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ABSTRACT

The tricarboxylic acid (TCA) cycle is a central route for
oxidative phosphorylation in cells, and fulfills their
bioenergetic, biosynthetic, and redox balance require-
ments. Despite early dogma that cancer cells bypass the
TCA cycle and primarily utilize aerobic glycolysis,
emerging evidence demonstrates that certain cancer
cells, especially those with deregulated oncogene and
tumor suppressor expression, rely heavily on the TCA
cycle for energy production and macromolecule syn-
thesis. As the field progresses, the importance of aber-
rant TCA cycle function in tumorigenesis and the
potentials of applying small molecule inhibitors to per-
turb the enhanced cycle function for cancer treatment
start to evolve. In this review, we summarize current
knowledge about the fuels feeding the cycle, effects of
oncogenes and tumor suppressors on fuel and cycle
usage, common genetic alterations and deregulation of
cycle enzymes, and potential therapeutic opportunities
for targeting the TCA cycle in cancer cells. With the
application of advanced technology and in vivo model
organism studies, it is our hope that studies of this
previously overlooked biochemical hub will provide
fresh insights into cancer metabolism and tumorigene-
sis, subsequently revealing vulnerabilities for thera-
peutic interventions in various cancer types.
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INTRODUCTION

Cancer is a disease characterized by the accumulation of
genetic alterations and gene deregulations, resulting in
uncontrolled cell proliferation that demands both increased
energy production and macromolecule synthesis. To cope
with increased metabolic stress, malignant cells often
reprogram their biochemical pathways to enable rapid
uptake and breakdown of nutrients, thus contributing to
disease transformation, maintenance, and progression
(Hanahan and Weinberg, 2011; Ward and Thompson, 2012).
The birth of cancer metabolism research extends back to the
early 20th century, when Otto Warburg noted the heavy
dependence of cancer cells on glycolysis for growth (War-
burg et al., 1927). Indeed, various types of cancer cells
increase their glucose uptake and preferentially utilize glu-
cose through aerobic glycolysis (Gillies and Gatenby, 2007;
Pavlova and Thompson, 2016). This effect was subse-
quently applied in the clinic for tumor imaging and detection
through positron emission tomography scans of radiolabeled
glucose analogs (Papathanassiou et al., 2009). These early
findings laid the groundwork for a recent revival of interest in
cancer metabolism research, which has lead to discoveries
showing overactivation and/or rewiring of multiple metabolic
pathways in cancer cells. In just the last ten years, the sig-
nificance of metabolic reprogramming has led to its inclusion
with the classic hallmarks of cancer (Hanahan and Wein-
berg, 2011). Accumulating evidence indicates that exploiting
the unique metabolic dependencies of tumor cells repre-
sents an exciting new direction of targeted therapy (Pathania
et al., 2009; Kishton and Rathmell, 2015).

The tricarboxylic acid (TCA) cycle is a central hub for
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balance. The cycle is composed of a series of biochemical
reactions occurring in the mitochondrial matrix, which allow
aerobic organisms to oxidize fuel sources and provide
energy, macromolecules, and redox balance to the cell.
Aberrant TCA cycle function is implicated in a wide variety of
pathological processes. Genetic diseases with compromised
TCA cycle function due to inherited cycle enzyme mutations,
such as fumarase (FH) deficiency, are rare but severe
(Rustin et al., 1997). Moreover, several TCA cycle enzymes
are deregulated in obesity, including citrate synthase, which
exhibits reduced activity in obese mice (Cummins et al.,
2014). Multiple neurodegenerative disorders such as Alz-
heimer’s disease are associated with reduced activity of the
α-ketoglutarate dehydrogenase complex (KGDHC) (Gibson
et al., 2010). In light of the widely accepted belief that cancer
cells primarily utilize aerobic glycolysis, the role of the TCA
cycle in cancer metabolism and tumorigenesis has been
overlooked until recently.

With the application of contemporary technology, such as
unbiased and targeted metabolomics, as well as genetic and
biochemical studies using animal models, many recent
advances have been made in the field of cancer metabolism.
Studies have demonstrated that tumor cells can indeed
uncouple glycolysis from the TCA cycle, allowing the use of
additional fuel sources such as glutamine to meet their
heightened metabolic needs (Chen and Russo, 2012)
(Pavlova and Thompson, 2016). Importantly, glutamine is
now established as an important nutrient source across
numerous cancer types, especially for MYC-driven cancers
(DeBerardinis and Cheng, 2010). The role of lipid metabo-
lism in tumorigenesis has also received increased attention
in recent years. Altogether, these studies have provided
convincing evidence to establish the role of the TCA cycle in
cancer metabolism and tumorigenesis (Sajnani et al., 2017).
Importantly, various oncogenes and tumor suppressors
regulate both the uptake and breakdown of fuel sources in
the TCA cycle by regulating the expression of fuel trans-
porters and/or activity of cycle enzymes in cancer cells
(Chen and Russo, 2012). Multiple cycle enzymes, including
aconitase (also known as aconitate hydratase, AH), isoci-
trate dehydrogenase (IDH), FH, succinate dehydrogenase
(SDH) and KGDHC, are frequently mutated or deregulated in
human cancers (Eng et al., 2003; Juang, 2004; Yan et al.,
2009). Recent results from clinical testing suggest that tar-
geting reprogrammed metabolic pathways, including the
TCA cycle, could provide a new and promising therapeutic
avenue for the treatment of a broad spectrum of cancers.

FUELS FEEDING THE TCA CYCLE

The TCA cycle serves as a convergence point in the cellular
respiration machinery, which integrates multiple fuel sources
derived from the diet including glucose, glutamine, and fatty
acids. Through various biochemical reactions, the cycle
produces intermediates for use as building blocks in
macromolecule synthesis, as well as energy and electron

acceptors that are utilized in downstream cellular processes
such as the electron transport chain (ETC) reactions.
Although both normal and tumor cells can catabolize all
major types of fuels, they differ in the rate of uptake and
catabolism of each fuel. While glucose provides the main
source of pyruvate entering the TCA cycle in normal cells,
cancer cells often shunt glucose away from the TCA cycle
for catabolism through anaerobic glycolysis, and thus are
more dependent on glutamine and fatty acids to replenish
TCA cycle intermediates (Eagle, 1955).

Glucose

Glucose is imported into the cell by glucose transporters
(GLUT) and serves as the most common fuel source in
mammalian cells (Fig. 1). In normal cells, most cellular glu-
cose enters the TCA cycle in the form of pyruvate, although
glucose can also be utilized for lactate production or macro-
molecular synthesis through the pentose phosphate pathway
(Fig. 1). Through glycolysis, one glucose molecule is con-
verted into two pyruvate molecules, which are primarily oxi-
dized to produce acetyl-CoA feeding the TCA cycle.
Alternatively, under hypoxic conditions, pyruvate may be
converted to lactate as well. Progression through the TCA
cycle occurs when heightened energetic needs arise (Fig. 1).
Glucose can also be synthesized through gluconeogenesis, a
process reciprocally regulated compared to glycolysis in order
to keep the metabolism of the cell efficient (Berg JM, 2002).

