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Abstract: Chronic liver diseases pose a substantial health burden worldwide, with approximately two
million deaths each year. Branched-chain amino acids (BCAAs)—valine, leucine, and isoleucine—are
a group of essential amino acids that are essential for human health. Despite the necessity of a dietary
intake of BCAA, emerging data indicate the undeniable correlation between elevated circulating
BCAA levels and chronic liver diseases, including non-alcoholic fatty liver diseases (NAFLD), cirrho-
sis, and hepatocellular carcinoma (HCC). Moreover, circulatory BCAAs were positively associated
with a higher cholesterol level, liver fat content, and insulin resistance (IR). However, BCAA supple-
mentation was found to provide positive outcomes in cirrhosis and HCC patients. This review will
attempt to address the contradictory claims found in the literature, with a special focus on BCAAs’
distribution, key signaling pathways, and the modulation of gut microbiota. This should provide a
better understanding of BCAAs’ possible contribution to liver health.

Keywords: branched-chain amino acids; liver diseases; non-alcoholic fatty liver disease; cirrhosis;
hepatocellular carcinoma

1. Introduction

In recent years, chronic liver diseases (CLDs) have become more common worldwide.
It is estimated that over eight million people are currently suffering from CLDs [1]. CLDs are
characterized by progression from chronic hepatitis, fibrosis, and cirrhosis to hepatocellular
carcinoma (HCC). In 2017 alone, over two million people died from liver-related deaths
worldwide [2]. Liver diseases are, therefore, a major global health-related burden. Non-
alcoholic fatty liver disease (NAFLD) is a major public health issue due to its high and
rising global prevalence rate. NAFLD and HCC share similar risk factors, including
obesity, type 2 diabetes (T2D), and metabolic disorders [3,4]. The manifestation of HCC is,
therefore, common in patients with chronic liver diseases, including alcoholic liver disease,
non-alcoholic steatohepatitis, chronic hepatitis, and liver cirrhosis [5–7].

Amino acids (AA) are an essential nutrient for human health. The building block
of proteins are amino acids, which are separated into two main categories: essential
amino acids and non-essential amino acids. Essential amino acids are amino acids that
cannot be synthesized by humans, and thus have to be supplied from an exogenous
diet, while non-essential amino acids are amino acids that can be synthesized in the
body [8]. One group of essential amino acids is branched-chain amino acids (BCAAs:
leucine, valine, isoleucine), which contain aliphatic branched side chains. BCAAs not
only provide an essential substrate for protein synthesis, but also contribute to energy
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homeostasis, including gluconeogenesis and lipid metabolism [9]. Alterations in plasma
AA levels were found in patients with obesity, diabetes, and type 2 diabetes [10–12], and
recently studied metabolomic reports showed an elevated circulatory BCAAs level in
multiple liver diseases [10,13,14]. Indeed, a low serum Fischer’s ratio (BCAAs to aromatic
AA ratio) has been defined as a hallmark of liver cirrhosis [13]. Moreover, increasing
circulatory levels of BCAAs were found to be associated with both an increase in triglyceride
levels and a decrease in high-density lipoprotein (HDL) cholesterol level [14]. However,
studies have revealed the promising effect of BCAA supplementation on ameliorating liver
diseases [15–17]. This review is an attempt to explore the contradictory role of BCAAs
in liver diseases and provide insights regarding new findings on the contribution and
protective effect of BCAAs and their mechanisms on liver diseases. More recently, gut
microbiota were reported to play a crucial role in modulating the bioavailability of BCAAs
through regulating BCAA transporters [18]; accordingly, the contribution of gut microbiota
to BCAAs’ role in liver diseases will be discussed.

2. Circulation of BCAAs

The processes of BCAAs’ synthesis and metabolism have been extensively
reviewed [19,20]. In this section, an overview of BCAAs’ enterohepatic circulation and
signaling pathways will be presented to support a later discussion on the role of BCAAs in
liver inflammation and carcinogenesis.

2.1. BCAA Transport and Metabolism

It is known that, upon oral intake of BCAAs, they circulate in the bloodstream, by-
passing the first-pass metabolism in the liver due to the low activity of branched-chain
amino transferases [21]. Branched-chain amino transferases BCAT1 and BCAT2 are the first
enzymes to degrade BCAAs. They catalyze the reversible conversion of BCAAs to branched-
chain α-ketoacids (BCKAs)—leucine to α-ketoisocaproate, valine to α-ketoisovalerate, and
isoleucine to α-keto-β-methylvalerate—by transferring the amino groups to α-ketoglutarate
(Figure 1). BCATs are found in many tissues, but are mostly expressed in the skeletal
muscle; thus, they form the main metabolism site of BCAAs, with over half of the total
circulating BCAAs ending up there, while a quarter enter the splanchnic circulation, and
the remainder are used up by the brain and other tissues [22]. Once converted into BCKAs,
they can undergo a series of irreversible enzymatic reactions, or move into the circulation
for decomposition in other tissues.

