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On 20
th

 and 29
th

 May 2012 two earthquakes of magnitude 5.9 and 5.8 (MW) occurred in 

the Emilia region (Northern Italy), one of the most developed industrial centers of the 

country. A complete photographic report collected in the epicentral zone shows the seismic 

vulnerability of precast structures, the damage to which is mainly caused by connection 

systems. Indeed, the main recorded damage is either the loss of support of structural 

horizontal elements, due to the failure of friction beam-to-column and roof-to-beam 

connections, or the collapse of the cladding panels, due to the failure of the panel-to-structure 

connections. The damage can be explained by the intensity of the recorded seismic event and 

by the exclusion of the epicentral region from the seismic areas recognized by the Italian 

building code up to 2003. Simple considerations related to the recorded acceleration spectra 

allow motivating the extensive damage due to the loss of support. 

INTRODUCTION 

On 20
th

 May 2012 at 02:03:52 a.m. UTC, a 5.9 moment magnitude MW earthquake 

occurred in Emilia region (Northern Italy), causing 7 casualties, about 50 injured and 5000 

homeless people. The epicenter of the earthquake was located at Finale Emilia (Modena, 

Northern Italy). A series of after-shocks occurred in the area on the following days until a 

second main shock of 5.8 moment magnitude struck the same zones on 29th May, 2012, with 

an epicenter located at Medolla (Modena, Northern Italy), 20 km west from Finale Emilia. It 

occurred at 09:00:03 a.m. (local time), when the daily activities were starting again, and 

caused further 20 casualties, about 350 injured and raised the number of homeless from 5000 
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to 15000. Besides the loss in human lives, significant damage was mainly recorded in 

historical masonry buildings and precast industrial buildings. 

The earthquake is surely the most reliable test the structures may be subjected to, in order 

to evaluate their seismic vulnerability. This is the reason why after a strong motion a series of 

interesting studies are carried out to examine the structural behavior of different building 

typologies under seismic actions and to test the validity of seismic codes in force.  

In Sezen et al. (2000) and in Saatcioglu et al. (2001) the damage to buildings, bridges, 

industrial facilities and lifeline infrastructures affected by the 1999 Izmit earthquake (Turkey) 

are studied. The main precast structural typologies in Turkey have overall geometry similar 

to those used in Italy, but provide pin connections typically composed of steel dowels. The 

failure of different precast structures is presented; the main reasons of the exhibited poor 

performance are: (a) the inadequate beam-to-column connections, (b) the lack of transverse 

reinforcement in the column and beam corbels close to the beam-to-column connections, (c) 

the inadequate confinement provided at the base of the columns and (d) the interaction with 

partial height masonry infills. 

L’Aquila earthquake (Central Italy) in 2009 caused loss in human lives and widespread 

damage to the buildings and infrastructures, motivating several scientific studies. In Toniolo 

and Colombo (2012) the behavior of precast concrete structures affected by the 2009 

L’Aquila earthquake is discussed. Besides presenting some structural damage and beam-to-

column connections failure, the study focuses on the influence that cladding panels have on 

the seismic performance of precast structures. The study is motivated by the collapse of 

several heavy precast panels due to the inadequacy of the panel-to-structure connections. For 

this reason, possible alternative solutions of cladding-to-panel connections are indicated and 

their influence on the seismic behavior of one-storey precast buildings is presented. 

The 20
th

 and 29
th

 May Emilia earthquakes caused damage mainly to industrial precast 

structures with a huge economic loss: it has been roughly estimated that the direct economic 

damage amounts to about 1 billion euros, while the induced economic damage, e.g. the loss 

due to the industrial production interruption, amounts to about 5 billion euros. The large 

economic loss compared to the intensity of the event is basically due to the conjunction of 

two factors: 

� the high percentage of industrial precast buildings in the struck area; 
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� the vulnerability of the mentioned precast buildings. 

This paper focuses on the behavior exhibited by precast structures in the municipalities 

hit by the earthquakes. A description of the typical Italian precast structures is provided, as 

well as an account of the evolution of Italian building code for precast buildings. A 

photographic documentation collected in the first days after the mainshocks is presented in 

order to describe the damage to, and the seismic performance of, the precast structural 

typology. Furthermore an attempt to identify the main causes of the damage is provided 

through the analysis of the recorded accelerograms. 