Cancer cells markedly increase their glucose usage, as
noted by Otto Warburg nearly 100 years ago. Tumors
acquire additional glucose by upregulating the high-affinity
glucose transporters GLUT1 and GLUT3, while simultane-
ously downregulating lower affinity transporters (Birnbaum
et al., 1987; Baron-Delage et al., 1996). Not only do cancer
cells increase the rate of glucose uptake and utilization, but
the fate of imported glucose differs from that in normal cells
as well. While normal cells and some cancer cells, such as
lung cancer stem cells and leukemic cells, oxidize glucose in
the mitochondria (Gatenby and Gillies, 2004; Gao et al.,
2016; Kishton et al., 2016), most cancer cells preferentially
break down glucose to produce lactate even in normoxic
conditions (Kim et al., 2006), The process of aerobic gly-
colysis only generates 2 ATP per glucose molecule, a drastic
reduction from 38 ATP when glucose is oxidized through the
TCA cycle. To meet their heightened energetic needs, can-
cer cells turns to other fuel sources, such as glutamine, to
feed the TCA cycle.

Glutamine

In addition to glucose, amino acids can also fuel the TCA
cycle. Amino acids enter the cycle after being converted to
either acetyl-CoA or α-keto acid intermediates: pyruvate,
oxaloacetate, and succinyl-CoA (Berg JM, 2002). Glutamine
is themost abundant amino acid in the human body, serving to
transport nitrogen in the plasma for biosynthesis of non-
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essential amino acids, such as purines and pyrimidines, as
well as fatty acids, or entering the TCA cycle in the form of
α-ketoglutarate (α-KG) (Reitzer et al., 1979; Brosnan, 2003;

Wang et al., 2017). Glutaminolysis, the breakdown of glu-
tamine, is critical in replenishing cycle intermediates in pro-
liferating cells. Glutamine is first hydrolyzed by glutaminase
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Figure 1. Transporters, fuels, enzymes, and biochemical reactions driving the TCA cycle. The typical input for the TCA cycle is

acetyl-CoA, which is derived from pyruvate, the end product of glycolysis. Through a series of redox reactions, chemical bond energy

from acetyl-CoA is harvested to produce high-energy electrons, which are carried to the electron transport chain by nicotinamide

adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD). Subsequent oxidative phosphorylation results in the production

of adenosine triphosphate (ATP) from each acetyl-CoA. Because oxygen is required to regenerate NAD+ and FAD, the TCA cycle

only proceeds in aerobic environments. There are a total of 8 steps in the TCA cycle, three of which are irreversible; the generation of

citrate from oxaloacetate and acetyl-CoA by CS; the conversion of isocitrate to α-KG by IDH3; and the formation of succinyl-CoA from

α-KG by KGDHC (Berg JM, 2002; Akram, 2014). The biochemical reactions in the TCA cycle are regulated by several means

including substrate availability, product inhibition, and allosteric regulation, allowing the cell to control energy production based on its

energy status (NADH/NAD+ ratio, ATP availability) and nutrient availability (Berg JM, 2002). Intermediates in the cycle can be derived

from outside sources, such as the production of acetyl-CoA from β-oxidation of fatty acids or the production of α-KG from protein

catabolism, particularly glutaminolysis (Houten and Wanders, 2010; Akram, 2014). Importantly, deregulation of TCA cycle enzymes,

such as mutations and gene deregulations, or aberrant accumulation of TCA intermediates can have disease-relevant

consequences. Proteins that are upregulated in cancer are highlighted as red and downregulated as blue, while enzymes mutated

are marked with an asterisk. Abbreviations: CS: citrate synthase, AH: aconitase, IDH: isocitrate dehydrogenase, KGDHC:

α-ketoglutarate dehydrogenase complex, OGDH: α-KG dehydrogenase, DLST: dihydrolipoamide S-succinyltransferase, DLD:

dihydrolipoamide dehydrogenase, SCS: succinyl-CoA synthase, SDH: succinate dehydrogenase, FH: fumarate hydratase, MDH:

malate dehydrogenase, PDH: pyruvate dehydrogenase, GLUT: glucose transporter, FATP: fatty acid transporter, SCL38A: sodium-

coupled neutral amino acid transporter, ACLY: adenosine triphosphate citrate lyase, ACC: acetyl-CoA carboxylase, FAS: fatty acid

synthase, GLS: glutaminase, GDH: glutamate dehydrogenase.
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(GLS) to yield glutamate, which subsequently is either dehy-
drogenated by glutamate dehydrogenase (GLUD) to form α-
KG or functions as a co-substrate for the transaminases,
glutamate oxaloacetate transaminase and glutamate pyru-
vate transaminase to form alanine and aspartate respectively.
α-KG is a substrate for oxidative decarboxylation by KGDHC
or for reductive carboxylation by IDH2 (Mullen et al., 2011).
Thus, glutaminolysis serves as a common pathway for both
anaplerotic and cataplerotic processes.

The importance of glutaminolysis in cancer cell prolifera-
tion was noted decades ago by Harry Eagle, who found that
HeLa cells preferred a molar excess of 10- to 100- fold of
glutamine for maximum growth (Eagle, 1955). This metabolic
dependence is partially driven by the glycolytic phenotype
seen in certain types of cancer cells. Due to the excessive
conversion of glucose to lactate, tumor cells use anaplerotic
reactions to replenish TCA cycle intermediates, which is
largely achieved through increased glutaminolysis (DeBer-
ardinis et al., 2007). To do so, cancer cells upregulate both
glutamine transporters and enzymes catalyzing glutaminol-
ysis, thus uncoupling this pathway from growth factor-me-
diated stimuli (Fig. 1) (Pavlova and Thompson, 2016). The
proto-oncogene MYC is a critical regulator of glutaminolysis
and upregulates both glutamine transporters and GLS (Wise
et al., 2008; Gao et al., 2009). Elevated levels of GLS and
glutamine transporters enable tumor cells to derive large
portions of their energy and macromolecules through glu-
tamine catabolism, leading to glutamine addiction in
numerous cancer types including myeloma and glioma
(Bolzoni et al., 2016; Márquez et al., 2017).

