriguing and suggest an active mechanism by which epigenetic 

modifications may alter genome-wide gene expression programs under shift work 

conditions. Yet, several questions remain: are these shift-work induced changes to the 

epigenome a direct result of night-time light exposure, how does this work mechanistically, 

how quickly do these events occur, and are they reversible? These questions remain fully 

unresolved but addressing them would shed light on an active epigenetic mechanism(s) that 

is environmentally controlled by day/night rhythms to impinge on tumorigenesis.

Importantly, environmental disruption of the central/peripheral circadian axis by chronic jet 

lag has been modeled in mice. For instance, wild-type (WT) mice undergoing repeated jet 

lag manipulation display disrupted gene expression of the circadian repressors Per2 and 

Rev-Erba, resulting in increased growth of Glasgow osteosarcoma18 as well as enhanced 

incidence of lymphoma and hepatocellular carcinoma (HCC)12. While it is unclear why 

circadian disruption impacts specific tumors, similar experiments have been performed with 

a variety of mice with mutations in clock genes, specifically Cry1/2−/−, Per2−/−, or 
Per1−/−;Per2m/m. These mutant mice display a heightened incidence of lymphoma, 

osteosarcoma and HCC when subjected to severe chronic jet lag versus WT mice12. While 

these findings provide experimental evidence that genetic disruption of the clock leads to 

enhanced tumorigenesis, to date there is no direct counterpart of these studies in human 

cancers.

Recent laboratory data has shed light on the molecular mechanisms of circadian disruption 

through jetlag and its link with tumorigenesis. Long-term jetlag initiates a program of non-

alcoholic fatty liver disease (NAFLD) that progresses to steatohepatitis, fibrosis and 

eventually HCC in mice19. Jetlag operates by disrupting both circadian gene expression 

programs as well as circadian metabolism in the liver, and central to this rewiring is an 

induction of hepatic cholesterol and bile acid levels that activate the oncogenic program of 
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the nuclear receptor constitutive androstane receptor (CAR), and downstream activation of 

β-catenin19. Collectively these findings implicate a critical signaling axis that coordinates 

the central pacemaker with peripheral circadian transcription and metabolism, though the 

implications of these findings in human remains unresolved.

Circadian Control of Cancer Metabolism

Crosstalk between Myc and the Circadian Clock

Given that the clock is intimately involved in regulating metabolism in peripheral 

tissues20,21, and the majority of metabolites in liver and serum are controlled in a cyclic 

manner22–24, the intersection of cancer metabolism and its control by the circadian clock is 

an area of active investigation. A study reported the role of the c-Myc oncogene in 

regulating rhythmic metabolism in cultured U2OS human osteosarcoma cells25. The MYC 

protein has oncogenic potential due to its capacity to activate gene expression programs 

related to survival and proliferation26–28. Using an inducible system, ectopic expression of 

MYC was found to disrupt the expression of circadian genes. MYC was found to activate the 

negative transcriptional arm of the clock through REV-ERBa (see Figure 2 and Box 1), and 

stimulate metabolic sensing pathways such as AMPK (a kinase whose enzymatic activity 

depends on cellular metabolic state) ultimately leading to increased consumption of glucose 

and glutamine25. This specific case illustrates another scenario, where an oncoprotein 

disrupts circadian function with subsequent effects on cellular metabolism. It is tempting to 

speculate that altered metabolism could feedback on cellular growth and clock function, 

contributing to the unbalanced state characteristic of tumor cells.