PRECAST STRUCTURES DESCRIPTION AND DESIGN CONSIDERATIONS 

Since the end of the Second World War, precast structures have been widely used in Italy 

due to the several advantages of serial production of structural elements. Precast elements, 

produced in factories, are characterized by a more precise control, a better quality and a faster 

construction time than the cast-in-situ RC elements. In Italy, precast structures are mainly 

used in the industrial field, where buildings require wide space, i.e. large bays, and very 

regular plants, e.g. square or rectangular shape. Precast buildings can be classified according 

to different variables: the structural typology, the number of stories and the roof type. Three 

main structural typologies can be distinguished: panel structures, column structures and 

mixed structures. Depending on the number of stories, precast structures can be single-story 

“industrial” buildings (Figure 1a) and multi-story buildings (Figure 1b). Referring to the roof 

type, roof elements supported by beams with variable section (Figure 2a), continuous plane 

roof (Figure 2b), discontinuous plane roof (Figure 3a) and shed roof (Figure 3b) can be 

found. 

In Italy the most common precast buildings are column structures: they consist of socket 

footing foundations in which precast columns are placed and fixed in-situ by cement mortar; 

the columns support pre-stressed precast beams that can have different shapes. The most 

frequent beam cross sections are “T” or “I” section for beams with variable section, and “Y”, 

“H”, “L” or rectangular section for plane beams. Reticular beams are also used, especially for 

very large spans. The main beams support roof elements: in multi-story buildings a cast in-

situ slab is provided to cover corrugated elements of intermediate decks; in single-story 

buildings, instead, a concrete slab is rarely used. Continuous or discontinuous roof elements 

solutions can be defined: in the first case, tiles are put side by side (Figure 2), in the second 
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case tiles are spaced and alternated by light elements like translucent sheets (Figure 3a) or 

sandwich panels. An alternative solution is represented by a shed roof: it can be built using 

reticular beams or discontinuous beams, known in Italy as “knee beams” (Figure 3b), or 

using inclined beams supported at two different levels. Precast structures are generally 

completed by precast panels placed along the perimeter that can be inserted between columns 

or placed externally to the main structure. Infill systems can provide different solutions: 

horizontal precast panels connected to columns, vertical precast panels attached to horizontal 

beams and mixed solution including horizontal and vertical panels are all used. A more 

detailed list of precast structures typologies is provided by Bonfanti et al. (2008). 

 
(a) 

 
(b) 

Figure 1. Examples of (a) single-story and (b) multi-story precast buildings 

 

(a) 

 

(b) 

Figure 2. (a) Double slope roof with corrugated tiles and (b) continuous plane roof (Bonfanti et al. 

2008). 

(a) 

 

(b) 

Figure 3. (a) Discontinuous plane roof and (b) shed roof (Bonfanti et al. 2008). 
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The most crucial aspect of precast structures regards the connections between structural 

elements. The connections are made in-situ and executed in order to reflect the calculation 

model assumed in the design phase. Typical connections include: 

1. floor or roof adjacent elements connection; 

2. roof element-to-beam connection; 

3. beam-to-column connection; 

4. column-to-foundation connection; 

5. cladding panel-to-structural element connection. 

The roof adjacent elements connections are generally made of steel angles and plates 

welded or bolted in order to ensure the slab continuity (Figure 2b).  

The roof element-to-beam connections can be provided in different ways. The most 

common connection type provides a neoprene pad at the interface between the beam and the 

roof element, resulting in a friction connection. Another solution consists of steel angles 

bolted both to the roof element and to the beam defining a fixed connection (Figure 4a). A 

fixed connection is also given by the presence of a dowel, inserted in the roof element and in 

the beam. 

A beam-to-column connection can be a friction connection or a dowel connection. The 

former type is very common in existing precast structures and generally consists of neoprene 

pad at the beam-to-column interface without providing any mechanical connectivity. It relies 

on friction for absorbing resisting forces. In the latter type a steel dowel is inserted inside the 

column and anchored in predefined vertical holes in the beam (Figure 4b); the connection 

requires a final grout casting. This solution defines a hinged support in the longitudinal 

direction of the beam. 

The most common column-to-foundation connection is the socket foundation (Figure 4c). 

This typology is characterized by a RC hollow core body in which the column is inserted. 

Concrete or special mortar is poured to fill the gap between the column and the hollow core 

body of the socket foundation. The socket foundation is generally modeled as a rigid 

connection, due to the study performed by Osanai et al (1996), in which it is concluded that 

the connection is rigid if the column embedment depth is larger than 1.5 times the depth of 

the column cross section. 
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Connections between cladding panels and structural elements (Figure 4d) can provide 

different solutions, based on steel connectors such as channel bars, fasteners, angles, 

brackets, etc. 

