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Abstract. The chemokine interferon-γ inducible protein 
10 kDa (CXCL10) is a member of the CXC chemokine family 
which binds to the CXCR3 receptor to exert its biological 
effects. CXCL10 is involved in chemotaxis, induction of 
apoptosis, regulation of cell growth and mediation of angio-
static effects. CXCL10 is associated with a variety of human 
diseases including infectious diseases, chronic inflammation, 
immune dysfuntion, tumor development, metastasis and 
dissemination. More importantly, CXCL10 has been identified 
as a major biological marker mediating disease severity and 
may be utilized as a prognostic indicator for various diseases. 
In this review, we focus on current research elucidating the 
emerging role of CXCL10 in the pathogenesis of cancer. 
Understanding the role of CXCL10 in disease initiation and 
progression may provide the basis for developing CXCL10 
as a potential biomarker and therapeutic target for related  
human malignancies.
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1. Introduction

Chemokines are small, structurally related proteins which 
play a significant role in leukocyte trafficking (1) by producing 
chemotactic activity in cells expressing corresponding chemo- 
kine receptors. Based on the position of the first two conserved 
cysteine residues within the N-terminal, the chemokines are 
divided into two major (CX3C and CXC) and two minor (CC 
and C) subfamilies (2-4). The CX3C subfamily has three 

intervening residues separating the two N-terminal cysteines, 
whereas the CXC subfamily only has one non-conserved  
amino acid residue separating the N-terminal cysteines. 
CC chemokines are those in which two cysteines are adjacent 
to each other, and a single known C chemokine lacks the 
first cysteine of the N-terminal pair. CXCL10 is a member 
of the CXC subfamily. Target cells of chemokines express 
corresponding receptors to which chemokines bind and 
mediate function (5). Therefore, the receptors of CC and 
CXC chemokine are referred to as CCRs and CXCRs, respec-
tively. CC chemokines bind to CC chemokine receptors, and 
CXC chemokines bind to CXC chemokine receptors. Most 
receptors usually bind to more than one chemokine, and 
most chemokines usually bind to more than one receptor. 
CXCL10 specifically activates a receptor, CXCR3, which is a 
seven trans-membrane-spanning G protein-coupled receptor 
(6) predominantly expressed on activated T lymphocytes 
(Th1) (7), natural killer (NK) cells, inflammatory dentritic 
cells, macrophages and B cells (8,9). The interferon-induced 
angiostatic CXC chemokines, monokine induced by interferon 
(Mig/CXCL9) and interferon-inducible T-cell chemoattrac-
tant (I-TAC/CXCL11), also activate CXCR3. These CXC 
chemokines are preferentially expressed on Th1 lymphocytes 
(6,10,11).

Under proinflammatory conditions CXCL10 is secreted 
from a variety of cells, such as leukocytes, activated neutro-
phils, eosinophils (12), monocytes, epithelial cells, endothelial 
cells, stromal cells (fibroblasts) and keratinocytes in response 
to IFN-γ (13,14). This crucial regulator of the interferon 
response, preferentially attracts activated Th1 lymphocytes to 
the area of inflammation and its expression is associated with 
Th1 immune responses (15-17). CXCL10 is also a chemoat-
tractant for monocytes, T cells and NK cells.