These findings in cells cultured in vitro have been further validated in vivo by using 

genetically engineered mice. One study took advantage of the KrasLSL-G12D/+;p53fl/fl mouse 

model. These mutant mice are prone to cancer because they carry an activated KRAS 

oncogene and an inactivation of the tumor suppressor p5313,29. The authors combined the 

ablation of the clock genes, Per2 or Bmal1, with the KrasLSL-G12D/+;p53fl/fl mice and 

identified that genetic disruption of the circadian clock resulted in elevated consumption of 

glucose and glutamine and increased excretion of lactate as compared to the 

KrasLSL-G12D/+;p53fl/fl mice13. These studies suggest that disruption of the clock caused by 

the ablation of the Per2 of Bmal1 genes exacerbates the effect of the KrasLSL-G12D/+;p53fl/fl 

mutations, thereby illustrating that a functional clock is required to maintain proper rhythms 

of cancer cell metabolism in vivo.

CLOCK, BMAL1 and MYC are all transcription factors that share a highly similar basic 

helix-loop-helix protein domain. This allows these proteins to recognize the same promoter 

element, the E-box sequence30,31, in the regulatory regions of target genes. It is thus 

tempting to speculate that a rewiring could be taking place during tumorigenesis whereby 

the balance of clock-controlled transcription can be lost and consequently compensated for 

by oncogenic MYC signaling. In further support of this idea, the circadian repressor CRY2 

has been reported to promote MYC degradation through the FBXL3-containing E3 ligase, 

and Cry2 deletion resulted in enhanced Myc-driven lymphomas in mice32. Also, it has been 

shown that MYC and its binding partner MIZ1 are responsible for forming a repressive 

complex which down-regulates core clock gene expression33. Further confirming these 
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findings, the expression of BMAL1 was found to be inversely correlated with MYC in 102 

human lymphoma samples33. These data suggest a counterbalance may exist between the 

transcriptional networks of the circadian clock and MYC. Yet, what remains to be fully 

elucidated is the functional significance of this potential transcriptional switch from 

canonical CLOCK:BMAL1 control to MYC-dependent signaling, and therefore the extent of 

the prospective shared gene expression network in normal and transformed cells that 

regulates metabolism.

Although several studies described above have utilized human cells cultured in vitro or 

genetically engineered mouse models, the relevance of these studies clinically is hard to 

assess. Yet, it could be speculated that alteration in human metabolism brought by, for 

example, nutritional challenges, could disrupt circadian homeostasis in ways that would 

parallel some mouse models of clock disruption. Indeed, the effects of nutritional challenge 

on circadian reprogramming and alterations in rhythmic homeostasis are reported23,24,34–37. 

Studies in mouse models as well as in human subjects have shown the remarkable effect of 

specific dietary regimes such as high-fat diet23,24,38 as well as the effect of time-restricted 

feeding24,34,39–41 on the circadian clock. Also, metabolomics analysis in human serum/

plasma and skeletal muscle has identified major populations of rhythmic metabolites over 

the circadian cycle42,43. Therefore, further investigation is required to determine the role of 

nutritional inputs on circadian metabolism and tumorigenesis.

The Circadian Clock and Oxidative Stress in Cancer

Oxygen is critical for cellular respiration and hypoxia has been shown to play a regulatory 

role in tumorigenesis linked to metabolism and angiogenesis26,27. Moreover, a 

transcriptional crosstalk exists between the clock and the transcription factor hypoxia-

inducible factor (HIF), a potential scenario that may be extended to tumorigenesis. The 

promoter element recognized by HIF, the hypoxia-response element (HRE), is an E-Box like 

sequence that contributes to transcription under low oxygen conditions. The HRE is 

recognized by HIF heterodimers consisting of two highly similar proteins, HIF1a and 

HIF1b. Recent reports indicate that the hypoxic response is gated by the circadian clock as 

the Hif1a promoter is directly controlled by CLOCK:BMAL144. Similarly, blood oxygen 

levels were found to exhibit daily rhythms which influences expression of core clock genes 

in a HIF1a-dependent manner in kidney, brain and hepatocytes45. This transcriptional 

crosstalk was further supported by the fact that genetic disruption of Bmal1 in C2C12 

myotubes results in reduced anaerobic glycolysis, the gene targets of which are HIF1a-

dependent46. These studies establish an intriguing link between the transcriptional networks 

of the clock system with HIF1a, and potentially suggest that this crosstalk could be involved 

in the hypoxic response during tumorigenesis, an area that requires further investigation. In 

addition, it remains to be determined if glycolytic metabolism of cancer cells could depend 

on a HIF1a axis that would interplay with the clock machinery.