Fatty acids

The third type of fuel source in cancer cells is fatty acids,
which enter the TCA cycle after undergoing β-oxidation to
generate acetyl-CoA. Acetyl-CoA is the substrate for both
the fatty acid synthesis pathway and the TCA cycle, making
lipogenesis an important convergence point for TCA cycle
flux and cellular biosynthesis (Migita et al., 2008). In the
process of β-oxidation, the acyl chain undergoes oxidation,
introducing a double bond, followed by hydration to alcohol
and oxidation to ketone. Finally, co-enzyme A cleaves the
acyl tail to yield an acetyl-CoA and reduces the fatty acid
chain length by two carbons. This process generates more
acetyl-CoA per molecule than does either glucose or glu-
tamine (Berg JM, 2002). De novo synthesis of fatty acids is
critical to supply lipids for cell membrane formation in rapidly
proliferating cells, and is regulated by fatty acid biosynthetic
enzymes: adenosine triphosphate citrate lyase (ACLY),
acetyl-CoA carboxylase (ACC), and fatty acid synthase
(FAS). ACLY converts citrate to oxaloacetate and cytosolic
acetyl-CoA. This cytosolic acetyl-CoA is carboxylated by
ACC to form malonyl-CoA, which is then combined with
additional acetyl-CoA until the 16-carbon unsaturated fatty
acid palmitate is formed. Palmitate can then be modified to
form additional required components of cell membrane.

While enzymes regulating lipid synthesis are often
expressed in low levels in most normal tissue (Clarke, 1993),
they are overexpressed in multiple types of cancers. ACLY is
overexpressed in non-small cell lung cancer, breast cancer,
and cervical cancer among others (Migita et al., 2008; Xin
et al., 2016; Wang et al., 2017). ACC is upregulated in non-
small cell lung cancer and hepatocellular carcinoma (Wang
et al., 2016; Svensson and Shaw, 2017). FAS is overex-
pressed in prostate and breast cancers (Swinnen et al., 2002;
Menendez et al., 2004). In tumor cells where the demand is
much greater, lipogenesis occurs via these overexpressed
enzymes. The increased activation and overexpression of
these enzymes in tumors correlates with disease progres-
sion, poor prognosis, and is being investigated as a potential
biomarker of metastasis (Xin et al., 2016).

ONCOGENES AND TUMOR SUPPRESSORS
IMPINGING ON THE TCA CYCLE

Genetic alterations and/or deregulations of tumor suppres-
sors or oncogenes often drive metabolic reprograming in
cancers, although this effect can differ based on specific
alterations or deregulations, and is often context-dependent.
Several oncogenes, including MYC, HIF, P53, and RAS, are
known to regulate the metabolic phenotype of tumors and
play a critical role in determining how the TCA cycle is uti-
lized in these cancer cells.

MYC

The proto-oncogene MYC controls a wide range of cellular
processes, including cell proliferation, metabolism, cellular
differentiation and genomic instability, and is a dominant
driver of tumor transformation and progression (Meyer and
Penn, 2008). Aberrant MYC activity, resulting from chromo-
somal translocations, gene amplifications or increased
mRNA/protein stability, is found in over half of all human
cancers (Gabay et al., 2014). Importantly, MYC is a central
regulator of cellular metabolism, and can promote a broad
range of metabolic pathways, such as aerobic glycolysis,
glutaminolysis, mitochondrial biogenesis, oxidative phos-
phorylation, and nucleotide and amino acid biosynthesis
(Adhikary and Eilers, 2005; Gabay et al., 2014; Wahlstrom
and Henriksson, 2015). As stated early in this review article,
MYC transcriptionally activates key genes and enzymes
regulating glutaminolysis, and serves as the principal driver
of glutamine metabolism through the TCA cycle (i.e., glu-
tamine anaplerosis). Specifically, to promote the import of
glutamine into the cell, MYC transcriptionally upregulates
glutamine transporters ASC amino acid transporter 2
(ASCT2) and system N transporter (SN2). Additionally, Gao
et al. demonstrated that MYC controls the conversion of
glutamine to glutamate by activating glutaminase 1 (GLS1)
through transcriptional suppression of its negative regulator
miR-23a/b (Wise et al., 2008; Gao et al., 2009). There are
two independent pathways that control the conversion of
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glutamate to α-KG entering the TCA cycle: one controlled by
GLUD and another by aminotransferases. MYC-dependent
cancer cells can utilize either GLUD or aminotransferases to
convert glutamine to α-KG for the TCA cycle (Wise et al.,
2008; Wang et al., 2011). MYC may also play a role in
directing fatty acid oxidation and directing its metabolites into
the TCA cycle by way of acetyl-CoA. Specifically, MYC
expression leads to the upregulation of fatty acid trans-
porters (e.g., fatty acid-binding protein 4) and fatty acid oxi-
dation genes such as hydroxyacyl-CoA dehydrogenase
(Wang et al., 2011; Edmunds et al., 2015).

HIF

Hypoxia-inducible factors (HIFs) are transcription factors that
respond to reduced oxygen availability. HIFs are hetero-
dimers composed of an oxygen-dependent α-subunit and a
constitutively expressed β-subunit. Under normoxia, the
α-subunit is targeted for degradation upon hydroxylation by
prolyl hydroxylases (PHD) and subsequent ubiquitination by
von Hippel-Lindau (VHL) tumor suppressor. Tumors activate
HIFα either in the face of hypoxia resulting from poor vas-
cularization or due to genetic abrogation such as VHL loss
(Gordan and Simon, 2007). HIF activation orchestrates a
metabolic program that promotes the catabolism of glucose
through aerobic glycolysis and thus shifts glucose away from
the TCA cycle (Semenza, 2012). HIF promotes glycolysis
and lactate production through transcriptional upregulation of
glucose transporters (SLC2A1 and SLC2A3), glycolytic
enzymes (e.g., hexokinase (HK) and pyruvate kinase (PK)),
and lactate dehydrogenase A (LDHA) (Kim et al., 2006). Kim
et al. demonstrated that HIF1 suppresses glucose metabo-
lism through the TCA cycle (i.e., glucose anaplerosis) by
directly activating pyruvate dehydrogenase kinase 1 (PDK-1),
a negative regulator of cycle enzyme pyruvate dehydroge-
nase (PDH) (Kim et al., 2006). To compensate for the
reduction of glucose feeding the TCA cycle, tumor cells with
HIF activation often increase the usage of glutamine (Le
et al., 2012). Under hypoxia conditions, glutamine largely
fuels the TCA cycle in the form of α-KG to promote reductive
carboxylation that produces citrate for lipogenesis (Wise
et al., 2008; Metallo et al., 2011; Gameiro et al., 2013).

