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Abstract

Renal disease affects millions of people worldwide, imposing an enormous financial burden for 

health-care systems. Recent evidence suggests that mitochondria play an important role in the 

pathogenesis of different forms of renal disease, including genetic defects, acute kidney injury, 

chronic kidney disease, aging, renal tumors, and transplant nephropathy. Renal mitochondrial 

abnormalities and dysfunction affect several cellular pathways, leading to increased oxidative 

stress, apoptosis, microvascular loss, and fibrosis, all of which compromise renal function. Over 

recent years, compounds that specifically target mitochondria have emerged as promising 

therapeutic options for patients with renal disease. Although the most compelling evidence is 

based on preclinical studies, several compounds are currently being tested in clinical trials. This 

chapter provides an overview of the involvement of mitochondrial dysfunction in renal disease and 

summarizes the current knowledge on mitochondria-targeted strategies to attenuate renal disease.
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1 Introduction

Renal disease encompasses acute or chronic conditions that damage the kidneys and reduce 

their function. It remains an increasing public health issue that affects a significant 

proportion of the world’s population and is associated with tremendous medical costs (Jha et 

al. 2013). Furthermore, its short-term and long-term complications increase cardiovascular 

and all-cause morbidity and mortality rates. For example, acute kidney injury (AKI), 
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characterized by a rapid loss of renal function, may result in fluid overload, electrolyte 

abnormalities, and coagulopathy, which might contribute to multi-organ failure. Likewise, 

gradual loss of kidney function, known as chronic kidney disease (CKD), is associated with 

grave complications, including cardiovascular disease, anemia, mineral and bone disorders, 

and cognitive decline. Moreover, congenital and inherited disorders, tumors, and aging may 

compromise kidney function and adversely impact several organ systems. Ultimately, all 

these conditions can progress toward end-stage renal disease (ESRD), requiring costly and 

renal replacement therapy. Alas, adequate strategies to prevent progressive renal dysfunction 

are in dire need.

The kidney receives 20% of the cardiac output and utilizes 10% of body oxygen 

consumption to accomplish its primary function, regulating the body fluid composition 

through filtering and reabsorbing materials. This process occurs at the level of the nephron, 

the functional unit of the kidney, by both energy-dependent and independent mechanisms. 

The most energy demanding process of the kidney is reabsorption of solutes, which occurs 

both passively and actively by the renal tubular cells, which consume adenosine triphosphate 

(ATP) generated exclusively by aerobic metabolism. Congruently, tubular cells are rich in 

mitochondria, and mitochondrial injury and dysfunction bear harmful consequences on 

multiple renal cell functions.

Accordingly, increasing evidence indicates that mitochondrial damage and dysfunction in 

renal disease (Fig. 1) may contribute to the multiple underlying pathological processes (Che 

et al. 2014). Acute or chronic insults might compromise mitochondrial structure, evoking 

mitochondrial DNA (mtDNA) damage, decreased matrix density, and/or impaired outer and 

inner membrane integrity. Furthermore, renal disease has been associated with changes in 

mitochondrial homeostasis, the molecular control of mitochondrial formation (biogenesis), 

morphology (fusion/fission), and degradation (mitophagy). Finally, mitochondrial 

abnormalities and impaired homeostasis lead to bioenergetic dysfunction (reduced ATP 

generation and calcium signaling), triggering oxidative stress and apoptosis. Therefore, over 

the past few years, mitochondria have emerged as novel therapeutic targets in renal diseases. 

Small molecules that specifically concentrate within mitochondria include mitochondrial 

permeability transition pore (mPTP) inhibitors, antioxidants, biogenesis activators, fission 

inhibitors, gene therapy, and cardiolipin protection (Tabara et al. 2014). The efficacy of these 

compounds has been tested in several in vitro and in vivo experimental studies, as well as in 

few clinical trials. In this chapter, we evaluated and summarized evidence implicating 

mitochondrial dysfunction in the pathogenesis of renal disease, with particular attention to 

studies testing the potential of promising mitochondria-targeted therapies for ameliorating 

renal injury and dysfunction.

2 Evidence of Mitochondrial Injury in Renal Disease

2.1 Mitochondrial Genetic Defects

Mitochondrial cytopathies (MCs) encompass a group of disorders characterized by 

mitochondrial or nuclear DNA mutations in genes encoding for mitochondrial proteins. MCs 

can affect any organ, but have predilection for those dependent upon mitochondrial energy 

supply (Finsterer 2004). Mutations resulting in MCs could be either inherited (primary MCs) 
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or imposed by exogenous factors (secondary MCs), such as drugs or increased oxidative 

stress. In the kidney, MCs commonly manifest as glomerular disease, tubular dysfunction, 

renal cysts, or neoplasia.

