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Defects in DNA repair pathways are emerging hallmarks of cancer. Accurate DNA repairs
and replications are essential for genomic stability. Cancer cells require residual DNA
repair capabilities to repair the damage from replication stress and genotoxic anti-tumor
agents. Defective DNA repair also promotes the accumulation of genomic changes that
eventually lead to tumorigenesis, tumor progression, and therapeutic resistance to DNA-
damaging anti-tumor agents. Rad51 recombinase is a critical effector of homologous
recombination, which is an essential DNA repair mechanism for double-strand breaks.
Rad51 has been found to be upregulated in many malignant solid tumors, and is
correlated with poor prognosis. In multiple tumor types, Rad51 is critical for tumor
metabolism, metastasis and drug resistance. Herein, we initially introduced the
structure, expression pattern of Rad51 and key Rad51 mediators involved in
homologous recombination. Additionally, we primarily discussed the role of Rad51 in
tumor metabolism, metastasis, resistance to chemotherapeutic agents and poly-ADP
ribose polymerase inhibitors.
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INTRODUCTION

Defects in DNA repair pathways are hallmarks of cancer. Cancer cells require residual DNA repair
abilities to repair the damage from replication stress and genotoxic anti-tumor agents (1). Therefore,
defective DNA repair often leads to genomic instability. Defective DNA repair also promotes the
accumulation of genomic changes that eventually lead to tumorigenesis, tumor progression, and
therapeutic resistance to DNA-damaging anticancer therapy (2). To date, various inhibitors of DNA
damage response (DDR) are in preclinical and clinical development, making DDR pathways ideal
targets for therapeutic intervention (3).

Rad51 is a DNA-binding protein, which can regulate nucleases, helicases, DNA translocases, and
signaling proteins to function as a regulator of replication stress, such as mediating fork reversal and
restoring repaired forks (4). In multiple cancer models, increased Rad51 expression is associated
with poor clinical outcomes and adverse clinicopathological features (5–7). Rad51 is also engaged in
the tumor initiation and development in multiple cancer types (8–10). Herein, we initially
introduced the structure, expression pattern of Rad51 and key Rad51 mediators involved in
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homologous recombination response (HRR). Additionally, we
primarily discussed the role of rad51 in tumor metabolism,
metastasis, resistance to chemotherapy and poly-ADP ribose
polymerase (PARP) inhibition (Figure 1).
RAD51 STRUCTURE AND
EXPRESSION PATTERN

The key role of Rad51 in DNA repair has sparked a wide variety
of investigations on its structure. Rad51 contains an ATPase core
domain similar to those present in helicases that hydrolyze
nucleotide triphosphates (11). This domain includes a Walker
A motif and a Walker B motif, which mediate ATP binding and
hydrolysis. The presynaptic and postsynaptic complexes of
Rad51 are essential for its function. ATP binds to Rad51 and
activates the formation of the presynaptic filament, which
assembles the recombinase promoters into a filament on
single-stranded DNA. Next, strand exchange and joint
molecule formation happens within the postsynaptic complex
(12). These filaments are important for homology search and
invading strand extension of a homologous template, which
result in homology-mediated repair.

The regulation of Rad51 expression is complex and dynamic
in tumor cells, as illustrated in Table 1. Transcription factors
engaged in Rad51 expression is crucial for the response of tumor
cells to DNA-damaging agents. It has been well established that
CDK12/CDK13, E2F1 and FOXM1 can directly bind to the
promoter of Rad51 to transactivate Rad51 expression (13).
Other transcriptional factors such as E2F7, E2F4 and p53 exert
its gene regulatory function as transcription repressors of Rad51
to inactivate Rad51 expression. Recent study also found that high
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mobility group A1 (HMGA1) can directly bind to A/T-rich DNA
sequences located in the promoter regions of Rad51 and
transcriptionally activate its expression to mediate irradiation
resistance of cholangiocarcinoma cells (14; 15). Post-
translational regulation of Rad51 participates in the activation
or stabilization of Rad51 protein, which may provide novel anti-
tumor targets for cancer management. A de-ubiquitinase
UCHL3 could deubiquitinate Rad51 at Lys56/57/63 and
enhance the Rad51-BRCA2 interaction for proper HRR (16).
Rad51 phosphorylation at Thr307/309 by CHK1 guarantee the
binding of Rad51-BRCA2 and the subsequent recruitment of
Rad51 to sites of DNA damage (17). Both transcriptional and
post-translational modifications of Rad51 are essential for the
expression level and function of Rad51, which may open new
avenues for anti-tumor strategies.