CXCL10 is highly expressed in a diverse range of human 
diseases. It has been shown to be involved in the pathological 
processes of three main human disorders, infectious diseases, 
inflammatory (18-20) and autoimmune diseases (2), and cancer. 
Since CXCL10 plays a significant role in leukocyte homing 
to inflamed tissues, it exacerbates inflammation and causes  
significant tissue damage (2). Additionally, the CXC chemo-
kines are a unique family of cytokines that either stimulate or 
inhibit angiogenesis depending on the presence of the struc-
tural domain of Glu-Leu-Arg; an ELR motif. CXCL10 is an 
ELR-negative CXC chemokine that attenuates angiogenesis and 
has anti-tumor actions (21-23). However, an increased expres-
sion of CXCL10 and its corresponding receptor CXCR3 have 
also been associated with advanced human cancers, including 
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malignant melanoma (24), ovarian carcinoma (25), multiple 
myeloma (26), B-cell lymphoma (27) and basal cell carcinoma 
(14). In the central nervous system (CNS), microglia, astro-
cytes and even neurons express and secrete soluble CXCL10 
(28,29). CXCL10 chemoattracts microglia cells into the 
circulation of CNS. CXCL10 and its receptor CXCR3 play a 
role in both peripheral and various CNS pathologies since the 
interference of CXCL10/CXCR3 signaling alters the initiation 
and progression in various CNS disease models (29,30). The 
increased production of CXCL10 in CNS has been associated 
with cerebral ischemia, epilepsy, brain inflammation and a 
number of neurodegenerative diseases such as multiple scle-
rosis (MS), Alzheimer's disease, amyotrophic lateral sclerosis, 
and human immunodeficiency virus encephalitis (29). The aim 
of this reiew is to focus mainly on the current understanding of 
the role of CXCL10 in cancer.

2. CXCL10 gene structure, function and signaling pathways

The human CXCL10 gene, was initially isolated in 1985 by 
Luster et al (31) while treating a lymphoma cell line (U937) 
with recombinant IFN-γ. CXCL10 cDNA has an open reading 
frame of 1,173 bp containing 4 exons and encoding a protein 
of 98 amino acids with a molecular mass of 10,000 dalton. The 
primary translation product of CXCL10 is a 12-kDa protein 
and constitutes two internal disulfide cross bridges (13). 
The predicted signal peptidase cleavage generates a 10-kDa 
secreted polypeptide with four conserved cysteine residues in 
the N-terminal (13). The CXCL10 gene localizes on chromo-
some 4 at band q21, a locus associated with an acute monocytic/ 
B-lymphocyte lineage leukemia exhibiting translocation of 
t (4; 11) (q21; q23). The CXCL10 protein shows significant 
homology in sequence with a family of proteins having chemo-
tactic (platelet factor 4, β-thromboglobulin) and mitogenic 
(connective tissue-activating peptide HI) activities, which are 
associated with inflammation and cell proliferation (13,32). 
Human CXCL10 has a 63% homology in cDNA sequence with 
mouse CXCL10.

As with other chemokines, CXCL10 is a structurally 
specific protein, in which the potency and biological activities 
vary as a result of structural differences. The monomeric struc-
ture of CXCL10 exhibits a typical chemokine fold consisting of 
a three-stranded β sheet overlaid by an α helix with a number 
of the receptor binding residues located in the associated loops 
stabilized by the disulfide bonds (3). A monomeric variant 
structure of CXCL10 was found by nuclear magnetic reso-
nance spectroscopy. This new variant showed that the regions 
of the N-terminal and 40s loops within the CXCL10 molecule 
interplay with each other and form a hydrophobic cleft. This 
unusual structural characteristic of CXCL10 provides an expla-
nation for the ability of CXCL10 to bind to both CXCR3 and 
CCR3 receptors (33). Another stereotypical oligomerization of 
CXCL10 provides an additional source of structural diversity 
(3) which is essential for CXCL10 to recruit activated T cells 
that bind to endothelial cells and subsequently trans-migrate 
in vivo (34). This hypothesis was supported by Campanella 
et al (34), who determined that CXCL10 knockout mice 
lose their ability to recruit activated CD8+ T cells into their 
airways due to the presence of the N-methyl group disrupting 
the interaction of hydrogen bonds between the main chains, 