A point mutation in the mitochondrial tRNAleu (UUR) at position 3243 (A3243G) has been 

associated with focal and segmental glomerulosclerosis (FSGS) (Dinour et al. 2004), an 

important cause of nephrotic syndrome in children and adolescents that frequently 

progresses to ESRD. This mutation causes mitochondrial myopathy, encephalomyopathy, 

lactic acidosis, and stroke-like episodes (MELAS) syndrome, as well as maternally inherited 

diabetes and deafness. Renal biopsies of patients with MELAS-associated FSGS reveal 

numerous abnormal mitochondria in tubular cells and podocytes, associated with severe 

effacement of foot processes (Gucer et al. 2005), implicating mitochondrial alterations in the 

pathogenesis of FSGS.

MCs have been also linked to renal tubular dysfunction, which mainly manifest as Bartter-

like or Fanconi syndromes. The most common tubular defect associated with MCs is Toni-

Debré-Fanconi syndrome, a rare disorder characterized by impaired tubular reabsorption. 

Mutations and large mtDNA deletions have been reported in patients with this syndrome 

(Lee et al. 2012), associated with mitochondrial respiratory complex defects and giant 

atypical mitochondria (Au et al. 2007). Kearns–Sayre syndrome, an MC caused by deletions 

of mtDNA and characterized by isolated involvement of the muscles controlling eyelid 

movement, may present with renal involvement resembling Barter syndrome (Emma et al. 

2006). Patients with Barter syndrome suffer from electrolyte abnormalities due to mutations 

in ion transporters, which impair the ability to reabsorb potassium. Renal biopsies of patients 

with Kearns–Sayre and Bartter-like syndrome show ultrastructural changes in mitochondria 

in the thick ascending loop of Henle, associated with impaired cytochrome-c oxidase (COX) 

activity and fibrosis (Goto et al. 1990), implicating mitochondrial structural and functional 

impairment in the pathogenesis of tubular derangements.

Bilateral enlarged cystic kidneys have been also documented in patients with mitochondrial 

cytopathies including mutations of the mitochondrial tRNA genes (Guery et al. 2003). 

Furthermore, glomerulocystic kidneys have been reported in association with Leigh disease, 

a MC caused by mutations in the Surfeit locus protein-1 gene and COX assembly factors 

(Lake et al. 2015).

Lastly, MCs might coexist with renal tumors. Rare cases of patients with MELAS associated 

with renal cell carcinoma (RCC) have been previously reported. Mutations of components of 

the mitochondrial oxidative phosphorylation complex have been described in benign and 

malignant renal tumors (Housley et al. 2010; Ricketts et al. 2008). Furthermore, a high 

mutational rate of the mtDNA has been observed in benign renal tumors (Gasparre et al. 

2008) and tumors arising in ESRD (Nagy et al. 2003), implicating MCs in renal 

tumorigenesis.

2.2 AKI

AKI has increased in incidence over the last decades and is currently responsible for 2% of 

hospitalized patients in the USA. AKI may result from prerenal (hypoperfusion), renal 
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(intrinsic damage), or post-renal (urinary tract/venous obstruction) causes that trigger a rapid 

decline in GFR, associated with tubular necrosis, vascular changes, and interstitial 

inflammation. Evidence suggests that mitochondrial damage is associated with important 

events in the pathogenesis of several etiologies of AKI, including toxic, ischemic, septic, and 

hypertensive injury.

Toxic Injury—Several studies have documented mitochondrial structural and functional 

changes in kidneys exposed to exogenous drugs or toxins. Cyclosporine (Yuan et al. 2005) 

and cisplatin (Zsengeller et al. 2012) nephrotoxicity is characterized by decreased 

mitochondrial mass, disruption of cristae, and extensive mitochondrial swelling, as shown in 

murine studies. Similarly, kidney mtDNA depletion and ultrastructural mitochondrial 

abnormalities were reported in human immunodeficiency virus-infected patients treated with 

antiretroviral therapy (Cote et al. 2006).

Renal mitochondrial structural abnormalities are often associated with impaired 

bioenergetics. Cisplatin-induced renal mitochondrial injury in mice is accompanied by 

reduced nicotinamide adenine dinucleotide dehydrogenase (NADH) and COX activity, 

indicating impaired mitochondrial function (Mukhopadhyay et al. 2012). Likewise, mtDNA 

depletion and loss of mitochondrial mass are associated with decreased COX efficiency in 

patients treated with the antiretroviral drug tenofovir (Lopez et al. 2006).

Nephrotoxic drugs can also compromise mitochondrial homeostasis. Renal mitochondrial 

biogenesis is suppressed in folic acid-induced AKI, disclosed by decreased expression of its 

master regulator, peroxisome proliferator gamma coactivator 1α (PGC-1α) (Stallons et al. 

2014). In addition, expression of dynamin-related protein (DRP)-1, which mediates outer 

mitochondrial membrane fission, is markedly upregulated in mice kidneys with glycerol-

induced AKI, suggesting mitochondrial fragmentation (Funk and Schnellmann 2012). 