P53

P53 is a transcription factor and known tumor suppressor
that regulates many important cellular pathways, including
cell survival, DNA repair, apoptosis, and senescence (Ben-
saad et al., 2009). Wild-type P53 plays an important role in
metabolism by striking a balance between bioenergetics and
biosynthesis. One of the ways it does so is by lowering rates
of glycolysis and promoting oxidative phosphorylation. P53
acts to suppress glycolysis by directly downregulating glu-
cose transporters (GLUT1 and GLUT4) and indirectly
inhibiting the activity of glycolytic enzymes, phosphofruc-
tokinase 1 (PFK1) and phosphoglycerate mutase (Kondoh

et al., 2005; Bensaad et al., 2006, 2009; Zhang et al., 2013).
To promote oxidative phosphorylation, P53 ensures avail-
ability of anapleurotic substrates, glucose, and glutamine, to
the TCA cycle. As an activator of PDH, P53 downregulates
PDH’s negative regulator PDK2 and indirectly activates
PDHA1 (PDH A1 subunit). Additionally, P53 promotes glu-
tamine incorporation into the TCA through direct transcrip-
tional upregulation of glutaminase 2 (GLS2) (Zhang et al.,
2011; Contractor and Harris, 2012). In solid tumors, P53 is
commonly mutated and somatic mutations of P53 occur in
more than 50% of human malignancies (Kruiswijk et al.,
2015). Subsequently, loss of wild-type P53 function has a
significant impact on cellular metabolism, leading to
enhanced glycolysis and repressed oxidative phosphoryla-
tion in these tumor cells.

RAS

The most frequently mutated RAS subfamily genes in cancer
are KRAS, NRAS, and HRAS, which serve as intercellular
signaling molecules to transduce extracellular signaling from
receptor tyrosine kinase to downstream effectors (Pylayeva-
Gupta et al., 2011; Stephen et al., 2014). RAS plays a critical
role in activating scavenging pathways in certain types of
tumors and promotes nutrient uptake through both the
extracellular and intracellular sources (Pylayeva-Gupta
et al., 2011; Stephen et al., 2014). For example, Kamphorst
et al. demonstrated that KRAS-driven pancreatic cells
scavenge proteins, such as glutamine, from the extracellular
space and utilize them to fuel the TCA cycle (Kamphorst
et al., 2015). Additionally, it has been shown that KRAS-
driven non-small cell lung cancer cells utilize autophagy to
access intracellular supplies of glutamine to promote TCA
cycle function (Guo et al., 2011; Strohecker and White,
2014). Moreover, KRAS-driven cancer cells can scavenge
branch chain amino acids (i.e., isoleucine, valine, and leu-
cine) and convert them into acetyl-CoA to fuel the TCA cycle
(Mayers et al., 2014). A recent study by Kerr et al. demon-
strated that copy number gain of mutant KRAS associated
with tumor progression can promote glucose anaplerosis to
fuel the TCA cycle (Kerr et al., 2016).

CYCLE ENZYME ALTERATIONS IN CANCER

The biochemical reactions in the TCA cycle are catalyzed by
a number of enzymes. Recent findings show that multiple
cycle enzymes are either mutated or deregulated in a broad
spectrum of cancer, resulting in characteristic metabolic and
epigenetic changes that are correlated with disease trans-
formation and progression.

SDH

Succinate dehydrogenase (SDH), also known as complex II,
has roles in the TCA cycle and the ETC. SDH is a
heterotetrameric enzyme complex composed of 4 subunits
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(SDHA, SDHB, SDHC, and SDHD), which catalyzes the
oxidation of succinate to fumarate in the TCA cycle, while
simultaneously reducing ubiquinone to ubiquinol in the ETC
(Chandel, 2015). Mutations in SDHA, SDHB, SDHC, SDHD
and SDH assembly factor 2 (SDHAF2) have been identified
in hereditary paragangliomas (hPGLs) and pheochromocy-
tomas (PCCs) (Table 1) (Baysal et al., 2000; Niemann and
Muller, 2000; Astuti et al., 2001; Baysal et al., 2002; Hao
et al., 2009; Bayley et al., 2010; Burnichon et al., 2010).
Heterozygous mutations in SDH predispose patients to
hPGL and PCC. Loss of heterozygosity as a result of a
second mutation in the wild-type SDH allele triggers neo-
plastic transformation; thus, SDH is classified as a tumor
suppressor gene (Gottlieb and Tomlinson, 2005). Addition-
ally, mutations in SDH have also been identified in gas-
trointestinal stromal tumors, renal tumors, thyroid tumors,
neuroblastoma, and testicular seminoma, implicating its
importance in a wide range of cancer (Bardella et al., 2011).

FH

Fumarate hydratase (FH) is a homotetrameric cycle enzyme
that catalyzes the stereospecific and reversible hydration of
fumarate to L-malate. Beyond its mitochondrial role, FH is
also expressed in the cytoplasm where it participates in the
urea cycle as well as nucleotide and amino acid metabolism
(Adam, 2014 #160). Heterozygous mutations in FH predis-
pose patients to multiple cutaneous and uterine leiomyomas
(MCUL), as well as hereditary leiomyomatosis and renal cell
cancer (HLRCC) (Table 1) (Launonen et al., 2001; Tomlinson
et al., 2002). Additionally, mutations in FH have been iden-
tified in bladder, breast and testicular cancer (Table 1)
(Carvajal-Carmona et al., 2006; Ylisaukko-oja et al., 2006).
Mutations predisposing patients to MCUL or HLRCC occur
across the gene and include missense, frameshift, nonsense
and large deletions at the FH locus (Table 1) (Bensaad et al.,
2006). Similar to SDH, the enzymatic activity of FH is com-
pletely absent in HLRCC patients due to a loss of the
remaining wild-type allele (Wei et al., 2006).

IDH

The IDH family is comprised of three isoforms (IDH1, IDH2,
and IDH3) that convert isocitrate to α-KG. Only IDH2 and 3
are expressed in the mitochondria, while IDH1 is expressed
in the cytoplasm. IDH1 and IDH2 function as homodimers
that catalyze the conversion of α-KG to isocitrate and require
NADP+ as a co-factor, whereas IDH3 is a heterodimer
(IDH3A, IDH3B, and IDH3G) that can only oxidize isocitrate
to α-KG and requires NAD+ as a co-factor (Chandel, 2015).
Unlike FH and SDH, mutations in IDH1 and 2 are somatic
heterozygous missense mutations that occur primarily at the
active arginine residues that are critical for isocitrate binding
(IDH1: R132; IDH2: R172, R140; Table 1) (Parsons et al.,
2008; Dang et al., 2009; Mardis et al., 2009; Yan et al.,
2009). No mutations in IDH3 have been reported so far.

IDH1/2 mutations occur frequently in low-grade glioma and
secondary glioblastoma (∼80%), but can also occur in acute
myeloid leukemia (20%), angioimmunoblastic T-cell lym-
phomas (20%), and rarely in other malignancies such as
thyroid, colorectal, and prostate cancer (Table 1) (Kang
et al., 2009; Yen et al., 2010; Ghiam et al., 2012; Ohgaki and
Kleihues, 2013; Yen et al., 2017). These neomorphic muta-
tions result in the gained function of converting α-KG to
2-hydroxyglutarate (2-HG), an oncometabolite.