Beam

Plate with 

threaded pin Steel angle

Neoprene pad

Roof element

Steel dowel embedded in the 

column and inserted in the beam

 

(a) (b) 

Column

Shrinkage 

compensated 

mortar

Anchor 

bolt

 

Connector

Steel profile

Beam

(c) (d) 

Figure 4. Examples of connections in precast structures: (a) pin roof element-to-beam connection; (b) 

dowel beam-to-column connection; (c) socket column-to-foundation connection; (d) vertical panel-to-

beam connection. 

A detailed list of connections in precast structures used both in Italy and Europe is 

provided by Mandelli et al. (2007). 

The area struck by the Emilia earthquakes is characterized by a high density of precast 

structures. Indeed, referring to 2001 data of Italian National Institute of Statistic (Istituto 

Nazionale di Statistica, ISTAT), the percentage of commercial, industrial, transport, 

communication, office and hotel buildings in the whole Italy is 3.65%, which, with a good 

approximation, are precast structures. Considering the area hit by the seismic events, e.g. 

Medolla, Mirandola and San Felice sul Panaro, this percentage increases up to 9%; this 
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illustrates both the high incidence of precast buildings and the large influence of the 

vulnerability of this structural typology on the global seismic risk of the area. 

In order to give an idea of the vulnerability of precast concrete buildings, a brief overview 

of the code evolution is given in the following, focusing the attention on the code provisions 

regulating the design of elements and connections in precast structures (Table 1). 

Legge 1684 (1962) and its integration (Legge 1224, 1964) only specify the horizontal 

actions to consider in seismic zones in Italy without any particular requirement for precast 

structures. A noteworthy code is published in 1965 (Circ. M. LL.PP. n.1422 1965), that 

forbids the use of horizontal joints without mechanical devices if the ratio T/N was larger 

than 0.35, where T is the maximum value of the shear force, N is the expected axial 

compression force and, implicitly, 0.35 is the friction coefficient of the connection. 

In 1974, the code (Legge 64 1974) introduces specific indications for the seismic design 

of structures. However, concerning precast structures, the code gives only a few general 

indications and these are for load-bearing precast panels structures. 

The first specific regulations for precast structures are in the DM 3/12/1987, that already 

point out the role of the connections, considering also the transition phases of the 

construction. The requirements for the structural elements and for the connections design are 

still limited; it is forbidden in seismic zones to use beam–column connections that transfer 

horizontal forces by friction alone. The only prescriptive provision is given for the width of 

the beam-to-column support: “For the beams, the end support must be not smaller than 

8 / 300cm l+ , where l is the clear beam span in centimeters”. 

More detailed suggestions on precast structures are given in OPCM 3274 (2003). 

According to the Italian government, the application of this code is compulsory only in the 

case of infrastructure and strategic buildings. Multi-story framed structures and single-story 

structures with isostatic columns are taken into consideration, according to the number of 

stories and the capability of the connections in transferring bending moments. A specific 

behavior factor, i.e. 5.0 and 3.75 respectively, is assigned to the two structural typologies. 

Moreover it is recognized the significant influence of the connections on the static and 

dynamic behavior of the whole structure. In the case of framed structures, the codes 

distinguished three possible conditions: 
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a. connections located well outside critical regions not affecting the energy dissipation 

capacity of the structure; 

b. connections located within critical regions but adequately over-designed with respect 

to the rest of the structure, so that in the seismic design situation they remain elastic 

while inelastic response occurs in other critical regions; 

c. connections located within critical regions properly designed in terms of strength, 

ductility and quantity of energy to dissipate. 

For single-story structures with isostatic columns, the beam-column connections may be 

fixed or free to slide horizontally. The connections must transfer the seismic design 

horizontal forces, without taking into account the friction strength. For the fixed connection 

the capacity design approach is considered, i.e. its strength must be larger than the horizontal 

force that produces the ultimate resistant bending moment at the base of the column. 

In Europe the precast concrete structures are regulated by the EC8 (CEN 2003), which 

underlines the importance of the connections. It is required that friction resistance should be 

neglected in evaluating the resistance of a connection both for the beam-to-column 

connections and for the primary seismic elements-to-diaphragm horizontal joints. However, it 

should be underlined that the EC8 is not compulsory in Italy. Concerning the structural 

typologies, the following systems are considered for precast concrete structure: (a) frame 

structures, (b) wall structures, (c) dual structures (mixed precast frames and precast or 

monolithic walls), (d) wall panel structures (cross wall structures) and (e) cell structures 

(precast monolithic room cell systems). The behavior factor for one-story framed systems 

ranges from a maximum of 4.95 to a minimum of 1.65 that corresponds to connections not 

regulated by the code. 