Moreover, expression of the autophagic marker microtubule-associated protein 1A-/1B-light 

chain 3 (LC3) is elevated in these animals, implying mitochondrial degradation.

Drug-induced changes in mitochondrial structure, function, and homeostasis may promote 

apoptosis. In rodent models of cisplatin-induced nephrotoxicity, mitochondrial outer 

membrane permeabilization triggers mitochondrial fragmentation, cytochrome-c release, and 

apoptosis (Brooks et al. 2009). Renal tubular epithelial cells of rats exposed to the organic 

compound ethylbenzene show damaged mitochondria with vacuolar structure, associated 

with increased numbers of apoptotic cells, and upregulated expression of the apoptogenic 

factor cytochrome-c, suggesting mitochondria-mediated renal tubular cell apoptosis (Zhang 

et al. 2010).

Obstructive Injury—Obstruction in the urinary tract below the kidneys is a frequent 

problem, but accounts for only 5–10% of AKI. Tubular atrophy and nephron loss due to 

unilateral ureteral obstruction in rodents is associated with increased mitochondrial 

hydrogen peroxide production, autophagy, and apoptosis (Xu et al. 2013). These changes 

were confirmed by in vitro studies in renal tubular cells exposed to oxalate, a major 

component of kidney stones, demonstrating that obstructive AKI induce parallel autophagy 

and mitochondrial dysfunction-mediated apoptosis (Cao et al. 2004).
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Septic Injury—Sepsis is a frequent cause of AKI in critically ill patients. Mitochondrial 

damage is thought to play an important role in the pathogenesis of septic AKI (Parikh et al. 

2015). For example, Staphylococcus aureus-induced sepsis damages renal mDNA in the 

mouse kidney, leading to induction of the nuclear program of mitochondrial biogenesis 

(Bartz et al. 2014). Similarly, administration of lipopolysaccharide in mice increases renal 

tubular cytochrome-c release into the cytosol and active caspase-3 expression, implying 

mitochondria-dependent apoptosis (Stoyanoff et al. 2014). Renal tubular cells from septic 

mice show mitochondrial ultrastructural changes and reduced expression of COX (Choi et 

al. 2013), which may contribute to renal tubular cell apoptosis and AKI in sepsis.

Ischemic Injury—An abrupt interruption or decrease in renal oxygen supply and 

ischemia–reperfusion injury (IRI) are the most common causes of AKI and kidney allograft 

dysfunction. Several studies suggest that mitochondrial damage plays a pivotal role in 

ischemic AKI, contributing to renal dysfunction. Mitochondria respiratory capacity is 

significantly reduced in rats with uncontrolled hemorrhagic shock (Li et al. 2012b), 

associated with increased mitochondrial reactive oxygen species (ROS) and lipid 

peroxidation (Wang et al. 2015a).

Renal IRI in rats is characterized by rounded, swollen renal tubular cell mitochondria with 

disrupted cristae membranes and release of matrix materials into the cytosol (Szeto et al. 

2011). Mitochondrial respiration and ATP production decreases, whereas oxidative stress 

increases, suggesting mitochondrial structural and functional decline. Autophagy and 

mitophagy are activated in both in vivo and in vitro models of renal IRI (Ishihara et al. 

2013). We have shown in swine renovascular disease that ongoing post-stenotic 

inflammatory and pro-fibrotic injury that renal revascularization fails to reverse is associated 

with impaired renal mitochondrial biogenesis, apoptosis, and oxidative stress, implicating 

mitochondrial homeostasis in the pathogenesis of renal IRI (Eirin et al. 2012). Finally, IRI in 

kidney transplants has been associated with increased renal tubular expression of 

proapoptotic molecules and diffuse cytosolic distribution of cytochrome-c, suggesting 

activation of mitochondria-dependent apoptosis (Castaneda et al. 2003).

2.3 CKD

The prevalence of CKD is estimated to be 8–16% worldwide and is associated with 

catastrophic health expenditures. Importantly, many uremic conditions are associated with 

changes in mitochondrial structure and dysfunction.

Diabetic Nephropathy—Diabetic kidney disease is the leading cause of CKD, accounting 

for 42% of patients on ESRD. Importantly, severity of CKD predicts all-cause mortality in 

type-1 and type-2 diabetes mellitus. Studies have suggested that mitochondrial abnormalities 

and dysfunction might favor the development and progression of diabetic nephropathy.