Deregulation of other cycle enzymes

Beyond mutations detected for cycle enzymes, several
studies have demonstrated that other cycle enzymes, CS,
AH, and KGDHC, are deregulated in cancer. CS catalyzes a
rate-limiting step in the TCA cycle and is either overex-
pressed or has increased enzymatic activity in pancreatic,
ovarian, and renal cancer (Schlichtholz et al., 2005; Lin et al.,
2012; Chen et al., 2014). AH is a reversible enzyme that
catalyzes the conversion of citrate to isocitrate and its
expression is downregulated in both gastric and prostate
cancer (Singh et al., 2006; Wang et al., 2013). KGDHC is a
rate-limiting enzyme of the TCA cycle and has three com-
ponents including α-KG dehydrogenase (OGDH), dihy-
drolipoamide S-succinyltransferase (DLST), and dihy-
drolipoamide dehydrogenase (DLD). OGDH is downregu-
lated in colorectal cancer as the result of promoter hyper-
methylation and similar promoter hypermethylation has been
documented in breast, lung, esophageal, cervical, and
pancreatic cancer (Hoque et al., 2008; Ostrow et al., 2009;
Fedorova et al., 2015). Interestingly, Snezhkina and col-
leagues have demonstrated that an alternative splice variant
of OGDH that is tumor specific is overexpressed in colorectal
cancer (Snezhkina et al., 2016). OGDH is regulated by Ca2+,
adenine nucleotides, and NADH, and the tumor-specific
isoform lacks three regions of the protein and exhibits
reduced sensitivity to Ca2+. Additionally, Anderson et al.
found that the E2 component of KGDHC, DLST, is upregu-
lated in T-cell acute lymphoblastic leukemia (T-ALL) (An-
derson et al., 2016).

Disease mechanisms underlying cycle enzyme
alterations

Genetic alterations can occur in multiple cycle enzymes;
however, their mechanisms of action in tumorigenesis differ.
Both SDH and FH are classical tumor suppressor genes,
and predispose individuals with heritable mutated genes to
cancer when the second wild-type allele is lost (Chandel,
2015). Inactivating mutations in FH result in a build-up of
fumarate and metabolic reprograming (Pollard et al., 2005),
which includes an increased dependence on glycolysis and
glutamine anaplerosis (Aspuria et al., 2014). In tumor cells
harboring mutant FH, an accumulation of fumarate results in
succination of cysteine-modifying proteins such as kelch-like
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Table 1. Summary of cycle enzyme genetic alterations in cancer

Gene Genetic alterations Tumor context Consequence of
alterations

References

SDHA c.91C>T
c.1765C>T
c.212G>A
c.674C>T, c.818C>T
c.341A>G
c.367C>A
c.441delG
c.725_736del
c.989_9990insTA
c.1753C>T
c.1865G>A
c.1873C>T
c.1886A>T

Paragangliomas
Pheochromocytomas

Leads to reduction or loss
of enzymatic activity of
the SDH catalytic
subunit and defective
function of mitochondrial
complex II

(Burnichon et al., 2010;
Bardella et al., 2011;
Korpershoek et al., 2011;
Dwight et al., 2013;
Evenepoel et al., 2015;
Pillai et al., 2017)

c.2T>C
c.91C>T
c.113A>T
c.160C>T
c. 206C>T
c.224G>A
c.244A>T
c.T273I
c.457-3 457-1delCAG
c.457-2 c457delCAG
c.511C>T
c.553C>T
c.562C>T
c.688delG
c.767C>T
c.778G>A
c.800C>T
c.818C>T
c.985C>T
c.1043-1055del
c.1046 147delTG
c.1151C>G
c.1255G>A
c.1334C>T
c.1357G>A
c.1361C>A
c.1471G>T
c.1534C>T
c.1690G>A
c.1765C>T
c.1766G>A
c.1794G>C
c.1795-1G>T
c.1873C>T
c.1969G>A

Gastrointestinal
stromal tumors

(Pantaleo et al., 2011;
Italiano et al., 2012;
Belinsky et al., 2013a;
Belinsky et al., 2013b;
Miettinen et al., 2013;
Oudijk et al., 2013;
Miettinen and Lasota,
2014; Evenepoel et al.,
2015; Jiang et al., 2015)

c.2T>C Renal cell carcinoma (Jiang et al., 2015)
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Table 1 continued

Gene Genetic alterations Tumor context Consequence
ofalterations

References

SDHB c.-1- ?_72+ ?del
c.-1- ?_765+ ?del
c.3G>A
c.21delC
c.49delA
c.72+1G>A
c.73_76delGCCT
c.79C>A
c.136C>G
c.137G>A
c.141G>A
c.155delC
c.166-170delCCTCA
c.203G>A
c.213C>T
c.221insCCAG
c.238A>G
c.268C>T
c.269G>A
c.270C>G
c.271G>A
c.277T>C
c.287-2A>G
c.287- ?_540+ ?del
c.291G>A
c.293G>A
c.299C>T
c.300-4delCCTCA
c.300T>C
c.312insCACTGCA
c.328C>T
c.394T>C
c.402C>T
c.416T>C
c.421-2A>G
c.423+1G>A
c.438G>A
c.540G>A
c.541-2A>G
c.549_552delTACinsATACAG
c.557G>A
c.558-3C>G
c.566G>A
c.589C>T
c.649C>T
c.650G>T
c.653G>A
c.688C>T
c.689G>A
c.689G>T
c.708T>C
c.718_719delCT
c.721G>A
c.724C>G
c.724C>A
c.724C>T
c.725G>A
c.736A>T
c.761C>T
c.765+1G>A

Paraganglioma
Pheochromocytoma

Reduces SDH catalytic
activity and causes
defects in enzymatic
activity in mitochondrial
complex II

(Neumann et al., 2004, 2009;
Bardella et al., 2011;
Sjursen et al., 2013;
Evenepoel et al., 2015;
Bennedbaek et al., 2016)
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Table 1 continued

Gene Genetic alterations Tumor context Consequence
ofalterations

References

c.778G>C
c.780delG
c.847delTCTC
c.859G>A
c.881C>A
c.889+1G>A

c.32G>A
c.88delC
c.136C>T
c.137G>A
c.847-50delTCTC

Renal cell carcinoma (Vanharanta et al., 2004;
Ricketts et al., 2008; Paik
et al., 2014)

c.392delC Thyroid carcinoma (Zantour et al., 2004)

IVS1+1G>T
c.17_dup26GTCG{dup26}
GCCA

c.17 42dup
c.43+1C>T
c.45_46insCC
c.72+1G>T
c.137G>A
c.274T>A
c.380T>G
c.423+1G>C
c.423+1G>A
c.423+20T>A
c.600G>T
c.725G>A

Gastrointestinal
stromal tumors

(McWhinney et al., 2007;
Pasini et al., 2008;
Janeway et al., 2011;
Miettinen et al., 2013;
Miettinen and Lasota,
2014)

c.418G>T Neuroblastoma (Schimke et al., 2010)

c.587G>A Pituitary carcinoma (Tufton et al., 2017)

c.136C>T T-cell acute leukemia (Baysal, 2007)