It is important to note that muscle tissues are not gluconeogenic; thus, if these BCAAs
(i.e., valine or isoleucine) cannot be fully utilized by the muscles, they must be removed
(either in their original form or their metabolic products). The transformation of BCKAs by
branched-chain α-keto acid dehydrogenase (BCKDH) is the next step in BCAA catabolism,
and this enzyme is also known to be the rate-limiting step in the BCAAs’ catabolism
pathway. Notably, its levels are very low in skeletal muscles, and are the highest in the liver
and the heart [23]. Thus, upon conversion into BCKAs and their release into the circulation
from the skeletal muscle, the liver mainly extracts and decomposes them. Indeed, the
muscles are known to play an important role in producing gluconeogenic substrates from
BCAAs for the liver [24]. For instance, 3-hydroxyisobutyrate (3-HIB), a metabolite of valine,
is well-known to act as a gluconeogenic substrate in the hepatocytes [9,23].

2.2. BCAAs’ Signaling and Its Benefits

BCAAs can trigger different types of signaling (Figure 2), depending on the condition
of the host’s body, i.e., energy homeostasis. Firstly, BCAA consumption increases the
amino acid pool and plasma insulin levels. In cases of severe energy depletion, such
as during endurance training or starvation, in addition to an increase in insulin caused
by BCAAs, AMP-activated protein kinase (AMPK) is activated, which in turn redirects
nutrients, including BCAAs that are consumed to undergo gluconeogenesis and form
products to be oxidized for ATP generation [23]. An increase in insulin also enhances the
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translocation of glucose transporters GLUT1 and GLUT4 in intestinal and muscle cells to
increase glucose uptake for ATP production [25].
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acid dehydrogenase. Figure created with BioRender.com, accessed on 13 April 2022 (San Francisco,
CA, USA).

On the other hand, BCAA consumption during rest or exercise recovery triggers a
pathway that redirects the BCAAs’ metabolism into protein synthesis or restoring and build-
ing up glycogen storage in muscles/liver. The increase in insulin triggers the activation
of insulin receptor substrate (IRS1) and leads to the activation of the phosphatidylinositol
3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, which in turn activates mTOR
complex 1 (mTORC1) via the phosphorylation of TSC1/2, while the increase in the amino
acid pool directly triggers the mTORC1 pathway. This pathway plays the important role of
maintaining cell proliferation, cell cycle, angiogenesis, apoptosis, and metabolism [26], and
is best elaborated in muscle cells to trigger protein synthesis and repress protein degrada-
tion. Thus, BCAAs are a popular supplement for athletes, which support muscle growth
and maintenance [27]. A downstream activator of mTORC1 includes serine/threonine
protein kinase (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4EBP1), which
are greatly enhanced by BCAAs, but particularly leucine [28]. S6K1 and 4EBP1 are both
known to be involved in the regulation of mRNA translation [29]. The activation of S6K1 is
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also known to bring about a negative feedback loop in the activation of insulin signaling,
which can suppress the activity of IRS1, and thus inhibit the downstream signaling of
PI3K/Akt. However, the suppression of IRS1/PI3K/Akt signaling is rarely observed in
muscle cells, especially during exercise recovery [30,31].
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steps, and dotted arrows represent its translocation into the nucleus. BCAAs, branched-chain
amino acids; BCKAs, branched-chain α-keto acids; GLUT, glucose transporter; IRS1, insulin receptor
substrate; PI3K/AkT, phosphatidylinositol 3-kinase/protein kinase B; mTORC, mTOR complex; S6K1,
serine/threonine protein kinase; 4EBP1, eukaryotic initiation factor 4E-binding protein 1; SREBP-1c,
sterol regulatory binding protein 1c; PKC, protein kinase C; Erk, extracellular signal-regulated kinase;
TGF-β1, transforming growth factor beta 1; AMPK, AMP-activated protein kinase; VEGF, vascular
endothelial growth factor; PPARα, peroxisome proliferator-activated receptor α; UCP, uncoupling
proteins; FASN, fatty acid synthase; ACC, acetyl-CoA carboxylase; ACLY, ATP citrate lyase. Figure
created with BioRender.com, accessed on 13 April 2022 (San Francisco, CA, USA).