preventing the formation of dimers and oligomerization. 
In vitro, the N-methylated Leu27 monomeric mutants were 
capable of inducing CXCR3 internalization and the chemo-
taxis of CD8+ T cells expressing CXCR3, but this induction 
required at least ten times higher concentrations than wild-type 
CXCL10; heparin and CXCR3 binding were noted, but at 
greatly reduced efficacy. These results indicate that, in vitro, 
a considerably higher concentration of monomer mutant 
CXCL10 ligand is required to bind receptor CXCR3 and 
heparin (34). In an experiment designed by Swaminathan et al 
(3), CXCL10 molecules were found to exist in three different 
crystal forms: monomer, dimer and tetramer. In free solution, 
CXCL10 exists in monomer-dimer equilibrium, and tetrameric 
structures may represent species promoted by the binding of 
glycosaminoglycans (GAG). Findings of these authors suggest 
that only oligomeric forms of CXCL10 bind to endothelial 
and epithelial cells in a GAG-dependent manner (3). In agree-
ment with the results of Swaminathan et al, a novel tetramer 
in the mouse CXCL10 structure has been discovered where 
two typical CXC chemokine dimers bind to their N-terminal 
regions to form a tetrameric assembly (35). Furthermore, the 
free N-terminal areas of two molecules at each terminal of 
the tetramer, enhance the probability of further attachment of 
molecules to generate higher order oligomers that may have 
functional relevance (35). The study by Jabeen et al (35) 
greatly contributes to the theory that the existence of CXCL10 
in different oligomeric forms is crucial for its in vivo activity.

Functionally, CXCL10 exerts its biological effects by 
binding to CXCR3, and by inducing signaling effects in a 
paracrine or autocrine manner (14). CXCL10 induction depends 
predominantly on the carboxyl-terminal region of CXCR3, 
which is essential for CXCR3 internalization, chemotaxis and 
calcium mobilization induced by the CXCL10 ligand (8,36).

Regulation of CXCR3+ cell chemotaxis. CXCL10 performs 
‘homing’ functions to chemoattract CXCR3-positive cells, 
including macrophages [microglia cell in CNS (37-39)], 
dendritic cells, NK cells and activated T lymphocytes 
(CD4+ T cells and CD8+ T cells) towards inflammatory, infec-
tious and neoplastic regions. Consequently, CXCL10 is involved  
in modulating both innate and adaptive immunity, inducing 
tissue damage and contributing to tumorigenesis (37-39).

Induction and variation in the conditions for CXCL10 induced 
apoptosis. Using an in vitro model of cultured cortical neurons, 
neuronal CXCL10 expression recruits glial cells during 
embryogenesis, indicating that CXCL10 may be involved 
in apoptosis during the development of the nervous system 
(29,40). Alternatively, CXCL10 has been shown to facilitate 
cellular clearance of myeloid cells and strengthen the interac-
tion between glial cells and neurons, which is a crucial step 
for synaptogenesis in the later stages of development of the 
nervous system (29). CXCL10 also significantly increased the 
apoptotic rate of cancer cells in cervical carcinoma (41).

Promotion of cell growth and proliferation (14). CXCL10, 
along with other CXC chemokines, binds to G-protein 
coupled receptors and induces a wide spectrum of biological 
and physiological activities. One of these activities involves 
the increase of cell growth and proliferation. CXCL10 coloca-
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lizes with the cell proliferation marker, cytokeratin 17 (K17) 
in tumor cells (14), whose proliferating actions are cell cycle 
dependent (42).

CXCL10 appears to have dual effects on cell growth. The 
proliferative or anti-proliferative action of CXCL10 appears to 
be cell-type-dependent; in other words, it may depend on the 
subtype of its receptor CXCR3. There are three CXCR3 splice 
variants: CXCR3-A, CXCR3-B and CXCR3-alt. Different cell 
types demonstrate various expression patterns. Additionally, 
various isoforms of CXCR3 induce the opposing actions 
of CXCL10 on proliferation. The main isoform, known as 
CXCR3-A, found in most cell types, codes for a protein of 
368 amino acids (42) and couples with Gαi to activate the 
ERK1/2, p38/MAPK, JNK and PI3-kinase/Akt signaling 
pathways, thereby inducing intracellular calcium influx, DNA 
synthesis and cell proliferation or chemotaxis (8,42-44). 
These types of cells include normal human bronchial epithe-
lial cells (42), astrocytes, glioma cells (44), microglia cells 
(45), MDA-MB-231 breast cancer cells (46) and basal cell 
carcinoma (14). CXCR3-alt, which is known to co-express 
with CXCR3-A at a very low level (14,42), has not been found 
to be involved in cell growth.