Apoptotic tubular cells and dysmorphic mitochondria were observed in the kidneys of 

diabetic mice, associated with decreased mtDNA content and altered mitochondrial function 

(Sun et al. 2008). COX-III activity is significantly decreased and contributes to oxidant 

production in diabetic renal mitochondria (Munusamy et al. 2009). In agreement, diabetic 

mice show decreased renal mitochondrial ATP production and excess generation of 
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superoxide (Tan et al. 2010), a ROS with the ability of exacerbating renal mitochondrial 

dysfunction in hyperglycemic rats (Munusamy and MacMillan-Crow 2009). In line with this 

finding, studies in two murine models of type-1 and type-2 diabetes showed that glucose-

induced mitochondrial ROS production initiates podocyte apoptosis in vitro and in vivo 

(Susztak et al. 2006). Moreover, polymorphisms in the mitochondrial antioxidant superoxide 

dismutase (SOD)-2 are associated with progressive renal functional decline in patients with 

type-1 diabetes (Mohammedi et al. 2014), suggesting that mitochondrial oxidative stress 

constitutes a major pathway resulting in diabetic renal injury.

Mitochondrial homeostasis seems to play an important role in diabetic nephropathy. 

Overexpression of the fusion marker mitofusin-2 attenuates pathological changes in the 

kidneys of diabetic rats (Tang et al. 2012). Likewise, renal expression of PGC-1α is 

downregulated in patients with both diabetes and CKD. Urine metabolome in patients with 

diabetic kidney disease reveals metabolites linked to mitochondrial metabolism and reduced 

mitochondrial content of urinary exosomes, suggesting suppression of mitochondrial activity 

in diabetic kidney disease (Sharma et al. 2013).

Hypertensive Injury—Experimental studies directly implicate mitochondrial injury in the 

development and progression of renal hypertension (Eirin et al. 2015). In kidneys from 

spontaneously hypertensive rats, mitochondrial membrane potential, nitric oxide synthase, 

COX activity, and mitochondrial uncoupling protein-2-content were reduced, suggesting that 

hypertension occurs in concurrence with a decline of kidney mitochondrial function (de 

Cavanagh et al. 2006). Furthermore, expression of SOD-2 is blunted in hypertensive rats, 

and its deficiency is associated with activation of intrarenal inflammatory and ROS-

generating pathways (Jin and Vaziri 2014). Finally, a proteomic analysis of mitochondria 

isolated from medullary thick ascending limb cells identified seven differentially expressed 

proteins between hypertensive and control rats involved in mitochondrial metabolism and 

oxygen utilization (Zheleznova et al. 2012). These observations highlight the critical role of 

renal mitochondrial injury in the pathogenesis of hypertensive CKD, although it remains 

unknown whether mitochondrial abnormalities are primary or secondary to hypertension.

Ischemic Injury—Chronic underperfusion of the renal parenchyma secondary to renal 

artery stenosis (RAS) is an important cause of CKD in the elderly population and has been 

linked to mitochondrial structural alterations and dysfunction. In the rat RAS model, 

necrotic death of tubular epithelial cells in the clipped kidneys is dependent on upregulation 

and mitochondrial translocation of the pro-mitophagy protein BCL2/adenovirus E1B 19 kDa 

protein-interacting protein-3, associated with impaired mitochondrial biogenesis, mass, and 

mtDNA copy number (Fedorova et al. 2013). Furthermore, in swine atherosclerotic RAS, the 

post-stenotic kidney exhibits loss of cardiolipin, a phospholipid exclusively distributed in the 

inner mitochondrial membrane that regulates mitochondrial structure and function 

(Klingenberg 2009), associated with apoptosis, oxidative stress, microvascular loss, fibrosis, 

and renal dysfunction (Eirin et al. 2014). Taken together, these studies implicate 

mitochondrial structural and functional alterations in the pathogenesis of ischemic CKD.

Glomerulonephritis—Chronic glomerulonephritis accounts for approximately 10% of all 

causes of CKD. Accumulation of abnormal-shaped mitochondria are commonly found in 
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podocytes, distal tubules, and collecting ducts of patients with genetically proven 

mitochondrial disease and secondary FSGS (Kobayashi et al. 2010). Mutation of pro-

autophagic genes in mice during nephrogenesis causes podocyte and tubular cell 

mitochondrial abnormalities that precede the appearance of FSGS (Kawakami et al. 2015), 

suggesting that impaired autophagic mitochondrial turnover is sufficient to recapitulate the 

characteristic features of FSGS in mice.

Polycystic Kidney Disease (PKD)—Comparative proteomics analysis implicates 

mitochondria in autosomal recessive PKD, a genetic disorder characterized by cyst 

development. Abnormally expressed proteins in PKD include proteins involved in biological 

processes related to signal transduction, cell cycle regulation, and electron transport, which 

play key roles in the pathogenesis of PKD (Li et al. 2012a). Notably, 13 of these proteins, 

including SOD-2, COX subunit Va, and peroxiredoxin-3, are localized in mitochondria, 

implying that mitochondrial dysfunction partly contributes to renal injury in PKD.