BCAAs and their metabolites were found to be able to attenuate PI3K/Akt signaling
on other tissues, such as the liver, and this was thought to be the main mechanism by which
BCAAs bring about beneficial health outcomes beyond nutrition [29,32]. The attenuation
of the PI3K/Akt pathway is beneficial because this pathway is known to be involved in
cell survival pathways, glucose homeostasis, and lipid synthesis [33]. It is known that
Akt activation mediates the suppression of p53, a well-known tumor-suppressor protein
involved in the apoptosis of cancer cells [34]. Additionally, it has recently been shown that
both mTORC1 and Akt activation are required for the activation of the transcription factor
sterol regulatory element-binding protein 1c (SREBP-1c), which is known to induce the
transcription of lipogenic genes, such as fatty acid synthase (FASN), acetyl-coA carboxylase
(ACC), and ATP citrate lyase (ACLY) [35]. Hence, the attenuating effect that BCAAs have
on the PI3K/Akt pathway could extend to the expression of SREBP-1c and its downstream
effectors in the liver [36,37].
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In a hepatic tumor cell model, BCAA supplementation has been found to inhibit
cell proliferation via decreasing the activity of the PI3K/Akt pathway [38]. Furthermore,
BCKAs were also found to be able to downregulate the mTOR complex 2 (mTORC2) path-
way, with downstream signaling effectors including Akt and Protein Kinase C (PKC) [39].
The dysregulation of PKC and PI3K/Akt signaling has been observed to be associated with
many and all human cancers, respectively, and the latter is known to be the main contribu-
tor to tumor development and progression [40]. For instance, activated Akt was found to
be the mediator in CD40-induced vascular endothelial growth factor (VEGF) production,
a well-known protein that is upregulated in tumor cells [41]. Meanwhile, downstream
signaling of PKC involves the direct activation of the RAF/MEK/Erk signaling pathway, in
which the hyperactivation of this pathway is also associated with many human cancers [42].
Additionally, through the activation of mTORC1, BCAAs were found to reduce the expres-
sion of transforming growth factor beta 1 (TGF-β1) cytokines in both hepatic stellate cells
and mouse hepatocytes [43]. Hepatic stellate cells are involved in the formation of fibrosis:
its activation is brought on during liver injury and they proliferate, contract, and perform
chemotaxis across the liver [44]. Activated stellate cells will secrete TGF-β1 and collagen to
form of scar tissue and, if they remain activated, result in cirrhosis of the liver. Particularly,
the authors reported that TGF-β1-induced Wnt/β-catenin signaling and pro-apoptotic
signaling were also suppressed [43]. Overexpression of the β-catenin signaling pathway
is known to be involved in carcinogenesis, including hepatocellular carcinoma (HCC), as
it is found to promote the expression of oncogenes including cyclinD-1 and c-Myc [45].
Furthermore, BCAAs elevate peroxisome proliferator-activated receptor α (PPARα) and
its downstream expression of uncoupling proteins 2 (UCP2) and UCP3 in the liver and
muscle, respectively, which leads to the increased oxidation of free fatty acids [46]. These
findings imply that BCAA consumption may help with the progression of liver diseases,
particularly cancers.

3. Circulatory BCAAs Level as an Indicator of a Dysmetabolic State
3.1. High Circulatory BCAAs Level in NAFLD Patients

In contrast to the documented beneficial effect of BCAA supplementation in cell
culture models, higher BCAA circulatory levels were found in NAFLD patients [47–49].
The rise in BCAA levels has also been positively associated with insulin resistance (IR)
and total cholesterol and glycerol levels in type 2 diabetes (T2D) and obese patients [50,51].
Since T2D and obesity are known to be risk factors for non-alcoholic fatty liver disease
(NAFLD) and non-alcoholic steatohepatitis (NASH) [52], this raised the question of whether
the BCAA level is influenced by these underlying risk factors.