Interestingly, several lines of epidemiological evidence connecting circadian disruption by 

shift-work with cancer has largely focused on hormone-dependent diseases such as breast 

and prostate cancer, which raises the possibility that additional clock-controlled endocrine 

factors may be at play. One such link has been made with melatonin, a hormone produced by 
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the pineal gland in a circadian manner to regulate sleep47,48. Melatonin has been linked to 

regulation of oxidative stress mostly in the mitochondria49, where melatonin is reported to 

stimulate the activity of glutathione peroxidase (GPx) and glutathione reductase (GRd), two 

enzymes involved in the regulation of GSH:GSSG glutathione ratio50,51. Interestingly, 

melatonin regulates the mitochondrial respiratory complexes I and IV, and thereby 

modulates ATP production50,52. Therefore, melatonin may antagonize the glycolytic 

dependency of cancer cell metabolism in a time-dependent manner by targeting 

mitochondrial function53. Notably, dampened melatonin secretion caused by sleep 

disruption may increase ROS levels and reactive nitrogen species (RNS) production as 

suggested by studies in night-shift workers54.

Tumor macroenvironment and circadian metabolism

The tumor environment can be extended beyond the microenvironment to a systems level 

approach looking at tumor/host interactions that are especially relevant to the circadian 

metabolic clock (Figure 4). The tumor ‘macroenvironment’ consists of metabolites and other 

tumor-secreted factors (such as cytokines and chemokines) that circulate in the blood55. 

Accumulating evidence illustrates the significant role that the tumor macroenvironment may 

play in connecting systemic metabolism and cell proliferation56,57. In this respect, specific 

components of the circadian clock machinery may be highly susceptible to factors secreted 

by the tumor, given that the clock is especially vulnerable to metabolic fluctuations such as 

those caused by different types of nutritional regimes23,24,34,37. Using the 

KrasLSL-G12D/+;p53fl/fl mouse model, lung adenocarcinoma was found to distally rewire the 

circadian transcriptome and metabolome in the liver58. This finding illustrates a 

communication system from the lung to the liver mediated by the tumor macroenvironment, 

as revealed by changes in the metabolite composition in the serum. Tumor-dependent 

inflammation through the IL-6 pathway dampened insulin/glucose sensitivity and altered 

hepatic circadian lipid metabolism58. Similarly, using a mouse model of triple negative 

breast cancer, rewiring of circadian gene expression was distally observed in the liver, 

resulting in increased oxidative stress59. These findings raise the possibility that the tumor-

host interaction may influence cancer cell viability, and specifically circadian oscillations of 

metabolism may be highly susceptible to systemic cues that reorganize physiological 

homeostasis. To date, rewiring of circadian metabolism in response to tumorigenesis has 

been reported within the context of lung and breast cancer in mouse models, but other types 

of cancers that function similarly as well as the extent of this rewiring in all peripheral 

tissues systemically remain unknown.

Yet, can the circadian clock feedback and regulate properties of tumorigenesis? If so, what 

are these circadian cues that modulate cancer progression systemically? Interestingly, 