MicroRNAs (miRNAs) are small endogenous RNAs that
mediate post-transcriptional regulation of gene expression,
which have been reported to be dysregulated in a variety of
cancers and regarded as therapeutic candidates. Multiple studies
have shown that the functions of Rad51 are mediated by multiple
dysregulated miRNAs. For instance, miR-155 binds with the 3’-
untranslated region (3’-UTR) of Rad51 to regulate DNA repair
capability and response to irradiation in breast cancer (18). In
addition, miR-96 and directly targets the coding region of Rad51,
and overexpression of miR-96 in tumor cells reduces the levels of
Rad51 and sensitizes tumor cells to DNA damage agents (19).
Besides, miR-182 has been identified to target Rad51 induced by
HDAC inhibition, sensitizing acute myelocytic leukemia cells to
DNA-damaging agents that activate HRR as a potential
resistance mechanism (20). It has been found that Lnc-RI
stabilizes Rad51 mRNA via competitive binding with miR-
193a-3p to thus regulate HRR repair (21).
A

B

C

D

FIGURE 1 | Mechanisms of Rad51 in tumor initiation and progression.
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KEY RAD51 MEDIATORS AND
INTERACTORS INVOLVED IN
HOMOLOGOUS RECOMBINATION

HRR signaling pathways can repair highly cytotoxic double-
stranded DNA breaks and restore stalled replication forks (22,
23). Multiple Rad51 mediators and interactors participate in
HRR of tumor cells. For instance, BRCA2 functions as a tumor
suppressor that maintains chromosome integrity, and its
deregulation by genetic mutations has been directly linked to
tumorigenesis (24). It has been demonstrated that BRCA2
mediates the recruitment of Rad51 to DNA double-strand
breaks to catalyze repair via HRR, making the BRCA2-Rad51
axis essential for HRR. During Rad51 nucleoprotein filament
formation, BRCA2 primarily mediates Rad51 loading, which
binds Rad51 through its BRC repeats and C-terminal domain.
BRCA2 also interacts and coordinates with other mediators
including DSS1 to enhance Rad51 loading. These observations
provide a molecular basis for the role of BRCA2 in the
maintenance of genome stability. The regulation of the
BRCA2-Rad51 interaction has been extensively studied. For
instance, UCHL3, a de-ubiquitinase phosphorylated and
activated by ATM, could deubiquitinate Rad51 and enhance
the interaction between Rad51 and BRCA2 for proper HRR (16).
Besides, cyclin D1 could inhibit cyclin A-CDK2-dependent
Ser3291 phosphorylation and facilitate Rad51 binding to the
C-terminal domain of BRCA2, and downregulation of cyclin D1
leads to inefficient HRR (25). Early mitotic inhibitor 1 (EMI1), an
F-box protein, assembles an active SCF ubiquitin ligase complex
that constitutively targets Rad51 for proteasome-mediated
degradation. Overexpression of Rad51 or depletion of EMI1
can bypass the need for BRCA1/2 to direct Rad51 to DNA
double strand breaks, thereby making HRR functional (26)
Cysteine-rich intestinal protein 1 (CRIP1), a member of the
LIM/double-zinc finger protein family, promotes nuclear
enrichment of Rad51. Upon DNA damage, CRIP1 is
deubiquitinated and upregulated by activated AKT signaling,
making CRIP1 as an essential target for regulating function of
BRCA2-Rad51 axis (15). Trenner et al. identified a synthetic 16-
mer peptide derived from the BRC4 repeat motif of BRCA2 is
capable of blocking Rad51 binding to BRCA2, which may serve
as a promising anticancer agent (27). Collectively, BRCA2-Rad51
axis plays a crucial role in the regulation of tumorigenesis (27).
Frontiers in Oncology | www.frontiersin.org 3
RADX is another regulator of Rad51 that functions at replication
forks to maintain genome stability (28). RADX regulates stalled fork
reversal and protection by antagonizing Rad51 (4). Mechanistically,
RADX competes with Rad51 for binding to single-stranded DNA,
indicating that RADX buffers Rad51 to mediate fork protection to
maintain genome stability (28). In addition to its single-stranded
DNA binding ability, RADX interacts with Rad51 to maintain
proper replication fork elongation rates and HR capacity. RADX
can exert inhibitory and promoting effect for fork reversal according
to replication stress levels, ensuring that replication functions of
RAD51 are properly mediated (29). These findings indicate RADX
as an essential mediator for proper Rad51 function and
genome stability.
ROLE OF RAD51 IN TUMORIGENESIS
AND PROGRESSION