A large-scale clinical study on NAFLD subjects without T2D provided insight into
the synergistic effect of NAFLD and the elevated BCAA levels on the development of type
2 diabetes. The total plasma BCAAs were positively correlated with a high fatty liver index
(FLI), which was calculated from the levels of blood triglycerides, blood gamma-glutamyl-
transferase, BMI, and waist circumference. In the 7.3-year follow-up analysis, nearly 20%
of patients with elevated FLI were found to develop T2D. This elevation was suggested to
be linked with the impaired hepatic mitochondrial function and increased mitochondrial
lipid β-oxidation in NAFLD [47]. Although there is no causative relationship between T2D
and the high BCAA circulatory levels in NAFLD, BCAA levels were positively correlated
with T2D incidence [53]. The activity and expression of BCAA catabolic enzymes were
previously reported to be altered in pathologic conditions involving metabolic disorders, in
which they are downregulated in patients with type 2 diabetes [54].

Patients with both NAFLD and obesity have a higher BCAA circulatory level than
non-obese NAFLD patients. In an Italian cohort with non-obese NAFLD patients, obese
NAFLD patients, and healthy subjects, the rise in BCAA levels was more profound in the
obese NAFLD group when compared to the healthy control, while valine and isoleucine
levels were only significantly higher in the obese NAFLD group [55]. These findings
aligned with observations from a study on NAFLD patients with severe obesity, where
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plasma BCAAs were positively correlated with steatosis stages and liver fat content [10]. A
recent study illustrated the metabolic differences between obese subjects with and without
progression to NAFLD. BCAAs were found to be increased in NAFLD-obese patients, but
not in obese or lean healthy subjects. Further univariate analysis identified isoleucine as
one of the factors that discriminates between obese patients vs. obese NAFLD patients.
This study highlighted the crucial association between impaired BCAA metabolism and the
manifestation of NAFLD [56]. In obese NAFLD patients, a higher consumption of BCAAs
was associated with worse hepatic health in terms of liver fat content [57].

The elevated BCAAs levels were also found to contribute to IR. IR was also found to
be positively correlated with the rise in BCAA levels in NAFLD and fibrosis patients [47,58].
The circulatory levels of BCAAs were positively correlated with the insulin-resistance
index, HOMA-IR [58]. It was suggested that BCAAs may lead to IR through activating the
mTORC1 signaling pathway, which produces the chronic phosphorylation of mTOR and
IRS1Ser307 [9]. However, recent findings found that an increase in mTORC1 signaling from
BCAA consumption alone would not affect insulin sensitivity in the long term [59].

The rise in plasma BCAA levels in NAFLD patients was also found to be sex-dependent.
Male subjects were found to have significantly higher BCAA levels than female subjects.
Plasma BCAA levels in female subjects were correlated with NAFLD and fibrosis stages,
while the opposite result was found in male subjects. Leucine and valine were inversely
correlated with NAFLD stages in males. Nevertheless, without considering the gender
differences, leucine and isoleucine were significantly associated with NAFLD stages [60].

Since circulatory BCAA levels were consistently found to be significantly increased
in liver diseases, the possibility of using circulating BCAAs’ concentration as a diagnostic
tool was suggested. A study on obese children found a high area under the curve (AUC),
0.92 (95% confidence interval 0.83–1.00), for using BCAA to discriminate between severe
steatosis and a healthy obese subject, while an AUC of 0.82 (95% CI 0.67–0.97) could be
used for the discrimination of any steatosis [10]. The elevation in BCAAs was not limited
to their systematic levels. BCAA level was elevated in liver tissue in NASH patients vs.
healthy subjects. However, the liver BCAA levels were found to be unchanged in simple
steatosis/NAFLD patients vs. healthy subjects [61]. Although the study only included
data from a limited number of patients, it suggested that the change in systematic levels is
aligned with the local level in NASH patients, which might contribute to the activation of
the aforementioned mTOR pathway [62].

3.2. Rising BCAA Levels in HCC Patients

Plasma BCAA levels were found to be significantly increased and have been iden-
tified as a biomarker of progression to HCC [63]. A low BCAAs/tyrosine ratio (≤4.4)
was found to be a prognostic factor for HCC patients with chronic liver diseases. The
BCAAs/tyrosine ratio was significantly negatively correlated with the liver function marker,
albumin albumin-bilirubin (ALBI) [64,65].