BMAL2 has been reported to regulate lung adenocarcinoma distal metastasis through a 

unique tumor-dependent ‘secretome.’ Using the KrasLSL-G12D/+;p53fl/fl;R26LSL-Tom lung 

adenocarcinoma model that utilizes a tomato reporter to track sites of metastases, BMAL2 

was found to be highly expressed in primary metastatic tumors60. Also, BMAL2 was found 

to be required for metastasis by regulating the expression of secreted modular calcium-

binding protein 2 (Smoc2), which is critical for anchorage-independent growth and 

metastatic seeding in vivo60. BMAL2 expression has been associated with lung 
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adenocarcinoma metastases in humans while being silenced within the tumor. Parallel 

experiments in cell culture and in the mouse have shown that BMAL2 contributes to the 

clonogenic ability of lung adenocarcinoma cells and it directs the activation of genes 

encoding secreted factors. These in turn are involved in pro-metastatic function, indeed 

revealing that the clock protein BMAL2 is involved in regulating a metastatic ‘secretome’ 

consisting of Smoc2, Wnt5a and Ccl760. These findings suggest a crosstalk between the 

circadian clock and cancer cells through the tumor-derived macroenvironment and describe 

the ability of canonical and non-canonical clock components in regulating a metastatic 

‘secretome’. Further investigation is needed to better understand how the clock controls 

metastasis in different cancer types, and how this tumor-dependent ‘secretome’ may differ 

based on disease profile.

Importantly, evidence also suggests that tumor-derived waste can be repurposed and 

subsequently utilized as fuel for tumors. Clinical and laboratory studies have provided 

evidence that non-small cell lung cancer (NSCLC) exhibit metabolic heterogeneity in fuel 

utilization and, while glucose oxidation is metabolically imperative, lactate can also be used 

as a carbon source61–63. A similar example exists with nitrogen repurposing of ammonia 

waste that was reported to be recycled into central amino acid metabolism through the 

enzymatic activity of glutamate dehydrogenase (GDH) in breast cancer cells64. These 

studies suggest a mechanism by which the tumor-derived macroenvironment can be recycled 

as alternative fuel sources for rapidly proliferating cells. Given the fundamental role of the 

circadian clock in regulating metabolism, including pathways involved in carbohydrate, 

amino acid, fatty acid/lipid metabolism20,65, it is plausible that the circadian clock may be 

involved in regulating these processes in the context of cancer. Also, it is possible that 

tumor-dependent metabolic waste may be secreted in a temporal manner, suggesting peak 

times of day whereby these metabolic pathways could be targeted pharmacologically.

Clinical implications: relevance of ‘chronotherapy’ for cancer

The multiple connections discussed here between clock disruption and cancer beg the 

question of whether circadian therapeutic intervention (such as time of day) should be 

considered. This so-called ‘chronotherapy’ has been recently reviewed in depth66, and 

strongly supports the idea that metabolic and xenobiotic detoxification enzymes exhibit 

temporal peaks in activity and thus should be pharmacologically targeted based on optimal 

time of day.

Several pathways relevant to the circadian clock are currently being targeted for cancer 

therapy, and we highlight several potential avenues whereby circadian intervention 

approaches (such as time of day) could be considered. For instance, inhibition of acetyl-CoA 

carboxylase (ACC) and subsequent decreased fatty acid synthesis in mouse models of lung 

adenocarcinoma effectively dampened tumor growth67. Similarly, acetyl-CoA synthetase 

(ACSS2) has been reported to supply tumors with acetate-dependent acetyl-CoA that is used 

for de novo lipogenesis and histone acetylation68,69. These studies implicate pathways that 

have been previously reported to be clock-controlled. For example, the enzymatic activity of 

ACSS2 is modulated by NAD+-dependent SIRT1 and a functional clock to control acetyl-

CoA production and fatty acid synthesis70. Therefore, this raises the possibility that changes 
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in clock-controlled ACSS2 activity can potentially influence tumorigenesis and suggest that 

a time of day intervention approach should be considered. Recent evidence also suggests 

that pharmacological agonists of REV-ERB are selectively lethal to cancer cells and impair 

growth of glioblastoma in vivo71. These findings require further examination to determine if 

this type of approach would be effective in other cancer types.

