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ABSTRACT

FTY720 (Fingolimod) is a clinically approved immunomodulating therapy 

for multiple sclerosis that sequesters T-cells to lymph nodes through functional 

antagonism of sphingosine-1-phosphate 1 receptor. FTY720 also demonstrates a 

proven efficacy in multiple in vitro and in vivo cancer models, suggesting a potential 

therapeutic role in cancer patients. A potential anticancer mechanism of FTY720 

is through the inhibition of sphingosine kinase 1, a proto-oncogene with in vitro 

and clinical cancer association. In addition, FTY720’s anticancer properties may be 

attributable to actions on several other molecular targets. This study focuses on 

reviewing the emerging evidence regarding the anticancer properties and molecular 

targets of FTY720. While the clinical transition of FTY720 is currently limited by its 

immune suppression effects, studies aiming at FTY720 delivery and release together 
with identifying its key synergetic combinations and relevant patient subsets may 

lead to its rapid introduction into the clinic.

TARGETING SPHINGOLIPID SIGNALLING 

FOR CANCER TREATMENT

Introduction to sphingolipid metabolism

Sphingolipids are one of the major components 

of eukaryotic cell plasma membranes. Aside from their 

structural role, they have attracted attention as potent 

second messengers regulating programmed cell death. 

Cleavage of a pro-apoptotic sphingolipid ceramide yields 

pro-apoptotic sphingosine that is phosphorylated by 

sphingosine kinases (SKs) to anti-apoptotic sphingosine-1-

phosphate (S1P) (Figure 1). The dynamic balance between 

S1P and sphingosine/ceramide signalling is referred to 

as the “sphingolipid rheostat” and determines whether 

a cell undergoes apoptosis (reviewed in [1-3]). S1P can 

be dephosphorylated or degraded [4] (Figure 1), and the 

balance of production and degradation of S1P is tightly 

regulated (reviewed in [5]). Importantly, the enzymes 

of the rheostat do not just function by directly changing 

the balance of metabolites, but also by the roles these 

metabolites have in a myriad of signaling pathways with 

production, localisation, secretion and signaling of these 

metabolites having profound effect on tumor outcomes 

[6]. 

Two SK genes expressed in humans, SK1 and SK2, 

display different catalytic properties [7] suggesting distinct 

physiological roles [8-10]. SKs possess an intrinsic 

catalytic activity [11] which is rapidly accelerated upon 

phosphorylation, [12] inducing its translocation to the 

plasma membrane [11]. SKs may have extracellular 

effects (reviewed in [13]). SK1 or SK2 single knockout 

in mice does not affect development and reproduction, 

whereas simultaneous knockout results in S1P deficiency 
and embryonic lethality [14]. SK1 is a proto-oncogene 

and is regulated through multiple mechanisms. Upon 

stimulation, SK1, located predominately in the cytosol, 

translocates to the plasma membrane and enhances S1P 
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secretion and proliferative signalling [15] (Figure 2). 

Through binding cell surface S1P G-protein coupled 

receptors (S1PRs1-5), S1P initiates autocrine and 

paracrine signalling cascades that induce cell migration, 

angiogenesis and differentiation (reviewed in [16], (Figure 

2). Diverse outcomes of S1P signalling depend on the cell 

type and the expression of G proteins and S1PRs [17]. 

Acting as an intracellular second messenger S1P enhances 

proliferation and suppresses apoptosis (reviewed in [16]. 

Internalised upon ligand binding, S1PRs can then either 

resensitise or degrade [18] depending on ubiquitination 

status. S1P binding through mono-ubiquitination leads to 

resensitisation, whilst other agonists (e.g. FTY720) lead 

to degradation through poly-ubiquitination [19]. S1P has 

several non-receptor intracellular actions (reviewed in 

[20]) including binding histone deacetylases HDAC1 and 

HDAC2 and regulating gene expression epigenetically 

[21], and forming complexes with tumour necrosis factor 

(TNF) receptor-associated factor 2 (TRAF2) leading to 

increased nuclear factor kappa B (NF-kB) signalling [22]. 

In healthy cells, ceramide and sphingosine play a 

crucial role in physiological apoptotic machinery while 

S1P signalling leads to cell proliferation, migration, 

angiogenesis, inflammatory response and lymphocyte 
trafficking. In cancer cells, dysregulation of enzymes 
involved in sphingolipid metabolism to escape cell death 

leads to increased S1P signalling, often through aberrant 

expression of ceramide degrading enzymes, sphingosine 

kinases or S1PRs (reviewed in [23]). While this provides 

rationale for therapeutic targeting of these pathways, their 

important physiological role in other tissues (such as heart 

or liver) urges for extreme caution. In particular, targeting 

S1P may lead to lymphocyte retention in lymph nodes and 

subsequent lymphopenia, which would be an undesirable 

side effect, especially in cancer patients. 

Sphingosine kinase 1 as a potential therapy target 

for cancer treatment

Clinical and in vitro association

Compelling evidence suggests that SK1 activation 

contributes to cancer progression. High SK1 expression 

has been shown in several human cancers including brain, 

breast, colon, lung, ovary, stomach, uterus, kidney, rectum 

and small intestine [24-27]. Expression of high levels of 

S1P receptors, S1P1 and S1P3, SK1, and extracellular 

signal-regulated kinase-1/2 are associated with 

development of tamoxifen resistance in estrogen receptor-

positive breast cancer patients [28]. This is the first study 
to demonstrate the association of survival rates and disease 

recurrence with combined S1P1/S1P3 and SK1 protein 

expression indicating a complex relationship between 

S1P receptor and SK1 expression and outcomes. This may 

indicate the significance of the autocrine activation of this 
pathway in breast cancer cells and suggests that disruption 

of this pathway may provide a target for treatment of 

tamoxifen-resistant breast cancer [28]. 