The current Italian code (DM 14/01/2008) gives more attention to precast structures than 

do the past Italian codes. It takes the main framework of OPCM 3431, adopting some 

provisions of EC8. Concerning the precast column systems, the two structural categories 

defined in OPCM 3431 are provided, i.e. framed structures and isostatic column structures: 

the former include structures with continuous or hinged joints, the latter concern one-story 

buildings with beams hinged at one side and with a sliding support at the other one. 

Furthermore, the connections have to transfer the horizontal forces under the design seismic 

load without taking into account the friction strength; this last rule also applies to roof-to-
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beam connections. The code forces a reduction of 50% of the behavior factor, if some of the 

specific requirements concerning the connections are not followed. 

Table 1. Italian building code evolution: title, acronym, presence of requirements on precast 

structures and on connections between structural elements, compulsoriness and relationships between 

the most important codes for precast structures. 

Code Acronym 

Precast 

structures 

requirements 

Friction 

connection 

forbidden 

Compulsoriness 

Legge 25 novembre 1962, 

n. 1684 
Legge 1684  No - Yes 

Legge 5 novembre 1964, 

n. 1224   
Legge 1224 No - 

Yes, integrates Legge 

1684 

Circolare del Ministero dei 

Lavori Pubblici n.1422 del 

6 febbraio 1965 

Circ. M. 

LL.PP. 

n.1422 

No 
Yes, if T/N > 

0.35 

Yes, integrates Legge 

1224 

Legge 2 febbraio 1974, n. 

64 
Legge 64  Yes - 

Yes, replaces previous 

codes 

Decreto Ministeriale del 

3/12/1987 

DM 

3/12/1987  
Yes In seismic zone Yes, integrates Legge 64 

Ordinanza del Presidente 

del Consiglio dei Ministri 

n. 3274 del 30/3/2003 

OPCM 3274 Yes Yes 

Yes, only for 

infrastractures and 

strategic buildings 

Eurocode 8 EC8 Yes Yes No 

Decreto Ministeriale del 

14/01/2008 

DM 

14/01/2008 
Yes Yes 

Yes, integrates Legge 64 

and replaces previous 

integrations 

PRECAST STRUCTURES DAMAGE OBSERVATION IN EMILIA REGION 

The commercial and industrial precast structures are the structural typology that suffered 

the most damage during the Emilia seismic events. Indeed, a direct inspection of the 

epicentral industrial zones in the days after the two mainshocks highlighted that more than a 

half of the existing precast structures exhibited significant damage. Moreover, the collapse of 

many non-structural components (Magliulo et al. 2012b, Magliulo et al. 2012c), such as 

internal partitions, ceilings and high-rack steel structures is recorded. The high-rack steel 

structures are widely used in industries in order to store various kinds of goods and, in 

presence of seismic events, they can be subjected to significant horizontal loads, as addressed 

by Kilar et al. (2011). 

In this section the structural and non-structural damages, that occurred in precast 

structures during the Emilia earthquakes, are presented by a photographic documentation 

(Ercolino et al. 2012a, Ercolino et al. 2012b). 
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DAMAGE TO CONNECTIONS BETWEEN STRUCTURAL COMPONENTS  

Most of the damaged precast buildings provides friction connections between horizontal 

elements (beams and roof elements) or between horizontal (beam) and vertical (columns) 

members. The lack of connection devices is the main cause of damage in precast structures, 

in which the low strength given by friction mechanism causes the loss of support of both roof 

elements from beams and beams from columns. The consequences are disastrous: Figure 5a 

shows the loss of support of the roof elements from the main beam due to the use of friction 

connections and a very limited support width. Figure 5b shows the loss of support of a beam 

from the column and the consequent collapse of the roof elements, causing the failure of the 

whole structure. 

 
(a) 

 
(b) 

Figure 5. (a) Roof elements collapse due to the loss of support from main beam. (b) Loss of support 

of beam from column. 