The rise in BCAAs was not limited to their systemic level. A recent study found
an increase in tissue BCAA level in HCC patients with severe fibrosis and cirrhosis. In
52 paired HCC tumor and nontumor tissues, BCAAs were found to be elevated in HCC
tissue when compared with adjacent non-tumoral tissues [66]. The same finding was
also found in another study with paired HCC tumor and nontumor tissues from 48 of
their patients [67]. The team took a further look into the transcriptomic profile of HCC
tumors and adjacent tissues of patients in both Singapore General Hospital and data from
the Cancer Genome Atlas [67]. They found that the BCAA degradation pathway was a
significantly enriched KEGG pathway in the tumors of both their 48 HCC patients and
the HCC cohort from the Cancer Genome Atlas. More than 40 BCAA catabolic enzymes,
including BCKDH and acyl-CoA dehydrogenase enzymes (ACADs), were suppressed in
tumors. The accumulation of BCAA in the tumor activated mTORC1 signaling. A higher
expression of the catabolic enzyme of BCAA was, therefore, linked to better survivability
for patients. The group further investigated the impact of BCAAs on tumor development
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by using diethylnitrosamine (DEN)-injected high-fat diet-fed mice. Tumor number and size
were elevated in the BCAA-fed group. Consistent with their findings in human subjects,
BCAA catabolic enzymes were suppressed in BCAAs/DEN-injected mice, while they were
enhanced in control mice fed with BCAAs.

In livers of HCC patients, and animal models, including high-fat diet-induced obesity
and HCC tumor models, BCKDH activity and expression were found to be downregulated,
and BCKDH kinase (BCKDK), the enzyme responsible for suppressing the activity of
BCKDH, was found to be upregulated [23]. The consequence of this is an inability to
fully oxidize BCKAs. The accumulation of BCKAs, especially from valine and isoleucine
metabolism, may lead to mitochondrial dysfunction. It was previously reported that
increased BCKA levels suppress the expression of succinate dehydrogenase, which affects
the TCA cycle and the electron transport chain [68]. As a result, acylcarnitine byproducts
were formed instead of the complete TCA cycle, and this elevation of plasma acylcarnitine
is considered a marker of IR, type 2 diabetes, and cardiovascular diseases [23]. Meanwhile,
in an animal and human HCC tumor model, the dysregulation of BCAA oxidation was
found to induce chronic mTORC1 activation [67].

4. BCAA as a Treatment for Liver Diseases
4.1. BCAA as a Therapeutic Treatment in Humans

Despite the association between elevated blood BCAA levels and negative conditions
in liver diseases, the consumption of BCAA supplements was previously linked to a benefi-
cial outcome in various liver diseases, especially during advanced fibrosis or cirrhosis, and
especially hepatic encephalopathy. BCAA supplementation is recommended to cirrhotic
patients according to the guidelines of the American Association for the Study of Liver
Diseases (AASLD) and the European Association for the Study of the Liver (EASL) [69].
Table 1 summarizes the ongoing clinical trials utilizing BCAAs to treat liver diseases.

In three separate studies, the supplementation of BCAAs in the diet of patients with
advanced liver cirrhosis resulted in a significant improvement in major cirrhosis-related
events, including improvements in Child–Pugh (CP) score, MELD score, and/or a significantly
higher number of patients with event-free survival [70–72]. The beneficial effect of BCAA
supplementation was not limited to cirrhotic patients. BCAA supplementation was also
found to be useful in preventing the occurrence of HCC in cirrhotic patients [73]. The
majority of HCC patients (80–90%) were diagnosed with underlying cirrhotic conditions [74].
Although there have been few human trials on BCAA supplementation in HCC patients,
increasing evidence from animal studies provides an indication of the potential beneficial effect
of BCAAs.

Table 1. Clinical trials and ongoing clinical studies utilizing BCAA to treat liver disease.

Type of
Studies * Interventions Patients/Control Sample Size Duration Outcome #/Outcome

Measures * Ref.

Multicenter
RCT VAL, LEU, ILE Advanced liver

cirrhosis 232 6 months

- MELD, CP score,
- Cumulative

cirrhosis-related
event-free survival

[70]

Double-blinded
RCT VAL, LEU, ILE Advanced

cirrhosis 174 12 months

- CP score
- Total bilirubin level
- Death or

deterioration of
symptoms

[71]
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Table 1. Cont.

Type of
Studies * Interventions Patients/Control Sample Size Duration Outcome #/Outcome

Measures * Ref.