2.4 Renal Tumors

Tumors can originate from different renal cell types, and their incidence has increased in the 

last two decades. Mitochondrial damage has been suggested to be causally linked to benign 

renal tumors and RCCs (Hervouet and Godinot 2006; Hervouet et al. 2007). A recent 

clinical trial indicates that low mitochondrial DNA copy number in peripheral blood 

leukocytes is associated with significantly increased risk of clear cell RCC (Melkonian et al. 

2015). Furthermore, decreased renal tumor expression of cytochrome-c and human 8-

oxoguanine DNA glycosylase-1, a DNA repair protein located in the mitochondria, has been 

reported, implicating mitochondrial loss and defective DNA repair in tumor development or 

progression (Mukunyadzi et al. 2003). Mitochondrial dysfunction in patients with RCC 

correlates with oxidative phosphorylation complexes content and ATPase activity rather than 

to the mtDNA content, suggesting that decreased mitochondrial capacity primarily favors 

tumor invasiveness (Simonnet et al. 2002). Contrarily, the number of enzymes involved in 

mitochondrial energy metabolism is reduced in RCC, but does correlate with tumor grade, 

metastasis, or proliferative activity, implying that low renal mitochondrial activity is an early 

event in RCC formation (Meierhofer et al. 2004).

Renal oncocytoma is a rare and almost invariably benign tumor. Interestingly, renal 

oncocytomas show mitochondria with piled lamellar cristae, whereas chromophobe RCCs 

exhibit mitochondria with tubulovesicular cristae (Barcena et al. 2010). Despite increased 

COX activity, complex-I activity is decreased in renal oncocytomas (Simonnet et al. 2003), 

associated with increased number of mitochondrial vacuoles, suggesting increased 

mitophagy (Koller et al. 2000).

2.5 Aging

Aging is associated with gradual loss of function in the kidney, accompanied by mesangial 

expansion, glomerulosclerosis, and interstitial fibrosis. Aged rats show aging-associated 

ultrastructural changes in kidney mitochondria, disclosed by ill-defined cristae and reduced 

density, associated with increased mitochondrial hydrogen peroxide production and 

impaired respiratory control, antioxidant activity, and uncoupling protein-2 levels (de 
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Cavanagh et al. 2003). Furthermore, reduction of age-associated renal damage in mice 

chronically treated with angiotensin-converting enzyme inhibitors is accompanied by 

increased number of mitochondria in the proximal tubules (Ferder et al. 2002), implicating 

mitochondria in the pathogenesis of age-related kidney disease.

Importantly, mitochondria regulate permanent cell growth, modulating cellular senescence, 

leading to a state of irreversible growth arrest (Ziegler et al. 2015). In line with this notion, 

oxidative stress and cell senescence promote tubular cell apoptosis and mitochondrial 

dysfunction in vitro, impairing the kidney’s regenerative potential (Small et al. 2012). In old 

rats, increased expression of markers of senescence, such as p16 and senescence-associated-

galactosidase, is accompanied by decreased expression of autophagosome and mitophagy 

markers (Cui et al. 2013). Interestingly, these changes are exacerbated in animals fed with a 

high-calorie diet, but ameliorated in those with calorie restriction, suggesting that diet 

modulates mitochondrial degradation and recycling that occur in the aging kidney. In aged 

diabetic rats, oxidative stress promotes mitochondrial oxidative dysfunction, reflected as 

increased lipid peroxidation and decreased glutathione activity (Perez-Gallardo et al. 2014). 

Notably, nonsteroid anti-inflammatory drugs do not aggravate aging-induced injury (Rocha-

Rodrigues et al. 2013).

2.6 Chronic Allograft Injury

Chronic allograft nephropathy, characterized by a slow decline in renal function more than 

three months posttransplant, remains one of the most common causes of ESRD. Several 

immunological risk factors for chronic allograft dysfunction have been suggested, yet non-

immunological mediators of this progressive injury largely remain unknown. A recent study 

that analyzed gene expression microarray of kidney transplant biopsies taken one year after 

transplantation revealed a unique molecular signature of impaired mitochondrial function, 

characterized by inadequate mitochondrial energy generation, biogenesis, and antioxidant 

response (Zepeda-Orozco et al. 2015). These observations support development of 

mitochondria-targeted treatments to slow the progression of chronic allograft dysfunction.

3 Renal Mitochondrial Targeting

In recent years, several mitochondria-targeted strategies have been designed to prevent or 

attenuate renal disease (Fig. 2). Although their efficacy in human renal disease needs to be 

explored, several studies demonstrated their ability to attenuate renal injury in experimental 

animal models.

3.1 Genetic Therapy

Neutralizing deleterious mtDNA alterations using targeted mitochondrial RNA import is a 

novel and promising therapy for rescuing mitochondrial function in patients with MCs. 