Rad51 and Tumor Metabolism
Oxidative stress, referring to overproduction of reactive oxygen
species (ROS), has been indicated to be highly engaged in tumor
initiation and development (30). Specifically, high levels of ROS
could induce DNA damage and affect the DDR (31). In turn,
nuclear DNA damage further induce mitochondrial response
and promote the accumulation of mitochondrial ROS (mtROS)
to further exacerbate nuclear DNA damage. In ovarian cancer,
Rad51 depletion exhibits accumulation of mtROS and impaired
mitochondrial membrane potential (32). Specifically, blockade of
Rad51 can impair HRR to increase DNA damage and CHK1-
dependent cell arrest at G2/M phase, which ultimately increases
ROS accumulation to further enhance nuclear DNA
damage. Given that ROS has been considered as a two-edged
sword, the mutual effect between Rad51 and ROS should be
extensively studied.

Although glycolysis is less efficient than oxidative
phosphorylation in the production of ATP, tumor cells adapt
to nutrient-deprived environment via increasing uptake of
glucose to sustain high rates of glycolysis (33). Additionally,
glycolysis also provides building materials for macromolecule
synthesis, thus supporting survival of tumor cells. Therefore,
targeting glycolysis pathway in cancers is a well-established
therapeutic strategy. Recent study discovered that the
combination therapy of glycolytic inhibitor 2-deoxy-D-Glucose
TABLE 1 | Regulators of RAD51 expression pattern.

Regulator Function Level Effect

CDK12 transcription factor mRNA activator
CDK13 transcription factor mRNA activator
E2F1 transcription factor mRNA activator
FOXM1 transcription factor mRNA activator
HMGA1 transcription factor mRNA activator
E2F7 transcription factor mRNA repressor
E2F4 transcription factor mRNA repressor
p53 transcription factor mRNA repressor
UCHL3 de-ubiquitinase protein activator
CHK1 kinase protein activator
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and Rad51 specific inhibitor has shown increased efficacy for
targeting leukemias, indicating increasing the efficacy of
glycolytic blockade in tumor cells via Rad51 inhibition (34).
Moreover, it has been found that Rad51 upregulates aerobic
glycolysis by modulating HIF1a protein stability and HIF1a-
targeted transcriptional program to mediate malignant behaviors
of pancreatic tumor cells (35). With more and more evidence
showing that Rad51 may participates in the metabolic adaptation
of tumorigenesis, the role of Rad51 in tumor metabolism and its
mechanisms require more studies. Specifically, the deeper
mechanisms by which Rad51 regulate metabolic rewiring of
tumor cells need to be studied, including how Rad51 regulates
the expression of glycolytic proteins and activates specific
downstream signaling pathways. Determining the mechanisms
of how Rad51 mediates tumor adaptation brings promising
strategies for cancer treatment.

Rad51 and Tumor Metastasis
Metastasis is the major cause of cancer-related deaths (36).
Epithelial-mesenchymal transition (EMT) is a cellular program
defined as the transformation of epithelial cells into motile
mesenchymal cells, which is critical for malignant progression
(37). Moreover, EMT confers tumor cells enhanced tumor-
initiating and metastatic potential. Increasing evidence indicated
that genomic instability is essential for tumor metastasis (38).
Thus, the role of Rad51 in the EMT program of tumor cells has
also been studied. In esophageal squamous cell carcinoma, high
Rad51 expression promotes tumor metastasis through the p38/
Akt/Snail signaling pathway in TE8, CE81T, and KYSE70 cells
(39). Additionally, EGFR-Erk1/2/Akt-Rad51 axis regulates EMT
and DNA repair pathways in prostate cancer (10). SIM2s, a
transcription factor from bHLH/PAS family, regulates DNA
damage repair through enhancement of HRR, and prevents
EMT in an ATM-dependent manner. SIM2s interacts with ATM
and is stabilized through ATM-dependent phosphorylation in
response to irradiation. Once stabilized, SIM2s interacts with
BRCA1 and supports Rad51 recruitment to the site of DNA
damage. Blockade of SIM2s can reduce HRR efficiency through
disruption of Rad51 recruitment, resulting in genomic instability
and induction of EMT (40). Therefore, Rad51 mediates tumor
metastasis through multiple mechanisms, which may provide new
therapeutic targets for overcoming tumor progression.