N/A VAL, LEU, ILE
/AAA Cirrhosis 104 >6 months

- Cumulative survival
rate

- Delayed
complication
including hepatic
failure and
gastrointestinal
bleeding

[13]

N/A VAL, LEU, ILE Cirrhosis 211 ≥6 months
- HCC occurrence
- Event-free survival

rate
[73]

Single-blinded
RCT

AXA1665 (Leu:
Ile: Val)

Child–Pugh A
and B Cirrhosis 16 15 days

- Liver Frailty Index
- Leaner body

composition
[75]

Single-blinded,
Multicenter

RCT

AXA1125 (VAL,
LEU, ILE, ARG,

GLN)

Patients with
NAFLD with
and without

T2D

102 16 weeks
- ALT, K18
- Fibro-inflammation

marker, cT1, Pro-C3
[16]

RCT VAL, LEU, ILE HCC 51 12 months
- Intrahepatic

recurrence rate
- Event-free survival

[72]

Ongoing clinical studies

Triple-blinded
RCT, Phase II

AXA1125 (VA,
LEU, ILE, ARG,

GLN)

NASH with
fibrosis 273 48 weeks

Improvement in
steatohepatitis, resolution

of NASH/ fibrosis
[76]

RCT VAL, LEU, ILE Cirrhosis 60 3 months Muscle mass,
insulin-resistant [77]

* Primary outcome measures and secondary outcomes that related to liver health for ongoing clinical trials. VAL,
valine; LEU, leucine; ILE, isoleucine; ARG, arginine; GLN, glutamine; SER, serine; CP, Child–Pugh score; MELD,
model for end-stage liver disease; NASH, non-alcoholic steatohepatitis; RCT, randomized clinical trials; ALT,
alanine aminotransferase; K-18, keratin 18.

4.2. BCAA as a Prophylactic Treatment of Liver Diseases in Animals

A DEN-injected rat liver injury model showed that BCAAs significantly lowered
dysplastic nodules. Although BCAAs could not prevent progression to malignant tumors,
the supplementation prevented liver neoplasm lesions [17]. This effect was due to the
suppression of tumor angiogenesis as a result of the low secretion of VEGF. BCAA(s) was
also previously found to boost the efficacy of the chemotherapy drug, cisplatin, which
is widely used for the treatment of cancers. The supplementation of leucine increased
cisplatin sensitivity by activating the mTOR pathway [78].

Over the course of NAFLD/NASH progression, cirrhosis may also develop; therefore,
BCAA supplementation has also been increasingly investigated to treat these diseases,
and/or prevent them from progressing to cirrhosis. Although there is a lack of human
studies utilizing BCAAs to treat NAFLD or NASH patients, some animal studies have
pointed to a potential positive outcome of its utilization, although the results are controver-
sial and not conclusive. In a choline-deficient, high-fat diet-induced NASH mice model,
BCAA lowered serum ALT levels and hepatic triglyceride, while the liver histology showed
that the lipid droplet area and fatty acid synthase (FAS) were lowered [79]. Similar results
were obtained from high-fat (45%) diet NAFLD rat and obese mice models, where BCAA
supplementation decreased fat accumulation and triglyceride concentration in the liver, and
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significantly lowered the steatosis score [46,80]. However, several studies highlighted that
while BCAA supplementation reduced hepatic triglycerides, body weight, and food intake,
hepatic IR could not be improved and a persistent induction of mTORC1 activation was
observed, implying that the supplementation of BCAAs worsens the underlying metabolic
disorder [15,37,81]. The persistent mTOR activation arose from the combination of both
high-fat and BCAA supplementation, and this IR could be reversed using the mTORC1
inhibitor, rapamycin [9]. In contrast, rapamycin could not reverse high-fat diet-induced
IR. Furthermore, BCAA-supplemented normal chow-feeding in rats did not induce in-
creased mTOR activation [9]. This indicates that BCAA-high-fat-induced IR is likely to
be more reversible compared to only high-fat-induced IR upon adopting a healthier diet.
Furthermore, a previous survey conducted on the typical human Western diet found that
the diet only contains around ~35% fat; hence, a review article suggested the use of diets
with ~45% fat in rodents to confer a better rodent and human inter-study agreement [37].
Contradictory observations were found in the studies by Muyyarikkandy et al. and Zhao
et al., who adopted a 60% fat rodent diet; thus, these observations may not necessarily be
duplicated in humans. Indeed, a clinical trial of 102 NAFLD patients found that BCAA
supplementation significantly lowered both liver disease markers (i.e., ALT and keratin-18
(K18)) and fibrosis markers [16]. With this, and the abundant evidence that BCAAs could
help in liver cirrhosis, it should not be of great concern that BCAAs may exacerbate the
disease condition if a healthy balanced diet is adopted during the intervention. On the other
hand, the overall impression of these studies highlights the complex relationship between
diet, BCAA, liver health, and IR, while also bringing attention to the gut–liver axis.