Metformin has been reported to impair respiration by inhibiting mitochondrial complex I 

and altering the NAD+/NADH ratio72. This treatment strategy for cancer is especially 

appealing from a circadian perspective given that the clock machinery is subject to NAD+-

dependent control through the mammalian sirtuins73–76. Also, the circadian clock is reported 

to regulate the cyclic availability of NAD+ by controlling the rhythmic activity of 

nicotinamide phosphoribosyltransferase (NAMPT)77,78, a critical enzyme in the NAD+-

salvage pathway. Therefore, future pharmacological intervention may need to consider 

possible strategies to restore clock function, especially at late stages of cancer progression 

when a decline of circadian output is believed to occur. Indeed, rescue of carcinogen-

dependent decline of the NAD+/NADH ratio in mammary epithelial cells restored SIRT1 

activity and rhythmic expression of the circadian gene Per279. Conversely, an alternative 

treatment strategy involves suppression of NAD+ levels to inhibit tumor growth, given the 

elevated metabolic demand of rapidly proliferating cells. For instance, pharmacological 

suppression of NAMPT and the subsequent depletion of intracellular NAD+ levels has been 

demonstrated to induce apoptosis in several leukemic cell lines and abrogate tumor growth 

in mouse models of AML80,81. This NAD+-starvation strategy requires further experimental 

validation as it remains unclear what is the resulting effect on circadian function. Yet, given 

that the clock is reported to be required for AML development 82, suppression of NAD+ 

levels in hematologic tumors may differ from solid tumors in treatment efficacy.

Additionally, the circadian hormone melatonin has been used in combination with cancer 

therapy to minimize toxicity or enhance chemotherapeutic viability in clinical and laboratory 

settings. For example, melatonin protects against cisplatin-induced ROS production and 

mitochondrial damage through glutathione in mouse ovaries to minimize reproductive 

toxicity83. Melatonin has also been used in combination with 5-Fluorouracil (5-FU) to 

enhance the inhibitory effect on colon cancer cell proliferation by suppression of the 

PI3K/AKT survival pathway and NFkB-dependent activation of inducible nitric oxide 

synthase (iNOS) signaling pathway84. Lastly, melatonin has been reported to inhibit the 

epithelial to mesenchymal transition (EMT) by increasing E-cadherin expression and 

decreasing the migratory/invasive capacity of breast cancer cells in culture85 and inhibiting 

EMT through a GSK3b-dependent mechanism in vivo86. Clinical evidence similarly 

suggests an improvement in the 5-year survival rate of metastatic NSCLC patients treated 

with melatonin in combination with cisplatin and etoposide87. Yet, conflicting clinical 

evidence exists regarding the use and efficacy of melatonin and its potential benefits towards 

quality of life88, therefore further investigations are required to fully understand the potential 

beneficial effects of melatonin action.

Finally, circadian analyses of the tumor macroenvironment could have unique value 

clinically. Indeed, considering the complexity of the tumor-host relationship and the 

potential for this communication to be constantly changing, the tumor-dependent 
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‘secretome’ has value as a non-invasive prognostic tool. In this respect it is noteworthy that 

an increase in plasma branched-chain amino acids (BCAA) is associated with an increased 

risk for diagnosis of pancreatic cancer89. Also, the use of blood-borne tumor-secreted 

metabolites has been documented with colorectal cancer90. Similar strategies have been used 

in patients with advanced breast cancer91 or diagnosed with pancreatic cancer92. 

Interestingly, profiling the metabolome can also be utilized to gauge treatment efficacy. 

Indeed, serum metabolome from breast cancer patients treated with neo-adjuvant 

chemotherapy identified metabolites responsive to treatment, including threonine, 

isoleucine, glutamine and linoleic acid93. Thus far, these studies have not been conducted 

over the day/night cycle to determine if availability of these metabolites is found to be 

rhythmic. While these studies could have a clinical value, we would argue that the time of 

day could be an important factor to consider given that metabolites such as amino acids and 

lipids display circadian profiles94,95.