High levels of SK1 expression/activity are 

associated with poor prognosis, decreased survival rate 

Figure 1: Sphingolipid rheostat. Ceramide and sphingosine are intracellular lipid second messengers, which induce activation of 

apoptotic pathways. In turn, SK1 can phosphorylate sphingosine to yield S1P, a lipid second messenger that activates anti-apoptotic 

pathways and antagonises the effects of ceramide and sphingosine. The intracellular balance between ceramide, sphingosine and S1P 

determines the cell fate. PKC - protein kinase C; MAPK - mitogen-activated protein kinases; JNK - c-Jun N-terminal kinases; SAPK - stress 

activated protein kinase; NFkB - nuclear factor kappa B; PLC - phospholipase C; Bcl2 - B cell lymphoma 2, AP-1 - activator protein 1 

(reviewed in [248] and [249]).
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[25] and histologic grade [29] in glioma; poor prognosis 

in breast cancer patients [30]; prostate cancer progression 

(Prostate specific antigen (PSA), tumour volumes and 
Gleason score) and disease recurrence (positive margins 

and surgical failure) [31]; shorter survival time in gastric 

cancer patients [32]; poor survival and tumour progression 

in non-small cell lung cancer [33]; TNM status, tumour 

differentiation and shorter overall survival time in salivary 

gland cancer [34]; and advanced tumour stage, nodal 

involvement, recurrence, shorter patient survival time and 

loss of p21 expression in head and neck cancer [35, 36]. 

These associations have complex pathophysiological 

mechanisms. A hallmark study showed that enforced 

expression of SK1 is sufficient for malignant 
transformation of NIH-3T3 fibroblasts leading to 
serum independence and tumour formation [37]. The 

expression of SK1a and SK1b in androgen-independent 

LNCaP-AI prostate cancer cells is upregulated compared 

with androgen-sensitive LNCaP prostate cancer cells, 

suggesting that androgen escape might be associated 

with increased transcriptional up-regulation of SK1a/b 

[38]. Indeed, long-term androgen deprivation raises 

basal SK1 levels in prostate cancer cells, although the 

exact mechanism is not known [39]. This is confirmed in 

androgen-independent prostate cancer cells derived from 

patients’ brain and bone metastases which have ~10-fold 

higher SK1 activity than androgen dependent prostate 

cancer cells derived from lymph nodes [40].

Protection against apoptosis

Many studies have shown that one of the major 

functions of SK1 is to provide cancer cells protection 

from apoptosis. Thus, targeting SK1 was quickly 

proposed as a potential therapeutic approach for cancer 

treatment. Indeed, many cancer cell lines are sensitive to 

treatment with either siRNAs to SK1 or pharmacological 

inhibitors of this enzyme [27, 40, 41] independently of 

p53 mutation [40] or Bcl-2 status [42]. SK1 is upregulated 

in response to several anticancer treatments [40, 43, 44] 

leading to resistance of cancer cells to these therapies. 

Apoptosis-induced SK1 expression and subsequent 

release of S1P signals to tumour-associated macrophages 

and may therefore promote an inflammatory tumour 
microenvironment [45]. SK1 expression can protect the 

cells against apoptosis induced by TNF-α and Fas ligand 
[46, 47], and can mediate survival under stress conditions 

such as starvation [37, 48].

Figure 2. SK1/S1P signalling pathway. Tumour necrosis factor alfa, growth factors and cytokines activate receptor tyrosine kinases, 

G-protein coupled receptors, toll like receptors, which induce phosphorylation of sphingosine kinase 1 (SK1, often through ERK1/2 and 

PKC), its translocation to plasma membrane and generation of sphingosine-1-phosphate (S1P) from sphingosine (reviewed in [250]). S1P 

can then be exported outside of the cell where it acts in a paracrine or autocrine manner and activates 5 specific S1P receptors (S1P1-5). 
Upon coupling with S1P, these receptors can activate downstream signalling pathways leading to cell proliferation, migration and gene 

expression. PKC - protein kinase C; (reviewed in [248] and [249]).
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Inflammatory response
In addition to blocking cancer cell death, it has 

been proposed that SK1 promotes pro-inflammatory 
cytokine release [49]. Extracellular S1P induced 

COX2 overexpression and PGE2 production in L929 

fibrosarcoma and A549 lung adenocarcinoma cells [50]. 
S1P secreted from apoptotic tumour cells could induce 

macrophage polarisation [51] and stimulated chemotaxis 

of primary monocytes and macrophages, whereas S1P 

antibody abrogated macrophage invasion to ischemic 

areas [52]. Tumour associated macrophages (TAMs) are 

strongly associated with a poor prognostic outcome in 

cancer patients and induce TNFα-dependent activation 
of JNK and NF-κB in adjacent tumour cells to promote 
their growth, motility and invasion [53, 54]. TAMs 

secrete promigratory cytokines/chemokines, including 

those released in response to activation of the SK1/S1P 

pathway [50, 55]. The SK1/S1P pathway is involved in 

inflammatory responses to cytokines such as TNFα and 
interleukin (IL-1) [56]. TNFα, via a TRAF2-dependent 
mechanism, activates SK1 leading to activation of the 

pro-survival and pro-inflammatory pathways mediated 
by AKT [57, 58] and NF-κB [58] through ubiquitination 
of receptor interacting protein 1 and stimulation of IκB 
kinase [22]. However, in both murine macrophages 

lacking both SK1 and SK2 and WT macrophages, TNFα 
and LPS induced similar inflammatory responses and 
activated the NFκB pathway to a similar extent, possibly 
suggesting that intracellular S1P is not necessary for the 

activation of this critical inflammatory signaling pathway 
[59]. 