Inhibition of cell growth and proliferation. The anti-
proliferative action of CXCL10 is regulated by a variant 
isoform, CXCR3-B. CXCR3-B codes for a larger protein 
of 416 amino acids, couples with Gαs to activate adenylyl 
cyclase and causes the inhibition of endothelial cell 
proliferation and migration (43,47,48). This appears to be 
the key mechanism by which CXCL10 exerts its antipro-
liferative activity. This receptor subtype does not induce 
chemotaxis (43,47). These types of cells are included 
in uterine endometrial cancer (46,49), glioblastoma  
(37), CCL-51 mammary tumor (50,51) and colorectal cancer 
(53). CXCR3+ T-cell migration into inflammatory and neo-
plastic regions attracted by CXCL10 along with CXCL9 
and CXCL11 also contributes to anti-tumor progression and 
anti-metastasis (37). The variant CXCR3-B as a common 
receptor for all four angiostatic chemokines (CXCL4, CXCL9, 
CXCL10 and CXCL11) has enabled a better understanding of 
the role of CXC chemokines in the sequential participation of 
inflammatory cells and in the regulation of the inflammatory 
reaction resulting in angiostasis, and the inhibition of endo-
thelial cell proliferation (53).

Regulating angiostatic action. CXC chemokines have dual  
effects on angiogenesis, depending on the presence of the 
Glu-Leu-Arg (ELR) motif. This well-established anti-
proliferative (angiostatic) function, particularly on endothelial 
cells by CXCL10, has been shown to be regulated by the ELR 
motif. ELR-negative CXCL10 is an angiostatic chemokine 
that inhibits angiogenesis and is associated with its anti-tumor 
activities (21-23).

CXCL10 has cross talk with various typical signaling path-
ways. In breast cancer, Ras-induced CXCL10 overexpression 
is mediated through the Raf and PI3K signaling pathways, 
which may contribute to the development of breast tumors 
through cancer cell proliferation (46). In microglia cells, 
elevated CXCL10 expression occurs through p38/MAPK, 
JNK/MAPK and NF-κB cascades (45). In human airway 

epithelial cells, p38/MAPK and PI3K signaling play a signifi-
cant role in CXCL10/CXCR3 chemokine receptor-induced 
chemotaxis (54). In murine macrophage-like cells, activation 
of JAK1, JAK2/STAT1, but not the p38 pathway, up-regulates 
the expression of CXCL10, which is a strong inflammatory 
factor (55). The inhibition of CXCL10 expression in the cells 
by targeting the JAK/STAT1 signaling pathway may exert 
anti-inflammatory effects by attenuating the formation of 
chemokine CXCL10. Rabies virus (RV) stimulates CXCL10 
expression in macrophages by activating extracellular signal-
regulated kinases 1 and 2 (ERK1/2) (56). The RV-induced 
expression of CXCL10 in microglia in CNS was achieved by 
the activation of p38 and NF-κB pathways (57).

3. CXCL10 gene and cancer types

Interactions between chemokines and chemokine receptors 
were recently proposed to be of importance in the initiation  
and progression of cancer. CXCL10 has dual actions on 
tumorigenesis depending on the spliced variant of the 
corresponding CXCR3 receptor. CXCR3-B possesses growth-
inhibitory properties, whereas CXCR3-A promotes cell 
proliferation (46).

Anti-tumor effects through angiostatic action. Various model 
systems have shown ELR-negative CXC chemokines to inhibit 
angiogenesis. In xenograft models of lymphoma, squamous 
cell carcinoma and adenocarcinoma of lung, the production 
of CXCL10 was inversely correlated with tumor growth, 
resulting in a marked reduction in tumor-associated angiogen-
esis. CXCL10 mediates its effects in T cell, macrophages- or 
NK-independent manner (22,23). CXCL10 may effect the 
suppression of angiogenesis associated with fibroblast growth 
factor (bFGF) in advanced uterine endometrial cancers 
(49). CXCL10 inhibits the growth of cervical carcinoma by 
down-regulating the formation of microvessels, the expres-
sion of proliferating cell nuclear antigens and the expression 
of human papillomavirus oncoproteins E6 and E7 through 
an increase in the apoptotic rate (41). In estrogen receptor-
positive (ER+) mammary tumors, CXCL10 inhibits vascular 
endothelial growth factor levels to reduce tumor burden (50).