Concluding Remarks

The complex network of communication between the circadian clock and tumorigenesis is 

only beginning to be unraveled (Figure 3). At the foundation is strong epidemiological 

evidence that implicates circadian disruption with cancer. Several lines of genetic evidence 

from laboratory studies connect disruption of the circadian molecular machinery with 

lymphoma, HCC, lung cancer, and other tumor types. Intriguingly, preliminary evidence 

supports a circadian connection with cancer metabolism, in an oncogene-driven cell 

autonomous manner, such as with MYC. Given that cancer cells utilize nutrients at a high 

metabolic rate, it can be envisioned that several pathways may be controlled by the circadian 

clock. However, it remains to be determined how the clock may impinge on such pathways, 

including amino acid metabolism and availability, the pentose phosphate pathway, and other 

intracellular energy generating mechanisms that can potentially be hijacked by cancer cells. 

Several metabolic pathways are dynamically circadian and hence the time at which 

therapeutic targeting of these pathways occurs may be critical. Furthermore, several lines of 

evidence discussed in this review point to systemic nutrient repurposing as a means of 

circumventing typical energy requirements in order to sustain heightened cell proliferation 

in cancer. These ideas focusing on the circadian clock should be considered when 

developing pharmacological approaches to target tumor metabolism to dictate survival and 

proliferation.
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Box 1:

Mammalian Circadian Clocks

Physiological and metabolic variations follow cycles linked to the time of the day. These 

circadian (from the Latin words, circa diem, about a day) rhythms include sleep-wake 

cycles, feeding behavior, body temperature and hormonal oscillations (Figure 1). All cells 

harbor molecular clocks which operate in concert to control circadian rhythms98,109. The 

architecture of the circadian system is based on a hierarchical structure whereby the 

central oscillator receives environmental cues or zeitgebers (time givers) that can adjust 

the otherwise self-sustained rhythms driven by the clock110,111. From an anatomical 

standpoint, the circadian system is based on a central clock located in the suprachiasmatic 

nucleus (SCN) within the hypothalamus112,113. Neurons within the SCN function 

autonomously and are reset in response to light to coordinate the timekeeping of 

peripheral clocks located in all other tissues and cells in the body111,114,115. Therefore, 

proper synchronization and coordination between central and peripheral clocks is thought 

to be of upmost importance for systemic homeostasis.

The molecular organization of the core circadian clock has been unveiled during the past 

couple of decades (Figure 2). The molecular machinery that constitutes the circadian 

clock is comprised of two DNA-binding transcription factors, CLOCK and BMAL1, that 

heterodimerize and direct transcriptional activation of core clock genes and additional 

clock-controlled genes (CCGs)104,105, by binding to E-box sites on their promoters30. 

Among these CCGs, CLOCK and BMAL1 direct transcription of their own repressors, 

period (PER) and cryptochrome (CRY) family members, creating a tightly self-regulated 

transcriptional/translational feedback loop110,113,116. During the day, transcription of Per 
and Cry is high, resulting in translation of the circadian repressors, and subsequent 

formation of the inhibitory complex with CLOCK and BMAL1 that abolishes 

transcription of CCGs at night106. Degradation of the circadian repressors, PER and CRY, 

alleviates transcriptional repression and restores CLOCK:BMAL1-mediated 

transcription, establishing an oscillatory rhythm in circadian gene expression that 

operates within a precise 24-hour period. An additional level of circadian regulation 

exists with the orphan nuclear receptors RORa and REV-ERBa which activate and 

repress transcription of the Bmal1 gene, respectively107,108,110,113.