Migration

Activation of SK1 downstream of several 

chemotactic receptors (e.g. lysophosphatidic acid (LPA1). 

epidermal growth factor or platelet-derived growth factor) 

[60, 61] enhances metastatic potential of cancer cells [62, 

63] and cancer cell migration [64-68]. In many instances 

SK1-induced cell migration is mediated by S1P secretion 

and coupling to S1P receptors [69]. S1P1, S1P3 and S1P4 

receptors mediate promigratory responses [70-72][50] 

through activation of Rac signalling, actin polymerization 

and lamellipodia formation. S1P2 (except in fibroblasts 
[73]) and S1P5 mediate cessation of migration through 

stimulation of Rho and Rac leading to stress fiber 
formation [74-76], suggesting the effect of S1P depends 

on differential expression of S1PRs in a specific cell type. 
In U373 glioblastoma cells SK1/S1P-induced cancer cell 

migration was linked with expression of plasminogen 

activator inhibitor-1 (PAI-1) and urokinase receptor 

(uPAR) [77]. Induction of cancer cell migration may also 

occur through intracellular non-receptor mechanisms, for 

example in hepatocyte growth factor-induced migration 

of endothelial cells [78]. The formation of a signalling 

complex between SK1, S1P1 and the cytoskeletal protein 

filamin A that localises to membrane ruffes of migrating 

cells to promote cell movement has been reported [66]. 

Neovascularisation

SK1/S1P signalling enhances tumour 

neovascularisation [79]. S1P secreted from tumour tissue 

can act as a chemoattractant for various cells including 

vascular endothelial cells [79]. S1P promotes endothelial-

cell growth and interacts with vascular endothelial 

growth factor VEGF signalling [80]. VEGF stimulated 

S1P production mediated activation of RAS and MAPKs 

in T24 bladder tumour cells [81]. S1P1 expression 

is strongly induced in tumour vessels and specific 
knockdown of S1P1 significantly abrogates angiogenesis 
in murine models [82]. Secreted S1P initiated endothelial 

cell sprouting in 3-dimensional collagen matrices [83]. 

Antibodies to S1P have antitumour potential [63] through 

inhibition of cell proliferation, release of proangiogenic 

cytokines (e.g. VEGF, IL-8 and IL-6) and blocking S1P-

related angiogenesis [63]. 

Chemoresistance

SK1 plays a role in chemoresistance and SK1 

inhibition is proposed to correlate with chemotherapy 

efficiency [40]. SK1 overexpression inhibits 
chemotherapy-induced apoptosis: anthracyclines in MCF-

7 breast cancer cells [47]; doxorubicin and etoposide 

in HL-60 acute myeloid cells [41]; camptothecin and 

docetaxel in PC3 and LNCaP prostate cancer cells 

[40]; and MDR-associated chemoresistance in an acute 

myeloid leukemia (AML) model [41]. In prostate cancer 

cell lines and animal models indirect SK1 inhibition 

was a valid chemotherapeutic strategy [84]. Modulation 

of SK or S1P lyase has been suggested to contribute to 

altered sensitivity to cisplatin [85]. In vitro and in vivo 

models of prostate cancer demonstrated that the SK1/

S1P pathway has the potential to synergise with the 

effects of camptothecin chemotherapy [86], docetaxel 

chemotherapy [87] and radiotherapy [88]. SK1 inhibition 

restored endocrine response in breast cancer cells [89], 

and decreased colony formation [90], cell motility and 

chemotaxis [49, 91]. Pharmacological inhibition of SK1 

results in resensitisation to anticancer therapies [41, 92, 

93], notably through targeting SK1 to the ubiquitin-

proteasomal degradation pathway and lowering SK1a/b 

levels below a threshold required for survival [38]. 

Therapeutic potential of sphingosine kinase 1 

inhibition

SK1 is a potential target in cancer therapy. 

Dimethylsphingosine (DMS), a non-selective SK 

inhibitor [94] and its methylated derivative N,N-

dimethylsphingosine (DMS) induce apoptosis in numerous 

cancer cells [94, 95], reviewed in [96]), inhibit in vivo 

growth of lung and gastric carcinoma tumours in athymic 

mice [97], decrease lung metastasis of melanoma cells in 
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syngeneic mice [98], and induce apoptosis and sensitise 

LNCaP cells to gamma-irradiation-induced apoptosis 

[99]. Lacking specificity, DMS inhibits protein kinase C, 
phospholipase A2, and phospholipase D [100]. 

F-12509A and B-5354c are SK inhibitors with 

greater specificity [101]. F-12509A induces cancer cell 
apoptosis in imatinib-resistant cells [102], and in HL-60, 

HL-60/Doxo and HL-60/VP16 cells leading to nuclear 

fragmentation, caspase-3 cleavage, downregulation of 

XIAP, cytochrome C and SMAC/Diablo release [41]. 

B-5354c induces apoptosis in LNCaP and PC-3 prostate 

cancers which is reversed by upregulation of SK1 [86]. 

2-(p-hydroxyanilo)-4-(p-chlorophenyl)thiazole 

(SKI-II), a SK-selective inhibitor has anti-cancer effects. 