The lack of mechanical devices causes the loss of support of the beams from the columns 

also in Figure 6a. In other cases the loss of support causes the change of the beam restraints, 

that let the beam act as a cantilever, and make it collapse under the weight of the roof 

elements (Figure 6b). The vulnerability recorded in precast structures is certainly larger than 

the vulnerability exhibited by similar precast structures in Turkey after 1999 Kocaeli 

earthquake (Saatcioglu et al. 2001, Sezen et al. 2000); the main reason is the common 

presence of connections relying on friction in Emilia region, contrasting with the doweled 

connections used in Turkey. 
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(a) 
 

(b) 

Figure 6. (a) Loss of support of beam from column. (b) Collapse of main beam due to the loss of 

support on column. 

Some precast structures show the failure of the connections even in cases in which pin 

beam-to-column connections are used, due to the inadequacy of the connection design. 

Figure 7 represents a significant example of unsuitable design of the connection. The strength 

of the pin connection is evaluated in correspondence to the failure of the dowel; instead in 

Figure 7a, the spalling of concrete cover occurs before the yielding of the dowel, due to the 

small size of the cover and to the lack of dense stirrups close to the supporting zones. 

Consequently, it causes the collapse of the beam and roof elements which are supported by 

the beam (Figure 7b).  

(a) (b) 

Figure 7. (a) Pinned beam-to-column connection failure and (b) consequent loss of support of the 

beam from column. 

The above presented damage highlights the low robustness of the investigated precast 

structures under seismic actions: in most cases the collapse of only few (even one) 
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connections can cause the collapse of the whole structure and, consequently, the loss of both 

life and inventory. 

COLUMNS DAMAGE 

In Italian precast existing structures, columns are generally precast elements connected at 

the bottom to a socket foundation and at the top by a horizontally sliding or fixed support to 

the beams. Therefore the columns can be assumed to act as cantilevers fixed at the base. In 

presence of strong earthquakes, precast columns show:  

• loss of verticality due to a rotation in the foundation element (Figure 8a) caused 

by a possible inadequate column-to-foundation connection, even if this cause is 

not easily ascertainable unless a direct inspection of foundation is made;  

• plastic hinge development at the column base: Figure 8b shows an incipient 

plastic hinge evidenced by extensive cracks at the base, and Figure 8c indicates a 

case of longitudinal bar buckling due to the visible lack of a proper stirrup spacing 

in the critical zone of the column. 

• shear failure due to the interaction with traditional masonry infill systems (Figure 

9). 

 
(a) (b) 

 
(c) 

Figure 8. Damage in columns: (a) column loss of verticality due to rotation in the foundation 

element; (b) cracking of the base section in a column; (c) plastic hinge at the bottom of the column 

and buckling of a longitudinal bar at the base. 
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Figure 9. Shear collapse of column due to the interaction with infill masonry panel. 

INFILL PRECAST PANEL COLLAPSE 

Precast buildings infill systems in Emilia region are mostly constituted by precast 

cladding panels. Horizontal (Figure 10a) and vertical (Figure 10b) panels collapse is the most 

frequent damage in precast buildings. 

The causes of collapse can be attributed to: 

a) the lack of seismic design in cladding panel-to-structural element connection devices; 

b) the pounding of roof elements, columns or other precast panels; 

c) the panel-to-structure interaction that causes additional lateral forces in the connection 

devices, not considered during the design process. 

(a) 
 

(b) 

Figure 10. (a) Collapse of horizontal precast panels. (b) Collapse of vertical precast panels. 

Figure 11 shows the collapse of a horizontal panel-to-column connection due to the 

failure of the anchor channel embedded in the column (Figure 11a) and the shear failure of 
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the steel angle plate that joints the panel to the structure (Figure 11b); details of the hammer 

head screw can be observed in Figure 11c. Figure 12 shows the collapse of a vertical panel-

to-beam connection: in this case a particular connection device is used, i.e. a steel profile is 

embedded in the beam (highlighted in Figure 12b) and some hammer head elements are 

welded to the profile and inserted into the anchor channel of the vertical precast panels 

(Figure 12a). Under the seismic action the screw-to-profile welding fails and causes the 

collapse of the panels. 

(a) 
 

(b) (c) 

Figure 11. Details of a connection device at the top of horizontal panel: (a) anchor channel embedded 

in the column, (b) steel angle plate and (c) hammer head screw out of the anchor channel. 

 

(a) (b) 

Figure 12. Collapse of vertical precast panel connection: (a) the anchor channel embedded in the 

panel and the failed hammer head element; (b) profile located in the beam which the hammer head 

elements are welded to. 