SDHC c.1A>G
c.2T>A
c.3G>A
c.23dupA
c.39C>A
c.43C>T
c.77 + 4760A>G
c.78-2A>G
c.78-19C>T
c.112A>G
c.126G>A
c.140-5527C>A
c.148C>T
c.166A>T
c.173T>C
c.191_207del17
c.210C>G
c.214C>T
c.218insA
c.224G>A
c.242G>T
c.242-5580C>A, c.212C>A
c.253_255dupTTT
c.397C>T
c.405+1G>T
c.439C>T

Paraganglioma
Pheochromocytoma

Leads to reduced SDH
enzymatic activity and
defective function in
mitochondrial complex II

(Douwes Dekker et al., 2003;
Mannelli et al., 2007;
Peczkowska et al., 2008;
Neumann et al., 2009;
Bennedbaek et al., 2016;
Pillai et al., 2017)
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Table 1 continued

Gene Genetic alterations Tumor context Consequence
ofalterations

References

c.496C>G
IVS4+1G>A

IVS5+1G>A
c.1A>G
c.6delT
c.43C>T
c.57delG
c.224G>A
c.301delT
c.380A>G
c.397C>T
c.405+1G>A
c.455G>C

Gastrointestinal
stromal tumors

(McWhinney et al., 2007;
Pasini et al., 2008;
Janeway et al., 2011;
Miettinen et al., 2013;
Miettinen and Lasota,
2014)

SDHD c.2T>A
c.3G>C
c.14G>A
c.33C>A
c.33C>T
c.34G>A
c.36_37delTG
c.49C>T
c.50G>T
c.52+2T>G
c.53-2A>G
c.53+2T>G
c.55dupT
c.64C>T
c.106C>T
c.112C>T
c.118A>G
c.120_ 127delCCCAGAAT
c.129G>A
c.149A>G
c.168_169delTT
c.169 + 5G>A, c.53-889G>A
c.170-1G>T
c.184_185insTC
c.191_192delTC
c.204-216del13bp
c.206_218del13bp
c.208A>G
c.230T>G
c.233_242del10bp
c.242C>T
c.252T>G
c.274G>T
c.276_278delCTA
c.284T>C
c.302T>C
c.314+1G>C
c.317delG
c.325C>T
c.334_337delACTG
c.337_340delGACT
c.341A>G
c.341_342delAT
c.361C>T
c.367G>A

Paraganglioma
Pheochromocytoma

Reduces efficacy of SDH
and impairs
mitochondrial complex II
activity

(Gimm et al., 2000; Taschner
et al., 2001; Dannenberg
et al., 2002; Douwes
Dekker et al., 2003; Lee
et al., 2003; Neumann
et al., 2004; Simi et al.,
2005; Galera-Ruiz et al.,
2008; Neumann et al.,
2009; Evenepoel et al.,
2015; Bennedbaek et al.,
2016; Pillai et al., 2017)
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Table 1 continued

Gene Genetic alterations Tumor context Consequence
ofalterations

References

c.370delG
c.386_387insT
c.408delT
c.416T>C
c.441delG
c.443G>T
IVS1+2T>G

c.34G>A
c.57delG
c.352delG
c.416T>C

Gastrointestinal
stromal tumors

(Pasini et al., 2008; Janeway
et al., 2011; Miettinen et al.,
2013; Oudijk et al., 2013;
Miettinen and Lasota,
2014)

c.129G>A Testicular seminoma (Galera-Ruiz et al., 2008;
Evenepoel et al., 2015)

SDHAF2 c.68C>T
c.139A>G
c.232 G>A

Paraganglioma
Pheochromocytoma

Leads to loss of flavination
of SDH, reducing
stability and activity of
the enzyme complex

(Hao et al., 2009; Bayley
et al., 2010; Pillai et al.,
2017)

FH p.Gln4X
1-bp del. In codon 17
p.Arg58X
p.Asn64Thr
p.Ala74Pro
p.His137Arg
p.Gln142Arg
2-bp del. In codon 181
Lys187Arg
Lys del. In codon 187
Arg190His
-15 splice site
p.Gly239Val
p.Arg300X
1-bp del. In codon 507

Multiple
leiomyomatosis

Leads to loss of FH
enzymatic activity and
accumulation of
fumarate in the cell

(Tomlinson et al., 2002)

c.1?_c.*100del
c.1?_404+?del
c.111insA
c.127_128delGA
c.138+1_138+10del10
c.147delT
c.157G>T
c.172C>T
c.191A>C
c.220G>C
c.233del
c.247_249+1delGAGGinsA
c.250-2A>G
c.266T>C
c.298delA
c.305C>G
c.349A>G
c.410A>G
c.425A>G
c.431C>T
c.434A>G
c.455T>C
c.503T>C

Hereditary
leiomymatosis and
renal cell
carcinoma

(Toro et al., 2003; Wei et al.,
2006; Pfaffenroth and
Linehan, 2008; Gardie
et al., 2011; Smit et al.,
2011; Chen et al., 2014;
Wong et al., 2014; Arenas
Valencia et al., 2017)
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Table 1 continued

Gene Genetic alterations Tumor context Consequence
ofalterations

References

c.560A>G
c.568C>T
c.568delAC
c.569G>A
c.569G>T
c.575A>G
c.632A>G
c.666delC
c.698G>A
c.780delGC
c.782-788 7-bp del.
c.806T>C
c.808G>T
c.810delA
c.815T>C
c.821C>T
c.823C>T
c.824G>A
c.836T>A
c.869G>A
c.875T>C
c.891T>A
c.898C>T
c.952C>T
c.964A>G
c.968G>A
c.989A>G
c.1002T>G
2-bp ins @1004
c.1020T>A
c.1025C>A
c.1028A>G
c.1060G>A
c.1083-1086delTGAA
c.1108-2A>G
c.1121-1123 del TAC
c.1123delA
c.1126T>C
c.1138insA
c.1144A>G
c.1162delA
c.1187A>C
c.1189G>A
c.1210G>T
c.1234del
c.1265A>G
8-bp dup @ 1300-1307
c.1339delG
c.1349-1352delATGA
c.1371G>A
c.1431insAAA

c.220G>C
c.426+1G>A
c.988A>G
c.994delA

Type 2 papillary renal
cell carcinoma

(Gardie et al., 2011)

c.1394G>A
c.352A>C

Leydig cell tumors
(Carvajal-Carmona
et al.)