Antitumor effects through immunogenic action. In the mouse 
glioblastoma model, CXCL10-mediated immunostimulation is 
likely to be responsible for the therapeutic efficacy rather than  
inhibiting vascularization (37). Immune modulation of CXCL10  
has been widely used to modify dendritic cells to increase 
vaccine potency. Numerous investigators have confirmed that 
the CXCL10 gene has significant synergistic effects against 
tumors through its immunomodulatory properties by recruiting 
immature antigen-presenting, dentritic or early activated  
T cells into the tumor in murine glioma and the melanoma 
model (58-60).

Okada (61) utilized CXCL10 as a homing factor for 
cytotoxic T lymphocytes with a type 1 phenotype (Tc1) to 
attract cytotoxic T cells into CNS tumors, where cells durably 
exert antitumor effects in the CNS tumor. This author used 
type 1 polarizing DCs loaded with glioma-associated antigen 
peptides in combination with polyinosinic-polycytidylic acid 
stabilized by lysine and carboxymethylcellulose (poly-ICLC) 
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to induce IFN-α and CXCL10 in the CNS tumor micro-
environment. In this experiment, Okada (61) successfully 
improved the survival of tumor-bearing mice without the 
generation of detectable autoimmunity. A phase I/II vacci-
nation study based on Okada's concept is currently under 
way in patients with recurrent malignant glioma. Another 
obstacle for tumor antigen-specific T-cell immunity is the 
rapid down-regulation of chemokines, such as CXCL10, 

resulting in a negative feedback mechanism. To solve this 
issue, Kang et al introduced the CXCL10 gene into DC2.4 
cells using a retroviral system, resulting in the secretion of 
functionally chemoattractive CXCL10. Findings by these 
authors have laid the foundation for a future clinical transla-
tion of the chemokine-based genetic modification of DCs to 
increase their vaccine potency (62). CXCL10 has also been 
determined to have synergistic effects with a deoxycytidine 

Table I. Comparative analysis of CXCL10 expression in various types of human cancers (Oncomine data).

 Fold change P-value No. of samples References
   ---------------------------------------------
   Normal Cancer