Mitochondrial defects in cytoplasmic hybrid (cybrid) cells derived from patients with 

myoclonic epilepsy with ragged red fibers (MERRF) and MELAS can be partially rescued 

by targeted import of allotopically encoded wild-type tRNAs, an approach that specifically 

targets mRNA to the mitochondrial outer membrane (Wang et al. 2012). Notably, functional 

defects in mitochondrial RNA (mtRNA) translation and cell respiration were reversed in 
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MERRF and MELAS cybrids cells. Similarly, mitochondrial targeting of recombinant 

tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase 

rescues the phenotype caused by MELAS mutation in cultured transmitochondrial cybrid 

cells (Karicheva et al. 2011), whereas yeast tRNALys derivatives expressed in human 

immortalized cells and primary fibroblasts rescue mitochondrial functions in cultured cells 

from patients with the MERRF syndrome, underscoring the potential of these transcript 

engineering approaches to confer mitoprotection and mitigate renal injury in patients with 

MCs.

3.2 Biogenesis Activators

Synthesis and assembly of new mitochondria involve multiple coordinated processes tightly 

regulated by PGC-1α. Silent mating-type information regulation 2 homolog (SIRT)-1 is a 

NAD-dependent deacetylase that positively regulates PGC-1α activity and restores renal 

expression of PGC-1α, mitochondrial mass, ATP levels, and renal function in rats with 

ischemia–reperfusion injury (Funk and Schnellmann 2013; Khader et al. 2014). In line with 

this, treatment with the SIRT-1 activator resveratrol protects mice against aldosterone-

induced podocyte injury by upregulating PGC-1α (Yuan et al. 2012). Resveratrol 

supplementation following hemorrhagic shock in rats also restores mitochondrial respiratory 

capacity and decreases mitochondrial ROS production and lipid peroxidation (Wang et al. 

2015a), underscoring SIRT-1/PGC-1α axis activation as therapeutic approach.

Agonists for the β2-adrenoceptors induce mitochondrial biogenesis in both the renal 

proximal tubular cells and cardiomyocytes, disclosed by increased mtDNA copy numbers, 

oxygen consumption rate, and mRNA levels of PGC-1α and multiple genes involved in 

mitochondrial regulation (Wills et al. 2012). Moreover, the β2-adrenergic receptor agonist 

formoterol in mice with IRI-induced AKI restores renal function, rescues renal tubules from 

injury, and diminishes necrosis (Jesinkey et al. 2014). However, long-acting β2-adrenoceptor 

agonists, including formoterol, impair cardiac relaxation, mitochondrial protein synthesis, 

and oxidative capacity, limiting its clinical translation (Leger et al. 2011).

3.3 Mitochondrial Antioxidants

Mitochondrial ROS has been implicated in the pathogenesis of several types of renal disease, 

which often results from an imbalance between mitochondrial ROS production and 

antioxidant defenses. Thus, compounds that specifically target mitochondria may confer 

greater protection against renal injury due to increased mitochondrial ROS generation than 

untargeted cellular antioxidants such as vitamin E or N-acetylcysteine.

Several triphenylalkylphosphonium cation (TPP+)-conjugated antioxidants have been 

designed to reduce mitochondrial ROS. These positively charged compounds can cross the 

mitochondria-phospholipid bilayer and concentrate in their matrix in a membrane potential-

dependent manner, where they exert potent antioxidant properties by sequestering ROS. 

Conjugating TPP+ to lipophilic antioxidants such as coenzyme-Q (MitoQ) attenuates renal 

dysfunction due to several types of AKI and CKD. For example, administration of MitoQ 

prior to bilateral renal ischemia in mice decreases mitochondrial oxidative damage and renal 

dysfunction (Dare et al. 2015). Furthermore, addition of MitoQ to cold storage solution 
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(during kidney transplantation) preserves mitochondrial function by decreasing oxidative 

stress and tubular damage in isolated rat and porcine kidneys (Parajuli et al. 2012). In a 

genetic model of type-1 diabetes, increased proteinuria and tubulointerstitial fibrosis were 

also attenuated by MitoQ (Chacko et al. 2010). Importantly, MitoQ has been shown to be 

safe for patients with Parkinson’s disease (NCT00329056), fatty liver disease 

(NCT01167088), and hepatitis C (NCT00433108), encouraging future clinical studies in 

renal disease.

MitoTEMPO, a piperidine nitroxide conjugated to a TPP+ (Sims et al. 2014), scavenges 

ROS in the mitochondria, reverses renal mitochondrial dysfunction, and attenuates sepsis-

induced AKI in mice (Patil et al. 2014). Treatment with either MitoTEMPO or conjugated 

TPP+ with α-tocopherol (MitoE) improves mitochondrial respiration and reduces oxidative 

stress and inflammation in septic rats kidneys (Lowes et al. 2013), whereas TPP+ 

conjugation with the SOD mimetic nitroxide (MitoCP) prevents mitochondrial damage and 

renal injury in mice with cisplatin-induced nephropathy (Mukhopadhyay et al. 2012).