(Carvajal-Carmona et al.,
2006)
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Table 1 continued

Gene Genetic alterations Tumor context Consequence
ofalterations

References

435insAAA
691G>A

Ovarian mucinous
cystadenoma

(Ylisaukko-oja et al., 2006)

IDH1 p.Arg100Gln
p.Arg132His
p.Arg132Cys
p.Arg132Ser
p.Arg132Leu
p.Arg132Gly

Gliomas/
Glioblastomas

Increases affinity for
NADPH/α-KG; reduces
affinity for isocitrate;
increases production of
2-HG

(Parsons et al., 2008; Dang
et al., 2009; Yan et al.,
2009; Pusch et al., 2011)

p.Arg132His
p.Arg132Cys
p.Arg132Ser
p.Arg132Gly
p.Arg132Leu

Acute myeloid
leukemia

(Mardis et al., 2009; Abbas
et al., 2010; Bayley et al.,
2010)

p.Arg132Cys
p.Arg132Leu
p.Arg132Gly
p.Arg132Ser

Myelodysplastic
syndromes/
Myeloproliferative
neoplasms

(Kosmider et al., 2010;
Pardanani et al., 2010)

p.Arg132Cys
p.Arg132His
p.Arg132Leu
p.Arg132Ser

Chondrosarcoma (Amary et al., 2011)

p.Arg132His
p.Arg132Gly
p.Arg132Ser
p.Arg132Cys

Acute lymphoblastic
leukemia

(Kang et al., 2009; Zhang
et al., 2012)

p.Gly70Asp
p.Val71Ile
p.Gly105Gly; p.Val1781Ile
p.Gly123Arg
p.Ile130Met
p.His133Gln
p.Ala134Asp

Thyroid carcinoma (Hemerly et al., 2010;
Murugan et al., 2010)

p.Arg132Cys
p.Arg132His

Prostate carcinoma (Kang et al., 2009; Ghiam
et al., 2012)

IDH2 p.Arg172Gly
p.Arg172Met
p.Arg172Lys

Gliomas/
Glioblastomas

Increases affinity for
NADPH/α-KG; reduces
affinity for isocitrate;
increases production of
2-HG

(Yan et al., 2009)

p.Arg140Gln
p.Arg172Lys
p.Arg172Gln
p.Arg172Thr
p.Arg172Gly

Angioimmunoblastic
T-cell lymphoma

(Cairns et al., 2012;
Lemonnier et al., 2016)

p.Arg140Gln
p.Arg140Trp
p.Arg172Lys
p.Arg172Met

Acute myeloid
leukemia

(Abbas et al., 2010; Gross
et al., 2010; Pardanani
et al., 2010)

p.Arg140Gln
p.Arg140Leu

Myelodysplastic
syndromes/
Myeloproliferative
neoplasms

(Kosmider et al., 2010;
Pardanani et al., 2010)

p.Arg172Ser Chondrosarcoma (Amary et al., 2011)
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ECH-associated protein 1 (KEAP1) and mitochondrial
aconitase (ACO2) (Yang et al., 2014). Loss-of-function
mutations of SDH result in the accumulation of millimolar
concentrations of succinate and reduced levels of fumarate
and malate (Pollard et al., 2005), which lead to disruption of
multiple metabolic pathways including central carbon meta-
bolism (Yang et al., 2013; Aspuria et al., 2014). On the other
hand, IDH1/2 missense mutations render the enzymes
acquiring neomorphic activity that can convert α-KG to 2-HG
(Dang et al., 2009). 2-HG is an oncometabolite that acts as a
competitive inhibitor to α-KG-dependent dioxygenases, such
as hypoxia-inducible factor (HIF), prolyl hydroxylases
(PDHs), JmjC domain-containing histone demethylases, and
ten-eleven translocation (TET) family of 5mC DNA hydrox-
ylases (Chowdhury et al., 2011; Xu et al., 2011; Koivunen
et al., 2012). The inhibition of these dioxygenases results in
broad epigenomic alterations that both suppress differenti-
ation and promote proliferation. Mutations in IDH2, FH, and
SDH share a common mechanism of inhibiting α-KG-de-
pendent dioxygenases through 2-HG, fumarate, or succi-
nate, respectively (Hoekstra et al., 2015). Both FH and SDH
mutations induce a state of pseudohypoxia, where 2-HG,
fumarate or succinate can inhibit PHDs, resulting in stabi-
lization of HIF. Additionally, mutations of FH, SDH, and IDH1/2
cause increased production of reactive oxygen species
(ROS), either directly by mutated SDH or indirectly in tumor
cells with mutant IDH1/2 and FH (Hoekstra et al., 2015). For
example, glioma cells with IDH mutations have increased
ROS and reduced GSH levels due to insufficient NADPH
pools (Shi et al., 2015). In cancer cells with FH mutations,
the accumulation of fumarate results in elevated levels of
succinic-glutathione (GSF), which acts as an alternative
substrate for GSH reductase, ultimately leading to
decreased levels of NADPH and GSH (Sullivan et al., 2013).

POTENTIAL APPROACHES TO TARGET THE TCA
CYCLE

Therapeutically targeting the TCA cycle function in cancer is
an attractive strategy to treat cancer and two strategies are
currently being tested in the clinic. Many tumors utilize glu-
tamine as a fuel source for the TCA cycle, thus suppression
of glutaminolysis through small molecule inhibitors is an
attractive approach to therapeutically target these tumors
(Seltzer et al., 2010; Cheng et al., 2011; Le et al., 2012;
Yuneva et al., 2012; Gameiro et al., 2013). An initial strategy
utilized glutamine analogues, such as 6-diazo-5-oxo-L-nor-
leucine, to target glutaminolysis (Ovejera et al., 1979; Ahlu-
walia et al., 1990; Griffiths et al., 1993). While these
compounds highlight the potential of targeting glutamine
anaplerosis, they ultimately failed to enter clinics due to high
tissue toxicities. Additional studies have demonstrated that
glutamine limitation, through either depletion of glutamine in
the plasma (L-aspariginase) or blocking glutamine transport
(sulfasalazine), can provide therapeutic benefit (Oettgen

et al., 1967; Lo et al., 2008; Chan et al., 2014; Parmentier
et al., 2015; Rodman et al., 2016; Roh et al., 2016; Shitara
et al., 2017). Recently, GLS inhibitors, such as CB-839, an
orally available, potent, and specific inhibitor of GLS, have
shown anti-tumor efficacy. CB-839 disrupts the conversion of
glutamine to glutamate and alters a number of downstream
pathways, including the TCA cycle, glutathione production,
and amino acid synthesis (Gross et al., 2010; Jacque et al.,
2015). Phase I clinical trials are currently underway for CB-
839, and examine its effectiveness for the treatment of both
hematological malignancies and solid tumors (NCT02071927
and NCT02071888).