The full mechanism of how BCAAs prevent further deterioration in chronic liver
diseases remains largely unclear. An explanation for this may be that the supplementation
of BCAAs could elevate its catabolism via directly affecting the levels of its catabolizing
enzyme. In particular, the increase in PPAR-α expression by BCAAs, through AMPK
and an increase in serum-free fatty acid levels, could prevent the increase in BCKDK
activity, preventing the suppression of BCKDH activity in catabolizing BCKAs [82,83]. The
contribution of PPAR-α to lipid homeostasis was found to be crucial to preventing steatosis-
induced NASH development [84]. It is also important to note that the loss of muscle mass,
the major BCAA catabolic site, is usually accompanied by chronic liver diseases [85,86].
Improving the muscle mass [87] could potentially benefit muscle BCAA catabolism and its
subsequent glutamine synthesis. The increase in plasma glutamine (GLN) was observed
via the supplementation of BCAAs, along with a lowering of plasma glutamate (GLU) [88].
This increase in GLN availability was found to be beneficial to the immune system and the
production of the natural antioxidant glutathione, which is beneficial to liver health [89,90].

5. BCAA Promotes Hepatic Health through Modulation of Gut Microbiota

In recent decades, mounting evidence has unveiled the crucial role of gut microbiota
in metabolism. Our gut is home to a large amount of gut microbiota, from fungi and
archaea to bacteria. Recent evidence has confirmed the crucial contribution of gut microbial
dysbiosis to NAFLD pathogenesis, scrutinizing the importance of homeostasis in the
gut–liver axis. Shotgun sequencing results from feces of metabolic-associated NAFLD
patients displayed an elevated abundance of ethanol-producing bacteria and a decreased
abundance of butyrate-producing bacteria [91,92]. In obese NAFLD patients, steatosis was
positively correlated with dysregulation of the microbial BCAA metabolism, in which its
biosynthesis is upregulated [15]. Therefore, the increase in plasma BCAAs observed with
obesity and many insulin-resistance-associated diseases, including NAFLD, is likely due
to the dysbiosis in microbiota instead of oral consumption. Indeed, with most studies
showing beneficial effects on liver health, it is thought that the consumption of BCAAs may
alter the gut microbiota composition and consequently reduce the circulatory BCAA level.

Several rodent studies have provided evidence on how gut microbiota regulate BCAA
levels and subsequently contribute to liver disease. A study on BCAA supplementation
to rats fed a high-fat diet showed that BCAAs increased the beneficial gut microbiota
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Ruminococcus flavefaciens. Iwao et al. showed that cellulose was necessary for the benefi-
cial effect of BCAAs, which highlighted the involvement of gut microbiota [80]. BCAA
supplementation was also found to lower the abundance of Proteobacteria, a phylum that
includes pathogenic bacteria, while increasing beneficial Bifidobacterium species in healthy
mice [93]. The oral administration of Bifidobacterium strains to high-fat-fed mice showed
an increase in GLP-1 secretion via the increase in short-chain fatty acids (SCFA) levels,
particularly acetate [94]. The increase in GLP-1 secretion is likely to be beneficial to NAFLD
patients, as it is known to increase insulin sensitivity and improve glucose metabolism [95].

A limited number of studies investigated the correlation between gut microbiota
composition and circulating BCAA levels in patients with liver diseases. A recent study on
healthy adolescence found fecal Faecalibacterium prausnitzii levels to be inversely correlated
with serum BCAA levels, insulin levels, and HOMA-IR. Faecalibacterium prausnitzii con-
tributed to the majority of bacterial BCAA transporters’ gene count [96]. Faecalibacterium
prausnitzii is one of the most common gut microbe species in healthy adults, accounting
for more than 5% of the total population, and their abundance was decreased in steatosis
patients [97,98]. The gavage of F. prausnitzii to mice fed a high-fat diet improves parameters
related to hepatic health, including AST, ALT serum levels, improved glucose tolerance,
and insulin sensitivity, and decreased steatosis in the liver [97].