SEISMIC ACTION AND CONSIDERATIONS CONCERNING DAMAGE DUE 

TO THE LOSS OF SUPPORT 

In order to understand the damage recorded after the Emilia earthquakes, a description of 

the Italian seismic zones is presented. 
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The definition of seismic zones in Italy started in 1909 following the Reggio Calabria and 

Messina Earthquake in 1908 that causes about 80.000 casualties. The regions in Southern 

Italy that suffered from this earthquake were defined seismic zones. Since then, the map has 

been refreshed enlarging the zones defined as “seismic” after each significant Italian 

earthquake. The Emilia region that was struck by the recent earthquakes (black dot in Figure 

13) was still out of the seismic zones in the 1984 map (Figure 13a). Finally, in 2003 the 

whole Italian territory was classified as seismic (Figure 13b), distinguishing four seismic 

zones: zone 1, 2, 3 and 4, corresponding to design peak ground acceleration at the bedrock 

equal to 0.35g, 0.25g, 0.15g and 0.05g, respectively. The region close to the epicenter of 

Emilia earthquakes was inserted in the 3
rd

 zone. 

 
(a) 

 
(b) 

Figure 13. Seismic zone classification in Italy (a) in 1984 and (b) in 2003; the black dot indicates the 

Emilia earthquake epicentral zone (INGV 2012). 

Hence, it is expected that all structural typologies in Emilia region, designed up to 2003, 

do not take into account seismic design at all, increasing the seismic vulnerability of 

structures built in that region. In particular, precast structures built up to 2003 typically 

provide beam-to-column friction connections because friction connections were forbidden 

only in seismic zones since 1987 (Table 1). 

Lastly, the current Italian code (DM 14/01/2008) defines hazard parameters continuously 

for the whole national territory, without distinguishing different seismic zones. In particular, 

for Mirandola (Modena, Italy) the PGA with a 10% probability of exceedance in 50 years is 

equal to 0.140g. 
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The acceleration time histories recorded (Figure 14) by the station MRN of the Italian 

National Accelerometric Network yields a maximum acceleration equal to 0.264g and 0.261g 

for the N-S and E-W components, respectively; the spectral ordinates reach values up to 1g 

(Figure 15). It should be noted that the recorded accelerograms include seismic site effects; 

indeed, MRN station is placed on a “C” class soil site (shear wave velocity ranging from 

180m/s to 360m/s), based on geological data, and T1 category according to EC8 (flat 

surface), as reported in the Italian Accelerometric Archive (Luzi et al. 2008). 

 
Figure 14. Accelerograms recorded in the station of Mirandola (Modena, Italy) (the origin of time is 

set at 20-05-2012 02:03:24 UTC). 

In Figure 15 the recorded spectra are compared with the design spectra in the epicentral 

zone for return periods equal to 475 and 2475 years (C soil and T1 surface). The comparison 

demonstrates the rarity of the event, according to the actual Italian seismic hazard maps and 

the historical data they are based on; the NS component spectrum is generally included 

between the two considered design spectra for low period range, i.e. before 0.6sec, and it 

exceeds the spectrum with the higher return period for high period range, i.e. beyond 0.6sec. 

In order to establish the spectral accelerations in the precast structures during the 

investigated Emilia seismic events, two period ranges can be distinguished in the spectrum of 

Figure 15, according to the extensive parametric study provided by Magliulo et al. (2013) on 

single-story precast structures designed according to the current Italian code in low-to-high 

seismic zones. The bare precast structures exhibit an elastic fundamental period ranging from 

0.54sec to 1.45sec, while infilled precast structures range from 0.09sec to 0.40sec, due to the 

presence of cladding panels. No significant difference between the spectral ordinates for bare 
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and infilled structures for NS-component is evidenced; on the contrary, in the case of EW 

component, the 0.09sec-0.40sec range provides larger spectral ordinates. 

 
Figure 15. Elastic response spectra recorded on 20 May 2012 in Mirandola NS (green) and EW 

component (blue) compared to elastic response spectra for return period equal to 475y (black) and 

2475y (dashed black) provided by Italian building code (DM 14/01/2008) for soil class C. A damping 

ratio equal to 5% is assumed. 

In the previous section it has been highlighted that loss of support has been the main 

cause of collapse in precast structures in Emilia region. This can be deduced also upon simple 

considerations on the recorded spectra (Figure 15). Assuming that the rigid diaphragm is not 

ensured, as commonly found in Emilia region precast buildings, the total seismic force Ftot is 

divided among the columns using a criterion based on influence area, i.e. proportionally to 

the ratio between the dead loads Wi acting on the column and the total weight of the structure 

Wtot. Considering that the participating mass ratio is 100% for the translational modes, the 

seismic force VEd acting on a connection can be evaluated as follows:  

( )1 /i
Ed tot i a

tot

W
V F W S T g

W
= ⋅ = ⋅

    (1) 

The strength of a friction connection VRd can be evaluated multiplying the vertical force 

acting on the connection and the friction coefficient µ. Based on these considerations, the loss 

of support mechanism is immediately checked comparing the friction coefficient with the 

acceleration spectral ordinates in g, as shown in Figure 16. Indeed, a safety factor SF can be 

evaluated and plotted (Figure 16b) versus the fundamental period for the recorded spectra. 