SKI-II is cytotoxic to T24 bladder carcinoma cells, and 

MCF-7 and MCF-7/VP breast cancer cells [27]. SKI-II 

induces apoptosis in LNCaP and PC-3 human prostate 

cancer cells, irrespective of their p53 status [40]. Upon 

intraperitoneal administration of SKI-II, tumour size 

decreases and tumour growth is inhibited by 50-80% 

[103]. SKI-II abrogates androgen receptor signalling via 

an oxidative stress-induced, p53-independent mechanism 

in prostate cancer cells [104].

Selective SK1 inhibitor (SK1-I) ([(2-hydroxy-1-

naphthyl)methylene]-3-(2-napythyl)-1H-pyrazole-5-

carbohydrazide) induces apoptosis of leukaemia cells but 

not normal bone marrow derived cells [105]. 

Further SK1-specific inhibitors have been developed 
through modifications of sphingosine [106], and amidine-
based subtype-selective SK1 inhibitors. These inhibitors 

induce reduction of endogenous S1P levels in human 

leukemia cells at nanomolar concentrations [107]. (S)-

FTY720 vinylphosphonate [108] and sphingo-guanidines 

(LCL146 and LCL351) [109] induce SK1 inhibition in 

breast and prostate cancer cells and decrease migration 

rate of human prostate DU145 cells. New SK inhibitors 

optimised for selectivity and activity include SK1-178, 

which is active in vitro and in vivo and may help discern 

the role the SK1 and SK2 in disease development and 

progression [110].

L-threo-dihydrosphingosine (safingol) has 
sphingosine kinase-inhibiting properties [111]. A Phase I 

clinical trial of safingol, in combination with cisplatin in 
43 cancer patients, reported safe use, reduction in S1P in 

plasma, significant regression of liver and lung metastases 
in one adrenal cortical cancer patient, and prolonged stable 

disease in another patient [112]. 

More recently, SK1 inhibitors with sub-micromolar 

potency have been more thoroughly characterized.  In 

several studies, these more selective SK1 inhibitors did not 

demonstrate cytotoxic effects. For example, PF-543, with 

a K(i) of 3.6nM and an IC50 of 2nM for SK1, had no effect 

on proliferation and survival of various cancer cell lines 

including head and neck carcinoma cells [113]. Through 

use of sub-micromolar amidine-based SK1 inhibitors, a 

lack of correlation between SK1 inhibition with changes 

in cell survival in U937, Jurkat T and SKOV3 cells was 

demonstrated [114]. Potent and specific SK1/2 inhibitors 
completely inhibited intracellular S1P production in 

human cells and attenuated vascular permeability in mice, 

but did not lead to reduced tumor cell growth in vitro or 

in vivo [115]. While the cytotoxic effects demonstrated 

by older less specific SK1 inhibitors may be explained by 
their off-target effects rather than by their action on SK1, 

there is significant evidence showing anticancer cytotoxic 
effects of SK1 siRNAs [116-119]. Conversely, one recent 

paper showed that siRNA targeting SK1 in a large panel of 

cell lines failed to demonstrate any statistically significant 
effects on cell viability [115].

FTY720 AS A NEW MOLECULAR THERAPY 

FOR CANCER TREATMENT

FTY720

FTY720 (Fingolimod, Gilenya) (Figure 3) is a 

structural analogue of sphingosine developed from the 

fungal metabolite myriocin [120]. A phenylene moiety in 

Figure 3: Structures of sphingosine (A) and FTY720 (B).
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FTY720’s side chain confers potent immunosuppressive 

activity [121]. FTY720 is phosphorylated by SK2 

to form FTY720-phosphate (FTY720-p), but is not 

phosphorylated, or phosphorylated with low efficiency, 
by SK1 [88, 108, 122-128]. FTY720-p is an agonist of 

S1Prs 1, 3, 4 and 5 and same time a functional antagonist 

of S1PR1 receptor [124, 129]. Through internalization and 

degradation of lymphocytes’ S1PR1 receptor, FTY720 

inhibits lymphocytes’ egress from secondary lymphoid 

tissues and thymus and induces lymphopaenia [71, 130-

134]. In multiple sclerosis FTY720 acts upon naïve and 

central memory T-cells without affecting peripheral 

effector memory cells [135]. The U.S. Food and Drug 

Administration (FDA) have approved FTY720 as a first-
line treatment in relapsing forms of multiple sclerosis 

[136]. Owing to its cardio-protective effects FTY720 is 

a candidate for heart failure and arrhythmia treatment 

[137-140]. FTY720 has failed phase III clinical trials as 

an immunosuppressant for use in kidney transplantation 

[141, 142]. 

Figure 4: Molecular targets of FTY720. FTY720 inhibits SK1 and blocks the activation of multiple targets of this enzyme. In 

addition it can directly or indirectly inhibit multiple intracellular targets responsible for cell proliferation, migration and angiogenesis. It 

further activates mitochondrial permeability transition pore (MPTP), cytochrome c and effector caspases. P-gp - P-glycoprotein, MRP1 

- multidrug resistance protein, ROBO1 - roundabout homolog 1, ROCK1 - rho-associated, coiled-coil-containing protein kinase 1, Stat5 - 

signal transducer and activator of transcription 5, FAK – focal adhesion kinase, MMP – matrix metalloprotease, TIMP – tissue inhibitor of 

metallopeptidase, CDK - cyclin-dependent kinase.
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Anti-cancer properties of FTY720

FTY720 demonstrates anti-cancer properties and 

may have potential in cancer treatment. In vitro and in 

vivo studies demonstrate the growth arrest and apoptosis-

inducing ability of FTY720 in diverse normal and cancer 

cells including: lymphocytes [143, 144], microglia [145], 

prostate cancer [88, 108, 146-149], breast cancer [108, 

122, 150, 151], several forms of leukaemia and lymphoma 

[152-159], lung cancer [160-162], liver cancer [163-166], 

pancreatic cancer [167, 168], bladder cancer [169], renal 

cancer [170, 171]; glioma [172], gastric cancer [173], 

colon cancer [151, 174] and ovarian cancer [175]. 