Transcriptome studies have shown that the clock directs the expression of a large number 

of genes in different tissues, illustrating that a significant fraction of the genome is under 

clock control102–104. This notion implicates cyclic chromatin transitions to occur on a 

genome-wide scale and a number of chromatin remodelers have been found to display 

circadian activity. For example, the core regulator CLOCK displays acetyltransferase 

activity on non-histone proteins 117,118 and on H3 at K9 and K14119, both marks 

associated to a chromatin state permissive for transcription. The CLOCK:BMAL1 

heterodimer appears to interact also with CBP (CREB binding protein), p300 and with 

the CBP-associated factor PCAF120,121, suggesting that a number of HATs may 

contribute to circadian epigenome . Additionally, various histone deacetylases (HDACs) 

have been implicated, such as HDAC1106 and HDAC3122,123, in addition to the 

nicotinamide adenine dinucleotide (NAD+)-dependent sirtuins, SIRT173,74,124 and 
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SIRT675 which are regulated by cyclic availability of NAD+ through the salvage 

pathway77,78. In addition to acetylation, histone methylation has been also implicated in 

circadian chromatin remodeling through histone methyltransferase (myeloid/lymphoid or 

mixed-lineage leukemia 1) MLL1125 and MLL3126.

Specific molecular components of the circadian clock machinery are listed below:

1. CLOCK [Circadian Locomotor Output Cycles Kaput], Core Transcription 

Factor

2. BMAL1 [Aryl Hydrocarbon Receptor Nuclear Translocator-like protein 1 

(ARNTL or BMAL1)], Core Transcription Factor

3. PER 1–3 [Period 1–3], Transcriptional Repressors

4. CRY 1–2 [Cryptochrome 1–2], Transcriptional Repressors

5. REV-ERBα [Nuclear Receptor Subfamily 1, group D, member 1 (NR1D1)], 

Transcriptional Repressor

6. RORα [Retinoid-Related Orphan Receptor alpha], Transcriptional Activator
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Box 2:

Cancer-Initiating Cells and the Circadian Clock

Studies using genetic mouse models have revealed that the circadian clock is implicated 

in determining unique properties of tissue-specific stem cell populations127–129. As these 

stem cells are thought to share important features with cancer initiating cells, a question 

is raised: does a stem cell clock differ from other clocks and, do cancer-initiating cells 

have a distinct circadian transcriptional program? By extension, it could be speculated 

that common changes in clock function could be causal to determine both ‘stemness’ and 

cancer phenotypes. A number of studies support the notion that elements of the circadian 

clock regulate stem cell functions. For example, rhythmic oscillations of key secreted 

factors in the skin such as bone morphogenetic protein (BMP) regulate stem cells 

involved in hair regeneration130 and BMAL1 transcriptionally controls stem cell 

regulatory genes to specify epidermal stem cell heterogeneity127. Also, a critical 

chemokine for hematopoietic stem cell (HSC) migration, CXCL12, displays clock-

controlled expression131. Recent evidence in aged epidermal and muscle stem cells 

versus hepatocytes demonstrates very different tissue-specific transcriptional control 

pathways that are unique to stem cell populations128,129.

Yet, can the circadian clock alter tumor initiation potential through cancer-initiating 

cells? Mice carrying an epidermal deletion of Bmal1 crossed with oncogenic Sos (which 

activates the Ras pathway) displayed fewer squamous tumors in the tail versus control 

keratin5 expressing Sos mice which display 100% penetrance of neoplastic lesions127. 

However, using a similar keratinocyte-specific mouse model, it was also found that 

Bmal1 ablation increased cell proliferation and elevated susceptibility to UV-induced 

DNA damage132. Therefore, how Bmal1 is involved in tumorigenesis through cancer-

initiating cells remains unresolved. Moreover, disruption of the canonical circadian 

molecular machinery depletes leukemic stem cells and Clock and Bmal1 were reported to 

be required for growth of acute myeloid leukemia (AML)82. These studies suggest that 

clock function could act in a dual manner in regulating tumorigenesis at the levels of 

initiation and disease progression. Based on these differing reports, the role of the 

circadian clock in cancer-initiating cells requires further investigation.