In addition to TPP+-conjugated drugs, several antioxidants have been successfully delivered 

into renal mitochondria. Mitochondria-targeted antioxidants of the SkQ group such as 

plastoquinonyl-decyl-triphenylphosphonium (SkQ1) and plastoquinonyl decylrhodamine 19 

(SkQR1) are positively charged compounds that prevent IRI-induced AKI (Plotnikov et al. 

2012) and ameliorate gentamicin-induced damage of rat kidney (Jankauskas et al. 2012). 

Likewise, specific mitochondrially targeted heme oxygenase (HO)-1 protects against 

hypoxia-dependent renal epithelial cell death and loss of mitochondrial membrane potential 

(Bolisetty et al. 2013). HO-1 is a potent cytosolic antioxidant enzyme that translocates to the 

mitochondrion under conditions of oxidative stress and modulates their biogenesis 

(Piantadosi and Suliman 2012). Taken together, these results suggest that mitochondrially 

targeted antioxidants represent a novel approach to prevent or attenuate several forms of 

kidney injury.

3.4 mPTP Inhibitors

Opening of the mPTP, a channel formed in the inner membrane of the mitochondria in 

response to certain pathological conditions, plays a central role in several forms of AKI. 

Indeed, mPTP inhibitors have been shown to ameliorate renal IRI and shock-induced AKI.

In addition to its well-known immunosuppressive properties, cyclosporine-A (CSA) is a 

potent inhibitor of the mPTP, which acts by interacting with cyclophilin D, an essential 

structural component of the pore that regulates its calcium and ROS-mediated activation 

(Kim et al. 2014). In small clinical trials in patients with myocardial infarction undergoing 

reperfusion, CSA showed ability to reduce infarct size (Piot et al. 2008), but a recent 

randomized clinical trial failed to confirm its efficacy to improve clinical outcomes (Cung et 

al. 2015). Currently, two more clinical trials are testing safety and effectiveness of CSA in 

cardiac arrest (NCT01595958) and severe traumatic brain injury (NCT01825044). CSA 

improves renal function, histopathological damage, and antioxidant enzyme status in rats 

with renal IRI (Singh et al. 2005) and preserves rat kidneys subjected to traumatic 

hemorrhagic shock (Lei et al. 2015). Yet, high-dose CSA would shift mitochondrial 

dynamics toward fission (de Arriba et al. 2013); decrease activity of the mitochondrial Krebs 
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cycle, oxidative phosphorylation, and electron transfer (Puigmule et al. 2009); and result in 

nephrotoxicity, limiting their use in patients with renal disease (Issa et al. 2013).

Targeting glycogen synthase kinase (GSK) 3β, a ubiquitous serine–threonine protein kinase 

that phosphorylates cyclophilin D and promotes mPTP opening, has also shown promising 

therapeutic potential for preventing toxic AKI. The GSK3β inhibitor 4-benzyl-2-

methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) confers protection against podocyte injury 

in a murine model of adriamycin-induced AKI (Wang et al. 2015b). Likewise, TDZD-8 

diminishes mitochondrial permeability transition, improves acute kidney dysfunction, and 

ameliorates tubular injury in mice with nonsteroidal anti-inflammatory drug-induced AKI 

(Bao et al. 2012), suggesting GSK3β inhibition as adjunct therapy in drug-induced AKI.

3.5 Cardiolipin Protection

Peroxidation and loss of cardiolipin has been shown to play a crucial role in the 

pathogenesis of several forms of AKI and CKD, leading to discovery and development of 

cardiolipin-targeted compounds. Szeto–Schiller (SS)-31 is a tetrapeptide that concentrates in 

the mitochondria and selectively binds to cardiolipin, preventing its peroxidation and loss, as 

well as the transformation of cytochrome-c into a peroxidase (Birk et al. 2013; Szeto 2014).

Administration of SS-31 in rats before onset of ischemia and at the onset of reperfusion 

prevents mitochondria swelling and protects cristae membranes in endothelial and tubular 

cells four weeks after bilateral renal ischemia, associated with increased number of 

peritubular capillaries and cortical arterioles and decreased interstitial inflammation and 

fibrosis (Liu et al. 2014). In rats, SS-31 reduces oxidative stress and inflammation, 

preventing AKI caused by warm IRI (Szeto et al. 2011) and unilateral ureteral obstruction 

(Mizuguchi et al. 2008). SS-31 pretreatment also serves a protective role against hypoxia-/

reoxygenation-induced apoptosis of human renal tubular epithelial cells, partly by 

suppression of p66Shc (Zhao et al. 2013), a gene that encodes for an adaptor protein that 

regulates oxidative stress and apoptosis. Moreover, intraperitoneal injections of SS-31 in rats 

alleviate contrast-induced AKI, primarily due to an antioxidant action (Duan et al. 2013).