FTY720 is also a therapy sensitiser. Treatment of 

colorectal cancer cells with FTY720 shows an additive 

effect with 5-fluorouracil, SN-38, and oxaliplatin [176], 
and results in resensitization to cetuximab both in vitro and 

in vivo with inhibition of tumour growth, interference with 

signal transduction, induction of cancer cells apoptosis and 

prolongation of mice survival [177]. FTY720 significantly 
augments treatment efficacy and overall survival of mice 
receiving allogeneic adoptive cell transfer [178].

FTY720 inhibits metastasis in a mouse model 

of melanoma [179] and glioblastoma cell lines [180], 

and is able to inhibit microvessel formation and reduce 

expression of the angiogenesis promoting factor VEGF 

in androgen independent prostate tumour xenograft in 

nude mice [146]. FTY720 has strong immunosuppressive 

properties against TREG cells [181] that contribute to 

tolerance of malignant tumour cells [182] indicating 

FTY720 may have potential in post transplant 

malignancies [183].

FTY720 inhibits sphingosine kinase 1

One of the most studied anticancer mechanisms 

of FTY720 is inhibition or degradation of SK1 (Figure 

4). SK1 downregulation is not dependent on FTY720 

phosphorylation; in SK2-/- mice FTY720 decreased 

SK1 and S1PR1 expression, and eliminated the NFκB/
IL-6/STAT3 amplification cascade and development 
of colitis-associated cancer [184, 185]. FTY720 may 

inhibit SK1 through multiple mechanisms. In cell lines 

FTY720 has been shown to inhibit SK1 intracellular 

activity [88, 108, 122, 123] and it was shown that the in 

vitro IC50 of FTY720 for SK1 is 50uM [108]. FTY720 

was demonstrated to be a competitive SK1 inhibitor 

with respect to sphingosine with an in situ Kic of 2 

mmol/L [108, 122]. Inhibitor characterization studies 

reveal that (S)-FTY720 vinylphosphonate inhibits 

SK1 in an uncompetitive manner, whereas a conjugate 

of sphingosine with a fluorophore and (S)-FTY720 
regioisomer stimulate SK1 activity indicating the presence 

of allosteric site(s) [122]. Moreover FTY720 and (S)-

FTY720 vinylphosphonate, in addition to other direct 

SK1 inhibitors [186, 187], induce SK1 degradation via 

ubiquitination and proteasomal processing [108]. This 

effect could be mediated by accumulation of ceramide and 

subsequent ceramide-induced activation of the proteasome 

[131]. In cisplatin-resistant SK-Mel-28 melanoma cells 

FTY720 induces SK1 degradation by p53-independent 

caspase activation and may inhibit the PI3K/Akt/mTOR 

pathway, related to chemoresistance mainly through 

escape from apoptosis [188]. Conversely in prostate 

cancer cell lines and mouse tumors FTY720-mediated 

radiosensitization is facilitated by SK1 inhibition and is 

caspase independent, suggesting a mechanism involving 

depletion of prosurvival signaling (e.g., Akt, SK1/S1P) 

[88]. In vitro, SK1 inhibition by FTY720 was shown to 

lead to prostate cancer cells apoptosis [88] and reduction 

of the expression of the androgen receptor [134].

FTY720 reactivates protein phosphatase 2A

Further to its effects on SK1, the non-

phosphorylated form of FTY720 has been shown to 

mediate protein phosphatase 2A (PP2A) reactivation [155, 

156]. PP2A is a tumour-suppressor that is down-regulated 

in many cancers [155, 156, 176, 189-193] resulting in 

PI3K/Akt/mTOR activation (reviewed in [194]). The 

FTY720 mediated PP2A reactivation appears important 

in its apoptosis-inducing effects in many cancers [153, 

155, 156, 190, 195, 196]. FTY720 enhanced purified 
PP2A activity [153] suggesting a direct effect [196], and 

also induced its reactivation in vitro by down-regulation 

of SET, a PP2A inhibitory protein often upregulated in 

cancer [155, 156, 176]. Ceramide, structurally similar to 

FTY720, activates PP2A [197-200], via direct disruption 

of SET [201]. Sphingosine activates PP2A via disruption 

of acidic leucine-rich nuclear phosphoprotein-32A 

(ANP32A) [202]. FTY720 mediated PP2A reactivation 

induces caspase-dependent apoptosis, affects Akt and 

extracellular signal-regulated kinase (ERK)-1/2 activation 

status, and impairs proliferation and clonogenic potential 

in colorectal cancer cells [176]. In lung cancer cells 

FTY720 mediated inhibition of SET-driven epithelial-

to-mesenchymal transition (EMT), through a SET/

PP2A/c-myc/NDRG1/Snail pathway, restored sensitivity 

to cisplatin, and inhibited invasiveness and growth of 

lung tumor xenografts [203]. PP2A is deregulated in 

59.6% of basal breast tumours and oestrogen receptor 

negative breast cancer cell lines are sensitive to lower 

doses of FTY720 [193]. FTY720 mediated activation 

of the core PP2A complex dephosphorylates the mTOR 

downstream effectors, 4EBP and S6K, and concurrently 

releases the block on the p53 pathway [193]. Expression 

of the PP2A regulatory B subunit B55α (PPP2R2A) is 
reduced in acute myeloid leukemia cells and suppression 

of B55α in OCI-AML3 cells induces resistance to 
FTY-720 [204]. Reactivation of PP2A by FTY720 or 

its nonimmunosuppressive derivatives (S)-FTY720-
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OMe, (S)-FTY720-regioisomer and OSU-2S suppressed 

survival of chronic myeloid leukemia, but not quiescent 

haematopoietic stem cells in vitro and in vivo [205]. 