In relation to BCAAs’ metabolism, other members of the gut microbiota,
Bacteroides vulgatus and Bacteroides dorei, were reported to improve BCAAs’ catabolism
in brown adipose tissue and improve systemic glucose tolerance and insulin sensitivity in
high-fat diet-induced obesity mice [99]. These species were previously found to be down-
regulated in T2D individuals, and their high abundance in obese mice was found to confer
protective effects, i.e., in preventing the mice from developing T2D and NAFLD [100]. How-
ever, contrary to the findings by Yoshida et al., a separate study conducted by Pedersen et al.
found that an increase in B. vulgatus abundance is positively correlated with insulin re-
sistance in NAFLD patients. The team found that in 277 non-diabetic insulin-resistance
patients, Prevotella copri and Bacteroides vulgatus were identified as the main species pro-
moting insulin resistance by driving bacterial BCAAs’ synthesis [18]. Similarly, a separate
study in 86 NAFLD patients with or without advanced fibrosis also presented elevated
B. vulgatus and Eubacterium rectale [101]. Thus, it is still unclear whether B. vulgatus also
confer the same beneficial effects on improving BCAA catabolism if supplemented in
NAFLD patients. Nonetheless, Pedersen et al. only reported the adverse effect of gavaging
P. copri, in which glucose intolerance and serum BCAA levels were elevated in high-fat
diet-fed mice. Prevotella copri enrichment was also found to be specifically enriched in
advanced fibrosis in a study involving 39 NAFLD patients with fibrosis [102].

6. Conclusions

In summary, recent studies proposed the possibility of utilizing BCAAs as a non-
invasive marker for liver disease. While higher circulatory levels of BCAAs were found in
NAFLD, NASH, cirrhosis, and HCC patients, the supplementation of BCAAs was found
to be beneficial in liver diseases. The contradictory role of BCAAs could be due to the
varied gut microbiota composition, in which the supplementation of BCAAs increased
beneficial gut microbiota: Ruminococcus flavefaciens and/or Bifidobacterium species, vs. the
contrasting involvement of the gut microbiota Bacteroides vulgatus and Prevotella copri in
driving bacterial BCAAs’ synthesis in NAFLD patients (Figure 3).
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side represents a summary of known molecular pathways in the liver and gut microbiota dysbiosis
upon elevated circulatory BCAAs that may contribute to the progression of liver diseases. The right
(green) side summarizes the potential mechanisms that may explain how BCAA supplementation im-
proves liver diseases’ outcomes. (1) Ingested BCAA undergoes transamination with α-ketoglutarate
by BCATs, which generates glutamate, which is used in ammonia detoxification to glutamine. (2) Ele-
vated BCAAs upregulate PPARα, which suppressed the rate-limiting enzyme of BCAAs’ catabolism,
BCKDK. (3) Enhanced BC-acyl-CoA due to the lower suppression of BCKDH. (4) Supplementa-
tion increases beneficial gut microbiota while suppressing the phylum proteobacteria that includes
pathogenic genera. BCAAs, branched-chain amino acids; AA, amino acid; BCATs, branched-chain
amino transferases; BCKAs, branched-chain α-ketoacids; BCKDH, branched-chain alpha-keto acid
dehydrogenase; BCKDK, BCKDH kinase; IRS-1, insulin receptor substrate 1; NAFLD, non-alcoholic
fatty liver diseases; GLU, glutamate; GLN, glutamine; HCC, hepatocellular carcinoma; PI3K/AkT,
phosphatidylinositol 3-kinase/protein kinase B; PPAR-α, peroxisome proliferator-activated receptor
alpha; mTORC1, mTOR complex 1; BC-acyl CoAs, branched-chain acyl-CoAs; TGF-β1, transforming
growth factor beta 1; VEGF, vascular endothelial growth factor. Figure created with BioRender.com,
accessed on 13 April 2022 San Francisco, CA, USA).

7. Future Perspective

The current understanding and knowledge of the beneficial effects of BCAA supple-
mentation in liver diseases remains inconclusive and is mainly derived from cell culture and
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animal studies, which cannot fully translate the etiology of human liver diseases and inter-
individual variability. In terms of human studies, the majority were conducted without
diet standardization, i.e., with a defined caloric intake and protein consumption. This is a
crucial point to consider, since previous animal studies showed that diet is one of the crucial
factors in chronic liver diseases, due to its relationship with the gut microbiome, especially
in cases of NAFLD and NASH. Furthermore, limited research has been conducted to show
how valine, leucine, or isoleucine, as compounds on their own, influence the outcome
of liver diseases. Even though BCAAs share similar metabolic pathways and functions,
it is unclear whether their beneficial effects rely on the combination of or an individual
BCAA, as each BCAA has different metabolic effects. Additionally, prior research generally
primarily focused on the clinical outcome of BCAAs’ administration, with few studies
examining the correlation between BCAAs and gut microbiota in patients with liver disease
and the mechanism of action. In recent years, the contribution of the gut–liver axis to the
outlook of metabolic diseases has been extensively studied, but whether the gut microbiota
could be the key regulator of the rise in BCAA levels is an area for future investigation.
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