( )1

/
/Rd i Rd Ed

a

V W SF V V
S T g

µµ= ⋅  = =

   (2)
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According to the experimental studies conducted by Magliulo et al. (2011) on neoprene-

to-concrete connections, the friction coefficient varies in the range 0.09 ÷ 0.13 for 

compressive stress varying between 1.7 MPa and 5.3 MPa. In Figure 16a these limits are 

compared to the recorded spectral ordinates. Figure 16b shows the safety factor SF, evaluated 

considering µ equal to 0.13. The safety factor SF is much below 1 for a wide range of periods 

and confirms the vulnerability recorded in friction connection of precast structures in Emilia 

region. 

(a) 
 

(b) 

Figure 16. (a) Acceleration spectral ordinates recorded in Mirandola compared to the friction 

coefficient upper and lower bounds evaluated by Magliulo et al. (2011); (b) loss of support safety 

factor plotted versus fundamental periods for the recorded accelerograms, assuming µ=0.13. 

It should be noted that the simple considerations above presented neglect both the vertical 

component of the seismic action and the bi-directionality of the input motion. Obviously, if 

the two phenomena had been taken into account, lower safety factors would have been found. 

Even in case larger friction coefficients had been considered, e.g. Caltrans (1994) suggests a 

coefficient ranging from 0.2 to 0.4 in case of neoprene/concrete interface for bridge 

applications, the loss of support would not have been avoided for a wide range of structural 

periods. 

The use of an unreduced elastic spectrum for the evaluation of the force acting on beam-

to-column friction connections may be questioned, since precast structures may dissipate 

energy inelastically. However, inelastic action in the concrete elements will not occur if the 

frictional strength of the connection is lower than the plastic shear, i.e. the force that causes 

the formation of the plastic hinge at the column base. Indeed, in this case no plastic sources 

are exploited and, hence, the unreduced elastic spectrum must be used for the evaluation of 

the seismic actions. 



 

19 

 

It is concluded that, if the shear failure of the connection comes before the flexural 

hinging in the column, precast structures with neoprene-concrete friction connections will 

exhibit a loss of support of their horizontal elements under the recorded seismic excitation. 

Magliulo et al. (2008) anticipated this evidence, demonstrating that precast structures with 

friction connections suffer from loss of support due to the sliding of the beam from the 

column. This statement is based on nonlinear dynamic analyses, performed on space models 

subjected to the three components of an earthquake (Magliulo and Ramasco 2007, Magliulo 

et al. 2007, Magliulo et al. 2012a, Maddaloni et al. 2012) typical of an Italian medium 

seismicity zone. 

The mainshock occurred on the 29
th

 May 2012 is well recorded, due to the installation of 

temporary seismic stations around the epicentral area. The considerations above presented for 

the 20
th

 May mainshock can be extended to the 29
th

 May mainshock as well, based upon the 

horizontal acceleration spectra recorded in the area close to the epicenter (Figure 17). 
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Figure 17. Elastic response spectra recorded on 29 May 2012 in Cento (CNT), Finale Emilia (FIN0), 

Moglia (MOG0), Mirandola (MRN), San Felice sul Panaro (SAN0) and San Martino Spino (SMS0) 

compared to elastic response spectra for Mirandola for return period equal to 475y (black) and 2475y 

(dashed black) provided by Italian building code (DM 14/01/2008) for soil class C. 

CONSIDERATIONS CONCERNING USE OF FRICTION CONNECTIONS 

Precast structures hit by the Emilia earthquake were designed according to different 

codes, depending on the construction time. Most of the precast structures in Emilia were 

designed without taking into account seismic forces, based on the above mentioned 

considerations on the seismic hazard map evolution in Italy; however, horizontal forces, i.e. 

wind and crane actions, were also considered. 
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Since the wind horizontal forces imply lateral loads on the connections, the use of friction 

connections may be questioned. For this reason, a parametric study is carried out in order to 

justify a similar widespread design choice. The study assumes a one-story precast building 

located close to the epicenter as a benchmark structure. Some geometrical parameters are 

considered, resulting in 48 case-studies, i.e. the column height H (7m, 9m, 11m, 15m), the 

number of the longitudinal bays (4, 6, 8, 10), the width of the two transverse bays B (15m, 

19m, 25m). 