OSU-2S induces activation of PP2A, phosphorylation at 

the putative PKC substrate motif, nuclear translocation 

of SHP1S591 (PTPN6) and deregulation of multiple 

cellular processes in chronic lymphocytic leukemia 

(CLL) culminating in potent cytotoxicity [206]. FTY720 

disrupted the SET-PP2A interaction, which inhibited BCR-

ABL1–recruited JAK2 and impaired β-catenin–dependent 
survival through GSK-3β activation [205]. In Jak2V617F 
cells, FTY720 anti-leukaemic activity does not require 

FTY720 phosphorylation, SET dimerization nor ceramide 

induction, but depends on interaction with SET K209. 

Jak2V617F utilizes an alternative SK1-mediated pathway 

to inhibit PP2A, and FTY720-P acting as a S1P1 agonist 

elicits signals leading to the Jak2-PI-3Kγ-PKC-SET–
mediated PP2A inhibition [207]. Targeting of I2PP2A/

SET by FTY720 suppresses lung tumour growth at least 

in part via PP2A activation and necroptosis mediated by 

the kinase domain of RIPK1 [208]. 

Other targets of FTY720 

S1PRs

The anti-cancer properties of FTY720 are largely 

independent of its phosphorylation and effects upon 

S1P receptors. AAL(S), a close structural analogue of 

FTY720 that cannot be phosphorylated by SK2, lacks 

immunosuppressive effects, but induces apoptosis 

in lymphocytes [209]. Of note, FTY720 induces a 

downregulation of S1P1 in hepatocellular carcinoma 

[210]. In Hodgkin lymphoma cells S1P-induced migration 

was inhibited by an S1PR1 antagonist and FTY720-p, 

but potentiated by an S1PR2-specific antagonist [211]. 
In contrast, FTY720-P has been demonstrated to induce 

growth of breast and colon cancer cells [151]. 

Autotaxin

Autotaxin, an enzyme that produces 

lysophosphatidic acid from lysophosphatidylcholine in 

plasma, is associated with increased cancer invasion, 

metastasis and angiogenesis, and is over-expressed 

in several human cancers [212-218]. FTY720-p 

competitively inhibits autotaxin while FTY720 does 

not [219]. Conversely, FTY720 reduces plasma 

lysophosphatidic acid in mice [219]. 

Apoptotic pathways

FTY720 induces mitochondrial permeability 

transition and cytochrome c release via an influence 
on the permeability transition pore complex and F

0
F

1
-

ATPase [159]. Cytochrome c binds to Apaf-1 and 

activates caspases that induce apoptotic cell death, which 

is inhibited by Bcl-2 overexpression [159]. Activation of 

caspases has been implicated in FTY720’s pro-apoptotic 

action [147, 148, 163, 179]. In multiple myeloma cells and 

rat thymocytes FTY720 induces activation of caspase-8, 

-9, and -3; poly(ADP-ribose) polymerase cleavage; 

induces mitochondrial membrane potential and Bax 

cleavage and translocation of cytochrome c and SMAC/

Diablo from mitochondria to the cytosol [157, 220]. 

FTY720 induces apoptosis of leukemic cells via activation 

of BIM and BID, which promiscuously bind and inhibit 

anti-apoptotic Bcl-2 proteins Bcl-2, Bcl- XL and MCL-

1, and also activate BAX and BAK [221]. Bcl-2 levels 

regulate the sensitivity to FTY720 in T cell selective 

apoptosis [222]. A Fas-independent, Bcl-associated signal 

transduction pathway and inhibition of ERK activity may 

be involved in FTY720’s anti-cancer properties [223]. The 

anticancer effect of FTY720 on androgen independent 

prostate tumour xenografts is mediated through regulating 

the expression of cell cycle inhibitors such as p21Waf1 and 

promoting apoptosis through modification of apoptosis 
regulators such as Bcl-2 and caspases [146].

PI3K/Akt

In a liver tumour rat model FTY720 suppresses 

tumour growth and progression by selective induction 

of apoptosis of tumour cells via down-regulation of 

phospho-Akt (ser473) and up-regulation of cleaved 

caspase-3, together with decrease of focal adhesion 

kinase [163]. In human prostate cancer cell lines and 

mouse tumors FTY720-mediated radiosensitization is 

caspase independent and linked to SK1 inhibition and 

downregulation of p-Akt [88]. In human breast cancer 

cells FTY720 potentiates radiation effects through 

perturbation of PI3K/Akt and p42/44 mitogen-activated 

protein kinase MAPK [224]. FTY720 down-regulates IL-

6-induced phosphorylation of Akt, signal transducers and 

activators of transcription 3 (Stat3), and MAPK; insulin-

like growth factor-I-triggered Akt phosphorylation; and 

TNFα-induced Iκα and NFκB p65 phosphorylation [157]. 
In neuroblastoma cells FTY720-induced cell death, alone 

or in combination with topotecan, is caspase-independent 

and induces dephosphorylation of Akt and its downstream 

effector BAD with release of cytochrome c, which the 

authors suggested to be due to involvement of 14-3-3 

proteins [225]. Indeed, FTY720 and sphingosine bind 

directly to and regulate the function of pro-survival 

ubiquitous phospho-serine binding 14-3-3 proteins. 