Rad51 and Chemotherapeutic Resistance
Chemotherapeutic resistance is a key factor affecting the efficacy
of therapeutic strategies in cancer treatment. The resistance of
tumor cells to chemotherapeutic drugs, such as cisplatin, remains
a major challenge to patient recovery. It has been found that
BMI1-Rad51 axis is critical for reducing cisplatin-induced DNA
damage. In breast cancer stem cells (bCSCs), BMI1 has been
located to stalled replication forks to recruit Rad51 and activate
HRR pathways, whereas BMI1 cannot activate HRR pathways in
non-bCSCs (41). Moreover, Rad51 inhibition sensitizes stem
cells to cisplatin. Collectively, BMI1-Rad51 axis mediates drug
resistance of bCSCs to DNA-damaging agents and provides
Frontiers in Oncology | www.frontiersin.org 4
evidence that inhibiting Rad51 can chemosensitize bCSCs. C-
terminal binding protein 1 (CtBP1), a transcription corepressor,
confers breast tumor cells resistance to cisplatin by Rad51
upregulation in both breast cancer and gastric cancer cells (9,
42) . Rad51 expression and stability is critical for nucleolar
and spindle-associated protein 1 (NUSAP1)-mediated
chemoresistance via DDR signaling in chronic lymphocytic
leukemia cells (43). Rad51 is also positively regulated by Jab1
to impair the therapeutic response to cisplatin-based
chemotherapy, whereas Jab1 inhibition leads to impaired
Rad51 expression for enhancing chemotherapeutic response
(44). In epithelial ovarian cancer, high expression of Rad51 has
been found to be correlated with early relapse after platinum-
based regimens and impaired cytotoxic T cell infiltration (45).
Therefore, Rad51 serves as a determinant of platinum resistance
and a novel therapeutic target to overcome immune escape in
Rad51-high epithelial ovarian cancer.

Rad51 and Resistance to PARP Inhibitors
Defective HRR not only enhances sensitivity of germline BRCA-
mutated tumors to chemotherapeutic agents, but also to PARP
inhibitors that impair DNA repair pathways. In the clinical
settings, PARP inhibitors such as olaparib and rucaparib have
been approved for the indications of metastatic breast cancer and
patients with recurrent ovarian cancer with disruptive mutations
in BRCA1/2, showing well-tolerated trait and anticancer efficacy
(46). It has been well-established that Rad51 functions as a
promising predictor for the identification of PARP inhibitor-
sensitive tumors in multiple tumor types (47). Basal Rad51 foci
score acts as a candidate predictive biomarker of olaparib
response in ovarian cancer patient-derived xenografts (48).
Cruz et al. found that low Rad51 expression was correlated
with objective response to PARP inhibitors in germline BRCA-
mutated tumors, indicating Rad51 as a valuable biomarker to
select patients eligible for treatment of PARP inhibitors (49).

The underlying mechanisms for resistance of PARP inhibitors
are complex and extensively studied, and combination therapy may
provide new avenues to overcome resistance to PARP inhibitors.
Cancer stem cells (CSC) are considered to drive this resistance to
PARP inhibitors. In BRCA1-mutant TNBCs, CSCs are resistant to
PARP inhibitors, and that these cells display elevated Rad51 protein
levels and foci formation. (8). Considering that the contribution of
enhanced DNA repair capacities to resistance of PARP inhibitors,
combination treatment of PARP inhibitors and Rad51 inhibitors
may be a promising option to improve therapeutic response of
PARP inhibitors. The negative elongation factor (NELF), a four-
subunit protein complex, has been recognized as a new component
in the DNA damage response to mediate repair of double-strand
break (50). In hepatocellular carcinoma, NELF complex mediates
BRCA1 and Rad51 recruitment to DNA damage sites and therefore
regulates sensitivity to PARP inhibitors (51). Thus, NELF-E
inhibition can sensitize Hep3B cells to PARP inhibitors by
impairing the recruitment of Rad51 to the DNA damaging sites.
Collectively, combination therapy may open new avenues for
overcoming resistance to PARP inhibitors.
July 2022 | Volume 12 | Article 935593
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CLINICAL IMPLICATIONS OF RAD51
IN CANCER