In the parametric study, the horizontal shear demand in the connections caused by the 

wind actions is evaluated according to different past Italian codes and compared to the 

friction strength. In particular, the wind action is evaluated according to CNR Instructions 

(CNR-UNI 10012 1967) and DM 16/1/1996, as shown in Table 2. The NTC 2008 (DM 

14/01/2008) is not taken into account because Emilia region has been a seismic zone since 

2003 and, according to the current code, friction connections are forbidden in seismic areas. 

Table 2. Evaluation of the wind equivalent forces according to past Italian building codes (CNR-

UNI 1967 and DM 1996). 

C
N

R
 1

9
6
7

 

p N/m
2
 wind velocity pressure p = c · k · q 

c [-] external exposure and shape coefficient 0.8 

k [-] slenderness coefficient f(H/(2 · B))  

q N/m
2
 wind kinetic pressure 600 

D
.M

.1
9
9
6

 

p N/m
2
 wind velocity pressure p = qref · ce · cp · cd  

qref N/m
2
 kinetic pressure qref = v

2
ref/1.6 

vref m/sec wind speed 25 

ce [-] external exposure coefficient f(H) 

cp [-] shape factor (upstream facades) 0.8 

cd [-] dynamic factor 1.0 

The ratios between the design shear demand in beam-to-column connection induced by 

wind and the connection friction strength is evaluated for the different case studies (Figure 

18). In particular, the shear demand is evaluated according to CNR Instructions and DM 

16/1/1996 and the shear strength is calculated according to friction coefficient equal to 0.35, 

0.13 and 0.09. It is found that, if the friction coefficient c = 0.35, recommended by the 

mentioned Italian code (Circ. M. LL.PP. n.1422 1965), is used, the shear demand will be 
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always much smaller than the capacity. This outcome justifies the use of friction connections 

in existing structures. Vice versa, if the experimental coefficients proposed by Magliulo et al. 

(2011) are considered (c = 0.13 ÷ 0.09), the capacity decreases and, in 25% cases, it can be 

exceeded by the shear demand. 

 
Figure 18. Ratios between the design shear demand Fv in beam-to-column connection induced by 

wind, evaluated according to CNR 1967 (CNR67) and DM 1996 (DM96), and the connection friction 

strength Ff, evaluated according friction coefficient c equal to 0.35, 0.13 and 0.09, for the different 

case studies. 

It can be concluded that an unrealistic high friction coefficient for the evaluation of the 

shear capacity of the connections in the past Italian codes allowed the use of friction 

connections. 

CONCLUSIONS 

The 20th and 29th May Emilia earthquakes caused damage mainly to industrial precast 

structures with a huge economic loss, because of both the high percentage and the 

vulnerability of the precast buildings in the area. From the study of the precast structures, the 

review of the past code design provisions and the recorded structural damage, the following 

conclusions can be drawn. 

• A direct inspection of the industrial zones shows that at least half of the industrial 

precast structures exhibits significant damage and a large number of people suffered 

death, injury and loss of property. If the first main shock had occurred during the 

workday, the overall balance would have been even more disastrous. 

• The damage to precast structures were caused mainly by inadequate connection 

systems: the main recorded failures are the loss of support of structural horizontal 



 

22 

 

elements due to the sliding of friction connections and the collapse of the cladding 

panels due to the failure of the panel-to-structure connections. 

The damage can be explained by two main reasons: (a) the rarity of the event and (b) 

the exclusion of the epicentral region from the code-recognized seismic areas, which 

implied that friction connections were acceptable up to 2003. 

The poor performance exhibited by the precast structures with friction connections 

reinforces the belief that connections relying on gravity-only load paths are not 

acceptable in seismic areas. 

• Based on simple considerations on the recorded spectra, it is confirmed that precast 

structures providing neoprene-concrete friction connections should be expected to 

suffer from loss of support of their horizontal elements under the recorded seismic 

excitation. 

• The vulnerability of friction beam-to-column connections is also due to the high 

friction coefficient (c = 0.35) suggested by past Italian codes for the evaluation of the 

friction strength. If experimental values (Magliulo et al. 2011) had been taken into 

account (c = 0.13 – 0.09), the use of friction connections would have been limited. 
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