Expression of non-phosphorylatable 14-3-3 in cells 

attenuates apoptosis upon FTY720 treatment [226] and 

protein kinase A [227] and PKCsigma [228] phosphorylate 

14-3-3 in a sphingosine-dependent manner. Recently it 

was suggested that FTY720 induced inhibition of PI3K/

Akt pathway is mediated by phosphorylation of PP2A 

[229]. 

FTY720-induced inhibition of PI3K/Akt pathway 

downregulated mTOR signalling, which was shown to 

be crucial for FTY720-mediated inhibition of migration 
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and invasion of glioblastoma cells [230]. mTOR is a 

key player in prosurvival cell signalling most notably 

regulating transcription and activity of multiple signalling 

molecules through its downstream targets S6 kinase and 

EIF4E transcription factor. It was demonstrated that 

FTY720-induced chemo-sensitization of cisplatin resistant 

melanoma cells is mediated by reduction of mTOR 

activity and the decrease in epidermal growth factor 

receptor expression [188]. 

Cell cycle

FTY720 treatment results in time-dependent 

downregulation of cyclin D1 and accumulation of cells 

in G(0)-G(1) and G(2)-M phases of the cell cycle with 

concomitant decrease in S-phase entry [154]. In prostate 

cancer cells FTY720 acts through modulation of mitogenic 

signaling, cell-cycle regulators (e.g. a decrease in CDK2 

and CDK4 and induction of Cip1/p21) and induction of 

G
1
 arrest, and apoptotic death mediated by mitochondrial 

death pathway as well as the contribution of FAK to 

MAPK pathways [147].

Cell transporters

Some report propose that FTY720’s anti-cancer 

activity may be due to its ability to induce nutrient 

transporter down-regulation [231] or inhibition of 

P-glycoprotein (P-gp) and multidrug resistance protein 

[174].

Autophagy

The evidence about the role of FTY720 in 

autophagy is controversial. FTY720 can induce U266 

multiple myeloma cell apoptosis and autophagy with 

reactive oxygen species (ROS) regulating both of these 

processes [232]. However, this is not always beneficial, 
since in a variety of ovarian cancer cell lines including 

cisplatin-sensitive and cisplatin-resistant cells, the 

autophagy induction by FTY720 was antagonistic to 

cisplatin-mediated apoptosis [233]. A recent study shows 

that a combination of FTY720 and γ-irradiation blocks 
the autophagy flux causing a paradoxical increase of 
autophagosomes in breast cancer cells that die through 

apoptosis [224]. Finally, it was reported that FTY720 

was effective in limiting murine metastatic melanoma 

development in vivo and induced apoptosis regulated by 

ROS and by increased expression of β-catenin in vitro 

without indications of autophagy or necroptosis [234]. 

Cell migration

FTY720 may reduce cell invasion and migration 

through several mechanisms. FTY720 modulates 

roundabout homolog 1 (ROBO1), rho-associated, coiled-

coil-containing protein kinase 1 (ROCK1) and epithelial to 

mesemchymal (EMT) related factors such as E-cadherin, 

N-cadherin and vimentin [235]. FTY720 down regulates 

matrix metalloprotease (MMP)-2 & MMP-9 and 

upregulates tissue inhibitors of metalloproteinases: TIMP1 

& TIMP2 [236]. Finally, FTY720-mediated reduction ion 

cell migration was reported to be mediated by its effects 

on Bcl-2 [146, 154, 167, 170], Stat5 [156], PI3K/Akt/

mTOR/p70S6K pathway [147, 154, 236, 237], FAK [147], 

RhoA-GTPase [149] and integrins [167]. 

EXPERT COMMENTARY

The fact that FTY720 is an FDA-approved drug for 

treatment of progressive multiple sclerosis [238, 239] can 

significantly simplify its clinical implementation for other 
uses, in the case that a clinical benefit is demonstrated. 
However, despite its promising actions against a diversity 

of cancers, FTY720’s S1PR-mediated immunosuppressive 

effects involving T-cell sequestration to lymph nodes limit 

its potential in cancer treatment. T-cells are considered 

as one of the most important mechanisms of anti-cancer 

defence and phosphorylated FTY720 inhibited random 

migration, cytotoxicity and tumour infiltration of activated 
CD3(+)NKG2D(+)CD8(+) T-lymphocytes in a mouse 

xenograft model [240]. In addition to its direct antitumour 

effect, FTY720 has strong immunosuppressive properties, 

specifically against regulatory T cells
 
[181], which can 

contribute to tolerance of malignant tumour cells [182]. 

It has therefore been suggested to evaluate the use of 

FTY720 in patients with post-transplant malignancies 

[183]. There are several reports suggesting a direct 

influence of FTY720-p on cancer cells ranging from 
induction of growth in breast and colon cancer cells to 

inhibition of cancer cell migration. Currently, there is no 

consensus about the overall role of FTY720-p in cancer 

progression. 