Similarly, in swine atherosclerotic RAS systemic infusion of SS-31 during renal 

revascularization promotes renal mitochondrial biogenesis and ameliorates renal injury four 

weeks later (Eirin et al. 2012). Furthermore, chronic subcutaneous injections of SS-31 

attenuate swine stenotic-kidney microvascular loss and injury and improves renal 

oxygenation, hemodynamics, and function (Eiin et al. 2014), demonstrating the efficacy of 

cardiolipin-targeted therapies for preserving the ischemic kidney in chronic experimental 

renovascular disease. SS-31 has demonstrated to be safe in several clinical trials 

(NCT01754818, NCT01513200, NCT01518985, NCT01115920, NCT01786915), and its 

efficacy is currently being tested in patients with renovascular disease undergoing renal 

revascularization (NCT01755858). Outcomes of this study will advance our understanding 

of the role of cardiolipin in renal disease as well as the efficacy of mitochondria-targeted 

therapies.
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3.6 Fission Inhibitors

Mitochondrial fission is governed by dynamin-related protein (DRP)-1, a GTPase protein 

localized in the perinuclear region. Once recruited from the cytosol to the mitochondrion, 

DRP-1 interacts with mitochondrial fission-1 protein to induce outer mitochondrial 

membrane constriction and fragmentation (Qi et al. 2013). Furthermore, activation of DRP-1 

triggers mitochondrial depolarization and subsequent mitophagy (Twig and Shirihai 2011). 

Therefore, targeting DRP-1 might be beneficial in the treatment of diseases associated with 

altered mitochondrial fission.

Dynasore is a cell-permeable small molecule that inhibits the GTP hydrolysis of DRP-1, 

interferes with endocytic functions, and inhibits cell spreading and migration (Macia et al. 

2006), but its efficacy in preserving renal mitochondria has yet to be tested. Unlike 

dynasore, mitochondrial division inhibitor (Mdivi)-1 selectively inhibits DRP-1 activity by 

blocking its assembly, acting through the GTPase domain (Cassidy-Stone et al. 2008). 

Although treatment of porcine preimplantation embryos and fibroblast cells with mdivi-1 

reduces mitochondrial membrane potential and blastocyst cell number, increasing ROS and 

apoptosis (Yeon et al. 2015), its delivery in vivo inhibits mPTP opening and protects 

cardiomyocytes exposed to renal (Sumida et al. 2015) and cardiac (Ong et al. 2010) IRI. 

Furthermore, intraperitoneal injections of mdiv-1 prevent mitochondrial fragmentation and 

tubular cell apoptosis in murine AKI (Tang et al. 2013). Nevertheless, no studies have 

addressed their renoprotective properties in humans.

4 Conclusions and Perspectives

Studies in various animal models have implicated mitochondrial damage in the pathogenesis 

of genetic defects, acute kidney injury, chronic kidney disease, aging, and renal tumors. 

Kidney mitochondrial injury may manifest as ultrastructural abnormalities, changes in 

homeostasis, dysfunction, and loss. These result in decreased cellular energy production, 

increased oxidative stress, and apoptosis, triggering microvascular loss, inflammation, 

fibrosis, and renal failure. Notwith-standing the evidence supporting mitochondrial damage 

in the pathogenesis of different types of renal disease, a cause–effect relationship remains to 

be established.

Mitochondrial targeting has been demonstrated as a potential intervention to preserve 

mitochondrial structure and function and ameliorate kidney injury in several animal models 

of renal disease. Although these compounds concentrate at the level of mitochondria, it is 

difficult to rule out non-mitochondrial effects that could have been partly responsible for 

attenuating renal injury and dysfunction. Some of these compounds such as SS-31 and 

MitoQ are being evaluated in humans for various therapeutic indications (see 

ClinicalTrials.gov). Yet, further in vivo animal studies and clinical trials are needed to 

confirm the efficacy and safety of mitochondrial targeting.
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Fig. 1. 
Representative transmission electron microscopy showing swollen mitochondria with loss of 

cristae and matrix in swine renovascular disease. Mitochondrial damage and dysfunction 

have been implicated in several renal conditions
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Fig. 2. 
Schematic of experimental therapeutic interventions that may ameliorate renal mitochondrial 

(mt) injury and dysfunction. mPTP mt permeability transition pore, SS Szeto–Schiller 

peptide, PGC peroxisome proliferator-activated receptor gamma coactivator, GSK glycogen 

synthase kinase, Mdivi1 mt division inhibitor, Mito mitochondrial targeted, Q coenzyme-Q, 

TEMPO piperidine nitroxide, E α-tocopherol, CP nitroxide, SkQ1 plastoquinonyl-decyl-

triphenylphosphonium, SkQR1 plastoquinonyl decylrhodamine 19, HO heme oxygenase
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