Prognostic and Predictive Value of Rad51
in Cancer
Currently, genetic examinations measuring homologous
recombination deficiency (HRD) exhibit limited predictive value
(52). Therefore, predictive molecular target for the status of HRD
is urgently needed. Worth noticing, Rad51 test has been found to
identify tumors with HRD and is highly concordant with genomic
HRD. Tumors with HRD mutational signatures harboring a
functional defect in HR can be evaluated by reduced Rad51 foci
formation (53). Moreover, Rad51 independently predicts clinical
benefit from adding carboplatin to neoadjuvant chemotherapy
(NAC) in triple-negative breast cancer. In patients received NAC,
the rates of completed pathological responses are higher in Rad51-
negative case (54). Thus, baseline Rad51 expression can serve as a
predictive factor for the response to NAC.

Dysregulated expression of Rad51 has been commonly
discovered in various tumor types. Moreover, dysregulated
expression of Rad51 is associated with diverse clinic-pathological
factors and prognosis, indicating Rad51 as a potential prognostic
marker in many tumor types. For instance, Rad51 expression in
esophageal squamous cell carcinoma was associated with
advanced lymph node metastasis and unfavorable survival
outcomes (55). In glioblastoma, Rad51 was overexpressed and
negatively associated with overall survival (5). Herein, Rad51
expression may serve as promising prognostic factor in the
clinical settings.

Pharmaceutic Inhibitor of Rad51 in Cancer
For the past decade, Rad51 has been regarded as a promising
therapeutic target for novel therapeutic inhibitors. Rad51
inhibitors may sensitize tumor cells to chemotherapeutic
agents, render tumors to be more efficient in HRR, and to be
more responsive to PARP inhibitors targeting HRR-deficient
tumors with mutated BRCA1/2 genes. 4,4’-diisothiocyanato-
stilbene-2,2’-disulfonic acid (DIDS) molecule is a newly
identified Rad 51 inhibitor (56, 57). DIDS and its two analogs
can prevent Rad51 binding to single-stranded DNA and Rad51-
mediated D-loop formation to HRR function. Another Rad51
inhibitor B02 was recently discovered to induce HRR deficiency
in TNBC, sensitizing MDA-MB-231 cells to the PARP inhibitor
Frontiers in Oncology | www.frontiersin.org 5
(58). It has been demonstrated that B02 could reduce DNA DSB
repair and lead to radio-sensitization in glioblastoma stem cells,
indicating Rad51 as a crucial and selective DNA repair target for
tumor stemness (59). IBR2 is a recognized Rad51 inhibitor to
impair Rad51 multimerization and promote proteasome-
mediated degradation of Rad51 protein to therefore reduce
HRR function, which ultimately enhances apoptosis and
impairs tumor growth of chronic myeloid leukemia (60). In
addition to directly targeting Rad51 protein, destruction of the
protein-protein interaction between BRCA2 and Rad51 can also
impair HRR and mediate cell death for development of anti-
tumor strategies. Besides, Rad51 promoter-based anticancer
therapy may also function as a promising therapeutic strategy.
It has been found that the fusion of Rad51 promoter to
diphtheria toxin A gene impair the initiation of multiple tumor
types, such as breast and cervical tumor, with minimal effect on
normal epithelial cells (61, 62). Thus, therapies based on the
Rad51 promoter will be highly tumor-specific and open new
avenues for targeting a variety of tumor types.
CONCLUSIONS

In conclusion, Rad51 has been observed to be dysregulated in
various tumor types, and associated with unfavorable
clinicopathological factors and prognosis. Rad51 serves as a
key regulator for proper HRR to ensure DNA repair. Besides,
Rad51 also participates in the tumor metabolism, metastasis and
chemotherapeutic resistance. Rad51 functions as a promising
predictor for the identification of tumor eligible for the treatment
of PARP inhibitor. Multiple Rad51 inhibitors have been
developed to be utilized to overcome chemotherapeutic agents
and PARP inhibitors. Collectively, Rad51 is a promising
therapeutic target for developing anti-tumor strategies, waiting
for deeper investigation.
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