These potentially undesired effects of FTY720-p 

can be overcome by several ways. One potential way 

is by blocking FTY720 phosphorylation. OSU-2S, a 

synthetic derivative of FTY720, demonstrates more 

potent anti-tumour activity and lacks S1PR-mediated 

immunosuppressive effects [241]. OSU-2S displays 

satisfactory pharmacokinetic properties as shown using a 

liquid chromatography-tandem mass spectrometry (LC-

MS/MS) [242]. Through CCL tumour antigen ROR1-

targeted delivery, OSU-2S induces activation of PP2A, 

phosphorylation and nuclear translocation of SHP1S591 

and deregulation of multiple cellular processes in CCL 

resulting in potent cytotoxicity [206]. 

Another way of limiting the immune suppressing 

effects of FTY720 is its tissue targeting and release 

control. A liposomal carrier of FTY720 (LP-FTY720) 

exhibits high drug loading ratio, prolonged in vitro 

release rate and beneficial pharmacokinetic properties 
in vivo compared to free FTY720 [243]. Incorporating 

tumour specific antibodies (anti-CD19, anti-CD20 
and anti-CD37) achieved higher delivery and killing 

efficiency in primary CLL cells ex vivo which may be 

beneficial for targeting hematologic diseases where 
FTY720 induces T cell apoptosis [243]. Enhanced 
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targeting of FTY720 through CD37 and CD19 dual 

immunoliposomes may improve the clinical efficacy of 
FTY720 in B-Cell lymphocytic leukaemia [244]. 

Alternatively, the immunosuppressive action 

of FTY720 can be reduced by a blockade of immune 

inhibitory pathways using anti-CTLA-4 mAb, anti-PD-L1 

mAb, and/or the indoleamine-pyrrole 2,3-dioxygenase 

(IDO) inhibitor INCB23843 which restored IL-2 

production, proliferation of intratumoural T cells, and 

tumour growth control in FTY720 treated murine B16.

SIY melanoma model [245].

Another way of exploiting FTY720’s anti-cancer 

activity is to mimic its effects on downstream targets 

using alternative small molecule inhibitors. An example 

of such approach is FTY720-induced nutrient transporter 

down-regulation [231]. O-substituted benzyl ethers of 

pyrrolidines induce nutrient transporter down-regulation 

and lack FTY720’s S1P receptor-related dose-limiting 

toxicity in human leukaemia cells [231].

Importantly, in many of the cancer studies cited in 

this review, FTY720 was applied at a dosage in excess 

of that used in multiple sclerosis patients, who currently 

receive 0.5 mg once-daily dose. The known adverse effects 

at this dose include: lymphopenia, increased alanine 

aminotransferase, herpes zoster infection, hypertension, 

first-dose bradycardia, and first-degree atrioventricular 
block [239, 246], reviewed in [88]. Higher doses of 

FTY720 that may be necessary for cancer treatment may 

be associated with more adverse events or unpredictable 

off-target effects, and this needs to be addressed by further 

studies. 

At the moment it is unlikely that FTY720 may 

be used as a monotherapy for any cancer, at least in its 

pure form. However, a multitude of studies has shown its 

potentiating effect on many therapies including standard 

DNA-targeting and antimitotic therapies and γ-irradiation. 
Therefore, one of the most important steps in its clinical 

implementation is finding the key combinations where 
FTY720 can act in synergy with the currently used 

therapies inducing sensitisation and overcoming cancer 

therapy resistance. 

Another important step is defining the patient 
populations that will most benefit from the FTY720 
therapy. This could be largely based on the tumour 

expression of the multiple FTY720 targets described in 

this review. It may be that some subsets of tumours would 

be particularly sensitive to this therapy. This approach can 

be helped by the large scale sequencing studies currently 

undertaken in several countries with the aim of defining 
specific cancer mutations/genetic aberrations in large 
groups of patients. For example it was shown that cancer 

cells overexpressing pp32r1 or a pp32r1Y140H functional 

mutant in the ANP32C oncogene that is overexpressed in 

breast, prostate and pancreatic tumours, may demonstrate 

enhanced resistance to FTY720 treatment through 

conserved residue F136, likely to be a key determinant 

of the FTY720 binding site [247]. However it is not 

known whether this mutation is present in large human 

populations.

Overall, FTY720 is a clinically approved therapy 

for multiple sclerosis and a potent apoptosis inducer and 

anticancer agent with a proven efficiency in multiple in 

vitro and in vivo anticancer models. While the clinical 

transition of FTY720 is currently limited by its immune 

suppression effects, in our opinion studies aiming at the 

FTY720 delivery and release together with identifying its 

key synergetic combinations and relevant patient subsets 

may lead to its re-evaluation and rapid introduction into 

the clinic. 

FIVE-YEAR VIEW

We hypothesise that in 5 years the use of targeted 

FTY720 delivery or its specific non-immunosuppressive 
analogues will allow its clinical trials for treatment of 

cancer. Its combinations with other chemotherapies may 

prove more efficient than its use as a monotherapy. 

KEY ISSUES

FTY720 demonstrates a proven efficacy in multiple 
in vitro and in vivo cancer models.

FTY720 inhibits sphingosine kinase 1, a proto-

oncogenic enzyme with in vitro and clinical cancer 

association.

FTY720’s has actions on several other molecular 

targets including protein phosphatase 2A, the PI3K/Akt 

pathway, cell cycle regulators, cell transporters, autotaxin 

and the mitochondrial permeability transition pore.

FTY720 is a FDA-approved drug for multiple 

sclerosis, which can significantly simplify its clinical 
implementation for other uses.

Targeted FTY720 delivery and release together with 

identifying its key synergetic combinations and relevant 

patient subsets may lead to its rapid introduction into the 

clinic.
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