This concept of a dual functioning circadian clock can be further extended, and 

interestingly, there are conflicting reports of clock disruption in specific cancer types. For 

instance, hypermethylation at the Clock promoter was found to reduce risk of breast 

cancer and reduced levels of Clock expression was found in healthy controls relative to 

breast cancer tumors133. Yet, breast cancer tissue was also found to exhibit 

hypermethylation of the Cry2 promoter relative to normal controls in ER/PR-negative 

breast cancers, but not in ER/PRpositive tumors 134. These studies point to possible 

differences in circadian function and transcriptional output based on cell of origin. 

Therefore, this prompts further investigation into how the circadian machinery in stem 

cells versus differentiated cell types differs. Also, further dissection of the changes in 

circadian gene expression programs within cancer cell subtypes is needed in addition to 
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analysis of how the clock machinery is altered over the course of transformation, from 

adenomas to adenocarcinomas.

Masri and Sassone-Corsi Page 19

Nat Med. Author manuscript; available in PMC 2019 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. The mammalian circadian clock.
An overview of rhythmic functions which are critically controlled by the human circadian 

pacemaker are outlined. Time of day is indicated for peak endocrine functions, deepest 

sleep, metabolic control, immune responses, alertness, and cardiovascular parameters over 

the 24-hour cycle. Information was adapted from several references96–99.
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Figure 2. The Molecular Components of the Mammalian Circadian Clock.
The circadian transcriptional/translational feedback loop occurs within a period of 24-hours. 

The core circadian transcriptional machinery consists of the bHLH DNA-binding 

transcription factors, CLOCK and BMAL130,100, which bind E-Box sequences to control the 

rhythmic expression of ~1015% of genes98,101–103. CLOCK:BMAL1-dependent 

transcription of core clock and clock-controlled genes (CCGs) peaks during the day, while 

transcription is inhibited by the circadian repressors, Period (PER) and Cryptochrome 

(CRY), at night104–106. An additional level of circadian regulation exists with the nuclear 

receptors RORa and REV-ERBa that activate and repress transcription of the Bmal1 gene, 

respectively107,108.
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Figure 3. Circadian regulation of tumor initiation and progression.
During tumorigenesis, several aspects of altered circadian control have been described at the 

stages of initiation and progression. These include genetic disruption of the canonical 

circadian transcriptional machinery and changes in epigenetic control mechanisms that 

regulate circadian gene expression, steps which are likely more implicated in tumor 

initiation. Subsequent deregulation of metabolism could further drive tumor progression, 

both in a cell autonomous manner and circadian metabolic changes that influence tumor/host 

interactions.
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Figure 4. Tumor/host communication involving circadian metabolic tissues.
The tumor macroenvironment, comprised of inflammatory cytokines, chemokines, 

glycolytic byproducts, and other tumor-derived waste is secreted into the blood. Emerging 

evidence now suggests that metabolic waste byproducts, such as lactate, can potentially be 

utilized as carbon sources to satisfy the demand of rapidly proliferating cells61. The 

circulating tumor macroenvironment has been described to rewire circadian metabolism at a 

distance58,59. Target metabolic tissues include the liver, but likely extend to the pancreas, 

adipose tissue and skeletal muscle as shown. In addition, the role of peripheral tissues in 

further driving tumorigenesis, by potentially supplying metabolic fuel, emphasizes the 

significance of the tumor/host interaction.

Masri and Sassone-Corsi Page 23

Nat Med. Author manuscript; available in PMC 2019 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Links between Circadian Disruption and Cancer
	Epidemiological Links between the Clock and Cancer
	Linking the Circadian Clock and Cancer in animal models
	Environmental Disruption of the Circadian Clock and Cancer

	Circadian Control of Cancer Metabolism
	Crosstalk between Myc and the Circadian Clock
	The Circadian Clock and Oxidative Stress in Cancer

	Tumor macroenvironment and circadian metabolism
	Clinical implications: relevance of ‘chronotherapy’ for cancer
	Concluding Remarks
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