Bladder cancer 3.039 6.79E-11 48 81 Sanchez-Carbayo et al, (69)
Brain and CNS cancer 2.237 5.40E-12 23 81 Sun et al, (70)
 4.971 2.67E-4 3 84 Lee et al, (71)
Breast cancer 19.021 8.00E-12 7 40 Richardson et al, (72)
 5.072 1.71E-4 15 7 Karnoub et al, (73)
Cervical cancer 4.009 2.32E-5 22 20 Pyeon et al, (74)
Colorectal cancer 2.547 2.13E-8 41 50 Ki et al, (75)
Head and neck cancer 6.410 1.15E-11 13 41 Ginos et al, (76)
 14.448 1.49E-4 22 6 Pyeon et al, (74)
 3.761 5.41E-4 22 15 Pyeon et al, (74)
 3.073 1.28E-6 28 31 Talbot et al, (77)
Kidney cancer 12.873 3.10E-12 5 26 Yusenko et al, (78)
 5.447 5.90E-8 10 10 Gumz et al, (79)
 11.612 9.94E-11 11 32 Beroukhim et al, (91)
 5.897 4.41E-7 11 27 Beroukhim et al, (91)
Leukemia 3.596 2.40E-5 6 22 Andersson et al, (80)
 2.053 4.10E-5 6 84 Andersson et al, (80)
 -2.354 1.21E-4 14 39 Rosenwald et al, (85)
 -2.274 1.22E-4 6 11 Andersson et al, (83)
Liver cancer 17.693 1.42E-6 10 13 Wurmbach et al, (81)
 6.620 9.20E-5 10 17 Wurmbach et al, (81)
 5.928 1.78E-4 10 35 Wurmbach et al, (81)
Lymphoma 5.390 8.61E-9 14 38 Rosenwald et al, (82)
 5.656 6.66E-8 7 260 Rosenwald et al, (83)
 5.045 4.51E-4 6 5 Storz et al, (84)
 43.703 1.40E-17 25 28 Basso et al, (85)
 8.586 9.08E-7 25 32 Basso et al, (85)
 9.124 3.89E-5 25 17 Basso et al, (85)
Melanoma 5.651 2.52E-4 3 6 Haqq et al, (86)
Other cancer
Testicular seminoma 2.614 5.49E-4 3 3 Skotheim et al, (87)
Parathyroid adenoma 2.434 1.73E-4 5 35 Morrison et al, (88)
Sarcoma 8.098 1.12E-4 15 9 Detwiller et al, (89)
Embryonal carcinoma 7.103 1.13E-7 6 15 Korkola et al, (90)
Seminoma 6.118 1.71E-6 6 12 Korkola et al, (90)
Mixed germ cell tumor 2.406 1.67E-6 6 41 Korkola et al, (90)
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analog, gemcitabine, which inhibits the proliferation of 
endothelial cells, induces tumor cells apoptosis, and recruits 
lymphocytes to the tumor in murine models. Kang et al 
subsequently established an ideal model for the treatment 
of cancer by a combination of gene and chemokine therapy 
(63). A human study shows CXCL10 to be down-regulated in 
colorectal cancer (CRC) tissues with recurrence, indicating 
that CXCL10 may be utilized as a predictor of recurrence and 
as a prognostic indicator for survival in CRC patients (52).

Tumor-promoting effects. Contrary to tumor-limiting actions, 
CXCL10 exhibits tumor-promoting ability. Investigators have 
proposed that CXC chemokines and their receptors, particu-
larly CXCR3 and its ligands CXCL10, CXCL9 and CXCL11, 
may be involved in tumor progression and metastasis through 
the overexpressions of CXCR3 in the tumor cells compared 
to the infiltrating immunocompetent cells, resulting in over-
responsiveness to chemokines expressed either by tumors or 
inflammatory cells (24,64,65). In human breast cancer cell 
lines MDA-MB-435 and MCF-7, Ras induces CXCL10 over-
expression by way of Raf and PI3 kinase signaling pathways. 
Overexpressed CXCL10 binds to CXCR3 and down-regulates 
CXCR3-B, promoting breast cancer growth (46). CXCL10 has 
also been reported as an autocrine invasion factor in nasal 
natural killer/T-cell lymphoma (66), which promotes colon 
cancer metastasis (67), and tumorigenesis in basal cell carci-
noma (14) and human glioma (44).

CXCL10 expression in human cancers from the Oncomine 
database. CXCL10 information was summarized using the 
publicized microarray database Oncomine 4.3 (https://www.
oncomine.org/resource). The P-value cut-off was 0.001, with 
a fold change threshold of 4. CXCL10 mRNA is up-regulated 
in the majority of human cancers, but is down-regulated in a 
limited number of cancers (68-90) (Table Ι).

4. Conclusions

Although CXCL10 was originally identified as a proinflam-
matory chemokine that plays a role in leukocyte trafficking, it 
has been found not to only activate T lymphocytes (Th1) (7), 
but also NK cells, inflammatory dentritic cells, most macro-
phages and B cells. CXCL10 is capable of homing to target/
threat regions. CXCL10 has multiple roles, such as modulating 
innate and adaptive immune response, regulating cell growth 
and angiostatic effects. CXCL10 induction is associated with 
numerous human disorders, and contributes to infectious 
diseases, chronic inflammatory and autoimmune diseases, and 
tumor formation. The features of CXCL10 make it a potential 
novel candidate for cancer target therapy. The relationship 
between the downstream and upstream signaling pathways 
should be investigated in order to develop CXCL10 as a novel 
therapeutic target in cancer and other human disorders.
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