Besides targeting glutaminolysis outside the TCA cycle
through GLS inhibition, several recent studies indicate that
KGDHC represents a striking vulnerability for numerous
cancers, and is a promising therapeutic target. Utilizing a
MYC-driven model of T-ALL, Anderson and colleagues
demonstrated that heterozygous inactivation of DLST (the
E2 enzyme of KGDHC) was sufficient to significantly delay
tumor onset without impacting normal animal development
(Anderson et al., 2016). Additionally, they show that DLST
inactivation in T-ALL cells disrupts the TCA cycle, while
slowing cell growth and inducing apoptosis (Anderson et al.,
2016). Allen et al. conducted a focused siRNA screen on
TCA cycle enzymes, and found that many cancer cells highly
depend on OGDH (the E1 component of KGDHC) for growth
and survival (Allen et al., 2016). A recent study by Ilic et al.
demonstrated that cancer cells harboring oncogenic PI3K
mutations require all three components of KGDHC, OGDH in
particular, for proliferation (Ilic et al., 2017). These findings
support the rationale to target KGDHC for cancer treatment.
CPI-613 is a lipoate analog that can simultaneously inhibit
both PDH and KGDHC, as lipoate is a co-factor for both
enzyme complexes. While CPI-613 stimulates PDK to
phosphorylate and inactivate PDH (Zachar et al., 2011), CPI-
613 can also induce a burst of mitochondria ROS through
acting on DLD (the E3 component of KGDHC) and sup-
pression of the E2 subunit of KGDHC, DLST (Stuart et al.,
2014). Currently, CPI-613 is being tested in phase I and II
clinical trials, as a single agent or in combination with stan-
dard chemotherapy, to treat cancers (NCT02168140,
NCT01902381, NCT02232152, and NCT01766219). Limited
data published from these trials have already shown that
CPI-613 is generally well tolerated with minimal toxicity
(Pardee et al., 2014; Lycan et al., 2016). While a phase I trial
indicated that CPI-613 may be effective as a single agent for
treating hematological malignancies, a phase II trial for small
cell lung carcinoma show no efficacy as a single agent
(Pardee et al., 2014; Lycan et al., 2016).

Finally, mutations in TCA cycle gene IDH2 provide a
unique opportunity for therapeutic intervention. Not only can
mutant IDH serve as a biomarker, but also their neomorphic
enzymatic activity can be targeted through small molecule
inhibition. Currently, there are several small molecule inhi-
bitors of mutant IDH2 in clinical development, including
enasidenib (AG-221) that inhibits mutant IDH2 and AG-881

The TCA cycle in cancer metabolism REVIEW

© The Author(s) 2017. This article is an open access publication 229

P
ro
te
in

&
C
e
ll



that targets both mutant IDH1 and IDH2 (Dang, 2016 #135).
These compounds act by binding to the active catalytic site of
mIDH1/2 enzymes and blocking the conformational change
required to convert α-KG into 2-HG. AG-221 is an orally
available inhibitor of mutant IDH2-R140 and IDH2-R172 (Yen
et al., 2017), and is currently undergoing phase I/II clinical
trials as a single agent for the treatment of AML and solid
tumors (e.g., glioma and angioimmunoblastic T-cell lym-
phoma; NCT01915498 and NCT02273739, respectively).
Preclinical data demonstrate that AG-221 can dramatically
reduce 2-HG levels. Additionally, AG-221 results in cellular
differentiation of tumor cells in murine xenograft models (Yen
et al., 2017). Preliminary data from the AML clinical trial
demonstrate that AG-221 alone led to a 41% object response
rate and a 28% complete response rate. New phase I and III
clinical trials will soon start and will examine the effectiveness
of AG-221 alone in comparison to conventional therapy, as
well as AG-221 in combination with standard induction and
consolidation therapy (NCT02577406 and NCT02632708).
The dual target inhibitor of mutant IDH1 and mutant IDH2,
AG-881, is an orally available inhibitor that can pass the
blood-brain barrier and may serve as a better option for
glioma patients (Medeiros et al., 2017). Currently, AG-881 is
in phase I clinical trial for AML patients with mutant IDH1/2,
and a clinical trial for patients with glioma will begin soon
(NCT02492737 and NCT02481154).

FUTURE PERSPECTIVES

The TCA cycle is a critical metabolic pathway that allows
mammalian cells to utilize glucose, amino acids, and fatty
acids. The entry of these fuels into the cycle is carefully
regulated to efficiently fulfill the cell’s bioenergetic, biosyn-
thetic, and redox balance requirements. Multiple types of
cancer are marked by drastic changes to TCA cycle
enzymes, which result in characteristic metabolic and epi-
genetic changes that are correlated with disease transfor-
mation and progression. As a result, several components of
the TCA cycle may be exploited therapeutically for the
treatment of disease. However, due to the importance of the
TCA cycle in normal cell development, high toxicity is a
concern of this approach. Interestingly, although decreased
KGDHC activity is associated with neurodegenerative dis-
eases (Gibson et al., 2010), inhibiting KGDHC through CPI-
613 is well tolerated in clinical testing (Pardee et al., 2014;
Lycan et al., 2016). Additionally, 50% reduction of DLST,
the E2 component of KGDHC, in zebrafish significantly
delays MYC-driven leukemogenesis, without causing any
detectable abnormalities (Anderson et al., 2016). Impor-
tantly, others show that cancer cells with IDH mutations
become insensitive to treatment with mutant IDH inhibitors
in vivo, owing to the metabolic rewiring and enhanced usage
of the TCA cycle (Grassian et al., 2014; Tateishi et al., 2015).
Emerging studies demonstrate that cancer cells utilize the
TCA cycle differently from those of normal cells, making it

likely that cancer cells will be more sensitive to inhibitors
targeting the reprogrammed metabolic pathways in the TCA
cycle (Kishton et al., 2016). These observations support the
notion that targeting the TCA cycle by small molecule inhi-
bitors of cycle enzymes and/or enzymes regulating the cycle
could serve as a productive approach for cancer treatment.

Cancer cells often escape treatment through compen-
satory pathways (Obre and Rossignol, 2015; Zugazagoitia
et al., 2016), and the metabolic properties of cancer cells are
often context-dependent (Yuneva et al., 2012; Kishton et al.,
2016; Martinez-Outschoorn et al., 2017). Hence, the key for
successful metabolism-based therapies against cancer
relies on both the identification of the “oncometabolic”
enzyme(s) responsible for metabolic reprogramming and an
in-depth understanding of the activity and flexibility of the
altered pathways in the context of each specific cancer type.
Despite the established role of the TCA cycle in tumorigen-
esis, its involvement in cancer metabolism remains incom-
pletely understood. Additionally, how the TCA cycle interacts
with other biochemical and cell signaling pathways is yet to
be characterized. Owing to the impact of microenvironment
on cellular metabolism and oncogenic signaling, it is critically
important to study the contribution of the TCA cycle to cancer
metabolism and tumorigenesis in vivo. Importantly,
researchers started to successfully apply untargeted/tar-
geted metabolomics and respiratory analyses to animal
model organisms. The intensive research effort in the com-
ing years will undoubtedly deepen our understanding of the
role of this central metabolic hub that was once overlooked
in tumorigenesis, reveal vulnerabilities for therapeutic inter-
vention, and eventually bring this targeted approach from
infancy up to maturity.
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